
OCS Study MMS 94-0020
-

1111111111111111111111111111111
PB95-181343

Technical Manual for a Coupled Sea-Ice/Ocean
Circulation Model (Version 1)

Katherine S. Hedstrom
Institute of Marine and Coastal Sciences

Rutgers University

REPRODUCED BY: NilS.
U.S. Department of Commerce~·-­

National Technical Information Serv1ce
Springfield, Virginia 22161

1111111111111111111111111111111

Technical Manual for a Coupled Sea-Ice/Ocean
Circulation Model (Version 1)

Katherine S. Hedstrom
Institute of Marine and Coastal Sciences

Rutgers University

April 1994

PB95-181343

This study was funded by the Alaska Outer Continental Shelf Region of the Minerals Manage­
ment Service, U.S. Department of the Interior, Anchorage, Alaska, through Cooperative Agreement
14-35-0001-30675 with Rutgers University, Institute of Marine and Coastal Sciences.

The opinions, findings, conclusions, or recommendations expressed in this report or product are
those of the authors and do not necessarily reflect the views of the U.S. Department of the Interior,
nor does mention of trade names or commercial products constitute endorsement or recommenda­
tion for use by the Federal Government.

:: ,,

This document was prepared with It\TEX and xfig.

Acknowledgments for SPEM version 3.0
I would like to thank Dale Haidvogel, whose patience in describing the SPEM to me made this

document possible, and who made many helpful suggestions while I was writing it. I would also
like to thank him for writing up the model physics and for allowing me to include that description
here. Thanks go to Hsiao-Ming Hsu for his careful reading of an early version of this user's guide.

Aike Beckmann has been very helpful in my efforts to upgrade this document, both in con­
tributing information about model changes and in carefully checking what I have written.

Acknowledgments for SPEM version 3.9
John Wilkin and Jim Mansbridge have been a pleasure to work with on the masking and

rotated mixing tensors, and have even provided me with the material to include here. Jim and
John also provided the Tasman Sea example, while Anthony Macks and Jason Middleton provided
the upwelling/downwelling example. Thanks to the Usenet community for providing great tools
like peri, patch, cpp, res, and imake to aid in software development (and to make it more fun).
Cathy Lascara talked me into trying imake with SPEM which has been well worth the trouble.

Thanks again to Dale Haidvogel for giving me the time to rewrite this the way I wanted to, not
to mention the freedom to make some of these changes to SPEM. Rowan Hughes was kind enough
to read this manual critically and to make a large number of grammatical corrections. Thanks
especially to the SPEM user community for making this effort worthwhile.

Development and testing of the SPEM model has been funded by grants from the Office of
Naval Research (SC-53789), the National Science Foundation (OCE 90-12754-01), the Minerals
Management Service (14-35-0001-30675), and the National Aeronautics and Space Administration
(GC-R-261348-006-C).

UNIX is a registered trademark of UNIX System Laboratories.
CRAY, C-90 and Y-MP are trademarks of Cray Research, Inc.
SparcStation is a trademark of Sun Microsystems, Inc.
Indigo2 is a trademark of Silicon Graphics, Inc.
Kubota and Titan are trademarks of Kubota Pacific Corp.
IBM and RS/6000 are trademarks of International Business Machines.

IIIIIIIIIIIIIIIIIIIIIU 11111111
Abstract PB95-181343

A coupled sea-ice/ocean circulation model is described. Principal components of the coupled
model include the semi-spectral primitive equation model of Haidvogel et al. (1991) and the
dynamic-thermodynamic sea ice model of Hibler (1979). The resulting coupled model is applied
to the Western Arctic Ocean. This user's manual describes the equations and algorithms used
in both the ice and ocean components, the methods of coupling, and configuration details for
the Western Arctic.

Contents

1 Introduction
1.1 Acquiring the SPEM code
1.2 The SPEM email list and bibliography .
1.3 Warnings and bugs

2 Ocean Model Formulation
2.1 Equations of motion ...
2.2 Vertical boundary conditions . .
2.3 Horizontal boundary conditions .
2.4 Sigma (stretched vertical) coordinate system
2.5 Horizontal curvilinear coordinates . . .

3 Numerical Solution Technique (SPEM)
3.1 Vertical spectral method
3.2 The collocation method
3.3 Horizontal grid system . .
3.4 Masking of land areas ..

3.4.1 Velocity equations
3.4.2 Temperature and salinity equations
3.4.3 Streamfunction equation

3.5 Conservation properties
3.6 Semi-discrete equations
3. 7 Time stepping: depth-integrated flow (k = 0 mode)
3.8 Masking and the vorticity equation

3.8.1 Capacitance matrix method
3.8.2 Island circulation

3.9 Time stepping: internal velocity modes, temperature, and salinity
3.10 Determination of the vertical velocity and density fields
3.11 The pressure gradient terms
3.12 Computation of the surface pressure
3.13 Friction and diffusion ...

3.13.1 Vertical smoothing .
3.13.2 Laplacian
3.13.3 Biharmonic
3.13.4 Rotated mixing tensors

3.14 Convective adjustment

4 Details of the SPEM Code
4.1 Main subroutines
4.2 Other subroutines and functions
4.3 C preprocessor variables
4.4 Important parameters
4.5 Common blocks and the variables within them
4.6 Statement functions .
4. 7 IP ATCH and patch
4.8 Makefiles . .

4.8.1 imake
4.9 imake

4.9.1 Your Makefile .

1

7
8

10
10

13
13
14
14
14
16

19
19
20
20
20
21
21
22
22
22
23
25
25
27
28
28
29
29
29
29
30
30
30
31

33
33
33
38
40
41
51
52
53
54
54
55

10.1.3
10.1.4
10.1.5
10.1.6
10.1.7
10.1.8
10.1.9

x, y grid
(, TJ grid
Initial conditions .
Equation of state
Boundary conditions .
Model forcing
user1

10.1.10 user2
10.1.11 User variables and subroutines
10.1.12 dosaxpy

10.2

10.3

Configuring the ice model
10.2.1 ice_init ..
10.2.2 driver ..
10.2.3 maskinit .
10.2.4 icebcs.h .
10.2.5 Forcing fields

Arctic example ...
10.3.1 spemdefs.h
10.3.2 Model domain
10.3.3 gridpak ...
10.3.4
10.3.5
10.3.6
10.3.7
10.3.8
10.3.9
10.3.10

Initial conditions and the equation of state
Boundary conditions .

Appendices

Forcing
userl
user2
User variables
Floats

A Model Timestep

B Chebyshev Polynomial Basis Functions

C Bathymetric Steepness

D The C preprocessor
D.1 File inclusion ...
D.2 Macro substitution ..
D.3 Conditional inclusion
D.4 C comments

E peri scripts for Fortran
E.1 redo .
E.2 findent .
E.3 relabel .
E.4 unenddo
E.5 fmakedepend
E.6 sfmakedepend

F Modifications to old velvet
F.1 Context Diffs for velvet .

3

88
88
90
90
90
90
91
91
92
92
92
92
92
92
93
93
93
93
93
95
95
95
97
97
98
98
98

99

99

101

103

105
. 105
. 105
. 106
. 106

107
. 107
. 107
. 108
. 108
. 108
. 109

111
. 111

List of Figures

1 Tree structure of anonymous ftp directory 9
2 Placement of variables on an Arakawa C grid 20
3 Masked region within the domain 21
4 Domain regions and boundaries 25
5 Flow chart for the model . 34
6 Flow chart for init 35
7 Creating Makefiles 55
8 Small grid with masked regions 58
9 An example float plot showing the floats near Alaska with a + every ten days and

also the real drifters 66
10 The Arakawa B-grid 74
11 Temperature as a function of height within the ice 75
12 Flow chart for the sea-ice model 78
13 Flow chart for the coupled ice-ocean model 80
14 The whole grid 87
15 The Western Arctic grid 91
16 Flow chart of the gridpak programs. 93
17 The area-averaged Levitus temperature profile and the temperature climatology . 94
18 The area-averaged Levitus salinity profile and the salinity climatology 95
19 Modified Chebyshev polynomials and collocation levels for N = 8 100

5

1 Introduction

A coupled sea-ice/ocean circulation model is described. Principal components of the coupled
model include the semi-spectral primitive equation model of Haidvogel et al. [12] and the dynamic­
thermodynamic sea ice model of Hibler [20]. The resulting coupled model is applied to the Western Arctic Ocean. This user's manual describes the equations and algorithms used in both the ice and
ocean components, the methods of coupling, and configuration details for the Western Arctic.

Sections 2 and 3 describe the SPEM physics and numerical techniques and are an update
of the description in Haidvogel, Wilkin, and Young [12]. Section 4 lists the SPEM subroutines, functions and variables. Section 5 describes the support programs which are needed to provide
SPEM with data files. Section 6 describes the Lagrangian floats and how to use them, including
the plotting post-processor fltplt. Section 7 describes John Wilkin's postprocessing programs readhist, shorthist, and plothist. The ice model equations are presented in §8, which is derived
from Hibler [21] and Hibler [22]. The subroutines and variables for the ice model as well as the
coupling to the ocean model are described in §9. The process of configuring the coupled model for a
particular application is described in § 10, including a discussion of the Western Arctic application.

The principle attributes of the ocean model are as follows:

General

Horizontal

Vertical

• Primitive equations with temperature, salinity, and an equation of state.
• Hydrostatic and Boussinesq approximations.
• Optional Lagrangian floats ("water parcels").

• Orthogonal-curvilinear coordinates.
• Arakawa C grid.

• Closed basin, periodic channel, doubly periodic, or user supplied boundary condi­
tions.

• Masking of land areas.

• Sigma (bottom following) coordinate.
• Chebyshev modal expansion.

• Rigid lid on top.

Mixing options

• Horizontal along-sigma Laplacian and biharmonic viscosity and diffusion.
• Horizontal Laplacian diffusion along constant z or in situ density surfaces.
• Horizontal free-slip or no-slip boundaries.
• Vertical harmonic viscosity and diffusion with a spatially variable coefficient.
• Vertical convective mixing when statically unstable.

The principle attributes of the ice model are as follows:

General

• Momentum equations with a non-linear viscous-plastic rheology.

7

ftp

pub

spem incoming util gridpak perl

II~
src messages patches contrib

1\
spem3.2 spem3.5 spem3.9

Figure 1: Tree structure of anonymous ftp directory

coastO.lines.Z A high-resolution coastline file for xcoast and plothist (compressed).
coastl.lines.Z A low-resolution coastline file for xcoast and plothist (compressed).
maskedge.tar.Z A program for finding the input to mask from the bathymetry

mask on the grid. It is written in C++ and requires libg++.

Another directory of interest is pubjutil, which contains:

fimake. tar .z

fperl. tar .z
spemlib. tar.Z
spemlib patches
xpots

Fortran imake configuration files. This will be updated once I have
read the imake book (DuBois [10]).
The perl scripts which I use with Fortran, described in Appendix E.
Library used by SPEM and gridpak.
If in doubt about your patchlevel, just get the whole spemlib again.
An X11 application for generating a sequence of numbers from zero
to one. Will be used by a future version of gridpak.

The Unix convention is that a filename ending in .z has been compressed with the Unix
compress utility. The corresponding uncompress is included with many Unix systems, but
its source code is also available as part of the gnu gzip package. Likewise, a .tar ending designates
a file which was created with the Unix tar (tape archive) utility. The steps in unpacking these files
are:

'l. uncompress gridpak.tar.Z
'l. tar xvf gridpak. tar

Note that both .tar and .z files are binary and must be retrieved using binary mode in ftp.
Included in the spemlib tar file is the mud2 elliptic solver. mud2 is copyrighted by NCAR

and they request that you not make any changes to it without their permission.
If you are unable to acquire the code in this fashion feel free to contact me at:

9

common II var1, var2
44 format(//)

and the new Fortran 90 string concatenation:

mystring = 'Hello, ' II 'World!'

3. Macro replacement. One feature of cpp is that you can define macros and have it
perform replacements. The code:

#define REAL double precision
REAL really_long_variable, second_long_variable

becomes

double precision really_long_variable, second_long_variable

and you run the risk of creating lines which are longer than 72 characters in length.
• I have started declaring all variables as being of type BIGREAL or SMALLREAL and then defining them to be real*8 and real*4 respectively (except on a Cray). This usually works for variables, but some compilers do not like

real*8 function vmin(var1, var2)

If you run into one of these finicky compilers, you will just have to fix each BIGREAL function by hand.

• Through the years there have been several file formats for the grid file. Make sure that your grid-generation software and your version of getgrid.F are consistent. Likewise, make sure that you don't try to read a single precision binary file from a double precision SPEM program.

• We have also changed versions of mud2 and are now using version 3.0. The argument list has changed in that iparm is now dimensioned differently. Make sure you are using the appropriate version of mud2 for your code, in gridpak as well as in SPEM.

• The Lagrangian floats have not been fixed up to do the right thing near masked regions. If a float drifts near a land mask it will be horizontally interpolated with zeroes from inside the masked region, even with the bilinear option. It is not obvious how to fix this.

• The plotting has been set up to work with the masking. Some variables are plotted on 'ljJ points, which has the disadvantage that one gridbox wide peninsulas will not be masked since there are no special values internal to the peninsula. Other variables are plotted on p points­the problem with that is the values end half a gridbox from masked regions and sometimes extend half a gridbox outside the domain. This can be confusing if you don't expect it.
• The vertical sigma coordinate was chosen as being a sensible way to handle variations in the water depth. It has been used with success when the maximum and minimum depths differ by a factor of twenty or less, and the depth variations are well resolved by the horizontal grid (see Appendix C). On the other hand, it is not at all difficult to get into a parameter range in which SPEM is ill-behaved, for instance it has been known to have trouble with a depth

range spanning three orders of magnitude.

11

2 Ocean Model Formulation

2.1 Equations of motion

The primitive equations in Cartesian coordinates can be written:

au - a¢> at + v · V'u- fv = -ax + Fu + Du

av - a¢> at + v · V'v + fu =- ay + Fv + Dv

~~ + v · V'T = Fr + Dr

~~ + v · V' S = Fs + Ds

p = p(T,S,P)

a¢> -pg

Po

where, in standard notation:

and

(u,v,w) =the (x,y,z) components of vector velocity v
Po+ p(x, y, z, t) = total in situ density
T(x, y, z, t) =potential temperature

S(x, y, z, t) = salinity
P =total pressure P ~ -p0 gz

</>(x,y,z,t) =dynamic pressure</>= (Pjp0)

f(x, y) = Coriolis parameter
g = acceleration of gravity

(Fu,Fv,Fr,Fs) =forcing terms

(Du, Dv, 1Jy, Ds) = diffusive terms.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Equations (1) and (2) express the momentum balance in the x- andy-directions, respectively. The
time evolution of the perturbation temperature and salinity fields, T(x, y, z, t) and S(x, y, z, t), are
governed by the advective-diffusive equations (3) and (4). The equation of state is given by equation
(5). In the Boussinesq approximation, density variations are neglected in the momentum equations
except in their contribution to the buoyancy force in the vertical momentum equation (6). Under
the hydrostatic approximation, it is further assumed that the vertical pressure gradient balances
the buoyancy force. Lastly, equation (7) expresses the continuity equation for an incompressible
fluid. For the moment, the effects of forcing and dissipation will be represented by the schematic
terms F and 1J, respectively. The horizontal and vertical mixing will be described more fully in
§3.13.

13

make the coordinate transformation:

and

x=x
iJ=y

a= 1 + 2(zjh)
z=h/2(a-1)

t = t.

In the stretched system, the vertical coordinate a spans the range -1 ~a~ 1; we are therefore
left with level upper (a = 1) and lower (a = -1) bounding surfaces. The chain rules for this
transformation are:

and

(
{)) ({)) hx {) - = - +(1-a)--ox z ox u h oa

(
{)) ({)) hy8 - = - +(1-a)--{)y z ay u h au

{) 2 {)
az- haa·

As a trade-off for this geometric simplification, the dynamic equations become somewhat more
complicated. The resulting dynamic equations are, after dropping the carats:

where

{)u- fv + v · Vu = - {)<fy + (1- u) (gp) {)h + Fu + Vu at ax 2po ox

ov _ {)<fy (gp) {)h {)t+fu+v·Y'v=-ay+(1-u) 2Po ay+Fv+Vv

aT + v · VT = Fr + Vr at

~~ + v · V' S = Fs + Vs

p = p(T,S,P)

{)<fy = (-ghp)
oa 2po

a a an
ax(hu)+ oy(hv)+h 0a =0

v= (u,v,n)

-n {) {) oa v· v = u-+ v-+ a-. ox {)y oa
The vertical velocity in sigma coordinates is

1 [{)h {)h] n(x,y,a,t)= h (1-a)uax +(1-a)v{)y +2w.

15

(8)

(9)

(10)

(11)

(12)

(13)

(14)

the equations of motion (8)-(14) can be re-written (see, e.g., Arakawa and Lamb [4]) as:

~ (~) + i_ (hu2
) + i_ (huv) +~(hun)

8t mn {)~ n a, m 8a mn

-{ (~n) + v :~ (*)- u :, (!)} hv =

(h) {}cp (ghp) {)h - ;;; {}~ + (1- a) 2Pon {}~ + Fu + Du (19)

~ (.!:3:_) + i_ (huv) + i_ (hv 2
) + ~ (hvn)

{)t mn {)~ n {}Tf m 8a mn

+ { (~n) + v :~ (*)- u :, (!)} hu =

- (!:_) {)cp + (1 - a) (ghp) {)h + Fv + Dv
m a, 2pom a, (20)

8 (hT) {} (huT) {} (hvT) {} (hf!T) - - +- -- +- -- +- -- =Fr+Vr {)t mn {)~ n a, m {}a mn (21)

~ (hS) + i_ (huS) + i_ (hvS) + ~ (hfJS) = Fs + Ds {)t mn {)~ n a, m {)a mn (22)

p = p(T,S,P) (23)

{}cp- (ghp)
8a -- 2p

0
(24)

i_ (hu) + i_ (hv) + ~ (hn) _ 0 {)~ n a, m {)a mn - . (25)

All boundary conditions remain unchanged.

17

3 Numerical Solution Technique (SPEM)
3.1 Vertical spectral method

The vertical (O") dependence of the model variables is represented as an expansion in a finite
polynomial basis set Pk(O"); that is, we set

N

b(~, ry, 0") = L Pk(O")bk(~, rt) (26)
k=O

where the arbitrary variable b, introduced here for convenience, is any of u, v, p, T, S, ¢,or 11. The
only restriction placed on the form of the basis polynomials is that ~ J~ 1 Pk(O")dO" = Dok, i.e., only
the lowest order polynomial may have a non-zero vertical integral. This isolates the external mode
(or depth-averaged component of the field) in the amplitude of the k = 0 polynomial. In practice,
the spectral technique does not explicitly evaluate the polynomial coefficients bk but rather the
actual variable values at "collocation" points (or equivalent grid points) O"n, chosen to correspond
to the location of the extrema of the highest order polynomial. The collocation point values bn are
thus defined as

N

bn = b (O"n) = L Pk(O"n) bk (27)
k=O

and will be functions of (t, ry). The polynomial coefficients bk can be recovered from the collocation
point values bn by a linear matrix transformation. Consider a matrix F whose elements are

Fnk = Pk(O"n)

and let b and b be column vectors whose elements are bn and bk respectively. Then

b = Fh
and hence

(28)

(29)

(30)
It is now straightforward to represent vertical differentiation and integration in terms of matrix
operators. Consider a matrix R whose elements are

Rnk = 8Pk(O"n).
00" (31)

Then the matrix C DZ = RF-1 will perform differentiation of the model field (b) in the vertical
direction. This is denoted in the following subsections by the Du operation, since

8Pk(O"n) A A _ 1 Dub = bk = Rb = RF b = Cnzb. 00" (32)

Similarly, consider a matrix S whose elements are

Snk = {
1

Pk(O") dO". Jun (33)

Then the matrix C 1 NT = S p-l will perform vertical integration, denoted in the following sections
by the r; operation, since

(34)

By default, the SPEM uses the Chebyshev polynomials. The matrix operators F, R and S and
collocation levels O"n for this basis set are given in Appendix B.

19

including two land cells. The process of defining which areas are to be masked is described in §5.2, while this section describes how the masking affects the computation of the various terms in the equations of motion.

0 0

0 0

A B
0

D E

M N
0

c
0

F

x - u points

0 0 - v points

0 - p points

• - 1/J points

Figure 3: Masked region within the domain

3.4.1 Velocity equations

At the end of every timestep, the values of many variables within the masked region are set to zero (subroutine zeroland). This is appropriate for the v points E and Lin Fig. 3, since the flow in and out of the land should be zero. It is likewise appropriate for the u point at I, but is not necessarily correct for point G. The only term in the u equation that requires the u value at point G is the horizontal viscosity, which has a term of the form £;v~. Since point G is used in this term by both points A and M, it is not sufficient to replace its value with that of the image point for A. Instead, the term ~ is computed and the values at points D and K are replaced with the values appropriate for either free-slip or no-slip boundary conditions (subroutine slipbound). Likewise, the term tev~e in the v equation must be corrected at the mask boundaries.
The fourth-order pressure gradient option (see §3.11) requires values at p points inside masked areas, such as point H. We have chosen to avoid this problem by reducing to second-order accuracy at the mask boundaries (subroutine pcorrect).

3.4.2 Temperature and salinity equations

The handling of masks by the temperature and salinity equations is similar to that in the momentum equations, and is in fact simpler. Values ofT and S inside the land masks, such as point H in Fig. 3, are set to zero after every timestep. This point would be used by the horizontal diffusion term for points B, J, and N. This is handled by setting the first derivative terms at points E, I, and L to zero, to be consistent with a no-flux boundary condition.
Note that the equation of state must be able to handle T = S = 0 since this is the value inside masked regions.

21

V1 .<: ~ U1 .<: ;;;'T/ V! 1 H V .<: H - -- + u v - + u v - + --- + vu -

[)
(

r
) { (n1) } { (..,-r)l) '

1

} pm 8 { h" }') [)t ffi'lri'l e ~ 7J ffi'l ffi'lri'l ocr 0' mn

(39)

~ (hT) + 8 (ult-r) + 8 (vh:'T") at mn < ~ 7) 'f'i"t'1

hn aT (hn) + --
0

+T80' - = Vr+Fr mn cr mn (40)

~ (hS) + 8 (ult-s<) + 8 (vh:'~) 8t mn e n< 7) 'f'i"t'1

hn as (hn) + --
0

+ SfJO' - = Vs+ Fs mn cr mn (41)

p = p(S,T,P) (42)

¢(cr) =- (:~) I~p (43)

{ uTI!- } { v h:' } { hfl } 8e 'tift + 81) m" + 8u mn = 0. (44)

Here 8e and 87) denote simple centered finite-difference approximations to 8/ 8~ and 8/ OTJ, with the
differences taken over the distances ~~ and ~TJ, respectively; {)< and ~ represent averages
taken over the distances ~~ and ~TJ; 80' represents a vertical derivative evaluated according to
the prescription described in §3.1; and t;_ indicates the analogous vertical integral. The vertical
advection terms are actually more complicated, as described in §3.5.

This method of averaging was chosen because it internally conserves first moments in the model
domain, although it is still possible to exchange mass and energy through the open boundaries.
The method is similar to that used in Arakawa and Lamb [4]; however, their scheme also conserves
enstrophy.

3.7 Time stepping: depth-integrated flow (k = 0 mode)
In continuous form, the horizontal momentum and continuity equations (19), (20) and (25) can be
written:

~ (!::!:_) = Ru- ('.!_) [)qy
8t mn n 8~

(45)

~ (!:!!_) = Rv - (!:_) [)qy
8t mn m OTJ (46)

23

6 (outer boundary)

n (whole domain)

bM

8E 8P

Figure 4: Domain regions and boundaries

3.8 Masking and the vorticity equation

The mud2 elliptic solver accommodates singly- or doubly-periodic, mixed-derivative, and specified
(Dirichlet) boundary conditions, but these boundary conditions must be applied on the edges of the
rectangular computational domain. In order to extend the elliptic solver to accommodate masked
land areas contiguous to the perimeter of the domain, or islands within the domain, modifications
to the procedure for solving equation (55) are required. The capacitance matrix method is one
such algorithm.

3.8.1 Capacitance matrix method

The description of the capacitance matrix algorithm presented here is from Wilkin et al. [40) and
closely follows that of Milliff [30). The notation used in this section to describe the subregions and
boundaries of the computational domain is shown in Fig. 4. The full domain is denoted by n and is
comprised of various sub domains: no, the ocean region; nM, the mainland (which is any land area
contiguous to the perimeter); and n1, the islands. The perimeter of the computational domain is
denoted by 8 and is comprised of 6P, the perimeter of the ocean region, and oE, the exterior of the
mainland region. Land regions are separated from the ocean by boundaries oM of the mainland
region, and OJ for the islands. Each of the N1 islands will be represented by an interior n1 and
a boundary OJ. In addition, oC denotes all coastlines within the interior of the computational
domain, i.e., oC = oM+ L:f:;1 OJ; and oO denotes the physical boundary of the multiply-connected
ocean, i.e., oO = oP + oC.

The elliptic problem to be solved may be stated as

(56)

in the region no, subject to 'lj;(80) being prescribed. Here, £ is the two-dimensional differential
operator corresponding to equation (55). The boundary conditions on solid land boundaries are

25

K-1 is referred to as the capacitance matrix. At each model timestep, the matrix multiplication
(64) must be performed to evaluate w. However, it is impractical to store the NB influence functions
'lj;Gn and multiply these by w to get 'lj;H at every timestep. Rather, the right hand side of equation
(56) is augmented with a vorticity forcing field

NB

ZH = L Zcnwn
n=l

consisting of the weights Wn distributed along the boundary 6C. Then the solution to

(65)

(66)

inn, subject to boundary conditions on 6, will be precisely 'lj;p + 'lj;H. Equation (66) can be solved
directly with mud2 because the boundary conditions are prescribed only on the perimeter of the
computational domain 6.

3.8.2 Island circulation

In §3.8 it was assumed that ki, the value of 'lj; on each island, could be specified a priori. In general,
this is not the case as the transport between the islands will evolve with time in response to the
model forcing and is determined by the condition that the surface pressure must be continuous
following any closed path around each island.

A consequence of the rigid-lid approximation is that the surface pressure is not carried explicitly
in the model. Therefore, its effect on the circulation around each island is inferred by an integration
of the depth-averaged momentum balance. The depth-average of equations (45) and (46) may be
written au _ 1

-=Ru--'Vps at Po (67)

where Ru now represents all other terms in the balance except the gradient of the surface pressure
Ps· Around any closed path s

which implies, from equation (67)

where

f 'Vp8 • ds = 0,

ari 1-7ft= y;Ru·ds,

(68)

(69)

(70)

is the circulation following the chosen path around island i. Equation (69) is integrated at each
timestep to predict the value of ri around each island at the new time level.

Let '¢denote the solution obtained by the capacitance matrix algorithm (66) and I\ the corre­
sponding island circulation values. Substitution of (51) and (52) into (70) gives

I\ = 1-~a'¢ ds h h or (71)

where r is directed inward, normal to the path of integration. The discrepancy between ri and
I\ can be amended by adding to '¢ a weighted sum of island Green's functions 'lj;i, defined as the
solution to

(72)
in n 0 , subject to 'lj;i = 1 on island i and zero on all other islands and the mainland. The 'lj;i
are closely related to the influence functions and are readily computed by the capacitance matrix
method.

27

-- - -~--~~~~~

3.11 The pressure gradient terms

The pressure gradient terms in equations (19) and (20) are written in the form

h'Vcp + (1- a)h :a (t) 'Vh

or

h'Vcp + (1- a)(;~~) \lh.

This is the form traditionally used in sigma-coordinate models to account for the horizontal differ­ences being taken along surfaces of constant CT. This form can be shown to lead to significant errors
when l\lhl is large (Haney [16]; and Beckmann and Haidvogel [6]).

These errors can be greatly reduced if these terms are calculated to fourth-order accuracy
(McCalpin [27]). The fourth-order form for the derivative operator is:

a¢ = -<Pi+1 + 27</Ji- 27</Ji-1 + <Pi-2 + o(~~4) ac_l 24~~
2

(78)

and the fourth-order accurate averaging operator is:

-e 1 4 <P = 16(-<Pi+1 + 9</Ji + 9</Ji-1- <Pi-2) + 0(~~) (79)

Rather than trying to maintain fourth-order accuracy at horizontal boundaries by using one-sided
differences, SPEM drops to second-order accuracy at all horizontal boundaries (at the domain edges
and near masked land areas).

In both the second- and fourth-order calculations of the pressure gradient, the pressure <P is
computed by a vertical integration of the density field using equation (24). Prior to the integration,
a horizontal average of the density, p(z), is subtracted from p. As discussed by Haney [16] and
McCalpin [27], p does not contribute to the pressure gradient in the analytic equations. However,
when numerically computing its contribution to the pressure gradient, the error from this term can
be unacceptably large.

3.12 Computation of the surface pressure

In timestepping the model from t to t + ~t, most of the terms in the momentum equations are com­
puted directly. However, since the SPEM has a rigid lid, the effects of the surface pressure gradient
are not immediately known. We bybass calculating the surface pressure directly by calculating the curl of the momentum equations and finding the depth-integrated streamfunction, as described in
§3.7. However, once the timestep is complete, it is possible to infer the surface pressure gradient
components since then all other terms are known in the momentum balance. The 2-D fields of
pressure gradient are computed when needed and are stored in each history record.

3.13 Friction and diffusion

In §2 the diffusive terms were written simply as Du, Dv, Dr, and 1Js. Here we describe how these
terms are represented in SPEM. In fact, they are the sum of vertical and horizontal terms, where
the horizontal term has several options.

3.13.1 Vertical smoothing

The vertical diffusion term is identical for all four equations of motion. In the model coordinates
it is represented as:

4 a (a<P) (so) hmn OCT v aa .

29

where

MILGP

+ [c1- CT)!!:. {}h - 2Sy] P"
h {}q h
~
MIX _EN

MILGP

8p [m~ + (1- CT)'J: ~~U] S - ax - ..::.--~--~~----~~ x- ap - 2 op
8z h,aq

_ U _ [n* + (1- CT)***]
Sy- a;;- 2 op

8z hBu

(87)

and € is the ratio of vertical to horizontal diffusion coefficients. No flux boundary conditions are
easily imposed by setting

p< = 0

F''l =0

Fu = 0

at~ walls

at 'TJ walls

at CT = ±1

Finally, the flux divergence is calculated and is added to the right-hand-side term for the field
being computed:

!__ (hFe) + !__ (hF 71
) + ~ (hFu)

{}~ n {}'fJ m 8CT mn (88)

These options are currently available for only the T and S equations. There are plans to also
provide them for the u and v equations-ask me about the status of this update.

3.14 Convective adjustment

If desired, the density field is checked for occurrences of hydrostatic instability, which the model
will then attempt to remove. It searches through the water column using a simple conservative
mixing scheme. The variables T, S and optionally u and v are vertically mixed and the new pis
then calculated from the equation of state.

There are actually two different schemes, depending on the equation of state being used. For
the linear equation of state, two vertically adjacent p values are compared and then mixed if the
shallower one is denser. For the fully nonlinear equation of state, this is not appropriate because it
does not account for the effects of compressibility. Instead, the Brunt-Vaisa:Ia frequency is computed
for the point midway between collocation points using the formula from McDougall [28]. Mixing
occurs for negative values of N 2•

31

4 Details of the SPEM Code

4.1 Main subroutines

A flow chart for the main program is shown in Fig. 5. The boxes refer to subroutines which are
described as follows:

bcs Horizontal boundary conditions are imposed upon the u, v, T and S fields. Currently
supported options are a doubly-periodic domain, periodic channel, and closed basin with
either free-slip or no-slip walls. This routine can be modified by the user to provide open
boundaries of your favorite type.

init Does everything that needs to be done to start up the model run. It reads initial pa­
rameters and u, v, T, S, and '1/; fields from disk or calls peminit. It then calculates the
remaining initial fields, creates plots of the initial fields, and opens the restart file. The
flow chart for init is shown in Fig. 6.

omega Calculates the vertical velocity f! according to equation (77).

prsgrd Calculates the baroclinic pressure gradients, with an entry for calculating surface pressure
gradients (§3.11).

rhocal Calculates p using the equation of state (§3.10).

srhs Calculates and stores contributions to the right hand side of equation (22), where the
advective terms have been moved to the right hand side.

step..init Sets some variables for the next timestep. This could be used to update the wind forcing
or the boundary conditions.

tmstp Performs the timestep on T, S and the timestep on the 'baroclinic part' of u and v, via
entry points tstp, sstp, ustp, and vstp, respectively. The entry vrtstp performs the
timestep on Z, solves for '1/;, and completes the time step on u and v.

trhs Calculates and stores contributions to the right hand side of equation (21), where the
advective terms have been moved to the right hand side. ·

urhs Calculates and stores contributions to the right hand side of equation (19), where all the
terms other than ftC!~) have been moved to the right hand side.

vrhs Calculates and stores contributions to the right hand side of equation (20), where all the
terms other than ftC!~) have been moved to the right hand side.

vrtrhs Calculates the Rz term in equation (54).

4.2 Other subroutines and functions

Initialization

chbset Sets up the Chebyshev polynomial functions.
checkdefs Reports on which C preprocessor variables have been #defined and checks

their consistency.

getgrid Reads in the curvilinear coordinate arrays as well as f and h from a grid gener­
ation program.

histio Reads or writes the history file header.

33

read in restart
file from disk

call user2

calculate
p,w,(

no

write to
restart file

Figure 6: Flow chart for init

35

----·---------,

~-- -- - --~--------

mixuv Vertically mixes u and v in regions of Richardson number instability (currently
a place-holder).

pcorrect Replaces the fourth-order pressure gradient with the second-order value next
to the mask boundaries. Note that the fourth-order value is incorrect because it
uses points which are interior to the land.

slipbound Applies the horizontal boundary conditions for the u and v equations around
masked land areas. These boundary conditions are for either free-slip or no-slip
boundaries-more work would have to be done to make this work with partial­
slip boundaries.

zeroland Sets the values of a field inside the land masks to some value. This value is
usually either zero or a special value for the plots.

Plotting

botplt Plots the bottom topography in slice plots.
cpmpxy Replaces the conpack mapping routine so that the slice and slab contour plots

come out in the curvilinear coordinate system.
cpshift Makes conpack calls in such a way as to emulate our old modified conrec. It

will optionally shift the contour lines by half a contour interval. See the version
3.0 or 3.2 NCAR graphics manual [7].

fill Fills an array for plotting horizontal sections of the model fields-either a level
of constant sigma or the amplitude of a vertical mode.

getxxyy Fills the xs, ys, xv, yv, xb, and yb arrays for cpmpxy and vvumxy.
label Puts labels on plots. Changes the set plotting environment.
peplt Creates slab plots of u, v, 'lj;, p, T, 8, w, (, v, 4> and calls pltslcyz and pltslcxz for

the slice plots.

ploth Plots bottom topography, its gradient, and a resolution ratio (see Appendix C).
pltperim Draws the outline of the model domain in x, y coordinates, including mask

edges.

pltslcxz Plots slices on surfaces of constant 'f/·
pltslcyz Plots slices on surfaces of constant (.

slablab Labels the horizontal slab plots.

slabplt Plots a 2-D array as a horizontal slab.

sliceplt Gathers together some of the repeated code for vertical slice plots.
vvcurv Makes vector calls in such a way as to emulate our old modified velvet, allowing

velocity vectors to be plotted in x-y space instead of in (-TJ space. It requires
NCAR Graphics 3.2-otherwise you will still have to use a modified velvet, as
described in Appendix F.

vvumxy User mapping for the vector calls. Contains the old fx and friends if you do not
define NCARG_32.

windplt Plots the wind-stress vector field.

xyzplot Fills an array for plotting horizontal sections of the model fields on a level of
constant z.

yzplot Fills an array for plotting vertical sections of the model fields along constant (
or 'fJ surfaces.

37

-------~--------

masking

MASKING Define if you want to mask out islands and peninsulas within the domain.
ISLANDS Define if you want the model to compute'¢ on any islands.

periodic boundaries

DBPER Define if your domain is doubly-periodic.
PERCHAN Define if your domain is a periodic channel.
PERINTG Define if your periodic channel transport is not prescribed and must be

computed by the model.

precision These variables were introduced so that one code could be used for Crays and worksta­
tions, all using 64 bit precision. The challenge was in linking to single precision graphics
libraries on the workstations.

DOUBLE Define this to add calls to sngl within the plotting subroutines.
BIG REAL This is the type of all floating point variables used in the model computations.

It must be defined to be something, such as real or real*S. If this is set to
double precision you should also use a compiler option for extending source
lines past 72 characters in width.

SMALLREAL This is the type of all floating point variables used by the NCAR plotting
routines. It must be defined to be something, such as real.

rhsdefs.h These are the cpp variables which are used in the right-hand-side subroutines and in
rhocal. Putting them into a separate include file reduces the number of routines which
have to be recompiled after a change.

CLIMAT _TS_MIXH Specifies whether or not to subract Tclm from T before computing
the horizontal diffusion term. Also applies to the S equation. This can be useful
when using horizontal diffusion along CT-surfaces over steep bathymetry.

CLIMAT _TS_MIXV Specifies whether or not to subract Tc1m from T before computing
the vertical diffusion term. Also applies to the S equation. This is useful if you
have a vertical temperature gradient which you want to maintain in the presence
of vertical diffusion, without including surface heat fluxes.

CLIMAT_TS_RLX Specifies whether or not to relax (nudge) the T and S fields to
their climatologies. Nudging is a primitive form of data assimilation. If you
have a spatially variable nudging constant (rdmp) you can nudge only along a
boundary, for instance, in which case it is called a sponge.

CLIMAT_UV _RLX Specifies whether or not to relax (nudge) the u and v fields to their
climatologies.

MIX_GP _TS Specifies whether or not to rotate the tensors for horizontal diffusion ofT
and S to lie along surfaces of constant geopotential (z), rather than surfaces of
constant CT.

MIX_GP _UV Specifies whether or not to rotate the tensors for horizontal diffusion of u
and v to lie along surfaces of constant geopotential (z). (Avaliable soon).

MIX..EN _TS Specifies whether or not to rotate the tensors for horizontal diffusion ofT
and S to lie along epineutral surfaces (constant in situ density).

MIX ..EN _UV Specifies whether or not to rotate the tensors for horizontal diffusion of
u and v to lie along epineutral surfaces (constant in situ density). (A valiable
soon).

39

N Number of baroclinic polynomials in the vertical.

islandp Maximum number of elements in any of the masks, used to dimension many of them.
(When Fortran 90 becomes common, we will be able to dynamically allocate exactly the
right amount of memory for each array.)

lablen The first lablen characters in ident are used to label the plots.

maxJlo_isle Maximum number of "free" islands for which the circulation must be computed;
currently set to twenty.

n_cm Number of points on the mask boundaries, also the dimension of the capacitance matrix.
Called N B in §3.8.

nfit Number of Lagrangian floats.

nifree Number of islands for which the circulation has to be determined. This should be set to
1 for a periodic channel if PERINTG is defined.

nwrk Size of the work space used by mud2.

4.5 Common blocks and the variables within them

All dimensional variables are given in MKS units.

/ocean/ The main time-dependent model fields.

time

u

v

w

rho

t

psi

vrt

time.

velocity component in ~-direction.
velocity component in ?]-direction.
n, velocity component in a-direction.
perturbation density (total density = p0 + p).
temperature T.

horizontal transport streamfunction '¢.
vorticity of depth-averag~d flow field Z.

dwds vertical derivative of n, really -tu (~~) or r!:n ~~.
rhobar horizontal average of density, must be a function of z only (see §3.11).

/ chb / Polynomial transformation matrices.

pl 7r = 3.14159265 ...
sig array of sigma values a(k).
cp matrix of orthogonal polynomials F = Pk(an) (equation 28). Multiply a mode

amplitude vector by cp to get the vector of values at the O"n locations, b(an)·
cf inverse of the matrix of orthogonal polynomials, p-I (equation 30). Multiply a

b(an) vector by cf to get the mode amplitude vector.
cd derivatives of Pj(ai) (equation 31).
cdz derivative transform matrix Cnz (equation 32). Multiply a vertical vector by

cdz to get the vector of derivatives.
cint integral transform matrix C1NT (equation 34). Multiply a vertical vector by cint

to get the vector of int~grals, integrating down from the surface.

41

second index specifies the field according to the key:

1 = ~
2=1]
3=a

4 = :f/t(~, 1], a)= mu

5 = :!Jf(~,1],a) = nv

6 = D(~, 1], a)
7 = T(~, 1], a)
8 = S(~, 1], a)
9 = p(~' 1]' a)

kptime Interval between disk writes of float information.
n:fltrrec Number of float restart records to read in from disk during initialization.

/grdpts/ x,y (physical space) grid point locations, used in plotting the model fields.

xp x coordinates of the '¢ points.
yp y coordinates of the '¢points.
xr x coordinates of the p points.
yr y coordinates of the p points.
xmin minimum x value on the p grid.
ymin minimum y value on the p grid.
xmax maximum x value on the p grid.
ymax maximum y value on the p grid.
xpmin minimum x value on the '¢ grid.
ypmin minimum y value on the '¢ grid.
xpmax maximum x value on the '¢ grid.
ypmax maximum y value on the '¢ grid.
xi length of domain in x-direction, xi = xpmax - xpmin.
el length of domain in y-direction, ei = ypmax - ypmin.

/hmn/ Combinations of h, m, and n to save computations at the expense of storage.

mhon_u mh over n at u points.

mhon...r mh over n at p points.
mhon_p mh over n at '¢ points.

nhom_v nh over m at v points.

nhom...r nh over m at p points.

nhom_p nh over m at '¢ points.
homn_u h over mn at u points.

homn_v hover mn at v points.

homn...r h over mn at p points.

homn_p h over mn at '¢ points.

hon_u h over n at u points.

43

/pit/

sphie 77-component of the surface pressure gradient.
nspr number of steps between calculating the surface pressure gradients.

Plotting flags and parameters.

zplot

ztop

zbot

nplvl

npl

nslcyz

nslyz

nslcxz

nslxz

Lplt

Mplt

ploLu

plot_v

array of specific z levels to be plotted if zslab is true.
the z-level of the top of the slice plots.
the z-level of the bottom of the slice plots.
number of levels to be plotted.
array of specific 0' levels to be plotted, from 0 to N, if zslab is false. If
plot_modes is true, then this is the list of specific modes to be plotted.
number of y-z (constant ~) cross sections to be plotted.
array of specific ~-locations of the y-z cross sections.
number of x-z (constant 17) cross sections to be plotted.
array of specific 77-locations of the x-z cross sections.
largest value of i in the plots, either Lm or L, depending on whether the domain
is periodic in ~·

largest value of j in the plots, either Mm or M, depending on whether the
domain is periodic in 7].

logical switch to turn on plotting of the u field.
logical switch to turn on plotting of the v field.

ploLw logical switch to turn on plotting of the w field.
ploLrho logical switch to turn on plotting of the p field.
ploLpsi logical switch to turn on plotting of the 'ljJ field.
plot_s logical switch to turn on plotting of the S field.
ploLt logical switch to turn on plotting of the T field.
ploLvort logical switch to turn on plotting of the Z field.
ploLvec logical switch to turn on vector plotting of the v field.
plot_spr logical switch to turn on vector plotting of the surface pressure gradient.
ploLdwds logical switch to turn on plotting of a measure of the horizontal divergence.
ploLcurl logical switch to turn on plotting of the vertical component of the curl field.
ploLwind logical switch to turn on vector plotting of the wind stress field.
ploLh logical switch to turn on plotting of the bathymetry and its slope.
ploLigf logical switch to turn on plotting of the island Green's function for each island.
ploLinit logical switch to turn on plotting of the initial fields.
ploLmodes logical flag for plotting mode amplitudes rather than levels in physical space.

This is only used if zslab is false.
zslab determines whether the level (slab) plots are of planes of constant z or constant

O'i true for plots at a constant z.
rbarsub logical flag to specify whether pis subtracted out before pis plotted.

jpltloc/ Lowlevel plotting variables.

fll left coordinate of first quadrant (upper left) plots.

45

dt timestep !:l.t .

cfactO weighting factor for the right-hand-side arrays.
cfactl weighting factor for the right-hand-side arrays.
cnb weighting factor for :F(t- !:l.t).
cnc weighting factor for :F*(t + !:l.t).
dts size of the timestep between lstp and lnew.
ntmes number of steps in current run.
nrst number of steps between storage of restart fields.
nrrec number of restart records to read from disk, the last is used as the initial condi-

tions.

nplt number of steps between calls to subroutine peplt (for plots).
nmix number of steps between vertical convective mixings.
nmixplot the number of mixing events is stored for each horizontal point. This field is

periodically plotted and reinitialized to zero. nmixplot is the frequency of this
plotting.

ncorr number of steps between timestep corrections.
iic timestep counter.

jjc timestep component counter.
lnew one of several time level indices (equal to either 1 or 2) used for the last array

index in the model fields. lnew points to the current time level.
lold pointer to the previous time level.
lstp pointer to the time level to which the current changes are added.
ldis pointer to the time level used in the dissipative terms (not lrhs for numerical

stability reasons).
lrhs pointer to the time level used to calculate the right-hand-side terms.
ltrp pointer to the time level of the right-hand-side arrays (ru, rv, etc.) in which the

changes are being added.
labl pointer to a time level for the right-hand-side arrays.
lab2 pointer to a time level for the right-hand-side arrays.

/user/ Arrays, variables, and constants defined by the user as being relevant to a specific appli­
cation.

tanh_time function of time which gets updated every timestep.

fvrtadv / Needed for first moment conservation of the vertical advection operator.

corrfunc correction function-a second order polynomial which goes to zero at the top
and bottom and is used in the first-moment conservation algorithm.

fwrk/ Temporary work/storage arrays.

rt stores right hand side of T equation.
ru stores right hand side of u equation.
rv stores right hand side of v equation.
rz stores right hand side of vorticity equation.

47

lcmudifl More information for u viscosity in the '1]-direction.

sign_udif array of values which are either +1 or -1 and specify which direction the land
point is from the water point in the cmux arrays.

lcmvl Mask of v points that fall on land.

lmask_v number of v points that fall on land.
mask_v array of pointers to these land points, including those on the boundary.

I cmvxl Mask for v viscosity in the ~-direction.

lmask_vx number of v points which are next to a land boundary in the ~-direction.
mask_vx array of pointers to the boundary ~e points, which are at 'lj; points.
mask_vvel array of pointers to the v boundary points in the water.

lcmvdifl More information for v viscosity in the ~-direction.

sign_vdif array of values which are either +1 or -1 and specify which direction the land
point is from the water point in the cmvx arrays.

lcmpintl Mask of 'lj; points which fall inside land.

lmask_pint number of 'lj; points which are completely surrounded by land.
mask_.pint array of pointers to these land points.

I cmpsib I Mask boundary points.

n_cm_chk number of interior mask boundary points, equal to n_cm but needed as a
variable by the mask program.

mask_.psib array of pointers to the mask boundary points.

lcmpsibpl Indices of the separate land chunks in mask_psib.

mask_psib_p for each island and peninsula, this contains the beginning and ending in­
dices of that land bit within mask_psib and g_cm.

I cilowpxl This and the next several common blocks are used for computing, in turn, the circu­lation around each "free" island.

ilow _px index in mask_pox and mask_plx of the first point for each island.
iup_px index in mask_pox and mask_plx of the last point for each island.
ilow _pe index in mask_poe and mask_ple of the first point for each island.
iup_pe index in mask_poe and mask_ple of the last point for each island.

I cmpoxl More circulation arrays.

mask_pox array of pointers to ocean 'lj; points that are in the ±~-direction sections of a
path around the islands.

mask_plx array of pointers to land 'lj; points that are in the ±~-direction sections of a
path around the islands.

mask_poe array of pointers to ocean 'lj; points that are in the ±?]-direction sections of a
path around the islands.

49

mask_he array of pointers to p points just above the mask_phie points, for arrays di­
mensioned (O:L, O:M).

mask_hme array of pointers to p points just below the mask_phie points, for arrays
dimensioned (O:L, O:M).

I cap I The capacitance matrix.

ligfl

g_cm the '1/J value on each of the boundary points, set in bcpsi on peninsulas and fixed
islands.

capmv the capacitance matrix.

Island Green's function arrays.

grnfnc Green's function for each island.
cigfinv inverse of the island interaction matrix, which gives the circulation around each

island due to unit '1/J around another island.
eire circulation there ought to be around each island, consistent with the physics in

the model.

circadd circulation which must be added to each island by applying the island Green's
function.

lwndstr I Wind stress arrays.

wndx wind stress in the ~-direction.
wnde wind stress in the ?]-direction.

lwmll Extra wind stress arrays for applying the wind stress as a body force over the upper water
column.

wmlwgtu weighting factor multiplied by the {-component of wind stress when adding in
its contribution.

wmlwgtv weighting factor multiplied by the ?]-component of wind stress when adding in
its contribution.

mldsigu number of collocation points over which the ~-component of wind stress is added.
mldsigv number of collocation points over which the ?]-component of wind stress is added.

4.6 Statement functions

These statement functions are defined in various include files. Some, such as akt, may be constant
in time and expensive to calculate, and may be replaced with arrays.

av2.h Averages to more easily keep track of factors of two.

av2 average of the two arguments.
av4 average of the four arguments.

fld.h Initial fields.

u:Bd initial u values.

vfld initial v values.

s:Bd initial S values.

51

- ~-- -- ----~------

Larry Wall has written a program to take the output of cliff and automatically apply it to the
old version of a file to create the new version. This program is called patch and is available from all
the gnu archive sites. If the output of cliff has been saved in the file spem.patch.20 then patch
would be used as follows:

patch < spem.patch.20

As patch updates the files, it leaves the original of file in file.orig. If it gets confused for some
reason (if you modified the lines of code patch wants to change or I send out a bad patch file) it
will create a file.rej file. I often check to see if any .rej files get created-these can be used to
patch file by hand and can then be deleted.

4.8 Makefiles

One of the software development tools which comes with the UNIX operating system is called
make. make has many uses, but is most commonly used to keep track of how a large program
should be compiled. You provide it with a list of your source files and instructions on how to
compile them. It will check the relative ages of the source and object files, only compiling those for
which the object file is out of date. It is assumed that make will be used to compile SPEM and
its related programs. See Oram and Talbott [31] for a description of make that is easier to read
than the man page.

The file in which you provide make with its commands is usually called Makefile. Several
Makefiles are provided with SPEM, one for each brand of computer to which I have easy access.
These Makefiles have become quite complex, but are organized into several sections:

suffix rules These are lines of the form .F .o:, followed by a rule telling make how to make a file
called foo.o from foo.F. This particular rule is used extensively and comes in two forms,
depending on whether or not the compiler will invoke the C preprocessor (cpp) for you.
If the compiler does not invoke cpp then make will do so, creating an intermediate foo.f
file.

macros These are lines of the form CFT = f77, which in this case allows you to use one name
($(CFT)) for the compiler even though each compiler has a different name. The macros
in the Makefiles are defined in two separate sections:

rules

machine dependent These macros give the name of the compiler and sensible flags for
that compiler, etc.

project dependent These macros depend on the project but not the computer, such as
the list of source files used to build the executable.

These are lines of the form:

ezgrid: ezgrid.o
<TAB>$(CFT) -o ezgrid ezgrid.o

where ezgrid is the target to be compiled, and ezgrid depends on ezgrid.o. make will
first check to ensure that ezgrid.o is up to date and then execute the commands on the
following lines (which must start with a <TAB> character).

dependencies These lines tell make which object files must be rebuilt when an include file is
modified. Also, if the C processor is being invoked specifically by the suffix rule for .F .o,
creating an intermediate .f file, then make must be told to recreate the .f file after its
include files are modified. The dependency lines are generated automatically by a peri

53

$CONFIGDIR/

SPEM.tmpl -
imake make depend

$CONFIGDIR/ Makefile without Makefile with
machine.cf dependencies dependencies

Imakefile -

Figure 7: Creating Makefiles

4.9.1 Your Makefile

If you are using one of the environments for which Makefiles are supplied, you are set, although
you may want to check the compile flags. Otherwise, you have the choice of copying and modifying
an existing Makefile or using imake and creating your own configuration file. In either case, you
will need to know certain things about your environment such as:

• The name of the Fortran compiler.

• The compiler options you wish to use.

• How to link to the NCAR graphics libraries, if they exist and you wish to use them.

• Whether or not the Fortran compiler will invoke cpp and how to tell either the compiler or
make to do so.

• What file extension the compiler requires.

The biggest changes to the Makefile result from the way cpp is executed. If your compiler does it
for you, start from the Sun files, otherwise start from the IBM RS/6000 files. Sometimes it is better
to tell make to execute cpp even if the compiler will do it. For instance, the old Cray debugger became confused about line numbers if it did not have the intermediate .f files to work with.

You will also have to edit the Makefile or Imakefile if you add source files to SPEM. In this
case, you will have to add the new files to the OBJS and SRCS macros, and make sure that the
dependencies are listed correctly for the new files.

4.10 spemlib

SPEM uses several utility routines which don't have to be recompiled each time L and M are
changed, and can therefore be put into a library. Also, some companies provide their own versions
of the BLAS routines. You can chose to not compile the spemlib BLAS routines (by editing the
spemlib Makefile) and instead link to the system BLAS library (but see note below).

The routines which are currently in this library are:

comf Needed by sepx4, from fishpak.

genbun Needed by sepx4, from fishpak.

55

5 Support Programs for Initialization

5.1 Grid generation

On startup, SPEM reads a file on unit igrid to find the location of the grid points, the bathymetry,
and the Coriolis parameter f. This file must be generated before SPEM can be run, either with
ezgrid or with the programs in gridpak.

5.1.1 ezgrid

ezgrid was written to generate a uniform rectangular grid with a simple bathymetry. It has two
modes, one for the upwelling example, and one for rectangular basins; the mode is determined by
the UPWELLING switch in spemdefs.h. If UPWELLING is not defined then the important
parameters are:

L must be consistent with the SPEM L dimension.

M must be consistent with the SPEM M dimension.

xl basin length in the ~-direction.

el basin width in the 7]-direction.

hO bottom depth.

fO, beta Coriolis parameter with the ,8-plane approximation, f = fo + ,8y.

igrid grid file unit number, set to 3 by default.

Once these parameters are set to your chosen values, compile and run it:

make ezgrid
ezgrid

This should create a binary file on unit igrid.

5.1.2 gridpak

SPEM has been designed to be used with curvilinear orthogonal grids for boundary-following do­
mains, etc., so there are situations in which you want a more flexible grid-generation program
than ezgrid. We have been working on a suite of programs called gridpak, including xcoast,
an interactive boundary drawing program. See §1.1 for instructions on obtaining gridpak and its
documentation.

5.2 Masking

5.2.1 The mask program

SPEM now supports the masking of land areas, for which it requires some new input files. The
first of these contains all the arrays used in the horizontal boundary conditions (and plotting) and
is generated by the mask program, which was written by Jim Mansbridge. Its input is an ASCII
file containing the i, j pairs for the boundary 1/J points and is easiest to describe with an example.
Figure 8 shows a small domain with an isolated island and a promontory adjacent to the boundary.
The corresponding mask.in file is:

57

- -----------------------------

The free islands must be listed before the other types of land mass in the description file. The
current version of mask treats fixed islands and promontories the same, except for checking to
make sure that promontories are attached to the boundary at some point. The fixed island mode is
recommended even for promontories, since fixed islands are reported in the output of mask_.psib_p.

Once mask has been told what type of land to expect, the following lines contain the i, j pairs
defining that land object. The pairs specify the coordinates of the 'lj; points on the land boundary,
ordered as if you were moving around the masked region with land to your left. It is not necessary
to list every 'lj; point, but only the corners of the "staircase" where the boundary changes direction.
Interior islands must start and end at the same point while promontories, including fixed islands,
may start and end at the domain boundary.

The process of preparing the input file for mask can be tedious, so the maskedge program
was written to find the input file from an array of zeros and ones. This program is on ahab in the
gridpak directory. See its README file for more information.

Before compiling mask, edit spem3.9.h to set the parameter islandp. If it is too small then
mask will complain, but there is no way to know beforehand how big it should be. A conservative
estimate would be LX M/2. When mask is finished, it reports on the minimum value for islandp.

Once the input file has been prepared it can be used as follows:

make mask
mask < mask . in

assuming that the input file has been called mask.in. The output of mask is a binary file on unit
24 (often called fort.24) and some text on stdout (standard out). The text output tells you what
values to use for islandp, n_cm, and nifree in spem3.9.h. The text output for the above mask
IS:

Useful comment, describing this small example mask

The dimension of the SPEM capacitance matrix must be n_cm = 18
The number of free islands must be nifree = 1
The minimum possible value of islandp = 21

Land chunks within g_cm: mask_psib_p(i, j)

Free islands:
Island 1 has 12 points, starting at 1

Fixed islands:
Island 2 has 6 points, starting at 13

The report on mask....psib_p tells you the location of each island within the g_cm array. This is
useful for specifying the 'lj; value on fixed islands within bcpsi.

Note: mask has a VERBOSE mode in which it writes out much more information to stdout.
If this is what you really want, uncomment the line with:

#define VERBOSE

in the mask.F file.
There are two extra options in mask for models other than SPEM. If you #define ICE, mask

will write another mask file appropriate to our version of the Hibler [20] ice model. Also, if you
#define FREE_8URFACE, mask will not write out the capacitance matrix arrays since they are
not needed in models with a free surface.

59

6 Lagrangian Floats

6.1 General description

SPEM has optional Lagrangian floats for simulating the path taken by water parcels. The float
information is stored in an array and the floats are advected at each timestep by the model velocity
fields. The float positions and values ofT, S, p, and u at these positions are written out to a float
history file at user-specified intervals. Plots and float statistics may be created from this history file. It should be noted that although water parcels have certain conservation properties, these are
not necessarily maintained by the model floats.

The particles are advected using a fourth-order Runge-Kutta timestepping scheme. For this,
the fluid velocity at the particle position is needed. The particles can be located between the grid
points so a horizontal interpolation is done using the neighboring grid points. There is a choice of
a bilinear interpolation using the four nearest grid points or a bicubic interpolation using the four
by four square of grid points surrounding the particle. The algorithm for the bicubic interpolation is

k#i l#j
A(xj, YJ) = L L A(xi, Yj)n:~~,4(XJ- Xk) n:~:,4(YJ- Yt)

i=1,4j=1,4 I1k=I,4(xi- Xk) I1t=I,4(Yj- YL)
(89)

where (x 1, y 1) is the position of the particle and (Xi, Yi) are the positions of the 16 neighboring grid points. The interpolation is done in the horizontal planes, in sigma space, of the collocation
points. The vertical interpolation to the float depth is then done using the polynomial modes of
the model.

At each timestep, each particle is checked to see if it is inside the model domain. If a particle
leaves, it is reinitialized at a fixed location which is specified by the user (at xnew, ynew, and
znew) and a message is printed to stdout (unit 6). If you find that particles are often leaving the box other than through open boundaries, then your timestep may be too long.

Warning: the particles are not checked for entry into the masked regions. Also, field values
from inside the masked regions will be used if the floats approach the masks. This problem is worse
for the bicubic interpolation and is worse for the T, S, and p fields than for the velocities.

6.1.1 hew

In the model the vertical velocity array w ends one-half grid point to the inside of the edge of the
model domain. To allow the same interpolation scheme in all of the velocity fields it was decided to add exterior points to the w array. The exterior values are determined in the subroutine hew
by a linear extrapolation from the interior values of the array. These exterior values are used only
in the particle tracking subroutines.

6.2 To use floats

The changes which need to be made to the code to use floats are as follows:

6.2.1 Makefile

Check the Makefile to be sure that FLTOBJS is not set to a NULL list.

6.2.2 spemdefs.h

You must

#define FLOATS

61

fltplt.F

nlayer One possible float release strategy is to put out an array of floats at each of several
depths. All floats at one depth would then logically belong together and are put
in the same plot in the 'default' plots. The number of these float groupings is
given by the parameter nlayer. nlayer should be set to 1 if a different release
strategy is used.

grid:file For plots without a p slab, the program only needs to read in the grid file (unit
3) and the float file (unit 12). If you want p slabs you should have a history file
available. This may have a header (with ident, climatology, etc). If grid:file is
true then fltplt will try to read the grid file, otherwise it will read in the header.

fpday Number of float records per day. Calculate it from the model timestep dt and
the frequency of saving float records kptime. That is,

fpday = 86400.
dt x kptlme

Character quality The quality of the characters drawn by plotchar is set by a call to
pcseti. The best is 0, the cheapest is 2.

lwidth Sets the width of the outline drawn by pltperim and the width of the float tracks.
Makes no difference on some hardware.

Block data Initially, just make sure there are the proper number of values (nlayer) for each
limit array. If you want to set the color range on the plots, the limits can be set in the
block data. To use your limits, type 'n' in response to the question "Should the range of
colors be calculated from the chosen floats?". If this is too much trouble, then comment
out the whole block data.

Colors Each of the five plots (z,w,T,S,p) has its own color bar, defined in tzplt, twplt, ttplt,
tsplt and trhoplt. To change a color bar, set the parameter ncol in the appropriate
subroutine to the number of colors you want, then fill the rgb array. (Note that some
compilers have a default limit to the number of allowed continuation lines).
The foreground and background colors have been set to black and white, respectively, in
the main program. Change the calls to gscr if you would like them to be different.

6.3.2 Running fltplt

fltplt will interactively ask you a number of questions, most of which should be obvious. Some
which aren't are:

• "Would you like the default plots?" Answering "yes" will tell it to plot all the floats in each
group together. For each of the nlayer groups, there will be a plot for each of z, w, T, Sand
p. There will be no density slabs and no more questions.

• "Would you like to specify a range of float IDs?" This is so you can ask for floats 121 to
140 without typing in 121, 122, 123, It will assume that all floats to be plotted have
consecutive ID's.

• "Should the range of colors be calculated from the chosen floats?" If not, the limits set in
the blockdata will be used. The limits will be that of the group to which the first float to be
plotted belongs.

63

-------- ----------

6.4.3 Example plots

There are many options when running fltplt. To get an overview of what the floats do, let's plot
the central float for each group as well as the real drifter tracks. This plot is shown in Fig. 9 and
is discussed in detail in Hedstrom et al. [19].

65

-----~~-~~

7 Useful Programs for Postprocessing
John Wilkin has provided SPEM with some programs for reading and plotting the standard history files. They include the spem3.9.h file, link to SPEM's histio and other subroutines, and are therefore easier to maintain than completely separate programs would be.

7.1 readhist

readhist reads the header and restart files from a SPEM run and provides a summary of their contents. It asks you for the unit numbers ihdr and iin, and reads your response from stdin. First, it summarizes the header file and then asks you to specify the i, j, k triplet defining a point in the model. It will then report on that point for each record in the history file. An example of using readhist is as follows:

Enter header file unit number:
8
Enter history file unit number:
9

SPEM 3.9 - flat-bottom basin
with islands

L = 97 M = 65 N = 4
xl = 1800000.0000000 rdmp = 0.
pm (0, 0) = 5.33333333333330-05 dhde (Lm, M) = 0.
xp (1, 1) = 0. yp (L, M) = 1200000.0000000
pi = 3.1415926535898 csum (N) = -0.13333333333333
iprm = 1 1 1 1 1 3 2 6 6 97 65 1 6 3 117693

111082 1
fprm = 0. 96.000000000000 0. 64.000000000000

1.00000000000000-06 0.
mgopt =
xmin =
dt =

0 2 1 1 1
-9375.00 ymax =

1080.0000000000
1.20938E+06

Enter i,j,k for point values
4 4 4
Writing point values at (i,j,k): 4 4 4
record 1
time = 0. seconds

0. days
psi(i,j) = 0.
u(i,j,k,1) = 0.
v(i,j,k,1) = 0.
t(i,j,k,1) = 5.0000000000000
record 2
time = 172800.00000000 seconds

2.0000000000000 days
= -288814.05390403 psi(i,j)

u(i,j,k,1) =
v(i,j,k,l) =
t(i,j,k,1) =

7.18155453378000-03
-5.08540056796590-03
5.0000000000000

end of file in iput

67

it choose a sensible value. On the other hand, if you know exactly what you want, it is possible to specify the range of values to be contoured. If you have a variable which ranges from 0.0 to 1.0 and you want to have a contour interval of 0.1:

8

.1 .9
number contour levels (0 for default)
contour level min, max (reqd if n levels > 0)

If it is a color plot it will use ten colors. Eight colors will be used for values between 0.1 and 0.9, plus a color for all values less than 0.1 and a color for all values greater than 0.9. If the highest value in your field is 0.66, some of the colors will not be used. What we often do for the animated sequences is to run plothist once, asking for the default contour levels, decide which range we really want, and to run plothist again specifying the desired range with a suitable number of contours. The last line in plot.in sets three variables which are only used for color plots:

-1 t 8 color scheme, label at side (true), nominal
no. color regions

There are currently four color schemes in the distributed version of plothist, chosen with the first of these parameters, where the sign specifies whether black outlines will be drawn around each contour. The color schemes each have 17 colors and are defined in subroutine defclr within cps:fill.F. More colors may be added by changing ncolor everywhere in cps:fill.F and by adding more lines to the rgb data statements. Watch out for the 19 continuation line limit in the Fortran 77 standard (some compilers have the option of allowing more continuation lines). Other color schemes can also be added to defclr.
The other two variables in the above line specify the location of the color bar and the number of color regions. The latter is only used if you asked for the default number of contours above. conpack will chose anything from the number you provide (ncontr) to 2 X ncontr- 1. If you choose too large a number it will run out of colors.
One other new feature in plothist is the ability to plot coastlines from the xcoast data file. For this option you will need to supply the proj.h file from gridpak so that it knows what map projection to use. Also, it checks the XCOASTDATA environment variable in order to locate the coastline file. You can set this with a line such as

setenv XCOASTDATA /home/moi/xcoast/xcoastdata

in your .login file (for csh users). Note that the coastline drawing option is quite slow since it does not use the most efficient algorithm.

69

~-~ --- --~~-~-~-------

8 Ice Model Formulation

Hibler [20] has described a model for the simulation of sea ice circulation and thickness. The model has been tested over a seasonal cycle and the results are also shown in that article. This report was derived from the documentation for the sea ice model written by Hibler [21] and describes the model in its current form. In this documentation frequent reference will be made to Hibler [20] which describes the model, and will hereafter referred to as JP079.

8.1 Model structure

The overall structure consists of two principal components-the momentum equations and the ice continuity equations. The momentum balance includes air and water stress, Coriolis force, internal ice stress, inertial forces and ocean tilt as shown in equations (90) and (91) (from JP079).

{)u - f M {)H x x M {)t + Mv · \lu = M V- g {)x + Ta + Tw + Fx

8v _ 8H
M {)t + M v · \7 v = - M f u - M g {)y + r% + r~ + Fy

Nonlinear boundary layers for both the ocean-ice and air-ice surface stress are used.

fw = PwCwlvw- vi [(vw- v) cosO+ k x (vw- v) sin 0)

(90)

(91)

(92)

(93)
A key component of the momentum balance is the force due to the internal ice stress (Fx and Fy)· This force is based on a constitutive law which relates the ice stress to the strain rate and ice strength (equation (94)). For this model, a viscous-plastic behavior is used. Rigid plastic behavior is approximated in this law by allowing the ice to flow in a plastic manner for normal strain rates and to creep in a linear viscous manner for small strain rates. The treatment of ice as a viscous-plastic fluid was largely motivated by the desire to avoid the complexities associated with elastic-plastic behavior under flow. The stress-strain relationship is given by

p
CTij = 217Eij + ((- 17)Ekkbij - 2bij · (94)

The viscous-plastic terms (96) and (97) are found by taking the divergence of the stress tensor:

{) [8v 8u] 8 [({)u 8v)] Fy = {)y (17 + () {)y + ((- 17) 8x- P/2 + 8x 17 {)y + {)x
where the nonlinear viscosities are given by

(
17= 2• e

71

(95)

(96)

(97)

(98)

(99)

and

(P*, C) = (2. 75 x 104 , 20) = ice strength parameters
(fa, f w) = air and water stresses

(V9 , iiw) = air and water velocities
Ca = nonlinear air drag coefficient

Cw = 5.5 X 10-3 = water drag coefficient
(¢>, 0) = (25°, 25°) = air and water turning angles

(Pa, Pw) = (1.3 kg m-3 , 1000 kgm-3) = air and water densities
(Fx, Fy) = viscous-plastic terms

(Sh, SA) = thermodynamic terms

(Dh, J) A) = ice diffusion terms.

8.2 Numerical Scheme

The coupled nonlinear equations of the model are treated as an initial value problem using energy
conserving finite difference techniques. Under this initial value approach, values of all parameters
at all grid points are required to start the integration, and boundary values of velocity are required
thereafter. The forcing fields for the model consist of geostrophic wind fields and near-surface ocean
currents which are used for both the ocean stress term and to estimate a geostrophic surface tilt.
Both inertial and momentum advection terms are retained in the dynamical equations. Because
of the very strong ice interaction term, explicit integration of the momentum equations would
force timesteps to be extremely small (of the order of a second). The ice thickness equations, on
the other hand, can be explicitly integrated over timesteps of several days. To avoid this severe
timestep limitation due to the ice interaction, the momentum equations are integrated implicitly.
This implicit integration does, however, require a relaxation solution of a set of simultaneous
equations at each timestep. It is currently implemented as a line over-relaxation (SLOR) in the
x-direction for the u equation and in the y-direction for the v equation.

Using this implicit scheme, the inertial terms will normally be significant for short timesteps
(of the order of 1 hour or less) but insignificant for long timesteps. Although not a formal stabil­
ity requirement, it is wise to choose timesteps that are small compared to the variability of the
ice forcing because the nonlinear terms are treated in a semi-implicit manner in the momentum
balance. The effect of different timestep magnitudes on the momentum balance is discussed in
Appendix B of JP079. This Appendix also contains some examples which may help the user de­
cide on timestep magnitudes for particular applications. Because of this implicit treatment of the
momentum equation, the only formal stability requirement is a Courant-Friedrichs-Lewy condition
for the advection terms in the thickness equations:

A key feature of the numerical scheme is a staggered grid, known as the "Arakawa B-grid", where
the velocity is defined at the corner of a grid box and variables such as thickness and viscosity are
defined at the center of the grid box, as shown in Fig. 10.

In the time-marching scheme (equations 21-24, JP079) ice thickness and velocity are temporally
staggered. In particular, the thickness characteristics are considered to be defined at a temporal
location halfway between the ice velocities. This scheme (formally called the forward-backward
procedure) efficiently integrates coupled equations of this kind (e.g. Mesinger and Arakawa [29]).

Because of the strong ice interaction (which in this model is dissipative in nature) the momentum
equations are essentially parabolic in form and hence have few numerical instability problems over

73

The thickness and concentration equations have no-flux boundary conditions imposed along the
mask boundaries. The open northern edge has the thickness specified inside the outflow cells, while
the original model did an average of the neighboring cells to find appropriate values in the outflow
cells.

The primary characteristic of the outflow cells is that the ice strength goes to zero there. The
values of P, (, and 7] are all set to zero in outflow cells after their values are computed.

8.4 Thermodynamics

To integrate this model over very long time intervals requires a thermodynamic code specifying ice
growth rates as a function of thickness and time of year. The ice is assumed to have a thickness
distribution where the ice-covered water contains seven different thicknesses, each of the same area,
such that the average thickness over the cell is h. Since the dynamical equations only follow the
ice concentration and average thickness, the ice is redistributed into the seven thickness bins at
each timestep. This thickness distribution is a simplification of that used in Hibler [22]. The ice
thickness affects the heat lost through the ice and also affects the surface temperature since there
is assumed to be a balance between heat lost at the surface and heat diffused from the bottom of
the ice (which is at the freezing temperature). The heat budget is computed for each of the seven
thicknesses as well as the open water fraction.

In the present code, growth rates are computed from the ice thickness, air temperature, wind
speed, and a radiation balance. There is also a simple ocean mixed layer to represent the ocean's
contribution to the heat budget. The thermal balance used is described in Hibler [22] and is
similar to that of Manabe et al. [26] and Parkinson and Washington [32]. It uses a constant
ice conductivity and a linear vertical temperature profile as shown in Fig. 11. The effects of snow
cover are approximated by changing the surface albedo of the ice to "snow" values for below freezing
surface temperatures.

The basic surface heat balance equation in the presence of an ice cover is (where fluxes into the
surface are considered positive):

(1- a)Fs + FL + VtiVgi(Ta- To)+

V2IV9 i[qa(Ta)- qs(To)]- V3T: + ~ (Tw- To)= 0.

The variables used here are:

a = surface albedo
To = surface temperature of the ice

Ta = air temperature
T w = water temperature

[(= ice conductivity
H = ice thickness (set to at least .05 m)

qa = specific humidity of the air
q5 = specific humidity at the ice surface

(Fs, FL) = incoming shortwave and longwave radiation
(Vt. V2) = bulk sensible and latent heat transfer coefficients

V 3 = Stefan-Boltzmann constant times the surface emissivity.

75

(105)

where A1 is a constant and A2 (T0) is a nonlinear function ofT0 • Using a Newton-Raphson procedure
equation 106 is solved for T0 • If T0 is warmer than 273.16](, it is set equal to 273.16](. The
growth rate is then calculated from

where

Q1 = volumetric heat of fusion of ice
Q1 = 3.02 x 108 J m-3 J(-l

Fa = constant oceanic heat flux into the mixed layer from the deep ocean
F0 = 0.

(107)

In the case of open water, equation 107 is also used to estimate the growth rate, with the modifica­
tion that the albedo is set equal to 0.1, T0 is set equal to Tw, and the latent heat transfer coefficient
1)z has a different value (see above). In any given grid cell the water temperature is calculated
from the mixed layer equations, and in the presence of ice is always equal to 271.2 K.

77

9 Description of the Ice Model and the Coupling

9.1 Model structure

The flow of the main program is shown in Fig. 12. The overall structure essentially consists of two
components-the momentum equations and the ice continuity equations. The momentum balance
includes air and water stresses, Coriolis force, internal ice stress, inertial forces and ocean tilt
(equations (1) and (2)) and is computed in form and relax..new. The ice continuity consists of
the advection and diffusion (both done in advect), and thermodynamics (growth).

The timestepping of the ice dynamics is semi-implicit. An initial estimate of the future state is
obtained by first linearizing the non-linear terms about the prior time level. A subsequent correction
step is performed to produce more accurate estimates of the fields. form is called to compute the
nonlinear viscosities for each estimate of the ice velocities. However, I believe that form would
only need to be called twice per timestep.

advect Advect and diffuse a scalar quantity such as ice thickness or concentration. The diffusion
coefficient is built in and depends on the grid spacing variable deltax.

form Set up some of the arrays used by relax..new, including the ice viscosities, ice strength,
wind and water stresses, and ice mass. These are quantities which change from one
timestep to the next, but not for each iteration of the relaxation scheme.

growth Modify the ice thickness and concentration to reflect ice melt and growth. Then limit the
ice concentration to lie between a22 and 1.0.

ice_init Initialize the ice model, either by reading a history file or by setting the initial values. If
a restart file is not read, ice_init calls relax..new to get an estimate of the ice velocities
which is in balance with the wind and water stresses.

ice4 This is the main subroutine for the ice model. It calls form, relax_new, advect and
growth.

relax_new Solve the coupled u and v equations using an implicit timestep. The solution technique
uses multiple line relaxations in the x-direction for the u equation followed by multiple
line relaxations in the y-direction for the v equation.

9.1.1 Other subroutines

The other subroutines in the ice model include:

budget Compute a heat budget for either open water or the ice. The change in ice thickness is
computed and depends on the air temperature, the wind speed, and the radiation balance.
In the case of ice cover, the surface temperature of the ice is also found (iteratively).
budget is called by groatb.

diffus_ice Diffuse the ice thickness and concentration. This is called by advect.

groat b Finds the temperature of the ocean mixed layer (from yneg) and the wind speed, then
calls budget for the open ocean plus once each for seven layers of ice. Then the total
change in ice volume is computed from the sum of these eight budgets. Called by growth.

icecor Find the Coriolis parameter (fcor) at ice velocity points. Currently uses the map projec­
tion information, but could just as well average the SPEM f values.

icein Read ice history files.

79

iceout Write ice history files.

maskinit Initialize the mask arrays, including the outflow cell array.

mean Find the mean ice volume of non-outflow cells surrounding outflow cells. Not currently
being used.

plast Finds the viscosities zeta and eta.

rnegt Finds yneg, the amount of extra heat left over after all the ice is melted.

xmaxm Finds the maximum absolute value of an array.

9.2 Coupling strategy

The flow chart for the coupled ice-ocean model is shown in Fig. 13. Several functions were intro­
duced to input the wind and thermal forcing and to couple between the ice and ocean subroutines.
The subroutine which is the main program and which calls the ice and ocean subroutines is called
driver.

There are extra variables for passing information between the ice and ocean components of the
model. For instance, the ocean model has the ocean velocity (u), but the ice model also needs
the ocean velocity for computing the stresses (gwatx). The ocean velocities are defined on an
Arakawa C-grid while the ice model needs the information on an Arakawa B-grid. The velocities
are horizontally averaged when gwatx is being found from u to account for the difference in grid
locations. The thermodynamic variables are all co-located on the grid, but the array indices range
from 0 to Lin SPEM while they range from 1 to NXl in the ice code.

fromjce Pass the wind stress and salt flux information to the ocean model. Also sets the surface
ocean temperatures to be at least as warm as the freezing point.

intept First of several routines for horizontally interpolating the forcing fields to the model grid
points, all derived from intep, all assuming that the model grid points are uniformly
spaced. This one interpolates the thermal fields to h points.

intepto Set up the interpolation arrays for the thermal field interpolations.

intepw Interpolate the wind forcing to B-grid u points.

intepwO Set up the interpolation arrays for the wind field interpolations.

spemJtfl ux Find the heat flux between the ocean and the atmosphere.

spem...stress Find the wind force at ice u points by calling intepw to do the horizontal interpo­
lation. Also do the (linear) time interpolation between consecutive wind records and the
rotation from geostrophic winds to surface winds.

spem_thermo Find the thermal fields at h points by calling intept to do the horizontal interpo­
lation. Also do the (linear) time interpolation between consecutive records.

to _ice Pass variables to the ice from the ocean, including surface velocities (at N - 1), surface
salinity and "mixed-layer" depth.

to_spem Pass the ice concentration and thickness to the ocean model.

wdrag Find the momentum stress on the water from the ice and the air.

81

9.3 Model Variables

The model has array dimension parameters:

NX

NY

NXl

NYl

MX

MY

MXl

MYl

The number of grid points in the x-direction, equivalent to L in SPEM.

The number of grid points in the y-direction, equivalent to M in SPEM.

NX+l.

NY+l.

The number of x grid points in the wind forcing field.

The number of y grid points in the wind forcing field.

MX + 1, x dimension of the thermal forcing fields.

MY+ 1, y dimension of the thermal forcing fields.

The model variables include:

Main variables These variables each have three time levels, specified by the third index. A value
of 1 represents the current time and a value of 2 represents the previous timestep. The
third time level of uice and vice is used in the timestepping algorithm while the third
index of heff and area is used as work space for the diffusion and the computation of
yneg.

uice The x-component of the ice velocity.

vice The y-component of the ice velocity.

heff Mean ice thickness per unit area.

area Ice concentration, or fraction of area covered by thick ice.

Momentum variables

amass

fcor

ffcor

eta

zeta

press

forcex

forcey

uicec

vicec

The ice mass, heff times the ice density.

The Coriolis parameter.

The Coriolis parameter times the ice mass.

Nonlinear shear viscosity.

Nonlinear bulk viscosity.

The ice pressure or strength.

The terms in the u momentum equation which do not depend on the current
velocity.

The terms in the y momentum equation which do not depend on the current
velocity.

Extra time level of u, for timestepping the momentum equations.
Extra time level of v, for timestepping the momentum equations.

Wind/water stress variables

dairn The air stress PaCaiVui·
dwatn The water stress PwCwlui- uwi·
drags Symmetric component of water stress, dwatn · coswat.

83

iicice

itl

it2

icode

Scalar variables

iic, timestep counter.

1, starting value for timestep counter.

ntmes, ending value for timestep counter.
rstflag, flag telling whether or not this run started by reading a restart file, 0
for no restart, 1 for restart.

time_ice Ice time, in hours.

deltax Grid spacing in the x-direction, currently 20 km.
deltay

deltat

delt

deltt

icount

Grid spacing in the y-direction, currently 20 km.
Ice timestep.

Ocean timestep, dt.

Ice timestep, either 1 or 2 times deltat (like dts).
Day counter for the monthly diagnostics.

idia Day counter for the surface forcing fields.
IDAYl Day counter.

IDAY2 Day counter.

TIMEl Time counter for surface stress.

TIME2 Time counter for surface stress.

TIME3 Time counter for surface thermal fields.

TIME4 Time counter for surface thermal fields.
itice Ice timestep counter.

idtice Number of ice timesteps per day.
icnt Some sort of initialization flag for spem..stress.
icnt2 Some sort of initialization flag for spem_thermo.
lad Determines the type of timestep in advect, 1 for leapfrog, 2 for Euler backward.

Currently set to 2.

iin_ice Input unit number for ice history files.
iout_ice Output unit number for ice history files.
maskio Unit number for the ice mask file (containing heffm).

Parameter variables

ho

a22

error

Thickness which divides thick ice from thin ice, 1 min the current model.
Minimum allowed ice concentration, currently 15%.
Error tolerance for relaxation scheme, currently 2 X 10-4•

Monthly mean variables

mean_mce Mean ice u velocity.

mean_vice Mean ice v velocity.

heff_mean Mean effective ice thickness.

area_mean Mean ice concentration.

85

10 Configuring the Coupled Model for a Specific Application
This section describes the parts of the model for which the user is responsible when configuring it for a given application. Section 10.1 describes the process in a generic fashion for the ocean. Section 10.2 lists some of the concerns for using the ice model in an alternate application. Finally, §10.3 steps through the application of the coupled model to the Western Arctic.

10.1 Configuring the ocean model

10.1.1 spemdefs.h and rhsdefs.h

For each of the cpp variables described in §4.3, decide whether or not you want it to be defined. Each defined variable should have a line of the form:

#define SOME_VAR

Note that any undefined variable need not be mentioned, but we leave placeholders for them in spemdefs.h and rhsdefs.h as a reminder that they are meaningful. These placeholders can be in any of the following forms:

#undef SDME_VAR1
c #define SDME_VAR2
! #define SOME_VAR3
I* #define SDME_VAR4 *I

The last form is a C comment which will be deleted by the C preprocessor. However, cpp will not delete these C comments when invoked with the -P option, so one of the other forms is recommended.
New cpp variables can be defined in spemdefs.h and then used in the code with an #ifdef statement. This is a simple way to keep track of pieces that you add for your application. For instance, my Arctic boundary conditions are labelled with ARC_OPEN:

#ifdef ARC_DPEN
c Arctic pseudo-open boundary conditions

#endif I* ARC_DPEN *I
If it becomes necessary to update to a newer version of SPEM it is simple to find the parts of the code which belong to the Arctic version and copy them to the new SPEM.

10.1.2 Model domain

One of the first things the user must decide is how many grid points to use, and can be afforded. There are three parameters which specify the grid size:

L Number of finite-difference points in f..
M Number of finite-difference points in 1J·
N Number of baroclinic vertical modes.

Since the model uses the m ud2 elliptic solver you are not free to pick arbitrary values for L and M. For a non-periodic domain the following relations must be satisfied:

L = nxl x 2(nxstep-1) + 1

M = nyl X 2(nystep-l) + 1

87

(108)

(109)

M 0 X 0 X 0 X 0 X 0

M c

Mmo 0 0 0 0

Mmc _ ... - - - -
0 0 0 0 0

c

2 0 0 0 0 0

2 c = _,..,
-""'-

1 0 0 0 0 0

1 c

j = 0 0 X 0 X 0 X 0 X 0

i = 0 1 1 2 2 3 3

Figure 14: The whole grid

89

X

X

0 X 0 X

0 0

...

0 0

0 0

....

0 0

0 X 0 X

Lm Lm L

X-u points

c- v points

0- p points

•- 'ljJ points

0

c

0

c

0

c

0

c

0

c

0

L

(b) Climatology
One way to force the model is via a nudging to the climatology. This was used in the Coastal Transition Zone simulations described by Haidvogel et al. [14]. For that problem, nudging on the u and T equations was used, making sure that the two climatology fields were in approximate geostrophic balance. This nudging served to drive a baroclinic along-channel flow.

(c) Barotropic mode
The barotropic mode can be forced by the boundary conditions on the '1/J equation. This was used in some seamount simulations where bcpsi was configured to drive an oscillating flow past a seamount (see Haidvogel et al. [13]).

10.1.9 user1

As many of the user choices as possible are put into the subroutines user1 and user2. The variables in user1 are not written to the restart file and can safely be initialized before the restart file is read. In fact, nrrec determines whether or not the restart file will be read and must be initialized at the start of the model run. The variables in user1 are described in §4.5 and include the I/0 unit numbers, the number of timesteps to take, which plots to make, and which terms in equations 19-22 to compute.

10.1.10 user2

user2 contains variables which can be updated after the restart file is read. One variable which is set in user2 is the timestep dt. For simple wave-like problems the timestep is limited by the CFL condition, such that c ~; < 1, where c is the phase speed of the wave. However, when horizontal and vertical diffusion are included, the stability issue becomes more complicated and the timestep constraint becomes one of the considerations when deciding on suitable values of the viscous and diffusion coefficients (especially the vertical component).
The choice of diffusive terms is set in userl, but the horizontal diffusion coefficients are set in user2. Several factors to consider when choosing these values are:

spindown time The spindown time on wavenumber k is ~ for the Laplacian operator and 'kiv
for the biharmonic operator. The smallest wavenumber corresponds to the length 2~x
and is k = Ix, leading to

(112)

This time should be short enough to damp out the numerical noise which is being gen­
erated but long enough on the larger scales to retain the features you are interested in. This time should also be resolved by the model timestep.

boundary layer thickness The western boundary layer has a thickness proportional to
1

~x < LBL = (~) 3

and (113)

for the Laplacian and biharmonic viscosity, respectively. We have found that the model typically requires the boundary layer to be resolved with at least one grid cell. This leads to coarse grids requiring large values of 11.

user2 also reads ident from unit 5 (stdin). It is a string which is used to identify the experiment-the first lablen characters of ident are used to label the plots. The free-slip/no­slip variable slip_flag is initialized and the mask arrays are read if they are needed.

91

---- ----- ---------

10.2.4 icebcs.h

The ice thickness and concentration are specified along the northern boundary after every timestep.
This is done in both ice_init and in growth so the code was put into the icebcs.h include file.
Other exterior values for both thickness and concentration are set to zero by the land masks.

10.2.5 Forcing fields

The forcing fields are read in by subroutines which are hard-coded for the Arctic application. The
subroutines for interpolating these fields to the model grid are also specific to the Arctic datasets.

10.3 Arctic example

The Arctic application is a relatively high resolution (20 km) computation done in the Western
Arctic with masking of part of Alaska, Siberia, and some islands, as shown in Fig. 15. It is a basin
with a prescribed inflow at the Bering Strait and outflow across the northern boundary. We will
force the system with wind and thermal forcing and include a coupled ice model as described in
§9.2.

10.3.1 spemdefs.h

We have chosen the following C preprocessor variables in spemdefs.h:

#define S_CALC
#undef PERINTG
#undef PERCHAN
#undef DBPER
#define MASKING
#define ISLANDS
#define CLIMATOLOGY
#define FOURTHORDER

Here we have declared that we want a basin, masking, climatology, and the fourth-order pres­
sure gradient. We have also added a new C preprocessor variable to place around our boundary
conditions:

#define ARC_OPEN

The boundary conditions will be described below.

10.3.2 Model domain

The number of gridpoints was chosen to be a compromise between wanting as fine a resolution as
possible and wanting the job to finish in a finite amount of time. It also must require less than 128
megabytes of storage to be run on some of our computers. Values for L, M, and N are:

L = NX = 129
M =NY= 129
N = 7.

93

10.3.3 gridpak

For this geometry ezgrid is not an option and so we used the grid-generation programs collectively called gridpak. A flow chart of these programs and the order in which they are used is shown in Fig. 16. These programs will be described in the gridpak manual. The only program which is used in a non-standard way is bathsuds, which is where whatever required "cheating" is done to the bathymetry field. In this case, we have clipped the bathymetry to lie between 50 and 500 meters deep. We have also filled in a continental shelf along the Canadian edge and along the open northern edge and smoothed the resulting field. A conformal conic map projection was chosen for the grid generation. Once the grid was created, the x, y values were converted to a Lambert equal area projection to correspond to the projection used for the forcing fields. The grid is not quite orthogonal in this projection, but the metric factors m and n were computed from the orthogonal grid in spherical coordinates.

10.3.4 Initial conditions and the equation of state
We would like the initial conditions to be motionless fluid with a realistic stratification. The statement functions ufld, vfld, and psifld are all set to zero in fld.h.

The Levitus T and S fields were horizontally averaged and approximated by the functions:
to .6 _ 5.2ez/300 + 4.0ez/600
S 0 34.9 - 4. 7 ez/ 200

These approximate fields are used to initialize the model fields and the T and S climatologies and are shown in Fig. 17 and 18. The rhobar field is initialized from the initial density field rather than from a statement function.
The ice initial conditions are set in ice_init and are also chosen to correspond to no flow. The ice concentration is set at 1.0, representing 100% ice cover. The ice thickness is set to 1.65 m, the thickness of 1.5 m of water.

10.3.5 Boundary conditions

The non-periodic options have been chosen in spemdefs.h. We would like to have a flow of .8 Sverdrups in through the Bering Strait and an equivalent flow out through the northern boundary. This flow is specified by the boundary conditions on 1/J in bcpsi. 1/J is set to zero along the Canadian and Alaskan coasts, linearly decreasing across the Bering Strait, constant along the Siberian coast, and increasing across the remaining northern boundary. Since there is a promontory attached to the Siberian coast, it is also necessary to set the corresponding elements of g_cm. The 1/J boundary values are ramped up over the first couple weeks with the function:

The distribution of flow through the northern boundary is not well known and is estimated from the results of a coupled ice-ocean simulation done by Hibler and Bryan [23]. The model reads in a series of values from zero to one, one for each 'lj1 point on the boundary. These values were produced by the xpots program which can be found in the pub/util directory on ahab.rutgers.edu. The bcs subroutine must also be modified to provide the appropriate barotropic flow normal to the boundaries. The baroclinic modes still perceive the boundaries as closed. All of the changes to hcpsi and hcs are surrounded by C preprocessor conditionals:
#ifdef ARC_OPEN

#endif

95

0

-200

-400

-600

-800

·1000

- Ar&a·averaged L.evitll8
•1200 Our climatology

-1400

-1.8 -1.6 -1.4 ·1.2 ·1.0 -.8 ·.6 ·.4 ·.2 0 .2 .4 .6

Figure 17: The area-averaged Levitus temperature profile and the temperature climatology

The entire northern boundary is set to contain outflow cells in maskinit. The ice will be set to zero there, increasing the ice flow out of the domain. The ice thickness and concentration along that boundary are also reset to the initial values at each timestep in icebcs.h.

10.3.6 Forcing

The wind and thermal forcing fields are read from disk on a coarse regular grid and then interpolated and rotated to the model coordinate system. The subroutines intept, intepw, spem...stress, and spem_thermo take care of these operations. The daily forcing fields are linearly interpolated in time at each timestep.
The subroutine windinit is not used to initialize the forcing fields, but is used to set up the arrays for using a body force over a variable number of vertical nodes. New arrays were added for treating the body force on T and Sin the same fashion as on u and v. zmldep is set to -51 meters to insure that the forcing over the shelf is barotropic (for model stability). The other forcing which we have been forced to use in the coupled model is a nudging of the T and S fields back to climatology. A nudging timescale of 100 days is sufficient to get rid of an instability in Kotsebue Sound. The instability seems to be due to the ice being blown out of the sound and new ice forming there, leading to local changes in the temperature and salinity fields which the model is unable to handle.

10.3. 7 user1

The terms to be used in the equations of motion are specified by the flags in userl. We want everything turned on except biharmonic viscosity and vertical viscosity so uflags and vflags 2, 4, 5, 6, 7 and 8 are true while 1 and 3 are false. In the temperature and salinity equations, flags 2, 4 and 5 are true.

97

A Model Timestep

Numerical timestepping uses a discrete approximation to

8u(t) = :F(t)
at (114)

where :F(t) represents all the right-hand-side terms. The simplest approximation is the Euler
timestep:

u(t + ~t)- u(t) = F(t)
~t (115)

where you predict the next u value based only on the current fields. This method is accurate to first order in ~t; however, it is unconditionally unstable with respect to advection.
The leapfrog timestep is accurate to O(~t2):

u(t + ~t)- u(t- ~t) = F(t).
2~t (116)

This timestep is more accurate, but it is unconditionally unstable with respect to diffusion. The
diffusion terms must be lagged (:F(t- ~t)), in which case they are first-order accurate. Also, the even and odd timesteps tend to diverge in a computational mode. This computational mode can
be damped by taking an occasional correction step. SPEM has a choice of correction steps, both
of which use a leapfrog step to obtain an initial guess of u(t + ~t). We will call the right-hand-side
terms calculated from this initial guess F*(t + ~t).

The first choice of correction steps is a trapezoidal step:

u(t + ~t)- u(t) = ~ [F(t) + F*(t + ~t)]
~t 2 (117)

and the second choice is a third-order Adams-Bashforth:

u(t+~t)-u(t) -r() 1-r-(") 1-r-*(") --'---~-'-t _....:.....:;... = .r t - 4" t- t.J.t + 4" t + t.J.t . (118)

SPEM uses a leapfrog timestep with a correction every ncorr timesteps. The type of correction
step is determined by the value of stpfiag (true for a third-order Adams-Bashforth).

The model carries two time levels for many of the physical fields, differentiated by the last index
in the arrays. The initial fields are only read in for one time level; an Euler timestep is used for
the first step to get things going. A correction step is made if you are using trapezoidal corrections (you would need to obtain F(-~t) to make a third-order correction).

A restart record is written every nrst timesteps. If you were to start the model from one of these restart records you would start with an Euler step. Therefore, to give repeatable results, the
model treats the first step after each record is written as if it were the first step.

99

---------------~-----

B Chebyshev Polynomial Basis Functions
As described in §3.1, the Pk(a) expansion functions used in the vertical spectral method can be chosen somewhat arbitrarily. Here, we review the form of the matrix operators when the Pk(a) are a modified form of the Chebyshev polynomials of the first kind (Tk(a); see, e.g., [1] and [15]). The Tk(a) are defined as

Tk(a) = cos[kcos-1(a)],

where -1r :::; cos-1 (a) :::; 0. We then set

-1:Sa:S1

k=O

k 2:: 1, k odd

k/ __ 1 k 2:: 2, k even.

(119)

which then conform to the required integral property that only Po(a) have a non-zero vertical integral. The collocation points an are located at the extrema of the highest order polynomial PN(a); hence,
an= cos[1r(n- N)jNJ, 0 :::;n:::; N. (120)

The first eight modified Chebyshev polynomials and the collocation levels for N = 8 are shown in Fig. 19.
The matrix F (see equation (28)) may now be evaluated from (119) and (120). Substituting (119) into (31) gives the elements of matrix R:

Rnk = {)Pk(a) = ksi~(kOn)
{)a sm On

where On= cos-1 (an)· Similarly, (119) and (33) give the elements of matrix S:

k=O
k=1

k > 1,odd

k > 1, even.

(121)

(122)

Finally, the differentiating and integrating operators Cnz and CJNT, respectively, are computed by first inverting F, and then calculating the products Cnz = RF-1 and CINT = sF-1•

101

C Bathymetric Steepness

SPEM and other sigma coordinate models are known to have some trouble in the presence of steep
bathymetry, especially if the grid spacing is not fine enough. Unfortunately, we do not know, in
general, the relationship between steep bathymetry, stratification, horizontal and vertical resolution, and whether the model will run stably. However, two plots have been added to ploth to guide the
user in determining which areas of the domain are likely to lead to bathymetric problems. The first of these plots is simply the bottom slope, or IV hj. The maximum for the whole domain is written
in the corner of the plot.

If you find that the model is ill-behaved and you suspect a problem with steep bathymetry,
then there are two ways to improve on the situation. One is to filter the bathymetry until it is no
longer "too steep". The other is to increase the horizontal grid spacing until you resolve the slope
"well enough". A measure of how well the slope has to be resolved is obtained from the "slope
parameter" r, defined in Beckmann and Haidvogel [6]:

- b..h - hi - hi-1 T---=-- .
2h hi+ hi-1

r ranges from -1 to 1, although we actually plot lrl and print the maximum value (rmax) in the corner of the plot. Beckmann (personal communication) recommends satisfying the relationship

Tmax N < 1 (123)

as long as all of the vertical modes are needed to represent the vertical structure in the model. This
advice is based on his experience with the second-order pressure gradient-his experience with the fourth-order scheme is limited, although he expects (123) to still be an appropriate relationship.
By and large, the fourth-order pressure gradient option should be used with variable bathymetry.

McCalpin [27] has investigated the pressure gradient error as a function of the Burger number
defined as

S = NoHo
foL

where H0 is the deep-water depth and Lis the length scale of the bathymetry variations (seamount
width). If p' is the size of the perturbation density (p- p) then it is best to keep

s p' < 0.25

s p' < 1.0

second order

fourth order

The results also improve as the horizontal resolution is increased.
Warning: John Wilkin designed a filter for reducing the slope parameter while trying to leave

as many small-r features as possible. When trying this out, it was discovered that the remaining 2b..x signal in the bathymetry generated lots of 2b..x noise in the flow fields. Having small values
of r does not guarantee that the model will produce smooth results.

103

------------ ---- ---------

D The C preprocessor

The C preprocessor, epp, is a standalone program which comes with most C compilers. On many UNIX systems it is not in the default path, but in /lib or in fusr /lib. If you do not have a C preprocessor then there are several versions available via anonymous ftp. For instance, ftp. uu.net has two in the fpublished/oreilly/nutshell/imake directory-! have built and used the one from Der Mouse on a Cray. One also comes with gee, the gnu C compiler. If you build this compiler, epp will have a path such as

/usr/local/lib/gcc-lib/sparc/2.4.5/cpp

where spare is the architecture and 2.4.5 is the version number.
This Appendix describes the C preprocessor as used in SPEM with the Fortran language. A more complete description can is given by Kernighan and Ritchie (25]. More practical advice on using epp is given by Hazard (17].

D.l File inclusion

Placing common blocks in smaller files, which are then included in each subroutine, is the easiest way to make sure that the common blocks are declared consistently. Many Fortran compilers support an include statement where the compiler replaces the line

include 'file.h'

with the contents of file.h; file.h is assumed to be in the current directory. The C preprocessor has an equivalent include statement:

#include "file.h"

We are using the C preprocessor style of include because many of the SPEM include files are not pure Fortran and must be processed by epp.

D.2 Macro substitution

A macro definition has the form

#define name replacement text

where name would be replaced with "replacement text" throughout the rest of the file. This is used in SPEM as a semi-portable way to get 64-bit precision:

#define BIGREAL

It is also possible to define macros with arguments, as in

#define av2(a1,a2) (.5 * ((a1) + (a2)))

although this is riskier than the equivalent statement function

av2(a1,a2) = .5 * (a1 + a2)

The statement function is preferable because it allows the compiler to do type checking and because you don't have to be as careful about using enough parentheses.
The third form of macro has no replacement text at all:

#define PLOTS

In this case, PLOTS will evaluate to true in the conditional tests described below.

105

------------------,

E peri scripts for Fortran

peri is a computer language, invented by Larry Wall, for manipulating text and other useful things.
It is fully described in Wall and Schwartz [38], while a more tutorial approach is given by Schwartz [35]. peri itself is available from your nearest gnu archive site.

I have several peri scripts which I find useful when working with Fortran programs, and are
available from ahab.rutgers.edu, as described in §1.1. It is not necessary to know peri to use these scripts, but it must be installed on your system. To use these scripts, simply place them somewhere in your path and make sure that they are executable:

chmod 755 relabel

(on a UNIX machine).
The following scripts modify your source code and usually work on the style of Fortran in SPEM,

but have been known to do the wrong thing. Some of the scripts become confused when part of
an if statement is inside an #ifdef clause as is done in main.F. It is also extremely dangerous to
run relabel on an arithmetic if (as in invmtx).

Do not delete your original code before checking the new code.

E.l redo

This program reformats do loops and was written to convert

do 10 i=1,20
10 sum = sum+i

to

do 10 i=1,20
sum = sum+i

10 continue

The-E option tells it to use enddo instead of continue as in

do i=1 ,20
sum = sum+i

enddo

redo is used as follows:

redo < file.F > file.neY

redo was written so that :findent would work on SPEM.

E.2 findent

:findent will indent your Fortran code two spaces for do loops and if statements. It will not correct
lines which extend beyond 72 characters, but will print out a warning for each one. It assumes that each do loop ends with a continue or enddo. :findent is used as follows:

findent < file.F > file.neY

107

E.6 sfmakedepend

We started using the C preprocessor with SPEM version 3.5 and fmakedepend no longer produced the appropriate dependency information. sfmakedepend was created to rectify this situation and is used by the Makefiles described in §4.8. It searches source files with names ending in .F for C style includes such as

#include 11 commons.h"

and adds the corresponding dependencies to the Makefile. It has several options, including -s, required for Fortran compilers which will not invoke the C preprocessor for you. In this case the above dependency line would become

file.o: commons.h
file.f: commons.h

letting make know that the C preprocessor must be rerun on file.F whenever commons.h is updated.
The other options are for compilers which not only do not execute the C preprocessor, but require your source files to have a different extension. For instance, the NAG compiler assumes that files with the .f90 extension will use the new Fortran 90 free format where statements may start in column 1. In this case, make executes cpp and creates a file with the proper extension

cpp -P < file.F > file.f90

and the dependencies become

file.o: commons.h
file.f90: commons.h

109

F Modifications to old velvet
Before NCAR graphics version 3.2, a number of changes had to be made to the NCAR graphics [8] routine velvet in order for the vector plots to work in SPEM's curvilinear coordinates. This is no longer necessary if you have the new NCAR package, but is still retained as an option when NCARG _32 is not defined.

First we will describe the changes to velvet and then show the output of
diff -c velvct.dist velvct.F

where the -e option tells diff to include some context lines around the changes. The most important change allows the plots to be made in the curvilinear coordinates instead of rectangular coordinates. This is done by commenting out the statement functions

and

FX(X,Y) =X
FY(X,Y) = Y

MXF(XX,YY,UU,VV,SFXX,SFYY,MXX,MYY) = MXX + IFIX(SFXX*UU) MYF(XX,YY,UU,VV,SFXX,SFYY,MXX,MYY) = MYY + IFIX(SFYY*VV)
and providing the functions fx, fy, mxf, and myf.

Another change to velvet allows the vectors to protrude outside of the model boundary. Add the lines

call gqclip(IER,ICLP,IAR)
call gsclip(O)

before the line

C DRAW THE VECTORS

This will save the current clipping state and disable the GKS clipping. The two lines
CALL GQCLIP(IER,ICLP,IAR)
CALL GSCLIP(O)

a few lines down should be commented out so that the saved clipping state is not overwritten. Note that turning clipping off may not be a good idea. If you use the zoom option in plothist for the vector plots, vectors will be drawn all over the screen. You can always opt to leave this part of velvet alone, and never get vectors drawn outside of the bounding box defined by your call to set.

F.l Context Diffs for velvet
What follows is a Unix context difference file. It starts with a header specifying which files are being compared. The lines which differ are shown with a few surrounding lines for context and are marked with an exclamation point. New lines are marked with a plus sign while deleted lines are marked with a minus sign. The lines from the distributed velvct.f are shown first, followed by the lines from the modified version.

diff -c velvct.dist velvct.F
*** velvct.dist Fri Jan 26 09:24:17 1990
--- velvct.F Mon Mar 19 09:52:58 1990

111

C TURN OFF CLIPPING SO ARROW CAN BE DRAWN
c

! c CALL GQCLIP(IER,ICLP,IAR)
c CALL GSCLIP(O)

CALL DRWVEC (28768,608,28768+LEN,608,LABEL,10) c
C RESTORE CLIPPING

113

Literature Cited
[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Number 55 in Applied Mathematics Series. National Bureau of Standards, 1972.
[2] J. Adams. MUDPA CK: multigrid software for linear elliptic partial differential equations, version 3.0. National Center for Atmospheric Research, Boulder, Colorado, March 1991. Scientific Computing Division User Doc.

(3] J. R. Adams, R. Garcia, B. Gross, J. Hack, D. Haidvogel, and V. Pizzo. Applications of multigrid software in the atmospheric sciences. Mon. Wea. Rev., 120:1447-1458, 1992.
[4] A. Arakawa and V. R. Lamb. Methods of computational physics, volume 17, pages 174-265. Academic Press, 1977.

[5] G. K. Batchelor. An introduction to fluid dynamics. Cambridge University Press, 1967.
[6] A. Beckmann and D. B. Haidvogel. Numerical simulation of flow around a tall, isolated seamount. part i: Problem formulation and model accuracy. J. Phys. Oceanogr., 23:1736-1753, 1993.

[7] F. Clare and D. Kennison. NCAR graphics guide to new utilities, version 3.00. National Center for Atmospheric Research, Boulder, Colorado, October 1989.
[8] F. Clare, D. Kennison, and R. Lackman. NCAR graphics user's guide, version 2.0. National Center for Atmospheric Research, Boulder, Colorado, August 1987.
[9] K. Dowd. High Performance Computing. O'Reilly and Associates, Inc., Sebastopol, CA, 1993.

[10] P. DuBois. Software Portability with imake. O'Reilly & Associates, Inc., Sebastopol, CA, 1993.
[11] N. G. Freeman, A.M. Hale, and M. B. Danard. A modified sigma equations' approach to the numerical modeling of great lake hydrodynamics. J. Geophys. Res., 77(6):1050-1060, 1972.
[12) D. Haidvogel, J. Wilkin, and R. Young. A semi-spectral primitive equation ocean circulation model using vertical sigma and orthogonal curvilinear horizontal coordinates. J. Comp. Phys., 94:151-184, 1991.

[13) D. B. Haidvogel, A. Beckmann, D. C. Chapman, and R.-Q. Lin. Numerical simulation of flow around a tall, isolated seamount. part ii: Resonant generation of trapped waves. J. Phys. Oceanogr., 1993. accepted for publication.

[14) D. B. Haidvogel, A. Beckmann, and K. S. Hedstrom. Dynamical simulations of filament formation and evolution in the coastal transition zone. J. Geophys. Res., 96:15017-15040, 1991.

[15) D. B. Haidvogel and T. Zang. The accurate solution of poisson's equation by expansion in chebyshev polynomials. J. Comp. Phys., 30(2):167-180, 1979.
[16] R. L. Haney. On the pressure gradient force over steep topography in sigma coordinate ocean models. J. Phys. Oceanogr., 21:610-619, 1991.

[17] W. P. Hazard. Using cpp to aid portability. Computer Language, 8(11):49-54, 1991.

115

--- -~--

[36) Ralph Shapiro. Smoothing, filtering, and boundary effects. Rev. Geophys. Space Phys., 8(2):359-387, 1970.

[37) A. S. Thorndike, D. A. Rothrock, G. A. Maykut, and R. Colony. The thickness distribution of sea ice. J. Geophys. Res., 80(33):4501-4513, 1975.
[38) L. Wall and R. L. Schwartz. Programming perl. O'Reilly and Associates, Inc., Sebastopol, CA, 1991. the camel book.

[39] J. Wilkin and K. Hedstrom. User's manual for an orthogonal curvilinear grid-generation package. Institute for Naval Oceanography, 1991.

[40) J. L. Wilkin, J. Mansbridge, and K. S. Hedstrom. An application of the capacitance matrix method to accomodate masked land areas and island circulations in a primitive equation ocean model. Int. J. Num. Meth. Fl., 1994. submitted.

117

