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STD standard deviation 

SWAN Simulating Waves Nearshore 

T_TIDE Tidal analysis software by Pawlowicz et al. (2002) 

UTC Coordinated Universal Time 

WAsP Wind Atlas Analysis and Application Program 

WEA Wind Energy Area 

Westh Westhuysen, parameterization used in SWAN 

WRF Weather Research and Forecasting 

WTG wind turbine generator 

WW3 WaveWatch III 
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Summary 

Proposed development of offshore wind energy areas in the Mid-Atlantic Bight has raised concerns 

among stakeholders about potential changes to coastal and oceanic environmental conditions. To build on 

two previous BOEM studies, this project developed a validated modeling system that incorporates 

individual wind turbines and wind energy resource facilities for the U.S. North Atlantic Ocean from 

North Carolina to New York and used it to generate detailed simulations that enable more accurate 

assessments of possible impacts of proposed wind energy facilities. The objective of the study was to 

determine the effects of offshore wind energy facilities on coastal and oceanic environmental conditions 

and habitat by examining how oceanic characteristics will change after turbine installation, particularly 

for bottom stress, turbulent mixing, along and cross-shelf currents, wind-wave interactions, and larval 

transport.   

We used numerical modeling and statistical analysis of model results to answer these questions. We 

treated three modeling scenarios: baseline conditions without wind turbines (Scenario 1), “partial 

buildout” of proposed Wind Energy Areas (WEAs) based on Construction and Operations Plans 

(Scenario 2), and complete buildout to include the development of the remaining leased WEAs on the 

shelf as of October 2022 (Scenario 3). A two-year period was modeled from February 2018 through 

January 2020, inclusive. The hydrodynamic model employed is the unstructured mesh Delft3D-FM, 

extending from the nearshore to beyond the shelf break, with a hybrid terrain-following and horizontal 

level vertical grid. Boundary forcing is from the validated and calibrated Doppio data-assimilative 

operational model based on the Regional Ocean Modeling System (ROMS), and meteorological forcing is 

from the European Center for Medium Range Weather Forecasts 5th generation global reanalysis 

(ERA5). The waves model is the Simulating WAves Nearshore (SWAN), run on the same unstructured 

mesh as Delft3D-FM and driven by surface meteorology and boundary wave conditions both also from 

ERA5. Modeled hydrodynamic and wave parameters were calibrated and validated using skill metrics and 

extensive observations including water level, currents, temperature, salinity, surface meteorology, and 

waves from tide gauge, mooring, satellite, high frequency radar, and glider sources. The index of 

agreement, root mean square error, and other metrics are on par with published values from comparable 

state of the art modeling studies.   

For the modeling scenarios with wind energy area development (Scenarios 2 and 3), simulation of wind 

turbine effects and wind wakes used the analytical model PyWake from the Technical University of 

Denmark, for its computational efficiency and configurable modular architecture. Turbine speed, 

generator power, and thrust coefficient are from the National Renewable Energy Laboratory reference 

type, with 15-megawatt capacity, 150 m hub-height, 240 m rotor diameter, and fixed-bottom monopile 

structure. We constructed winds affected by wind energy arrays across the entire domain by superposing 

on unmodified winds the spatially and temporally varying wind reductions (wind wake deficits), which 

can overlap, computed for multiple clusters of turbines. These winds forced the hydrodynamic and wave 

models, together with enhanced hydrodynamic drag at the location of each monopile turbine foundation 

based on previously published CFD modeling applied to the turbines of this study.   

Results quantify wind reductions (wakes) within and downwind of the wind energy areas. Due to the 

turbine thrust coefficient curve, reductions are largest for wind speeds between the cut-in speed of about 3 

m/s and the hub-height speed at which the rated power is reached, about 11 m/s. Reductions to 

climatological winds at 10 m height (which force the hydrodynamic model) are higher for complete 

buildout (Scenario 3) than partial buildout (Scenario 2) and can reach or exceed 20% in limited areas 

within turbine arrays and 10% downwind of them. Reductions weaken markedly tens of km from the 

arrays but extend as far as 100-200 km away downwind. Relatively rare and transient maximal wind 
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reductions, occurring about 1% of the time, can reach 30%–50% for 10 m/s wind speeds, and are more 
widespread across the domain.  

Effects of weakened winds on surface waves occur mostly local to areas with reduced winds, especially 

within and around WEAs with geometries aligned with prevalent wind directions. Median significant 

wave heights are reduced by up to 4 cm and 7 cm for the partial and complete build-out scenarios, 

respectively, which is about 5% of climatology or less in the WEAs nearer to the coast, and relatively less 

further offshore. Median dominant wave periods slightly increased by up to 0.16 s within WEAs due to 

the relative increase in swell to the total wave field, as the higher-period remotely generated swell is 

relatively unaffected in wind energy areas compared to the locally generated wind waves that are reduced 

there.  

Our results indicate that wind farms cause statistically significant changes in annual- and seasonal-mean 

winds; surface heat fluxes; surface and bottom temperatures; surface, bottom, and vertical-mean currents; 

water column stability; and thermocline depth. Currents are more strongly affected by the reduced winds 

than by the local influence of flow interactions with turbine foundations, simulated here by enhanced 

hydrodynamic drag. Scenario results indicate wind energy areas cause 50th, 95th, and 99th percentile 

total current (not low-pass filtered) speeds to decrease modestly (less than 2mm/s on the median, less than 

1cm/s on the upper percentiles), with smaller-magnitude (less than 1cm/s) local increases also seen 

especially shoreward of the northern wind energy areas along the NY Bight and NJ coast at the 99th 

percentile level. 

The main characteristic of Mid-Atlantic Bight general circulation is a 2–12 cm/s alongshore southward 

flowing mean current over the shelf, driven mainly by the southward regional alongshore pressure 

gradient and influenced by wind stress (Lentz, 2010; Chen and Yang, 2024). The Scenario 2 and 3 tidal 

residual, low-passed, mean current vectors of the southward general circulation strengthen along the wind 

energy areas. These changes appear to be due to alterations in larger-scale circulation patterns resulting 

from wind wake effects, rather than increased turbulence and mixing around the turbine foundations. A 

consistent interpretation is that weaker winds due to wind energy areas shift the dynamical balance of 

alongshore flow to enhance its southward component. Another feature in the scenario results is increased 

horizontal shear of currents, due to weakening of southward flow adjacent to wind energy areas where it 

has increased. 

In the two scenarios with reduced winds due to wind energy area buildout, surface temperatures are 

higher over the WEAs, and the thermocline shoals on the lee side of them, characteristics that are 

hypothesized to be due to suppressed wind-driven vertical turbulence in the surface mixed layer locally 

and increased positive vorticity and upwelling at their offshore edge. The strength of the seasonal 

thermocline increases, with surface to bottom temperature stratification higher in the full buildout 

scenario by as much as about 1°C in certain areas during mid-summer. Although the seasonal cold pool 

formation and evolution is not fundamentally altered, the cold pool may be advected further south in the 

summer. Consistent with these effects, statistical analysis of representative stations shows that parameters 

most likely to have weekly-mean values that differ between complete buildout and baseline by more than 

the within-week baseline variability are temperature (both near-bottom and surface), near-surface 

stability, and thermocline depth and strength. In contrast, this is less likely for wind speed, current speed, 

vertical turbulent eddy viscosity, and turbulent kinetic energy. The effect of weakened winds on bed shear 

stress and sediment mobility is modest reductions near the coast and in areas near the installations, which 

are more pronounced for the 95th and 99th percentiles than median values, and stronger for complete 

buildout than partial buildout. These impacts are due to reduced waves, not reduced currents, but bottom 

currents do tend to decrease slightly within the wind energy areas. 

We completed a literature review of commercial value, spawning characteristics, larval distributions, and 

behavior for key life stages of numerous fishery species of the region. A consultation process with Bureau 
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of Ocean Energy Management (BOEM) and National Oceanic and Atmospheric Administration (NOAA) 

colleagues, which considered various factors including the applicability of the larval dispersal model and 

data availability, led to the identification of Atlantic sea scallop (Placopecten magellanicus), Atlantic 

surfclam (Spisula solidissima), and black sea bass (Centropristis striata) as the three species of interest, 

for which larval dispersal was modeled. We used a biophysical larval dispersal model, coupling the 

individual-based Lagrangian model Ichthyop with the hydrodynamic model, to simulate larval transport 

of these three commercial species. The effects of hydrodynamic conditions in three dimensions were 

assessed based on species-specific inputs for larvae including spawning location, spawning depth, 

spawning time, larval dispersal duration, settlement depth, settlement habitat, diel vertical migration 

behavior, and temperature tolerance. The model configurations included a case for each species, for each 

of the three scenarios, with (a) passive larvae, (b) diel vertical migration behavior, and (c) temperature-

dependent mortality. Larval trajectories, settlement success, connectivity patterns, and dispersal distances 

were assessed.  

Results for all three species from the model with passive larvae showed only general transport from the 

northern to the southern part of the study domain, and higher larval connectivity in the north. Larvae were 

transported away from their spawning zones due to changes in hydrodynamic features associated with the 

presence of wind energy areas, including stronger along-shelf flow in some areas, reduced mixing, and 

stronger stratification. For simulations adding diel vertical migration behavior, the mean and range of 

larval dispersal distances were larger and mean larval connectivity increased (to about 3.0%–3.5% from 

0.5% to 1.5%), relative to passive larvae, consistent with larvae spending more time higher in the water 

column where currents are generally stronger. Simulations adding only temperature-dependent mortality 

showed a decrease in larval connectivity due to high mortality, likely because of exposure to a wider 

range of temperatures than in laboratory studies on which threshold temperatures are based. The 

consistent connectivity patterns and effects of wind energy areas observed across model configurations 

suggest that larval connectivity is primarily influenced by hydrodynamic processes. While the calculated 

larval connectivity values did not differ significantly between the tested hydrodynamic scenarios, the 

larval dispersal model for these three commercial species predicted reduced local retention, especially in 

the northern region, and increased larval dispersal distances in some regions where wind energy areas are 

present. The increased larval dispersal distances in the presence of wind energy areas may prevent larvae 

from settling in habitats close to their spawning areas, potentially altering the species’ distribution range 
over time. At the scale of the Mid-Atlantic Bight, the presence of wind energy areas does not qualitatively 

influence larval connectivity patterns. However, more regional long-term studies are needed to better 

understand the effects of wind energy areas on the larval dynamics of commercially important species. 

The simulated minor reductions on wave conditions, bed shear stress, and sediment mobility due to wind 

energy farms are likely not of substantial impact relative to natural variability; because the effects of 

buildout are more pronounced within wind energy arrays and weaker outside them, impacts generally are 

minor on regionwide water column oceanographic processes, for example the seasonal development of 

stratification and formation and evolution of the cold pool. However, the increased water temperature and 

stratification strength, especially within the WEAs, may be of sufficient magnitude to potentially alter 

ecology, particularly when superposed on climate warming that is causing warm-water species guilds to 

displace cold-water guilds northward. More work is needed to examine whether the changes seen in this 

work may be locally significant to ecosystems and communities along the mid-Atlantic coast.  
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1 Introduction 

The planned development of offshore wind energy lease areas in the Mid-Atlantic Bight (Figure 1) has 

raised concern among stakeholders regarding the potential changes in the region’s hydrodynamic 
circulation resulting from the build-out of one or several offshore wind energy facilities. To address this 

concern, the Bureau of Ocean Energy Management (BOEM) has funded studies looking into the 

cumulative impacts of offshore wind facilities on regional circulation patterns, nutrient and sediment 

transport, and larval dispersal. With other projects focused on lease areas offshore of Massachusetts to 

New York, this study aimed to model the potential changes in physical and biological processes 

associated with the offshore wind lease areas in North Carolina north of Cape Hatteras, Virginia, 

Maryland, Delaware, and New Jersey, planned for development on continental shelf waters shoreward of 

the shelf break. This study focused only on lease blocks (Figure 1), and not all BOEM offshore planning 

areas that include areas outside the continental shelf. The study includes an examination of the effect of 

two wind farm layout scenarios within these lease areas during average seasonal conditions, a literature 

review on species of interest relevant to the study area, and an assessment of the effective scale of change 

in larval transport around wind energy areas (WEAs). 
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Figure 1. BOEM wind lease areas between North Carolina and New York. 

Wind lease areas in this study are highlighted with yellow. Two areas unhighlighted were leased on 

August 14, 2024 and were not included in the contracted scope of work for this study that commenced in 

October 2022. The major objective of the present study under the funded Solicitation 140M0123C0001 

was to accurately assess the potential effects of offshore wind energy facilities in the Mid-Atlantic Bight 

Shelf between Cape Hatteras, North Carolina, and New York on ocean circulation, environmental 

conditions, and larval transport. This was done by examining how oceanic responses may change after the 

build-out of offshore wind turbines and energy facilities, particularly for bottom stress, turbulent mixing, 

wind-wave interactions, and general circulation features relevant to fisheries such as the mid-Atlantic 

Cold Pool. This was done through numerical model development and comparisons of model scenarios 

with and without wind farms on the Mid-Atlantic Bight Shelf. The subsequent changes in biological 

processes, namely the larval dispersal of selected species of interest, were also evaluated. 
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2 Area of Interest and Wind Farm Scenarios 

2.1 Area of Interest 

Given the geographic scope of this study which is the Mid-Atlantic Bight shelf between Cape Hatteras, 

NC and the New York Bight, and given the focus of the study on capturing the effect of the wind wake 

generated in and around the proposed wind farms on the hydrodynamic circulation, wind waves, and 

larval transport, the agreed upon modeling domain is shown in Figure 2, in relation to the wind farms 

proposed at the time modeling started. The domain encompasses the Mid-Atlantic Bight shelf from Cape 

Hatteras in the southwest to the Fire Island barrier line off Long Island in the northeast. It extends beyond 

the continental shelf break by about 80 to 100km thus including the shelf break and parts of the deep 

ocean plateau. That deep-water extension was made to accommodate the possibility of wind wake effects 

from wind farms close to the shelf break as well as boundary effects. 

 

Figure 2. WTG coverage through the wind lease areas considered in this study.  
(a) Left panel: Scenario 2 Publicly Available Locations. (b) Right panel: Scenario 3–full build-out. 

2.2 Simulation Scenarios 

To achieve goals associated with the Net Zero transition of the US economy, support in adopting 

renewable energy strategies such as solar power, hydrogen renewable energy storage, and wind energy 

harvesting have grown in recent years. As part of this strategy, installation of fields of offshore wind 

turbine generators (WTG), connected to offshore substations (OSS) are planned for Mid-Atlantic Bight 

WEAs. Several lease parcels, concentrated in 10 lease areas within the area of interest (AOI) are 

considered in this study (Figure 1). 

The study will consider three scenarios for these 10 lease areas, listed in Table 1. 
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Table 1. Simulation scenarios. 

Scenario Description 

1 - Baseline No wind turbines in the WEAs. 

2 – 15 MW Partial build-out 1,852 WTGs, 15 MW NREL type, at all locations identified using 
publicly available Construction and Operation Plans (Figure 2-a). 

3 – 15 MW Complete build-out 6,353 WTGs, 15 MW NREL type, Scenario 2 locations plus a 0.6 nm 
by 0.6 nm grid across the remainder of the lease areas (Figure 2-b). 

 

Wind turbine specifications and WTG placement grid for each of the two scenarios with WTG (Scenarios 

2 and 3) are included in Section 4.3 of this report. 
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3 Physical Observations 

The numerical models for waves and hydrodynamics are validated, in particular the baseline case 

(Scenario 1), against a multitude of observations collected over the two-year period of February 1, 2018 

to January 31, 2020. Observational methods include buoys, satellites, gliders, HF-Radar and other 

techniques, covering numerous numerical model output variables. To set the stage for the modeling, the 

following subsections present the collected observations, their coverage, types, and statistics, organized 

by type. The model domain shown in the following figures is the part of the complete numerical model 

domain that is on the area of interest, the continental shelf. 

3.1 Surface Waves 

Surface wave observations comprise significant wave height, average wave period, and mean wave 

direction at available National Data Buoy Center (NDBC) locations shown in Figure 3 and summarized in 

Table 2. 
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Table 2. Surface wave observation station information and basic statistics. 

Data Type Data 
Provider 

Start Date End Date Num 
Locations 

Min 
Obs 

Max 
Obs 

Mean 
Obs 

Std 
Obs 

Min 
Lat 
(°N) 

Max 
Lat 
(°N) 

Min 
Long 
(°W) 

Max 
Long 
(°W) 

Significant 
Wave Height 
(m) 

NOAA 
(NDBC) 

2/1/2018 1/31/2020 11 0.19 8.49 1.241 0.727 35.750 40.369 72.644 75.722 

Average 
Wave Period 
(s) 

NOAA 
(NDBC) 

2/1/2018 1/31/2020 11 2.41 13.86 5.302 1.199 35.750 40.369 72.644 75.722 

Mean Wave 
Direction 
(deg) 

NOAA 
(NDBC) 

2/1/2018 1/31/2020 11 0 360 123.694 68.063 35.750 40.369 72.644 75.722 

 

 

Figure 3. Surface wave observations stations. 
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3.2 Sea Surface Height 

Sea surface height (SSH) and water elevation observations in the AOI were collected for four coastal 

National Ocean Service (NOS) tidal stations (Table 3and Figure 4), and from available satellites (Table 4 

and Figure 5) in the form of the Doppio 7-km gridded products produced from along-track satellite 

measurements. All sea surface height values in meters MSL (1983-2001 National Tidal Datum Epoch). 

Table 3. NOS coastal stations information and basic statistics. 

Station 
Name 

NOS ID # Start, UTC End, UTC Min 
Obs 

Max 
Obs 

Mean 
Obs 

Std 
Obs 

Lat (°N) Long 
(°W) 

Sandy, 
Hook, NJ 

8531680 2/1/2018 
00:00 

1/31/2020 
23:54 

-1.593 1.887 0.161 0.551 40.467 74.010 

Atlantic City, 
NJ 

8534720 2/1/2018 
00:00 

1/31/2020 
23:54 

-1.432 1.672 0.153 0.484 39.357 74.418 

Lewes. DE 8557380 2/1/2018 
00:00 

1/31/2020 
23:54 

-1.330 1.742 0.166 0.486 38.783 75.120 

Duck, NC 8651370 2/1/2018 
00:00 

1/31/2020 
23:54 

-1.019 1.656 0.155 0.401 36.183 75.747 
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Figure 4. National Ocean Service tide gauge locations. 
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Table 4. Satellite sea surface height observations information and basic statistics. 

Data Provider Start, UTC End, UTC Num 
Locations 

Min Obs Max 
Obs 

Mean 
Obs 

Std Obs Min Lat 
(°N) 

Max Lat 
(°N) 

Min 
Long 
(°W) 

Max 
Long 
(°W) 

Cryosat 2/1/2018 12:20 1/31/2020 2:42 4,592 -1.147 1.116 -0.111 0.392 35.492 40.809 71.848 75.790 

Altika 2/1/2018 9:15 1/10/2020 
11:28 

4,133 -1.116 1.048 -0.079 0.384 35.484 40.809 71.858 75.824 

Alt. Super Obs 11/16/2018 
9:45 

7/24/2019 
11:26 

17 -0.487 0.114 -0.250 0.186 36.348 40.348 72.896 75.445 

Jason 2 2/4/2018 4:54 9/28/2019 
18:00 

2,409 -1.048 0.996 -0.105 0.361 35.485 40.772 71.851 75.882 

Jason 3 2/2/2018 5:14 1/27/2020 4:00 2,539 -1.781 1.340 -0.059 0.439 37.807 40.522 72.370 74.863 

Sentinel 3a 2/3/2018 0:57 1/29/2020 2:47 4,984 -1.210 1.154 -0.064 0.396 35.765 40.804 72.034 75.807 

Sentinel 3b 3/6/2019 1:19 1/30/2020 
16:25 

2,486 -1.142 0.876 -0.027 0.368 35.488 40.744 71.918 75.536 
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Figure 5. Sea Surface Height observations coverage. 
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3.3 Ocean Currents 

Available ocean current data, in units of m/s, were collected from buoys and CODAR HF-Radar coverage instruments (Table 5 and Figure 6). 

Table 5. Ocean current observations including basic statistics. 

Data 
Type 

Data 
Provider 

Start Date End Date Num 
Locs 

Min 
Obs 

Max 
Obs 

Mean 
Obs 

Std 
Obs 

Min Lat 
(°N) 

Max 
Lat (°N) 

Min 
Long 
(°W) 

Max 
Long 
(°W) 

Min 
Depth 
(m) 

Max 
Depth 
(m) 

Current 
Speed 
(m/s) 

Empire 
Wind 
Moored 
Current 
Meter 

12/1/2018 2/1/2020 1 0.0001 3.6284 0.1274 0.1152 40.2985 40.2985 73.3336 73.3336 9.6 33.6 

U (m/s) CODAR 2/1/2018 1/31/2020 206 -1.219 1.535 -0.034 0.156 35.545 40.684 71.924 75.699 2 2 

V (m/s) CODAR 2/1/2018 1/31/2020 206 -1.175 0.950 -0.063 0.128 35.545 40.684 71.924 75.699 2 2 
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Figure 6. Ocean currents observation coverage. 
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3.4 Seawater Temperature 

Available sea temperature observations, both at the sea surface (SST) and at depth, in units of degrees Celsius, were collected from the various 

sources (Table 6 and Figure 7). 
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Table 6. Sea water temperature observations including basic statistics. 

Data Provider Start, UTC End, UTC Num 
Locations 

Min Obs Max 
Obs 

Mean 
Obs 

Std Obs Min Lat 
(°N) 

Max Lat 
(°N) 

Min Long 
(°W) 

Max Long 
(°W) 

OSMC Other 5/3/2018 1:30 5/6/2018 7:58 15 7.618 12.468 9.193 1.389 37.416 37.511 74.453 74.700 

OSMC Argo 2/15/2018 9:42 10/28/2018 
22:00 

1,025 5.966 28.653 15.111 6.344 35.485 40.317 72.063 75.338 

OSMC Floats 5/7/2018 7:56 9/12/2018 
1:20 

71 7.241 26.859 12.068 5.564 37.414 39.002 73.316 75.084 

OSMC VOS 10/6/2018 5:27 10/6/2018 
6:26 

2 11.450 22.200 17.283 4.227 39.556 39.683 72.436 72.450 

SST Super 
Obs. 

2/7/2018 9:20 1/29/2020 
16:00 

1,358 3.118 31.180 20.837 6.507 35.504 40.738 71.858 75.886 

OSMC Ships 2/25/2018 0:00 5/4/2018 6:30 20 5.900 12.500 8.170 1.743 39.288 40.442 72.500 73.826 

AVHRR 2/1/2018 0:31 1/31/2020 
14:00 

1,370 0.150 30.799 17.116 7.139 35.504 40.738 71.858 75.886 

GOES 3/10/2019 
21:29 

9/19/2019 
18:45 

4 6.335 23.770 15.031 6.454 35.850 40.527 72.398 75.771 

Pioneer 2/1/2018 11:47 1/31/2020 
20:48 

166 3.363 26.459 13.304 6.236 37.556 40.077 71.858 74.352 

WSAT 2/1/2018 6:14 1/30/2020 
0:00 

1,164 0.028 33.621 16.205 7.027 35.504 40.612 71.858 75.642 

AMSR 6/2/2018 7:28 1/31/2020 
17:12 

1,521 2.306 31.631 18.581 6.902 35.504 40.808 71.858 75.905 

VIIRS 2/15/2018 
12:18 

10/27/2018 
16:00 

646 6.114 28.735 14.678 6.497 35.485 40.288 71.867 75.289 

Glider Super 
Obs 

2/15/2018 
10:13 

11/15/2019 
14:48 

5,705 3.833 28.942 15.011 5.726 35.485 40.724 71.868 75.427 

IOOS Glider 
DAC 

5/3/2018 1:30 5/6/2018 7:58 15 32.770 35.451 33.481 0.507 37.416 37.511 74.453 74.700 
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Figure 7. Sea water temperature observations coverage. 
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3.5 Salinity 

Available salinity observations throughout the water column in practical salinity units (psu ~ parts per thousand), were collected from gliders and 

other sources (Table 7 and Figure 8). In Table 7,  “Glider Super Obs” refers to “super observations”; these are combinations of multiple 

observations of the same type that fall within a single model grid cell and are closely spaced in time, in this case from the 7-km Doppio grid 

(Levin et al, 2020).  

Table 7. Salinity observations including basic statistics. 

Data 
Provider 

Start, UTC End, UTC Num 
Locations 

Min 
Obs 

Max 
Obs 

Mean Obs Std Obs Min Lat 
(°N) 

Max 
Lat 
(°N) 

Min 
Long 
(°W) 

Max 
Long 
(°W) 

Min 
Depth 

Max 
Depth 

OSMC 
Other 

2/15/2018 
9:42 

10/28/2018 
22:00 

1,026 28.827 35.856 32.721 1.038 35.485 40.317 72.063 75.338 2.5 137.5 

OSMC 
Gliders 

5/7/2018 
7:56 

9/12/2018 
1:20 

71 29.963 35.511 32.757 0.909 37.414 39.002 73.316 75.084 2.5 137.5 

OSMC 
Floats 

3/10/2019 
21:29 

9/19/2019 
18:45 

4 30.289 35.423 32.387 1.261 35.850 40.527 72.398 75.771 2.5 45.0 

Pioneer 2/15/2018 
12:18 

10/27/2018 
16:00 

646 28.414 35.946 32.702 1.109 35.485 40.288 71.867 75.289 2.5 137.5 

Glider 
Super 
Obs 

2/15/2018 
10:13 

11/15/2019 
14:48 

5,705 27.269 36.276 32.971 1.255 35.485 40.724 71.868 75.427 2.5 137.5 

OSMC 
Other 

2/15/2018 
9:42 

10/28/2018 
22:00 

1,026 28.827 35.856 32.721 1.038 35.485 40.317 72.063 75.338 2.5 137.5 

OSMC 
Gliders 

5/7/2018 
7:56 

9/12/2018 
1:20 

71 29.963 35.511 32.757 0.909 37.414 39.002 73.316 75.084 2.5 137.5 
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Figure 8. Salinity observations coverage. 
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3.6 Surface Meteorology 

Available meteorological observations, namely wind speed, in m/s, and barometric pressure near sea level, in hPa, were collected from NDBC 

buoys (Table 8 and Figure 9). 

Table 8. Surface meteorology observations 

Data Type Data 
Provider 

Start date, 
UTC 

End date, 
UTC 

Num 
Locs 

Min 
Obs 

Max 
Obs 

Mean 
Obs 

Std 
Obs 

Min Lat 
(°N) 

Max Lat 
(°N) 

Min 
Long 
(°W) 

Max 
Long 
(°W) 

Wind Speed 
(m/s) 

NDBC 2/1/2018 1/31/2020 12 0 28.3 6.429 3.372 36.609 40.369 72.644 74.842 

Sea Level 
Pressure 
(hPa) 

NDBC 2/1/2018 1/31/2020 12 980.3 1044.1 1017.2
51 

7.851 36.609 40.369 72.644 74.842 
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Figure 9. Surface meteorology (wind/pressure) observation stations. 
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4 Wind Wake Modeling 

To generate renewable energy through offshore wind farms, kinetic energy is extracted from the 

atmosphere which results in atmospheric wakes. This phenomenon of increased atmospheric turbulence 

and horizontal momentum reduction on the downstream side of wind turbines can be foremost 

characterized by the decrease in wind speed (Christiansen et al., 2022, Dörenkämper and Steinfeld, 2022) 

and the formation of wind shadow zones reaching the surface of the ocean. 

4.1 Selection of Model 

To calculate the atmospheric wakes in the lee of wind turbine installations, several approaches can be 

used (NAS 2023): 

• Computational fluid dynamics (CFD) 

• Mesoscale modeling 

• Analytical modeling methods 

• Empirical top-down methods 

There are several CFD frameworks such as Reynolds averaged Navier–Stokes (RANS) models with 

various levels of sophistication which range from 3D with actuator disks to parabolic, linearized, 

unsteady, or 2D, and large-eddy simulation (LES) with actuator disks or lines. Among these options, 

high-resolution LES provides the most accurate result as it solves the fine-scale details of the wakes 

around the turbines at a grid resolution of 10 m or less. However, LES is computationally uneconomic on 

the spatial scale of application considered in this study. 

Mesoscale modeling, on the other hand, is less computationally expensive than CFD and can be 

implemented in real-world scenarios where there is a feedback loop between atmospheric boundary layer 

(ABL) and the wind farms. In the mesoscale modeling approach, horizontal resolution is in the order of 

kilometers while vertical resolution is in tens of meters within the ABL. These frameworks allow for a 

strong physical coupling between hydrodynamics and meteorology but, at a spatial resolution limited by 

computational needs and physical constraints, cannot resolve individual turbines and either parameterize 

them as an elevated momentum sink (Volker et al., 2015) or as an elevated momentum sink and a source 

of turbulence (Fitch et al., 2012; Abkar and Porté-Agel, 2015; Pan and Archer, 2018). 

Several wake models have been parameterized over the years such as Jensen (1983) and Fitch et al., 

(2012), hereafter referred to as the Jensen model and Fitch scheme, respectively. Ma et al. (2022) found 

that, although the Fitch Scheme is widely adopted to calculate the wakes of wind farms and their impacts, 

in many cases it underestimated wake losses and overpredicted the power output of wind farms, 

especially when the wind is oriented with the turbine columns (Jiménez et al., 2012; Pan and Archer, 

2018). However, it was found that the Jensen model shows more consistency in terms of performing well 

in different setup of wind farms and for all directions. This model assumes a top-hat distribution of the 

velocity deficit in every turbine wake and then uses superposition methods to consider the interaction 

among multiple wakes. However, the Jensen model was developed based on the assumption of having the 

same upstream undisturbed wind speed and direction for all turbines within the wind farm; this is not 

ideal as significant variability in the distribution of wind speed and direction within a wind farm is 

expected because of surface heterogeneity and mesoscale weather systems (van der Laan et al., 2017; 

Peña et al., 2018). Not considering horizontal variability within large wind farms could lead to errors into 

the annual energy production and power density prediction calculation. For this reason, Ma et al. (2022) 

parameterized the Jensen wake model and implemented and inserted it into two commonly used 

atmospheric numerical models: the Weather Research and Forecasting (WRF) model and the Model for 

Prediction Across Scales (MPAS). In this implementation, the internal variability in wind speed and 
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direction within a wind farm can be considered. However, to implement this algorithm, an atmospheric 

modeling study needs to be carried out using WRF at a sub-km scale resolution that is cost prohibitive for 

this project. 

Christiansen et al. (2022) described a very simplified, empirical way to calculate the downstream wind 

wake at the scale of wind farms (hereafter referred to as the Christiansen method) by making a “zero-

order” approximation for wind farms in the German Bight that simplifies or neglects dependencies arising 

from specific wind turbines and wind farm characteristics, turbulence changes, and effects on within-farm 

weather conditions. This approach parameterized the wind speed deficits resulting from operating wind 

farms and reduced the mean wind speed in dependence of the respective wind direction. The wind 

velocity impacted by the wake effect was empirically described as a function of the downstream wind 

speed deficit:                                                                           𝑢(𝑥, 𝑦) = 𝑢0(1 − ∆𝑢)                                                                   Eq. 1 

where 

x is the downstream distance aligned to the prevailing wind direction, 

y defines the perpendicular distance from the central wake axis of a wind farm, 𝑢0 is the undisturbed or free-flowing (upstream) wind field, and ∆𝑢 is the downstream wind speed deficit. 

The parameterization for the downstream wind speed reduction from the above equation, is generally 

based on earlier studies (Frandsen, 1992; Frandsen et al., 2006). It consists of two components describing 

the downstream wake recovery and the width of the wake structure. 

The formulation of the downstream velocity deficit is based on the concept described by Emeis (2010) 

which is a top-down approach, i.e., each wind farm is considered as one unit of additional roughness and 

the wake recovery in the farm’s lee is represented using an exponential decay function. This model was 

validated in multiple studies, where it was depicted that the exponential approach can reproduce airborne 

measurements of atmospheric wakes fairly well at scale (Cañadillas et al., 2020; Platis et al., 2020, 2021). 

Christiansen’s method followed a similar exponential approach to formulate the wind speed deficits on 

the lee side of wind farms in the German Bight. In this approach the wind speed magnitude decreases the 

strongest close to the offshore wind farms and recovers exponentially over the downstream distance:                                                                             Δ𝑢(𝑥) = 𝛼𝑒−𝑥/𝜎                                                                            Eq. 2  
where 

α is the maximum relative deficit 

σ is the exponential decay constant, and 

x is the downstream distance aligned to the prevailing wind direction. 

As the model described by Emeis (2010) considers turbine wakes at hub height, Christiansen et al. (2022) 

made some modification to calculate the wake deficit α and the decay constant σ. The individual values 

for α and σ are determined by multiple factors such as the wind field, atmospheric stability, vertical 

momentum fluxes, wind farm density, and the wind turbine drag. As no empirical equation accounted for 

these factors for wind deficit and wake length, typical mean values for α and σ were selected, based on 
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values from some local studies in the German Bight (Table 9) and calculated statistics from Synthetic 

Aperture Radar (SAR) measurements (Figure 10, copied here). 

Table 9. Compilation of wind speed deficit α and wake length σ from SAR observations and 
airborne measurements. 

 
Wake deficit α [%] Wake length σ [km] 

Cañadillas et al. (2020) - 14–70 

Christiansen and Hasager (2005, 2006) 8–9 5–20 

Djath et al. (2018) and Djath and Schulz-
Stellenfleth (2019) 

5–10 30–60 

Hasager et al. (2015) - 15–70 

Mean Value 8.0 35.5 

 

 

Figure 10. Velocity deficit curves derived from SAR observation for isolated wake cases at the Global 
Tech wind farm (thin grey lines).  
Thick black line indicates the average velocity deficit, and the red curve represents the best fit, alpha=7.5% and 
sigma=32km. From Christiansen et al. (2022). Reproduced with permission. 

The atmospheric wake has a cross-sectional shape which can be expressed by a symmetric exponential 

function (scaled by the characteristic wind farm width L). This function was also validated with airborne 

observation (Cañadillas et al., 2020). However, Djath and Schulz-Stellenfleth (2019) suggested that the 

cross-sectional shape of a wake at 10-m height is more distinguishable near the wake edges. For this 

reason, Christiansen et al. (2022) chose an exponential decay constant of γ = L/3, to narrow the wake 

cross section at sea surface height (in comparison with the hub height assumption) and proposed 
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                                  Eq. 3 

where 

L is wind farm width, and 

y defines the distance from the central wake axis. 

Because of this simplistic approach, the Christiansen et al. (2022) algorithm might be considered an 

efficient way to calculate the wake impacted wind field at first order. However, this approach does not 

allow for the spatial variation of wake inside a windfarm, nor does it account for the modeling of the 

specific 15MW wind turbines considered in this project. 

There are some software packages that allow calculation of wake interaction in a wind farm in a 

computationally tractable way for a range of steady state conditions. PyWake is a Python-based, open-

source code developed at the Technical University of Denmark that can be used to compute the wake 

losses for a specific wind farm layout configuration, power production of individual turbines, as well as 

the Annual Energy Production (AEP) of a wind farm (Pedersen et al., 2023). PyWake is efficient in 

computing the wake propagation within a wind farm and can quantify the interaction between turbines. 

The code has a highly modular architecture (Figure 11) which enables the users to combine different AEP 

modelling blocks in different ways which, in turn, allows building a sophisticated model that can simulate 

real-world problems more accurately. As this approach provides copious options to build a highly 

customized model, the user needs to be diligent in terms of selecting the models. 

FLOw Redirection and Induction in Steady State (FLORIS) is another Python based open-source wind 

plant optimization tool developed by National Renewable Energy Laboratory (NREL) and Delft 

University of Technology with support from the U.S. Department of Energy Wind Energy Technologies 

Office. This software incorporates steady-state wake models (Jensen 1983, Bastankhah and Porté-Agel, 

2014, Niayifar and Porté-Agel, 2016) into a performance-focused Python framework, similar to PyWake. 

Beside the open-source software mentioned above, there exist commercial software tools for wind 

resource assessment, such as WAsP (Wind Atlas Analysis and Application Program, Technical 

University of Denmark, Wind and Energy Systems, based on original work by Troen and Petersen, 1989). 

WAsP can be used for all kinds of terrain and provides models and tools for every step in the process of 

calculating the energy yield for a wind farm. WAsP also facilitates calculation of wind farm efficiency, 

wind resource and turbulence mapping over selected areas, computation of the mutual wake effects 

between the turbines in a wind farm, and siting of wind turbines and wind farms (Katic et al., 1986). 

However, calculating the wake effects for multiple big windfarms over a large area is onerous to 

accomplish through WAsP. Because the software creates only output of one wind turbine at a time, 

calculating the modified wind field for all the turbines in all the windfarms, for every timestep and for all 

downstream space, takes a lot of manual effort. 
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Figure 11. Modular architecture of PyWake. 
Source: https://topfarm.pages.windenergy.dtu.dk/PyWake/notebooks/Overview.html 

In summary, although CFD frameworks such as RANS models can calculate the wind wake effect, they 

are computationally uneconomic. Coupling hydrodynamics to very high-resolution meteorological model 

simulation–for example building and coupling to a high-resolution WRF model– an investigate turbine 

interactions that go beyond the primary effect of wind reduction (e.g., as it pertains to changes in heat 

fluxes) offering a comprehensive solution but similarly remain computationally very expensive on the 

scales considered in this project (NAS 2023). On the other hand, 0-order approaches such as the 

Christiansen model can be highly efficient but also highly simplified and specific to the availability of 

SAR data, not available for this study as the wind farms considered are yet to be built. As a result, an 

analytical approach facilitated by an open-source tool–PyWake (Pedersen et al., 2023)–was selected for 

this project. PyWake is computationally efficient and able to capture the wind wake (wind reduction) in 

the leeward side of a wind turbine (Pedersen et al., 2022). This tool also has a modular architecture which 

also enables its users to combine different modelling blocks in different ways, in turn allowing the 

construction of a sophisticated model. 
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4.2 PyWake Validation Setup 

To build the wind farms setup within the PyWake framework, multiple wind turbine parameters such as 

power, hub-height, and rotor diameter are required. Also, appropriate PyWake parameters such as 

computational grid domain, wind-deficit models, and available engineering wind farm models were 

analyzed for an accurate simulation. To test these parameters, a cluster of hypothetical wind turbines near 

the North Carolina coastline was imported and set up in PyWake (Figure 12). In the following discussion 

results are provided based on these experiments. Once these experiments were completed, the parameters 

were applied to the other wind farms (with different size and layout) in the AOI. 

 

Figure 12. Location and layout of hypothetical wind farm used in PyWake analysis. 

4.3 Specification of Reference Wind Turbine 

For the simulation, wind turbine specifications were selected based on a reference turbine which was 

developed by a joint effort of National Renewable Energy Laboratory (NREL), Technical University of 

Denmark (DTU), and University of Maine (UMaine) (Gaertner et al., 2020). This offshore wind turbine 

has a rated capacity of 15-MW, has hub-height and rotor diameter of 150 m and 240 m respectively, and 

is supported by a fixed-bottom monopile structure (Table 10). For input in PyWake, the turbine’s speed, 
generator power (violet curve in the upper panel of Figure 13) and thrust coefficient (red curve in the 

lower panel of Figure 13) were used (along with hub-height and rotor diameter) from the reference 

turbine. 
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Table 10. Physical dimensions of reference wind turbine (NREL 15MW). 

Item Description Dimension 

Turbine Hub Height The average height of wind turbine 
above water surface. 

150 m 

Turbine tower diameter The tower diameter was enhanced 
with marine growth to increase the 
diameter and increase 
hydrodynamic roughness. 

10 m with 10 cm marine 
growth added 

Turbine tower scour protection 
diameter 

Scour protection was simulated 
around the base of the turbine 
tower monopile. 

50 m 

Turbine tower scour protection 
height 

Scour protection was simulated 
around the base of the turbine 
tower monopile and had a height 
above the surrounding seabed. 

1 m 

Rotor swept diameter Rotor diameter is used in the wind 
wake loss calculations. 

240 m 

Cut-in wind speed Cut-in wind speed is used in the 
wind wake loss calculation. 

3 m/s 

Cut-out wind speed Cut-out wind speed is used in the 
wind wake loss calculation. 

25 m/s 

 

The power coefficient, (Figure 13), is a measure of the efficiency with which a wind turbine converts 

kinetic energy in the wind to electrical power within its operational range. It indicates how effectively a 

turbine can extract energy from the wind, bound by the theoretical Betz limit of 0.593. The thrust 

coefficient, (Figure 13), is a measure of the axial force exerted by the wind on the rotor blades. Figure 13 

defines how the wind turbine is expected to operate between its operational wind speed range. In Region 

1.5 (3 m/s to about 7 m/s) the efficiency of the turbine as measured by increases toward its expected 

maximum, 0.489, which it attains in Region 2 (about 7 m/s to 11 m/s). As winds exceed that speed, in 

Region 3, the turbine’s controller starts pitching its blades from 0° to about 22° toward the 25 m/s cut-out 

wind speed maintaining maximal design rotor speed, saturated generator torque, and 15 MW rated power 

generation (Gaertner et al., 2020) while avoiding overspeed and excessive stress and damage. The rotor 

thrust, thrust coefficient, and the effectiveness of the conversion of available wind energy to power 

decrease monotonically as a result in that Region. 



 

48 

 

 

Figure 13. Power and thrust curve (upper panel) and aerodynamic thrust coefficient (lower panel) for 
NREL 15 MW reference turbine. 
Modified from Gaertner et al., 2020. 

4.4 Selection of Wind Deficit Model 

One of the main components of PyWake modular architecture is the Wake Deficit Model that computes 

the wake deficit caused by a single wind turbine. Although there are multiple deficit models available for 

use in PyWake, most of them are known to underpredict the wake. Fischereit et al. (2021) compared 

various approaches to calculate the wake effect and found that RANS and WRF models performs better 

compared to PyWake models in terms of capturing the wake from an upstream wind farm. To address 

this, Pedersen et al. (2022) developed a new wake model (Turbo Gaussian Deficit), to accurately capture 

both internal wind farm wakes and cluster wakes from neighboring wind farms extending over long 

distances. In our analysis, we compared this newly developed model with the other models discussed in 

Fischereit et al. (2021) and verified that the Turbo Gaussian Deficit is the best model to capture the 

expansion of the wind wake in the downstream direction of the wind farm. The wake-analysis was done 

both at the hub-height of 150 m elevation (Figure 14) and 10 m elevation (Figure 15). 
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Figure 14. Example comparison of applying different Wind Deficit Models to capture wind wake expansion 
at the hub-height of the turbine (150 m). 
Wind units are m/s. Incident wind westward. 
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Figure 15. Example comparison of applying different Wind Deficit Models to capture wind wake expansion 
at 10 m elevation above surface.  
Wind units are m/s. 

4.5 Selection of Engineering Wind Farm Models 

The engineering wind farm models provide two different approaches to calculate wind deficit – 

PropagateDownwind and All2AllIterative. The PropagateDownwind wind farm model is presumably 

faster, as it performs a minimum of deficit calculations by iterating over all turbines in downstream order. 

In each iteration it calculates the effective wind speed at the current wind turbine as the free stream wind 

speed minus the sum of the deficit from upstream sources. Based on this effective wind speed, it 

computes the deficit caused by the current turbine on all downstream locations. On the other hand, 

All2AllIterative is presumably slower as in each iteration it sums up the deficit from all wind turbine 

sources and calculates the deficit caused by all wind turbines on all wind turbines (Pedersen et al., 2023). 

For this study, both approaches were compared to see how they impact the simulation result assuming 

spatially invariant upstream wind input. For a constant speed of 6 m/s, the freestream inflow wind 

direction was varied at the turbine hub-height (Figure 16, Figure 17, Figure 18) and at 10 m elevation 

(Figure 19 and Figure 20). Based on the wake maps shown, both engineering wind farm models resulted 

in the same solution at all wind directions. 
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Figure 16. Comparison of engineering wind farm models at hub-height (direction 0°, 45°, and 90°).  
Axes units in km. All wind units are m/s. 
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Figure 17. Comparison of engineering wind farm models at hub-height (direction 135°, 180°, and 225°).  
Axes units in km. All wind units are m/s. 
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Direction Engineering Model Difference 

(All2AllIterative – 
PropagateDownwind) 

All2AllIterative PropagateDownwind 

270° 

 

315° 

 

Figure 18. Comparison of engineering wind farm models at hub-height (direction 270° and 315°).  
Axes units in km. All wind units are m/s. 
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Direction Engineering Model Difference 

(All2AllIterative – 
PropagateDownwind) 

All2AllIterative PropagateDownwind 

0° 

   
45° 

   
90° 

   
135° 

  

Figure 19. Comparison of engineering wind farm models at 10 m elevation (direction 0°, 45°, 90°, and 
135°).  
Axes units in km. All wind units are m/s. 
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Figure 20. Comparison of engineering wind farm models at 10 m elevation (direction 180°, 225°, 270°, 
and 315°).  
Axes units in km. All wind units are m/s. 

The simulation time for each of the directions were also compared for All2AllIterative and 

PropagateDownwind wind farm models (Figure 21). No significant difference was found in terms of 

computational expense between the two models in this setting. It is hypothesized that the All2AllIterative 

model may provide better results, at a higher computational cost, in later implementations of the PyWake 

model that may enable robust import of spatially variable wind fields into PyWake. Therefore, 

All2AllIterative is used. 
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At Hub-height At 10m elevation 

  
 

Figure 21. Comparison of simulation time for different engineering wind farm models at different wind 
direction at hub-height (left panel) and at 10 m elevation (right panel). 

4.6 Selection of Resolution of Computational Grid 

In order to capture the wake inside the wind farm, the resolution of the computational grid was analyzed. 

The minimum distance between two adjacent turbines in the simulation was approximately 1km, so 

multiple values smaller than 1 km were tested as spatial resolution in the model domain at hub height 

(Figure 22) and at 10 m elevation (Figure 23). Based on this analysis, the grid with 250m resolution 

captures the wake better than 500 m grid. However, the grids with finer resolutions (< 250 m) do not 

show significant improvement over 250 m grid, as expected for turbines with 240 m rotor diameter. As 

expected, the higher the resolution, the slower the runtime. 
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60m 

 

125m

 

250m 

 

500m 

 

Figure 22. Comparison of different grid resolutions at turbine hub-height. 
All wind values are in m/s. 
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60m 

 

125m 

 

250m 

 

500m 

 

Figure 23. Comparison of different grid resolutions at 10 m elevation.  
All wind values are in m/s. 

4.7 Impact of Wind Speed on Wake 

To understand and validate how the maximum reduction of wind speed changes with free-stream inflow 

speed in PyWake given the wind turbine specifications from Section 4.3, the wind wake was simulated 

for different wind speeds in-between the cut-in and cut-off (25 m/s) speeds at the hub-height (Figure 24 to 

Figure 27) and 10 m elevation (Figure 28 to Figure 30). The wind speed reduction at lower speeds (3–11 

m/s) is higher inside the wind farm compared to higher speeds. The scale in each panel varies individually 

between the maximum (free) and minimum calculated wind speeds within the domain. In this context, the 

figures clearly illustrate that the reduction in wind speed, for instance, from 14 m/s free speed to around 

10 m/s, is much smaller compared to the reduction from 9 m/s free speed to approximately 1 m/s. 
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Figure 24. Comparison of wind wake for different free-stream inflow speeds (3–8 m/s) at the hub-height.  
Axes units in km. All wind units are m/s. 
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Figure 25. Comparison of wind wake for different free-stream inflow speeds (9–14 m/s) at the hub-height.  
Axes units in km. All wind units are m/s. 
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Figure 26. Comparison of wind wake for different free-stream inflow speeds (15–20 m/s) at the hub-
height.  
Axes units in km. All wind units are m/s. 
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Figure 27. Comparison of wind wake for different free-stream inflow speeds (21–25 m/s) at the hub-
height.  
Axes units in km. All wind units are m/s. 
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Figure 28. Comparison of wind wake for different free-stream inflow speeds (3–8 m/s) at 10 m elevation.  
Axes units in km. All wind units are m/s. 
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Figure 29. Comparison of wind wake for different free-stream inflow speeds (9–14 m/s) at 10 m elevation.  
Axes units in km. All wind units are m/s. 
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Figure 30. Comparison of wind wake for different free-stream inflow speeds (15–19 m/s) at 10 m 
elevation.  
Axes units in km. All wind units are m/s. 
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Wind speed deficits (wake-associated % reduction) at hub-height both at the western boundary of the 

model domain and inside the windfarm were calculated as the ratio of the resulting wind speed divided by 

the free stream (equal to inflow) wind speed. Figure 31 shows that from 3–11 m/s, the wind speed deficit 

is high. However, when wind speed exceeds about 11 m/s, the deficit decreases rapidly. When the speed 

reaches 20 m/s, the deficit is relatively much smaller. This trend of wind reduction follows well the thrust 

coefficient (CT) curve shown in (Figure 13, lower panel), which also has an inflection point around 11m/s 

free steam speed, above which a stand-alone reference wind turbine is expected to be generating 

maximum (15MW) power (Figure 13, upper panel). 

 

Figure 31. Comparison of hub-height wind speed reduction (see Figure 24 to Figure 27) at the 
downstream boundary on the west (left panel) and maximum wind speed reduction inside the windfarm 
(right panel) with different free-stream inflow speeds.  
Both are given as percent from free-stream speed. 

Figure 32 shows mean wind speed deficit (wake-associated % reduction) at 10m elevation at the western 

edge of the wind turbine clusters. The change of mean reduction with different speeds also shows the 

same pattern as the maximum deficit (Figure 31) and the thrust coefficient curve. 
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Figure 32. Comparison of 10-m elevation mean wind speed deficit (% reduction, see Figure 28 to Figure 
30) at the downstream edge of the wind turbine clusters with different free-stream inflow speeds at 10 m 
elevation. 

4.8 Impact of Computational Domain Extension on Wake 

As the deficit at the downstream boundary is maximum between 3 and 11 m/s (Figure 31), the size/extent 

of the computational grid was analyzed by using a free-stream inflow speed of 6 m/s varying the distance 

between the boundary of the domain and the nearest turbine. By extending the computational domain, 

PyWake was able to capture most of the wake-affected zone and the wind recovery increased at the 

downstream boundary with increasing clearance between wind farm and boundary: Figure 33 is for winds 

at hub height, while Figure 34 is for winds at 10 m above surface. Please note change in colorbar scale. 
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Figure 33. Comparison of wind speed reduction (at hub-height) at the downstream boundary on the west 
with different clearance distance (between wind farm and the boundary). 
Axes units in km. All wind units are m/s. 
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Figure 34. Comparison of wind speed reduction (at 10 m elevation) at the downstream boundary on the 
west with different clearance distance (between wind farm and the boundary).  
Axes units in km. All wind units are m/s. 

The wind speed deficit at hub-height (left panel of Figure 35) at the western boundary of the domain 

decreases rapidly with increasing clearance distance between wind farm and the domain boundary. After 

120 km, the increment in clearance distance does not significantly impact the wind deficit (left panel of 

Figure 35). However, it significantly increases the computational time (elapsed time) (right panel of 

Figure 35). Beyond 120 km, the resulting maximum reduction (<3%) is less than 0.17 m/s for the 6 m/s 

wind speed. The maximum reduction at the downstream boundary from Figure 31, which also used 120 

km, is about 0.25 m/s at 10 m/s free stream velocity, considered similar to the maximum accuracy of any 

reanalysis field (i.e., ERA5 here) used to force the numerical hydrodynamic models. Therefore, 120 km is 

used. 
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Figure 35. Comparison of wind speed reduction (at hub-height) at the downstream boundary on the west 
(left panel) and simulation time (right panel) with different model extension/clearance distance (between 
wind farm and the boundary). 

Figure 36 shows mean wind speed reductions and the computational time at the western boundary of the 

domain for 10 m above surface elevation. The change of mean reduction and model run-time with 

increasing clearance distance shows the same pattern as the maximum reduction and run-time for wake 

simulation at hub-height (Figure 35). 

 

Figure 36. Comparison of mean wind speed reduction (at 10 m) at the downstream boundary on the west 
(left panel) and simulation time (right panel) with different model extension/clearance. 

4.9 Comparison of PyWake-derived Wind Reduction with Christiansen et 
al. (2022) 

To understand how PyWake-derived wind reduction compares with the mean, SAR-based wind deficit 

from Christiansen et al. (2022) (Figure 10), a qualitative analysis was carried out on a wind farm which 

has a similar size to Global Tech wind farm (used in Christiansen et al., 2022). Different wind turbine 

powers were used for this analysis: 5 MW turbines similar to the ones present in Global Tech wind farm, 

12 MW Turbines described in Johnson et al. (2021), and 15 MW used in the present work (Figure 37). 
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Figure 37. Comparison of PyWake-derived wake with Christiansen et al. (2022). 

The figure shows average wind reduction in the lee side of the wind farm. For a farm with 5 MW turbines 

(similar to Global Tech I wind farm), the wind reduction is about 5% at the edge of the turbine. In the first 

40 km from the windfarm, the wind deficit is slightly smaller than what Christiansen et al. (2022) 

showed. This difference can be caused by the smaller number of turbines (69) used in the PyWake 

experimental farm compared to 80 turbines deployed in the Global Tech wind farm. Also, the differences 

in arrangement of turbines in windfarms as well as the wind direction causing the wake effect can 

contribute to the difference between PyWake and Christiansen et al. (2022). 

The PyWake calculation of wind reduction using 12 MW and 15 MW monopiles (used in Johnson et al., 

2021) shows that, with increasing size of turbine, reduction in wind speed will grow, reaching 10% for 15 

MW turbines, and resulting in a longer wake. It is important to note that the wind wake model outlined by 

Johnson et al. (2021) does not extend beyond the spatial boundaries of the offshore wind farm. This 

limitation arises from the use of a "simplified energy model" to capture the wind wake, along with the 

relatively coarse resolution of the CFSR wind dataset employed in the simulation. 

4.10 Steps for Wake Calculation 

After finalizing the calibration of all the PyWake parameters, the following steps were taken to calculate 

the wake-affected wind field used to force the numerical models in the presence of wind farms: 

The starting point is reading (free-stream) wind speed and direction time series from the ERA5 reanalysis 

and interpolating it into a higher resolution (~500 m) rectilinear grid. This new grid later facilitated 

integrating PyWake results into Hydrodynamic and Wave model input. 

Considering each farm’s domain separately, ERA5 wind time series were extracted from the grid point 
located in the middle of the wind farm (8 wind time series for Scenario 2, one for each farm, Figure 38). 



 

72 

 

 

Figure 38. Example of wind turbines (Scenario 2) clustered into individual wind farms (from #1 to #8) off 
the East Coast. 

As ERA5 provides 10m over-ocean wind field, 10 m elevation wind was specified as input to PyWake. 

Because the wake calculation needs speed at the rotor-center of the turbines, PyWake then converted 10m 

speed to the hub-height speed using the following expression (Bratton and Womeldorf, 2011): 

                                                                                                                                                        Eq. 4 

where the wind speed velocity V2 at height H2 can be estimated using the wind speed velocity V1 

recorded for a different elevation H1 at the same site with the wind shear exponent, α. The wind shear 
exponent relates to terrain roughness and for open water the value is 0.1. 

Then, for each wind farm: 
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• Wind farms were set up in a 500 m grid that covers the wind farm and the nearby areas which 

might be impacted by the wake caused by the wind farm. 

• Wind speeds were divided in 12 bins (from minimum as 3m/s to maximum operational wind 

speed of 25 m/s with an interval of 2m/s) and wind directions into 12 bins (from 0° to 360° with 

an interval of 30°). 

• PyWake was run for each wind speed bin and direction (12 * 12 = 144 runs in example above). 

• Wind reduction factors were calculated for each binned (steady state) case (for that farm) which 

resulted in 144 maps (data fields) of reduction factors for each farm (based on the example 

above). 

The above steps were then repeated for all farms (8 * 144 = 1,152 reduction factor maps) 

Then, for each time in the global ERA5 wind field: 

• Concurrent 8 speed/direction value pairs were retrieved from wind time series, one pair 

“representative” for each farm, and each rounded to its closest bin from above 144 bins. 
• For each of these pairs (for each wind farm), applicable reduction maps were retrieved for that 

pair (8 PyWake map grids, one for each farm’s representative wind at that time) and then applied 
to the part of the main rectilinear wind input grid (covering whole Mid Atlantic Bight (MAB) 

area; described in the first bullet point) associated with the wind farm/ reduction map to 

calculated the reduced wind field. 

• The combined wake impacted wind field were calculated by averaging over the reduced wind 

fields caused by all the wind farms. This step took consideration of areas which are affected by 

wakes from multiple farms. 

• Wind-wake-effect-accounting wind field were saved into the main rectilinear wind input grid. 

• The next ERA5 time step was repeated to create the new wind field for hydrodynamic/wave grid. 
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5 Hydrodynamic Modeling–Calibration and Validation 

5.1 Model Overview 

Hydrodynamic modeling of the area is conducted with Deltares Delft3D Flexible Mesh (Delft3D FM) 

Modeling Suite using its hydrodynamic module, DFLOW (Deltares, 2022), The Delft3D FM modeling 

suite can carry out simulations of non-steady flows, sediment transports, waves, water quality, 

morphological developments and ecology in three-dimensional coordinates with a flexible mesh and finite 

volume code. The grid mesh can be constructed using a variety of polygonal elements, with up to six 

sides. This allows for easy construction of model grids that conform well to complex shorelines and 

sinuous channels and can include high degrees of mesh resolution in areas only where it is desired, as in 

the case of the wind farms in this project. The vertical dimension can be specified with boundary fitted 

sigma-coordinates or a strictly horizontal Z-grid. DFLOW simulates tidally and/or meteorologically 

forced two-dimensional (2DH, depth-averaged) or three dimensional (3D) unsteady flow and transport 

phenomena (Deltares, 2022).  

5.2 Model Grid 

Given the requirements for localized high-resolution areas in the BOEM wind turbine lease areas, a high-

resolution unstructured numerical model grid (unstructured mesh) has been created for this work. The 

grid covers the area of interest between south Long Island and Cape Hatteras, bound by the 10m onshore 

isobaths and a 70–80 km extension past the continental shelf break.  The unstructured mesh uses 

triangular finite elements of variable resolution with a total of 23,668 vertices (nodes). Resolution varies 

between 7 km and 10 km at the offshore boundary, to 3km at the nearshore boundary, and to less than 

1km within and around the WEAs. The highest resolved areas are at and around the WEAs. Orthogonality 

and smoothness have been considered while creating the mesh, with orthogonality in Universal Tranverse 

Mercator around 0 and smoothness less than 1.76. Forty combination z and sigma (terrain following) 

layers are used in the vertical. The vertical layer breakdown consists of 25 z layers present in depths 

below 150 m and 15 sigma layers present in depths above 150 m to the surface. Thus, most of the 

continental shelf is segmented in terrain-following sigma layers, while the shelf break and deep ocean 

plateau below 150 m depth uses the more appropriate z layering that reduces erroneous numerical 

diffusion associated with steep bathymetric gradients. Model bathymetry was sourced from GEBCO (the 

General Bathymetric Map of the Oceans, at 425 m resolution) and NCEI (the National Centers for 

Environmental Information, 1/9 and 1/3 arcsecond resolution–nominal 3m and 10m, respectively). The 

bathymetry was mosaiced and mapped on the numerical grid. Grid resolution and bathymetry are shown 

in Figure 39. The model has been set up and boundary forcing conditions were created for its validation, 

calibration, and required simulations. This grid is shared with the surface wave model introduced in 

Section 6. 
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Figure 39. Mid-Atlantic Bight shelf model grid. (a) Left panel: numerical model grid. (b) Right panel: grid 
bathymetry. 

5.3 Boundary Forcing 

The hydrodynamic model forcing entails water level timeseries applied along the onshore and offshore 

open boundaries, temperature and salinity applied along the vertical layers at the open boundary, as well 

as wind, zenith-calculated solar radiation at the top of the atmosphere, total cloud cover, barometric 

pressure, atmospheric air temperature, and relative humidity applied at the surface of the model grid as 

meteorological forcing. Wind forcing will include the effects of wind farm wakes in Scenarios 2 and 3 

(Table 1) as modeled by pyWake (Section 4). 

5.3.1 Water Level Boundary 

The water level boundary runs along the perimeter of the model domain as an open boundary. Tidal data 

were extracted from Doppio, a ROMS-based (Region Ocean Modeling System) validated and calibrated, 

data-assimilative model of the Mid Atlantic Bight and Gulf of Maine (López, et al., 2020) The haversine 

distance formula was applied to determine Doppio nodes within 10 km of the hydrodynamic model’s 
open boundary nodes. Each node at the open boundary had at least two and at most nine Doppio nodes 

within a 10 km range. Water level timeseries extracted from each Doppio node were run through 

T_TIDE, a toolbox for harmonic analysis of oceanic tides, to compute tidal constituents and predicted 

(astronomical) tidal timeseries (Pawlowicz, et al, 2002) (Table 11. Tidal constituents computed with 

T_TIDE displays which tidal constituents were computed. The Doppio Tidal Residual was computed 

subtracting the predicted tidal from the original water level timeseries at each node. An inverse distance 

weighting formulation between the model’s boundary nodes and Doppio nodes with the 10 km range was 

applied to each of the tidal constituents and residual timeseries. The weighted tidal constituents were 
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processed through T_TIDE and the output tidal time series was added to the weighted residual. Smooth 

tidal solutions were thus created along the open ocean boundary, validated against raw Doppio results, 

and in 3D barotropic (uniform density) test simulations. 

Table 11. Tidal constituents computed with T_TIDE 

Tidal Constituent Description 

2N2 Lunar elliptical semidiurnal second-order constituent 

K1 Lunar diurnal constituent 

K2 Lunisolar semidiurnal constituent 

M2 Principal lunar semidiurnal constituent 

M4 Shallow water overtides of principal lunar constituent 

MF Lunisolar fortnightly constituent 

MM Lunar monthly constituent 

MN4 Shallow water quarter diurnal constituent 

MS4 Shallow water quarter diurnal constituent 

N2 Larger lunar elliptic semidiurnal constituent 

O1 Lunar diurnal constituent 

P1 Solar diurnal constituent 

Q1 Larger lunar elliptic diurnal constituent 

S1 Solar diurnal constituent 

S2 Principal solar semidiurnal constituent 

 

5.3.2 Water Temperature and Salinity 

Water temperature and salinity time series were imposed at the model’s lateral open boundary across the 
40 vertical depth layers. Data were extracted from the Doppio model and transformed from the vertical s 

coordinates that support ROMS’ vertical stretching terrain following model to the Delft sigma-z 

equivalent depth levels. The Haversine Distance formula matched the closest individual Doppio node to 

each open boundary node and the temperature and salinity data were interpolated to the model’s 40 
vertical layers (combination of z and sigma layers). Representations of surface water temperature and 

salinity for a single timestep over the model domain are shown in Figure 40. Initial temperature and 

salinity conditions in the Delft model were also interpolated from Doppio. 
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Figure 40. Surface water temperature and salinity color maps for time stamp, January 7, 2018 00:00:00 
output from the model. 

5.3.3 Surface Boundary Conditions 

ERA5 is the fifth generation ECMWF reanalysis for global climate weather (Hersbach, et al., 2023). 

Wind at 10 m above surface, surface barometric pressure reduced to mean sea level, atmospheric air 

temperature at 2 m above surface, total cloud cover and relative humidity at 2 m above surface were 

extracted from ERA5 and applied to the model baseline run to internally calculate surface stress and heat 

flux boundary conditions. A composite ocean heat flux model is applied to the model domain based upon 

Gill (1982) and Lane (1989). The composite ocean heat flux model computes incoming solar radiation at 

the top of the atmosphere based on time and astronomical arguments and accounts for heat exchange from 

the solar insolation that is directed through the atmosphere and ocean’s surface. The model considers 
effective back radiation and heat losses due to evaporation and convection including computations for 

latent and sensible heat during occurrence of free convection, defined in the heat balance equation. 

Relative humidity, air temperature and the fraction of the sky covered by clouds is prescribed (in %) from 

ERA5. This model formulation typically applies for large water bodies. 

Heat Balance (Delft 2023) 

                                             𝑄𝑡𝑜𝑡 = 𝑄𝑠𝑛 + 𝑄𝑎𝑛 − 𝑄𝑏𝑟 − 𝑄𝑒𝑣 − 𝑄𝑐𝑜 − 𝑄𝑒𝑣𝑓𝑟𝑒𝑒 − 𝑄𝑐𝑜𝑓𝑟𝑒𝑒                               Eq. 5 

 

Qtot = total heat flux 

Qsn = net incident solar radiation (short wave) 

Qan = net incident atmospheric radiation (long wave) 

Qbr = back radiation 

Qev = evaporative heat flux (latent heat) 

Qco = convective heat flux (sensible heat) 

Qevfree = evaporative heat flux (free convection latent heat) 

Qcofree = convective heat flux (free convection sensible heat) 

 

Spatially and time varying (hourly) data are input into the Delft model. An example for a single 

timestamp of the variables is shown in Figure 41. For the buildout scenarios the windfarm wake winds are 

applied as the wind forcing boundary condition and in the composite heat flux model. 
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Figure 41. Representative timestamp of surface boundary conditions applied.  
(a) Upper Left Panel: Eastward wind velocity at 10 m over surface (b) Upper Right Panel: Northward wind velocity at 
10 m over surface (c) Mid Left Panel: Surface Atmospheric Pressure reduced to MSL (d) Mid Right Panel: Air 
Temperature, 2 m over surface (e) Lower Left Panel: Total Cloudiness (f) Lower Right Panel: Relative Humidity, 2 m 
over surface. 

5.4 Storage and Computational Requirements 

Storage and computational processing requirements for the model were robust. Following model testing 

the model was run in three-day chunks with restart files. Each three-day model is approximately 30 gb of 

data and took around 10 to 13 hours to run presently in serial model. Using MPI parallelism and extra 
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storage, the model takes about a week to finish a two-year run on 64 core virtual machines with 128 GiB 

memory on the RPS Azure cloud. 

5.5 Model Calibration and Stability 

Calibration of the fully forced hydrodynamic model was performed for a 12-month period, February 2018 

to January 2019, inclusive, while the next 12-month period was used for model validation. Calibration 

was challenging and included the application and adjustment of various model parameters to optimize 

model skill metrics and reduce instabilities present. RPS conducted a literature review regarding 

modification of model parameters to stabilize the model and referred to research by Mudiyanselage 

(2021). Adjustments to the model’s Smagorinsky factor for horizontal turbulence, coefficients for 

horizontal eddy diffusivity and viscosity as well as vertical eddy diffusivity and viscosity were made. 

Boundary hydrostatic stability was also checked. Application of a horizontal momentum filter resolved 

early issues present along the Gulf Stream by suppressing spurious oscillations in the vertical velocities 

along the open boundary affecting the horizontal velocities. Multiple turbulence closure schemes are 

included with Delft3D, and the k-epsilon closure model was employed in this study. Several schemes 

employing large eddy diffusivity applied along the ocean nodal boundary and surrounding area were 

tested and ultimately helped stabilize the velocities in the region. Further model refinement following the 

application of the horizontal momentum filter and localized eddy diffusivity included adjustments to 

Secchi depth, a measure of the clarity of water, used to formulate light attenuation in the water column 

contributing to the calculations for surface heat flux penetration, addition of a sponge layer to the open 

boundary, and combined tidal and current boundary conditions (Table 12. Model parameters tested in 

calibration). The calibrated model parameters were chosen by performing various statistical analyses 

comparing each model run using different settings to observed current, temperature, and salinity data to 

maximize performance metrics. The overall skill of the calibrated model using the chosen set of 

parameters can be seen in the normalized Taylor Diagram in Figure 110. 

Table 12. Model parameters tested in calibration. 

Parameter Coefficient Explanation Min Max Selected 

Smagorinsky Horizontal Turbulence 
Factor 

0.5 2 1 

Dalton Evaporative Heat Flux 0.0012 0.002115 Variable, equal to Wind Drag 
coefficient 

Stanton Convective Heat Flux 0.0012 0.002115 Variable, equal to Wind Drag 
coefficient 

Vicouv, bgnd Background Horizontal 
Eddy Viscosity 

0.1 15 0.3 – 15 at Boundary 

Vicoww, bgnd Background Vertical Eddy 
Viscosity 

5E-5 1E-6 1E-5 

Dicouv, bgnd Background Horizontal 
Eddy Diffusivity 

0.1 15 0.3 – 15 at Boundary 

Dicoww, bgnd Background Vertical Eddy 
Diffusivity 

0.1 2 1E-5 

Secchi depth Water Clarity 2 15 4 

Rhoair Air Density 1.15 1.4 1.2 
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5.5.1 Sea Surface Height 

The hydrodynamic model sea surface height calibration included the comparison of existing and forecast 

conditions within the Mid-Atlantic Bight. Time varying sea surface height from NOS tidal gauges and 

spatially and time varying sea surface height from Doppio, a ROMS-based (Regional Ocean Modeling 

System) model of the Mid-Atlantic Bight and Gulf of Main regions were compared to the model.  

5.5.1.1 Model against NOS Station Data 

Sea surface height comparisons between the model and NOS tidal gauges were used to verify the tidal 

signal. NOS tide gauges, located in the nearshore region of the model domain spanning the Southern and 

Northern extents, were used in the calibration (Figure 4). Model calibration was performed on the fully 

forced hydrodynamic model, over a one-year period from February 2018 to January 2019, following a 

month of spin-up. Sea surface height time series comparing the model and NOS tide gauge data, as well 

as scattered density plots of simulated versus observed sea surface height were compared between the 

multiple calibration runs. The selected run’s results are displayed for each station in Figure 42 through 

Figure 49. Calibration statistics are summarized in Table 13. The model performs well compared to the 

NOS tide gauges located over the model domain, based on the coefficient of determination (R2) and Root-

Mean-Square-Error (RMSE); the coefficient of determination varies between 0.955 to 0.978, while the 

Root-Mean-Square-Error ranges from 8.5 cm to 14.9 cm. 

 

Figure 42. Water level comparison between hydrodynamic model and NOS tide gauge at Sandy Hook, 
New Jersey. 
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Figure 43. Water level simulated in the model versus observed from the NOS tide gauge at Sandy Hook, 
New Jersey. 

 

Figure 44. Water level comparison between hydrodynamic model and NOS tide gauge at Atlantic City, 
New Jersey. 
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Figure 45. Water level simulated in the model versus observed from the NOS tide gauge at Atlantic City, 
New Jersey. 

 

Figure 46. Water level comparison between hydrodynamic model and NOS tide gauge at Lewes, 
Delaware. 
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Figure 47. Water level simulated in the model versus observed from the NOS tide gauge at Lewes, 
Delaware. 

 

Figure 48. Water level comparison between hydrodynamic model and NOS tide gauge at Duck, North 
Carolina. 
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Figure 49. Water level simulated in the model versus observed from the NOS tide gauge at Duck, North 
Carolina. 

 

Table 13. Model calibration statistics for water elevation (m) at 4 NOS stations. 

Station Name NOS ID # RMSE, meters R R² 

Sandy Hook, New Jersey 8531680 0.149 0.964 0.929 

Atlantic City, New Jersey 8534720 0.106 0.976 0.954 

Lewes, Delaware 8557380 0.151 0.955 0.912 

Duck, North Carolina 8651370 0.085 0.978 0.957 

 

5.5.1.2 Model against Doppio SSH 

Model calibration of sea surface height considered spatially and time varying data from the Doppio 

ROMS model. Doppio sea surface height was compared to the hydrodynamic model for the one-year 

calibration period, February 2018 to January 2019. Skill metrics including bias, root mean square error, 

index of agreement, correlation, standard deviation of the model and observed, and mean of observed 

were analyzed and summarized in histogram and tabular form to showcase variation along the shelf 

(Figure 50). Index of agreement, developed by Willmott, is a dimensionless metric from 1 to 0, that 

defines the agreement of the predicted to the observed data, a value of 1 represents a perfect agreement 

between the datasets (Willmott, 1981). Visualization of the bathymetric bins used to show variation of 

skill metrics across the model domain is shown in Figure 51. The model sea surface height exhibits low 

bias and high index of agreement across all bathymetric bins compared to Doppio. Spatial maps of 

monthly average sea surface height of the model, Doppio dataset, and difference over the calibration 

period are included in Appendix A.1. 
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Figure 50. Sea Surface Height comparison between Model and Doppio dataset for calibration period.  
Top: The histogram presents bias and RMSE, in mm. Bottom: The table shows model skill metrics. 
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Figure 51. Binned bathymetry map of AOI (every 20 m). 

5.5.2 Water Temperature 

The hydrodynamic model water temperature calibration included comparison of existing and predicted 

conditions within the Mid-Atlantic Bight. Time varying surface temperature from NDBC stations, 

spatially and time varying surface and bottom temperature data from the Doppio, ROMS-based (Regional 

Ocean Modeling System) model of the Mid-Atlantic Bight and Gulf of Main regions, spatially varying 

monthly surface temperature data from NOAA Optimally Interpolated High-Resolution SST (OISSTV2), 

and spatially scattered time varying temperature data provided from gliders were compared to the model.  

5.5.2.1 Model against NDBC 

The model’s water temperature predictions were calibrated against NDBC station time series. The time 

series comparisons of the model to the 12 NDBC stations from February 2018 to January 2019 are 

presented in Figure 52 through Figure 63. Table 14 shows the stats of calibrated model against the 

temperature observations at NDBC stations. The comparisons show a good agreement between modeled 

surface temperature and NDBC observations.  
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Table 14. Model skill metrics against NDBC observations of water temperature for calibration 
period. 

Station Name Correlation 
Index of 
Agreement 

Bias (°C) RMSE (°C) 

44095 Oregon Inlet NC     0.96 0.96 0.99 2.64 

44086 Nags Head NC        0.99 0.99 0.36 1.20 

44100 Duck FRF NC         0.99 0.99 0.06 1.32 

44088 Virginia Beach 
Offshore VA    

0.93 0.93 -0.50 2.54 

44014 Virginia  0.93 0.94 -0.54 2.87 

44099 Cape Henry VA      0.99 0.99 -0.17 1.12 

44089 Wallops Island 
VA    

1.00 1.00 0.02 0.82 

44009 Delaware Bay 0.99 0.99 -0.22 1.22 

44091 Barnegat NJ          0.99 0.99 -0.69 1.37 

44065 New York 
Harbor Entrance      

0.99 1.00 0.05 0.93 

44025 Long Island    0.99 0.99 0.60 1.30 

44066 East Long Beach 
NJ   

0.98 0.98 0.59 1.22 

 

 

Figure 52. Temperature timeseries comparison; NDBC Buoy 44009 (blue) and calibrated model (red). 
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Figure 53. Temperature timeseries comparison; NDBC Buoy 44014 (blue) and calibrated model (red). 

 

 

Figure 54. Temperature timeseries comparison; NDBC Buoy 44025 (blue) and calibrated model (red). 
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Figure 55. Temperature timeseries comparison; NDBC Buoy 44065 (blue) and calibrated model (red). 

 

 

Figure 56. Temperature timeseries comparison; NDBC Buoy 44066 (blue) and calibrated model (red). 
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Figure 57. Temperature timeseries comparison; NDBC Buoy 44086 (blue) and calibrated model (red). 

 

Figure 58. Temperature timeseries comparison; NDBC Buoy 44088 (blue) and calibrated model (red). 
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Figure 59. Temperature timeseries comparison; NDBC Buoy 44089 (blue) and calibrated model (red). 

 

Figure 60. Temperature timeseries comparison; NDBC Buoy 44091 (blue) and calibrated model (red). 
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Figure 61. Temperature timeseries comparison; NDBC Buoy 44095 (blue) and calibrated model (red). 

 

Figure 62. Temperature timeseries comparison; NDBC Buoy 44099 (blue) and calibrated model (red). 
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Figure 63. Temperature timeseries comparison; NDBC Buoy 44100 (blue) and calibrated model (red). 

5.5.2.2 Model against Doppio Surface Temperature 

Model calibration of surface temperature considered spatially and time varying data from the Doppio 

ROMS model. Doppio surface temperature was compared to the hydrodynamic model for a one-year time 

period, February 2018 to January 2019. Skill metrics including bias, root mean square error, index of 

agreement, correlation, standard deviation of the model and observed, and mean of observed were 

analyzed and summarized in histogram and tabular form to showcase variation along the shelf (Figure 

64). The model’s surface temperature exhibits RMSE ranging from 0.54° C to 1.33 ° C and bias from -

0.48° C to -0.08° C. The index of agreement is above 0.98 for all bathymetric bins ranging from 0 to 

200+m depth. Spatial maps of monthly average surface temperature of the model, Doppio dataset, and 

difference over the calibration period are included in Appendix A.2. 
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Figure 64. Surface temperature comparison between Model and Doppio dataset for calibration period.  
Top: The histogram presents bias and RMSE in °C. Bottom: The table shows model skill metrics. 

5.5.2.3 Model against NOAA High-Resolution Optimally Interpolated SST (OISSTV2) 

Model calibration of surface temperature considered spatially varying monthly data from the NOAA 

High-Resolution Optimally Interpolated SST satellite-derived dataset. NOAA surface temperature was 

compared to the hydrodynamic model for a one-year time period, February 2018 to January 2019. Skill 

metrics including bias, root mean square error, index of agreement, correlation, standard deviation of the 

model and observed, and mean of observed were analyzed and summarized in histogram and tabular form 

to showcase variation along the shelf (Figure 65). The model’s surface temperature exhibits high index of 
agreement and correlation over all depth ranges. The lowest bias is shown in depths between 60m to 80m 

as well as depths past the shelf break. The RMSE varies more over the model domain. Spatial maps of 

monthly average surface temperature of the model, NOAA OISSTV2 dataset, and difference over the 

calibration time period are included in Appendix A.3. 
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Figure 65. Surface temperature comparison between Model and NOAA Optimally Interpolated High 
Resolution SST for calibration period.  
Top: The histogram presents bias and RMSE, °C. Bottom: The table shows model skill metrics. 

5.5.2.4 Model against Doppio Near-Bottom Water Temperature  

Model calibration of bottom temperature considered spatially and time varying data from the Doppio 

ROMS model. Doppio bottom temperature from the multiple calibration runs was compared to the 

hydrodynamic model for a one-year period, February 2018 to January 2019. Skill metrics including bias, 

root mean square error, index of agreement, correlation, standard deviation of the model and observed, 

and mean of observed were analyzed and summarized in histogram and tabular form to showcase 

variation along the shelf (Figure 66). The selected model’s bottom temperature exhibits high model skill 
in depths ranging from 0m to 40m with high index of agreement and correlation and low bias ranging 

from -0.07° C to 0.21° C.  Agreement between Delft and Doppio bottom temperatures decreases moving 

into deeper waters. Doppio bottom temperatures are poorly constrained due to a lack of bottom 

observations from the glider datasets that Doppio assimilates. Spatial maps of the monthly average 

bottom temperature of the model, Doppio dataset, and difference over the calibration time period are 

included in Appendix A.4. 
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Figure 66. Bottom temperature comparison between Model and Doppio dataset for calibration period.  
Top: The histogram presents bias and RMSE, °C. Bottom: The table shows model skill metrics. 

5.5.2.5 Model against Glider Temperature 

Model calibration of temperature considered data recorded by gliders. The glider observations are 

spatially scattered. The gliders traveled from near the surface (2.5 m) to a depth of 175 m. Figure 67 

depicts the histogram and skill statistics parameters of the selected model’s results compared to the glider 
observations for the calibration period, Feb 2018 to Jan 2019, for temperature. Notably, the model 

exhibits its highest skill in very shallow and moderate depths (< 20 m and between 120 m and 16 0m). 

The monthly model skills also presented in the Table 15 for temperature. The highest model skill for 

temperature regarding glider observation is in summer, while the lowest model skills are observed in 

winter especially in January 2019.  
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Figure 67. Temperature comparison between glider observation and model.  
Top: The histogram presents bias and RMSE, °C. Bottom: The table shows model skill metrics. 
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Table 15. Monthly model skill metrics against glider observations of water temperature for 
calibration period. 

Month Correlation Index of Agreement Bias (°C) RMSE (°C) 

January -0.37 0.19 3.15 7.12 

February 0.31 0.53 1.05 4.49 

March 0.49 0.65 1.45 4.18 

April 0.12 0.37 3.12 6.49 

May 0.19 0.45 0.18 4.08 

June 0.35 0.61 0.33 6.05 

July 0.57 0.70 2.90 6.40 

August 0.73 0.83 0.24 4.74 

September 0.57 0.74 0.78 5.12 

October 0.29 0.57 1.79 4.55 

November 0.24 0.51 1.00 3.98 

December 0.09 0.44 1.66 5.08 

 

5.5.3 Salinity 

The hydrodynamic model salinity calibration included comparison of the candidate runs to existing and 

predicted conditions within the Mid-Atlantic Bight. Spatially and time varying surface and bottom 

salinity data from the Doppio, ROMS-based (Regional Ocean Modeling System) model of the Mid-

Atlantic Bight and Gulf of Maine regions, and spatially scattered time varying salinity data from gliders 

were compared to the model.  

5.5.3.1 Model against Doppio Surface Salinity 

Model calibration of surface salinity considered spatially and time varying data from the Doppio ROMS 

model. Doppio surface salinity was compared to the hydrodynamic model for a one-year period, February 

2018 to January 2019. Skill metrics for each candidate run included bias, root mean square error, index of 

agreement, correlation, standard deviation of the model and observed, and mean of observed. These were 

analyzed and summarized in histogram and tabular form to showcase variation along the shelf (Figure 

68). The model’s surface salinity exhibits a higher index of agreement 0.94 in the nearshore region in 
depths ranging from 0–20 m versus depths higher than 20 m, the index of agreement ranges from 0.79 to 

0.86. Correlation ranges from 0.84 to 0.94 in depths of 0 to 80 m. Spatial maps of monthly average 

surface salinity of the model, Doppio dataset, and difference over the calibration period are included in 

Appendix A.5. 

 

 



 

99 

 

 

Figure 68. Surface salinity comparison between Model and Doppio dataset for calibration period.  
Top: The histogram presents bias and RMSE, psu. Bottom: The table shows model skill metrics. 

5.5.3.2 Model against Doppio Near Bottom Salinity 

Model calibration of bottom salinity considered spatially and time varying data from the Doppio ROMS 

model. Doppio bottom salinity was compared to the hydrodynamic model for a one-year period, February 

2018 to January 2019. Skill metrics including bias, root mean square error, index of agreement, 

correlation, standard deviation of the model and observed, and mean of observed were analyzed and 

summarized in histogram and tabular form to showcase variation along the shelf (Figure 69). The model’s 
bottom salinity exhibits high skills in the shallow regions between 0 to 40 m compared to mid-range and 

deeper depths. As for bottom temperatures, Doppio bottom salinities are poorly constrained due to a lack 

of bottom observations from the glider datasets that Doppio assimilates. Spatial maps of monthly average 

bottom salinity of the model, Doppio dataset, and difference over the calibration period are included in 

Appendix A.6. 
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Figure 69. Bottom salinity comparison between Model and Doppio dataset for calibration period.  
Top: The histogram presents bias and RMSE, psu. Bottom: The table shows model skill metrics 

5.5.3.3 Model against Glider Salinity 

Model calibration of salinity considered data recorded by gliders. Figure 70 depicts the salinity histogram 

and skill parameters of the model compared to the glider observations for the calibration period, February 

2018 to January 2019. Notably, the model exhibits its highest skill in very shallow and moderate depths 

(< 20 m and between 120 m and 160 m). The monthly model skills are also presented in Table 16 for 

salinity. The highest model skill for salinity regarding glider observation is in summer, while the lowest 

model skills are observed in winter. 
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Figure 70. Salinity comparison between glider observation and model for calibration period.  
Top: The histogram presents bias and RMSE, psu. Bottom: The table shows model skill metrics. 
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Table 16. Monthly model skill metrics against glider observations of water salinity for calibration 
period. 

Month Correlation Index of Agreement Bias (psu) RMSE (psu) 

January -0.23 0.29 0.64 1.50 

February 0.25 0.54 0.12 0.76 

March 0.39 0.59 0.47 0.96 

April 0.23 0.52 0.60 1.42 

May 0.10 0.44 0.19 1.90 

June 0.10 0.47 0.16 1.29 

July -0.06 0.43 0.95 1.73 

August 0.27 0.56 0.38 1.70 

September 0.08 0.42 0.34 1.83 

October -0.02 0.41 0.02 2.21 

November 0.01 0.46 0.23 2.11 

December 0.16 0.50 0.57 1.37 

 

5.5.4 Currents 

The hydrodynamic model current calibration entailed comparison of existing and forecast conditions 

within the Mid-Atlantic Bight. Spatially and time varying bottom and surface current data from the 

Doppio, ROMS-based (Regional Ocean Modeling System) model of the Mid-Atlantic Bight and Gulf of 

Maine regions and surface current data from CODAR HF Radar were compared to the model.  

5.5.4.1 Model against Doppio Surface Current 

Model calibration of surface current considered spatially and time varying data from the Doppio ROMS 

model. Doppio surface current was compared to the hydrodynamic model for a one-year time period, 

February 2018 to January 2019. Skill metrics including bias, root mean square error, index of agreement, 

correlation, standard deviation of the model and observed, and mean of observed were analyzed and 

summarized in histogram and tabular form to showcase variation along the shelf (Figure 71). The model’s 
surface current exhibits higher model skill in the shallow to mid-depth regions (0 m to 120 m); the bias 

ranges from -0.01 m/s to 0.02 m/s and RMSE ranges from 0.03 m/s to 0.04 m/s. Spatial maps of monthly 

average surface current of the model, Doppio dataset, and difference over the calibration period are 

included in Appendix A.7. 
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Figure 71. Surface current comparison (current magnitude, speed) between Model and Doppio dataset 
for calibration period.  
Top: The histogram presents bias and RMSE, m/s. Bottom: The table shows model skill metrics. 

5.5.4.2 Model against HF Radar Surface Current  

Model calibration of surface current speed considered spatially and time varying data from CODAR HF 

Radar. HF Radar surface current speed was compared to the hydrodynamic model for a one-year period, 

February 2018 to January 2019. Skill metrics including bias, root mean square error, index of agreement, 

correlation, standard deviation of the model and observed, and mean of observed were analyzed and 

summarized in histogram and tabular form to showcase variation along the shelf (Figure 72). The model’s 
surface current exhibits good model skill in shallow and mid-depth regions (0 m to 140 m); the bias 

ranges from -0.02 m/s to 0.03 m/s and RMSE ranges from 0.04 m/s to 0.07 m/s. The higher absolute 

differences (Bias and RMSE) above the 140 m isobath are influenced by the strong Shelf Break Jet and 

the Gulf Stream in the southern edge of the modeling domain that have much higher speeds than the 

continental shelf itself. The correlation and index of agreement metrics however, which are scaled to 

observations, though lower, are reasonable in these areas as well. Spatial maps of monthly average 

surface current magnitude of the model, HF Radar dataset, and difference over the calibration period are 

included in Appendix A.8. 
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Figure 72. Surface current comparison between Model and HF Radar dataset for calibration period. 
Top: The histogram presents bias and RMSE, m/s. Bottom: The table shows model skill metrics. 

5.5.4.3 Model against Doppio Bottom Current 

Model calibration of bottom current considered spatially and time varying data from the Doppio ROMS 

model. Doppio bottom current was compared to the hydrodynamic model for a one-year period, February 

2018 to January 2019. Skill metrics including bias, root mean square error, index of agreement, 

correlation, standard deviation of the model and observed, and mean of observed were analyzed and 

summarized in histogram and tabular form to showcase variation along the shelf (Figure 73). The model’s 
bottom current exhibits the lowest bias and RMSE in depths from 0 m to 80 m; the bias ranges from 0m/s 

to 0.01 m/s and RMSE ranges from 0.01 m/s to 0.02 m/s. Although there is a high model skill with higher 

index of agreement and correlation in the shallow and mid-depth regions, bottom current in depths 

beyond 80 m have lower index of agreement and correlation. Spatial maps of monthly average bottom 

current of the model, Doppio dataset, and difference over the calibration period are included in Appendix 

A.9. 
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Figure 73. Bottom current comparison between Model and Doppio dataset for calibration period.  
Top: The histogram presents bias and RMSE, m/s. Bottom: The table shows model skill metrics. 

5.6 Validation 

The hydrodynamic model was validated for the one-year period following calibration, February 2019 to 

January 2020. Validation of the hydrodynamic model encompassed sea surface height, water temperature, 

salinity, and currents from the same datasets as the calibration period. 

5.6.1 Sea Surface Height 

The hydrodynamic model sea surface height validation included the comparison of existing and forecast 

conditions within the Mid-Atlantic Bight. Time varying sea surface height from NOS tidal gauges and 

spatially and time varying sea surface height from Doppio, ROMS-based (Regional Ocean Modeling 

System) model of the Mid-Atlantic Bight and Gulf of Main regions were compared to the model.  

5.6.1.1 Model against NOS Station Data 

The model’s sea surface height was validated to NOS tidal gauges. Four NOS tidal gauges spanning 
North and South of the model domain, were compared to the hydrodynamic model for a one-year time 

period following calibration, February 2019 to January 2020. Sea surface height time series comparing 

the model and NOS tide gauge data, as well as scattered density plots of simulated versus observed sea 
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surface height are displayed for each station in Figure 74 through Figure 81. Validation statistics are 

summarized in Table 17. 
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Figure 74. Water level comparison between hydrodynamic model and NOS tide gauge at Sandy Hook, New Jersey. 
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Figure 75. Water level simulated in the model versus observed from the NOS tide gauge at Sandy Hook, New Jersey. 
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Figure 76. Water level comparison between hydrodynamic model and NOS tide gauge at Atlantic City, New Jersey. 
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Figure 77. Water level simulated in the model versus observed from the NOS tide gauge at Atlantic City, New Jersey. 
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Figure 78. Water level comparison between hydrodynamic model and NOS tide gauge at Lewes, Delaware. 
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Figure 79. Water level simulated in the model versus observed from the NOS tide gauge at Lewes, Delaware. 
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Figure 80. Water level comparison between hydrodynamic model and NOS tide gauge at Duck, North Carolina. 
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Figure 81. Water level simulated in the model versus observed from the NOS tide gauge at Duck, North Carolina. 
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Table 17. Model validation statistics for water elevation (m) at four NOS stations. 

Station Name NOS ID # RMSE, meters R R² 

Sandy Hook, New Jersey 8531680 0.147 0.964 0.929 

Atlantic City, New Jersey 8534720 0.095 0.981 0.963 

Lewes, Delaware 8557380 0.151 0.955 0.911 

Duck, North Carolina 8651370 0.085 0.977 0.955 

 

5.6.1.2 Model against Doppio Sea Surface Height 

Model validation of sea surface height considered spatially and time varying data from the Doppio ROMS 

model. Doppio sea surface height was compared to the hydrodynamic model for a one-year period 

following calibration, February 2019 to January 2020. Skill metrics including bias, root mean square 

error, index of agreement, correlation, standard deviation of the model and observed, and mean of 

observed were analyzed and summarized in histogram and tabular form to showcase variation along the 

shelf (Figure 82). The model sea surface height exhibits low bias and high index of agreement across all 

bathymetric bins compared to Doppio. Spatial maps of monthly average sea surface height of the model, 

Doppio dataset, and difference over the validation period are included in Appendix A.1. 
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Figure 82. Sea Surface Height comparison between Model and Doppio dataset for validation period.  
Top: The histogram presents bias and RMSE, mm. Bottom: The table shows model skill metrics. 

5.6.2 Water Temperature 

The hydrodynamic model water temperature validation included comparison of existing and forecast 

conditions within the Mid-Atlantic Bight. Time varying surface temperature from NDBC stations, 

spatially and time varying surface and bottom temperature data from the Doppio, ROMS-based (Regional 

Ocean Modeling System) model of the Mid-Atlantic Bight and Gulf of Maine regions, spatially varying 

monthly surface temperature data from NOAA Optimally Interpolated High-Resolution SST (OISSTV2), 

and spatially scattered time varying temperature data provided from gliders were compared to the model. 

5.6.2.1 Model against NDBC Temperature Data 

The model’s water temperature predictions were validated against NDBC stations time series and NOAA 

High Resolution Satellite-derived de-clouded Sea Surface Temperature time series (Section 3.4). The time 

series comparisons of the model to the 12 NDBC stations from February 2019 to January 2020 are 

presented in Figure 83 through Figure 93. Table 18 shows a statistical comparison of temperature from 

the validated model against observations at the NDBC stations. The comparisons show a good agreement 

between modeled surface temperature and NDBC observations for the validation period. Stations that 

exhibited the lowest skill metrics included NDBC stations 44014 and 44088, both located offshore of 

Virginia near the shelf break at the southeast portion of the model domain closest to the Gulf Stream 

(Figure 112). The seasonal variation  in the model is less than in the NDBC data there. The model appears 
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to have a cold water bias in the summer and a warm water bias in the winter. It is not clear what drives 

these apparent biases at the southern part of the shelf break. However, the monthly maps comparing the 

model against NOAA SST in Appendix A2 point to a possible increased diffusion of the Gulf Stream in 

the winter leading to warm bias, paired with an increased impact of the colder shelf break jet in the 

summer leading to a cold bias, in the region of these buoys. 

Table 18. Model skill metrics against NDBC observations of surface water temperature for 
validation period. 

Station Name Correlation 
Index of 
Agreement 

Bias (°C) RMSE (°C) 

44095 Oregon Inlet NC     0.96 0.96 1.22 2.35 

44086 Nags Head NC        0.97 0.98 0.82 1.90 

44100 Duck FRF NC         0.99 0.99 0.30 1.30 

44014 Virginia 0.90 0.86 1.05 3.51 

44099 Cape Henry VA      0.99 0.99 0.19 1.00 

44089 Wallops Island 
VA    

0.99 1.00 -0.06 0.91 

44009 Delaware Bay        0.99 0.99 -0.14 1.13 

44091 Barnegat NJ          0.99 0.99 -0.57 1.33 

44065 New York 
Harbor Entrance      

0.99 1.00 -0.09 0.80 

44025 Long Island  0.99 0.99 0.60 1.21 

44066 East Long Beach 
NJ   

0.99 0.99 -0.19 0.91 
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Figure 83. Temperature timeseries validation; NDBC Buoy 44009 (blue) and calibrated model (red). 

 

Figure 84. Temperature timeseries validation; NDBC Buoy 44014 (blue) and calibrated model (red). 

 

 

Figure 85. Temperature timeseries validation; NDBC Buoy 44025 (blue) and calibrated model (red). 
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Figure 86. Temperature timeseries validation; NDBC Buoy 44065 (blue) and calibrated model (red). 
 

 

Figure 87. Temperature timeseries validation; NDBC Buoy 44066 (blue) and calibrated model (red). 
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Figure 88. Temperature timeseries validation; NDBC Buoy 44086 (blue) and calibrated model (red). 

 

 

Figure 89. Temperature timeseries validation; NDBC Buoy 44089 (blue) and calibrated model (red). 
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Figure 90. Temperature timeseries validation; NDBC Buoy 44091 (blue) and calibrated model (red). 

 

Figure 91. Temperature timeseries validation; NDBC Buoy 44095 (blue) and calibrated model (red). 
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Figure 92. Temperature timeseries validation; NDBC Buoy 44099 (blue) and calibrated model (red). 

 

 

Figure 93. Temperature timeseries validation; NDBC Buoy 44100 (blue) and calibrated model (red). 

5.6.2.2 Model against Doppio Surface Temperature 

Model validation of surface temperature considered spatially and time varying data from the Doppio 

ROMS model. Doppio surface temperature was compared to the hydrodynamic model for a one-year 

period following calibration, February 2019 to January 2020. Skill metrics including bias, root mean 

square error, index of agreement, correlation, standard deviation of the model and observed, and mean of 

observed were analyzed and summarized in histogram and tabular form to showcase variation along the 
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shelf (Figure 94). The model’s surface temperature is in good agreement to the Doppio dataset. This is 
exhibited in high index of agreement and correlation over the model domain as well as low bias ranging 

from -0.16° C to 0.15° C. Spatial maps of monthly average surface temperature of the model, Doppio 

dataset, and difference over the validation period are included in Appendix A.2. 

 

Figure 94. Surface temperature comparison between Model and Doppio dataset for validation period.  
Top: The histogram presents bias and RMSE, °C. Bottom: The table shows model skill metrics. 

5.6.2.3 Model against NOAA Optimally Interpolated High-Resolution SST (OISSTV2) 

Model validation of surface temperature considered spatially varying monthly data from the NOAA 

Optimally Interpolated High-Resolution SST. NOAA surface temperature was compared to the 

hydrodynamic model for the one-year validation period, February 2019 to January 2020. Skill metrics 

including bias, root mean square error, index of agreement, correlation, standard deviation of the model 

and observed, and mean of observed were analyzed and summarized in histogram and tabular form to 

showcase variation along the shelf (Figure 212). The model’s surface temperature exhibits high index of 
agreement and correlation across the model domain. The shallow regions show the lowest bias between 

the model and NOAA Optimally Interpolated High-Resolution SST (OISSTV2) dataset. Spatial maps of 

monthly average surface temperature of the model, NOAA OISSTV2 dataset, and difference over the 

validation period are included in Appendix A.3. 
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Figure 95. Surface temperature comparison between Model and NOAA Optimally Interpolated High 
Resolution SST for validation period.  
Top: The histogram presents bias and RMSE, °C. Bottom: The table shows model skill metrics. 

 

5.6.2.4 Model against Doppio Bottom Temperature 

Model validation of bottom temperature considered spatially and time varying data from the Doppio 

ROMS model. Doppio bottom temperature was compared to the hydrodynamic model for a one-year 

period following calibration, February 2019 to January 2020. Skill metrics including bias, root mean 

square error, index of agreement, correlation, standard deviation of the model and observed, and mean of 

observed were analyzed and summarized in histogram and tabular form to showcase variation along the 

shelf (Figure 96). The model’s bottom temperature bias increases from the shallow to mid-depth ranges 

and remains low beyond the shelf break. The index of agreement between the model and Doppio ranges 

from 0.91 to 0.99 in depths from 0m to 80m and decreases gradually with increased depth from 0.93 to 

0.65.  Spatial maps of monthly average bottom temperature of the model, Doppio dataset, and difference 

over the validation period are included in Appendix A.4. 
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Figure 96. Bottom temperature comparison between Model and Doppio dataset for validation period.  
Top: The histogram presents bias and RMSE, °C. Bottom: The table shows model skill metrics. 

 

5.6.2.5 Model against Glider Temperature 

Model validation of temperature considered data recorded by glider. Figure 102 depicts the temperature 

histogram and skill parameters of the model compared to the glider observations for the validation period, 

Feb 2019 to Jan 2020, Notably, the model exhibits its highest skill in very shallow and moderate depths 

(< 20m and between 120 m and 160 m). At bathymetries above 200 m, the shelf break and deep ocean 

plateau, the bias is positive (overestimation, see the Table in Figure 97). However, the temperature 

overestimation is very low for the depth bins less than 200 m. 
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Figure 97. Temperature comparison between glider observation and model for validation period.  
Top: The histogram presents bias and RMSE, °C. Bottom: The table shows model skill metrics. 

5.6.3 Salinity 

The hydrodynamic model salinity validation included comparison of existing and forecast conditions 

within the Mid-Atlantic Bight. Spatially and time varying surface and bottom salinity data from the 

Doppio, ROMS-based (Regional Ocean Modeling System) model of the Mid-Atlantic Bight and Gulf of 

Main regions, and spatially scattered time varying salinity data from gliders were compared to the model.  

5.6.3.1 Model against Doppio Surface Salinity 

Model validation of surface salinity considered spatially and time varying data from the Doppio ROMS 

model. Doppio surface salinity was compared to the hydrodynamic model for a one-year time period 

following calibration, February 2019 to January 2020. Skill metrics including bias, root mean square 

error, index of agreement, correlation, standard deviation of the model and observed, and mean of 

observed were analyzed and summarized in histogram and tabular form to showcase variation along the 
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shelf (Figure 98). The model’s surface salinity exhibits highest model skill in depths between 0 to 20 m 

and slight variation of skill metrics beyond 20 m from the shallow regions to the deeper areas. Spatial 

maps of monthly average surface salinity of the model, Doppio dataset, and difference over the validation 

time period are included in Appendix A.5. 

 

Figure 98. Surface salinity comparison between Model and Doppio dataset for validation period.  
Top: The histogram presents bias and RMSE, psu. Bottom: The table shows model skill metrics. 

5.6.3.2 Model against Doppio Bottom Salinity 

Model validation of bottom salinity considered spatially and time varying data from the Doppio ROMS 

model. Doppio bottom salinity was compared to the hydrodynamic model for a one-year period following 

calibration, February 2019 to January 2020. Skill metrics including bias, root mean square error, index of 

agreement, correlation, standard deviation of the model and observed, and mean of observed were 

analyzed and summarized in histogram and tabular form to showcase variation along the shelf (Figure 

99). The model’s bottom salinity performs better with increasing depth, this is shown for bias and RMSE. 
However, the model has a higher index of agreement in depths ranging from 0 m to 20 m and 40 m to 80 

m. Spatial maps of monthly average bottom salinity of the model, Doppio dataset, and difference over the 

validation period are included in Appendix A.6. 
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Figure 99. Bottom salinity comparison between Model and Doppio dataset for validation period. A)  
Top: The histogram presents bias and RMSE, psu. Bottom: The table shows model skill metrics. 
 

5.6.3.3 Model against Glider Salinity 

Model validation of salinity considered data recorded by gliders. Figure 100 depicts the salinity histogram 

and skill parameters of the model compared to the glider observations for the validation period, February 

2018 to January 2020. Notably, the model exhibits its highest skill in moderate depths (< 20 m and 

between 120 m and 160 m). At the [0–20] m bin, agreement between the small amount of glider data 

there and Delft is quite low. The environment is most dynamic in terms of salinity variations in the 

nearshore. Thus, model skill reduction is expected compared to deeper waters. However, this low skill 

cannot be attributed to that fact alone and is unique to glider data. 
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Figure 100. Salinity comparison between glider observation and model for calibration period. a)  
Top: The histogram presents bias and RMSE, psu. Bottom: The table shows model skill metrics. 
 

5.6.4 Current 

Validation of the model’s hydrodynamic conditions included comparison to data extracted from an 

Empire Wind buoy, spatially and time varying data from Doppio, ROMS-based (Regional Ocean 

Modeling System) model of the Mid-Atlantic Bight and Gulf of Main regions, and spatially and time 

varying data from CODAR HF Radar.  

5.6.4.1 Model against Empire Wind Data 

The Empire Wind observation data include current speeds at the subsurface. These data cover the period 

from December 2018 to January 2020. They are used for model validation rather than calibration, 

primarily covering on the second year of the modeling period. The current speeds recorded at three depths 

9.6 m, 19.6 m, and 33.6 m. Timeseries comparison of model results and observed current speeds are 
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shown in Figure 101 to Figure 103. While the correlation seems moderate, the other statistical parameters, 

such as bias, RMSE, and the Index of Agreement, are good. The current roses comparisons, Figure 104 to 

Figure 106, also indicate good agreement with current directions.   

 

Figure 101. Current speed comparison between Empire Wind observation and model at 9.6 m. 
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Figure 102. Current speed comparison between Empire Wind observation and model at 19.6 m. 

 

Figure 103. Current speed comparison between Empire Wind observation and model at 33.6 m. 

 

Table 19. Model skill metrics against Empire Wind current speed observations. 

Observation Depth. m Correlation 
Index of 
Agreement 

Bias RMSE 

9.6 0.419 0.659 0.005 0.086 

19.9 0.463 0.687 0.001 0.073 

33.6 0.450 0.677 0.000 0.046 
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Figure 104. Current rose comparison at Empire Wind at 9.6 m, observation (left) and model (right). 

 

Figure 105. Current rose comparison at Empire Wind at 19.6 m, observation (left) and model (right). 
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Figure 106. Current rose comparison at Empire Wind at 33.6 m, observation (left) and model (right). 

5.6.4.2 Model against Doppio Surface Currents 

Model validation of surface current considered spatially and time varying data from the Doppio ROMS 

model. Doppio surface current was compared to the hydrodynamic model for a one-year period following 

calibration, February 2019 to January 2020. Skill metrics including bias, root mean square error, index of 

agreement, correlation, standard deviation of the model and observed, and mean of observed were 

analyzed and summarized in histogram and tabular form to showcase variation along the shelf (Figure 

107). The model’s surface current exhibits low bias and RMSE ranging from -0.01 m/s to 0.03 m/s and 

0.03 m/s to 0.05 m/s respectively, in depth regions from 0 m to 100 m. In depths larger than 200 m RMSE 

is 0.16 m/s, larger than the shallower and mid-depth regions. Spatial maps of monthly average surface 

current of the model, Doppio dataset, and difference over the validation period are included in Appendix 

A.7. 
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Figure 107. Surface current comparison between Model and Doppio dataset for validation period.  
Top: The histogram presents bias and RMSE, m/s. Bottom: The table shows model skill metrics. 

5.6.4.3 Model against HF Radar Surface Currents 

Model validation of surface current speed considered spatially and time varying data from the CODAR 

HF Radar dataset. Doppio surface current speed was compared to the hydrodynamic model for a one-year 

period following calibration, February 2019 to January 2020. Skill metrics including bias, root mean 

square error, index of agreement, correlation, standard deviation of the model and, and mean of observed 

were analyzed and summarized in histogram and tabular form to showcase variation along the shelf 

(Figure 108). The model’s surface current speed exhibits low bias and RMSE in the shallower to 

moderate depth regions where depth ranges and is higher past the shelf break. Higher absolute differences 

(Bias and RMSE) in areas deeper than the 140m isobath in the southern edge of the modeling domain are 

influenced by the strong Shelf Break Jet and the Gulf Stream, which have much higher speeds than on the 

continental shelf. The correlation and index of agreement metrics however, which are scaled to 

observations, though lower, are reasonable in these areas as well, as explained in Section 5.5.4.2. Spatial 

maps of monthly average surface current of the model, HF Radar dataset, and difference over the 

validation period are included in Appendix A.8. 
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Figure 108. Surface current comparison between Model and HF Radar dataset for validation period.  
Top: The histogram presents bias and RMSE, m/s. Bottom: The table shows model skill metrics. 

5.6.4.4 Model against Doppio Bottom Currents 

Model validation of bottom current considered spatially and time varying data from the Doppio ROMS 

model. Doppio bottom current was compared to the hydrodynamic model for a one-year period following 

calibration, February 2019 to January 2020. Skill metrics including bias, root mean square error, index of 

agreement, correlation, standard deviation of the model and observed, and mean of observed were 

analyzed and summarized in histogram and tabular form to showcase variation along the shelf (Figure 

109). The model’s bottom current exhibits low bias and RMSE in shallower to mid depth regions (0m to 
100 m depth) ranging from 0 m/s to 0.01 m/s and 0.01 m/s to 0.03 m/s respectively. Spatial maps of 

monthly average bottom current of the model, Doppio dataset, and difference over the validation period 

are included in Appendix A.9. 
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Figure 109. Bottom current comparison between Model and Doppio dataset for validation period.  
Top: The histogram presents bias and RMSE, m/s. Bottom: The table shows model skill metrics. 

5.7 Model Skill Summary of Validation and Calibration Periods 

Model skill of the hydrodynamic model runs of calibration and validation time periods is illustrated in the 

Taylor Diagram shown in Figure 110. The figure displays a comparison between Delft3D model 

outcomes, observational data, and ROMS Doppio model results. The Taylor Diagram depicts the model's 

performance during both the calibration period (February 2018 to January 2019) in red and the validation 

period in blue (February 2019 to January 2020). Notably, the Delft3D FM results exhibit a strong 

correlation with the ROMS Doppio model, which provides the main part of the lateral forcing for the 

Delft3D FM model. The primary disparities between these models are evident in bottom current speed, 

where the normalized RMSE is lowest (indicated by gray curves), likely stemming from differences in 

model resolution between Doppio and Delft3D FM. Delft3D FM has much higher resolution compared to 

ROMS Doppio. Regarding agreement with observations, the highest correlation (0.99) and lowest RMSE 

(0.25) are observed with NDBC temperature data. Following NDBC data, and in decreasing skill order, 

Delft3D model performance is the best against SST, glider salinity, glider temperature, and HF Radar 

data, respectively. However, discrepancies between Delft3D FM and HF Radar data are most prominent 

in the deeper parts of the domain and the Gulf Stream region, not on the shelf region that is the primary 

area of interest in this study. Overall, the skill metrics are on par with recently published values from 

state-of-the-art comparable models (e.g., Georgas and Blumberg 2010, Bhushan et al., 2010, Sun et al., 

2016, López et al., 2020, Johnson et al., 2021, Wilkin et al., 2022) 
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Figure 110. Taylor Diagram of calibrated model compared to observational and DOPPIO data. 
Sea Surface Temperature, Empire Wind Buoy, Glider Temperature, Glider Salinity, NDBC, DOPPIO model data used 
for calibration period (Feb 2018-–an 2019) and validation period (Feb 2019–Jan 2020) 0F

1. 

5.8 Hydrodynamic Modeling of Scenarios 2 and 3 with WEA Buildout 

After the baseline hydrodynamic model without WEA development was calibrated and validated 

(previous sections), the model was set up to run for the same two-year period (Feb-01-2018 to Jan-31-

2020, with Jan 2018 used for ramp up) for the two scenarios with wind turbine placement within the 

WEAs. The wind wake effect for each of these scenarios was accounted for by applying the wind-wake-

modified wind fields discussed in Chapter 4 for scenarios 2 and 3 as surface forcing to the validated 

hydrodynamic model.  

Localized flow surrounding turbines within the WEAs for each of scenarios 2 and 3 was accounted for in 

the hydrodynamic model through the subgrid bridge pillar parameterization in Delft3D. For each build-

out scenario (Table 1), the locations of each individual WTG monopile, along with the monopile diameter 

accounting for biofouling, and a hydrodynamic drag coefficient were provided as input (Table 10). The 

 

 

1 Empire Wind data, covering Jan 2019 to Feb 2020, used only for the validation.  
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drag coefficient is applied within the model as an effective-area-weighted flow restriction within each 

mesh element with turbines. Its value is based on the study conducted by Johnson et al. (2021) that 

investigated flow surrounding turbine foundations using a Computational Fluid Dynamic (CFD) model. 

The CFD model simulated steady stratified flow and determined the drag coefficient induced by the 

turbine foundation including associated scour protection on the fluid flow to be CD=1.034, which is 

slightly higher than that of a smooth cylindrical pile (1.0). This value for the drag coefficient was found 

by Johnson et al. (2021) to be applicable to both 12 MW and 15 MW wind turbine foundations, the latter 

of which are used in the present study and was adopted for use in the hydrodynamic model.  

Results from these two scenarios were compared to the baseline conditions run (Scenario 1) in Chapter 9. 
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6 Surface Wave Modeling 

6.1 Introduction 

Following the planned fields of offshore WTGs and OSSs installation for Mid-Atlantic Bight WEAs, the 

potential effects of offshore wind energy structures and facilities on surface waves are to be investigated. 

The numerical wave model SWAN (Holthuijsen et al. 1997), is used to provide comparisons of 

oceanographic conditions with and without turbines considering the three scenarios elaborated in Section 

2.2. The following sections include a description of the wave model used for this study, grid and 

bathymetry used for the wave modeling, the boundary conditions used for forcing the model, different 

physical formulations and parameters used in the model setup, and calibration and validation of the model 

using baseline data measured at multiple locations over an annual period. 

6.2 Wave Model Description 

The SWAN model, developed by the Delft University of Technology, is a flexible and efficient program 

based on the wave action balance equation that can solve wave conditions in a two-dimensional domain 

using the iterative Gauss-Seidel technique. An advantage of the iterative technique employed in SWAN is 

that it can compute spectral wave components for the full 360-degree compass circle. SWAN has been 

used for simulating wave parameters in coastal areas, lakes, and estuaries using wind, water level, bottom 

friction, and current conditions (Zijlema, 2010). 

For realistic estimation of wave parameters, SWAN includes algorithms to simulate different wave 

propagation processes such as propagation through geographic space, refraction and shoaling caused by 

bottom and current variations, and blockage by obstacles. In addition, SWAN considers the dissipation 

effects caused by bottom friction, wave breaking, and white-capping (van der Westhuysen et al., 2007). 

The model also resolves the evolution of wind waves in coastal waters with relatively shallow depths by 

spectral calculation, at user-specified resolution of directions and frequencies (Mao et al., 2016). 

6.3 Wave Model Grid and Bathymetry 

The grid and bathymetry used in wave modeling is the same grid and bathymetry as the hydrodynamic 

modeling (also shown here in Figure 111). Using the same grid for both models facilitate the models’ 
communication by reading the hydrodynamic data (water level and current) at the same nodes (i.e. 

locations) the data were generated for by the hydrodynamic model; thus, no data interpolation is required 

when coupling hydrodynamic forcing to waves. The high-resolution unstructured grid covers the AOI 

from south Long Island, New York to Cape Hatteras, North Carolina with grid cell sizes ranging from 

about 1km (in the BOEM wind turbine lease areas) to about 10km (near the offshore open boundary). The 

unstructured mesh for SWAN (fort.14 file) was generated by the Surface water Modeling System (SMS) 

and includes 46,955 triangles with 23,668 vertices and 14 open boundary segments at the model’s 
offshore boundary. The boundary information stored in fort.14 is used when the wave boundary 

conditions are applied to SWAN. 
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Figure 111. The wave model grid (left panel) and bathymetry (right panel) is the same as the 
hydrodynamic model grid. 

6.4 Wave Model Forcings 

The wind and wave data for forcing the wave model were set up using high-quality global reanalysis 

products, namely the fifth generation of the ECMWF Global Reanalysis (ERA5). The wave parameters at 

the open boundary obtained from ERA5 (Table 20) included significant wave height, mean wave period, 

mean wave direction, and directional spreading time series. The ERA5 data are available on an ocean 

wave model grid with 0.5° horizontal resolution at an hourly time step interval. For the present study, 

ERA5 wave parameters were spatially interpolated for 14 points (shown with filled white circles in Figure 

112) for the 14 open boundary segments, each 45–65km long (segment end points are shown as yellow 

points in Figure 112). The wind datasets used in this study are also obtained from ERA5 which provides 

wind data on a global scale (Table 21) with 0.25° horizontal resolution (hollow white points in Figure 

112) and an hourly time step interval. Wind roses for the entire two-year simulation period at ERA5 

points in the project domain are shown in Figure 113. Note that wind directions over the ocean tend to be 

aligned with the shoreline and Continental Shelf break. 



 

141 

 

Table 20. Specifics of the wave datasets used for forcing SWAN model. 

Name of Dataset ERA5 Waves 

Coverage (used in this study) 
76.10°W – 70.60°W 
34.7°N – 41.4°N 

Owner/Provider ECMWF 

Horizontal Grid Size 0.5° 

Modeling Period 2018 – 2020 

Time Step Hourly 

Table 21. Specifics of the wind datasets used for forcing SWAN model. 

Name of Dataset ERA5 Winds 

Coverage (used in this study) 
76.10°W – 70.60°W 
34.7°N – 41.4°N 

Owner/Provider ECMWF 

Horizontal Grid Size 0.25° 

Modeling Period 2018 – 2020 

Time Step Hourly 
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Figure 112. Wave model boundary conditions. 
ERA5 wave and wind points (solid cyan and hollow white circles, respectively), SWAN model boundary segment 
interpolation (solid white circles) and end points (solid yellow circles), and NDBC station locations (solid magenta 
circles). 
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Figure 113. Wind roses (02/01/2018–01/31/2020) at ERA5 points in the project domain. 
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6.5 Model Parameters and Calibration 

Various physical processes are activated in the wave model setup including depth-induced wave breaking, 

bottom-friction, white-capping, and triad wave-wave interactions. For the process of depth induced wave-

breaking, a 0.73 constant breaking factor was used (Eldeberky and J.A. Battjes, 1996). Bottom friction 

was activated using the JONSWAP bottom friction formulation of Hasselmann et al. (1973). The triad 

wave-wave interaction in every spectral direction was set up using the Lumped Triad Approximation 

(Eldeberky et al., 1997). The wave modeling setup is described in Table 22. 

Table 22. SWAN model setup parameters. 

Model Parameter Value 

Discretization 45 directional bins 

Maximum Number of Iterations 10 

Time step 15-minute 

Mesh resolution 1km to 10km 

Wind forcing ERA5 time series 

Wave breaking Constant (gamma = 0.73) 

Bottom friction JONSWAP friction coefficient = 0.015 

Boundary conditions ERA 5 time series of significant wave height, mean period, 
mean direction and directional spreading 

 

Model parameters were analyzed before finalizing them for the long-term run. These parameters included 

number of iterations per timestep, wave boundary application methods (segments or sides), and wind 

growth formulations. As for the third-generation mode for wind input, all available options (linear 

growth; exponential growth; nonlinear saturation-based white-capping combined with wind input, or 

“Westh” for author van der Westhuysen; and ST6 Physics, or “ST6” for source term 6) were tested using 

a 1.5-month model run. The two approaches that yielded better results (Westh and ST6) were selected to 

be tested for a longer 3-month time span (26 Aug 2019–26 Nov 2019, covering Hurricane Dorian extreme 

event). Figure 114 through Figure 124 compare the significant wave height time series for these two runs 

against measurements at 11 NDBC stations throughout the domain from south Long Island, New York to 

Cape Hatteras, North Carolina. The RMSE values associated with ST6 approach show a significantly 

better match with observation data at almost all locations (10.6% average improvement in RMSE) as also 

found in the latest literature (Aydoğan and Ayat 2021). Therefore, the ST6 formulation was selected for 

the final setup. 
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Figure 114. Significant wave height comparison with measurements at NDBC station 44066 for ST6 and Westh. approach. 
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Figure 115. Significant wave height comparison with measurements at NDBC station 44025 for ST6 and Westh. approach. 
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Figure 116. Significant wave height comparison with measurements at NDBC station 44065 for ST6 and Westh. approach. 
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Figure 117. Significant wave height comparison with measurements at NDBC station 44091 for ST6 and Westh. approach. 
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Figure 118. Significant wave height comparison with measurements at NDBC station 44099 for ST6 and Westh. approach. 

 

 

Figure 119. Significant wave height comparison with measurements at NDBC station 44089 for ST6 and Westh. approach. 
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Figure 120. Significant wave height comparison with measurements at NDBC station 44099 for ST6 and Westh. approach. 
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Figure 121. Significant wave height comparison with measurements at NDBC station 44014 for ST6 and Westh. approach. 
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Figure 122. Significant wave height comparison with measurements at NDBC station 44100 for ST6 and Westh. approach. 
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Figure 123. Significant wave height comparison with measurements at NDBC station 44086 for ST6 and Westh. approach. 
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Figure 124. Significant wave height comparison with measurements at NDBC station 44095 for ST6 and Westh. approach. 
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6.6 Wave Model Validation 

After calibration of the model parameters, the SWAN model for the MAB was then run for validation 

purposes as part of Scenario 1 (Baseline Scenario - no wind turbines) over two full calendar years, 

February 2018 to February 2020. SWAN was forced by ERA5 winds and waves at its surface and ocean 

boundaries, respectively.  

6.6.1 Wind Forcing Validation (ERA5) 

First, the ERA5 wind forcing was validated against in situ observations, converted to 10m above surface 

using equation (4) from their known anemometer height. Results for wind speed were summarized in 

Table 23. In general, R2 values vary between 0.714 at NDBC station 44065 off the entrance of the New 

York Harbor – which also has the highest RMSE, 1.752 m/s – to 0.834 at 44025 situated further offshore 

the NY Bight Apex (RMSE=1.412m/s there). These values show that ERA5 provides excellent forcing 

for wave modeling in the AOI and are very similar to a comprehensive validation performed by Campos 

et al. (2022) against satellite data. Their results indicated that ERA5 provides high-quality winds for non-

extreme conditions, especially at the eastern boundaries, with bias between -0.5 and 0.3 m/s and RMSE 

below 1.5 m/s. The reanalysis errors were found to be site-dependent, with strong winds at extratropical 

locations like the MAB well represented, and higher RMSE in tropical regions. Our results, however, do 

show a tendency of under-prediction of wind speeds by ERA5 at NDBC station 44065 primarily at high 

wind values, but also overall, as ERA5 was biased low there by 0.915 m/s.  

Table 23. Wind speed validation metrics (ERA5) at NDBC station locations. 

NDBC 
Station 

RMSE 
(m/s) 

Bias 
(m/s) 

R² 
MAE 
(m/s) 

IOA 
Min 
(m/s) 

Max 
(m/s) 

Mean 
(m/s) 

STD 
(m/s) 

44009 1.487 0.149 0.794 1.134 0.934 0.1 23.1 6.188 3.273 

44014 1.638 0.589 0.762 1.214 0.939 0.1 28.3 6.165 3.357 

44025 1.412 0.065 0.834 1.053 0.955 0.1 20.3 6.751 3.471 

44065 1.752 -0.915 0.714 1.398 0.913 0.1 20.7 6.338 3.275 

44066 1.414 0.456 0.830 1.014 0.959 0.1 21.7 6.722 3.528 

 

The following time series and correlogram plots (Figure 125 to Figure 132) visually compare the wind 

forcing from ERA5 against the NDBC anemometer data. 
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Figure 125. ERA5 – Simulated wind speed vs. measurements at NDBC station 44009. 
 

 

Figure 126. ERA5 – Simulated wind speed vs. measurements at NDBC station 44014. 

 

 

Figure 127. ERA5 – Simulated wind speed vs. measurements at NDBC station 44025. 
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Figure 128. ERA5 – Simulated wind speed vs. measurements at NDBC station 44065. 

 

 

Figure 129. ERA5 – Simulated wind speed vs. measurements at NDBC station 44066. 

 

 

Figure 130. Overall evaluation of wind speed at NDBC stations 44009 (left panel) and 44014 (right panel). 
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Figure 131. Overall evaluation of wind speed at NDBC stations 44025 (left panel) and 44065 (right panel). 

 

 

Figure 132. Overall evaluation of wind speed at NDBC station 44066. 

6.6.2 Significant Wave Height Validation (Scenario 1, SWAN) 

Table 24 shows that the SWAN model of the MAB has very good skill in simulating significant wave 

height. R2 values ranged from 0.61 at station 44099 near the Chesapeake Bay entrance, to 0.884 at station 

44095. Given that 44065 had somewhat less skill in wind speed, the R2 value for significant wave height 

may mean that either the wind observations themselves are biased high for some reason, or, more likely, 

that the local wind at the entrance of the New York Harbor does not govern the local wave climate which 

is mostly governed by wind forcing and fetch over the more open areas of the MAB and beyond. RMSE 

for significant wave height was very low and ranged between 0.260m at 44065 and 0.4m at 44066 at the 

Hudson River Canyon. 
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Table 24. Significant wave height validation metrics at NDBC station locations. 

NDBC 
Station 

RMSE 
(m) 

Bias 
(m) 

R² 
MAE 
(m) 

IOA 
Min 
Observed 
(m) 

Max 
Observed 
(m) 

Mean 
Observed 
(m) 

STD 
Observed 
(m/s) 

44009 0.323 0.118 0.752 0.235 0.942 0.20 4.92 1.183 0.648 

44014 0.310 0.076 0.870 0.235 0.965 0.30 6.75 1.477 0.862 

44025 0.290 0.067 0.847 0.208 0.962 0.22 6.31 1.291 0.742 

44065 0.260 0.008 0.802 0.193 0.953 0.19 5.43 1.055 0.585 

44066 0.400 0.073 0.847 0.274 0.957 0.31 8.49 1.592 1.022 

44086 0.284 -0.020 0.861 0.207 0.963 0.34 7.73 1.363 0.762 

44088 0.363 0.049 0.879 0.268 0.964 0.38 7.02 1.539 1.047 

44089 0.263 0.079 0.735 0.192 0.944 0.25 4.48 1.028 0.511 

44091 0.302 0.024 0.796 0.212 0.952 0.24 5.61 1.277 0.668 

44095 0.265 0.010 0.884 0.195 0.969 0.35 7.59 1.368 0.778 

44099 0.307 0.105 0.610 0.219 0.921 0.29 4.56 1.015 0.491 

44100 0.263 0.021 0.849 0.195 0.961 0.30 6.90 1.164 0.677 

 

Figure 133 to Figure 150 visually compare significant wave height simulated in SWAN versus NDBC 

station data. 

 

 

Figure 133. Simulated significant wave height vs. measurements at NDBC station 44009. 
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Figure 134. Simulated significant wave height vs. measurements at NDBC station 44014. 

 

Figure 135. Simulated significant wave height vs. measurements at NDBC station 44025. 

 

 

Figure 136. Simulated significant wave height vs. measurements at NDBC station 44065. 
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Figure 137. Simulated significant wave height vs. measurements at NDBC station 44066. 

 

Figure 138. Simulated significant wave height vs. measurements at NDBC station 44086. 

 

Figure 139. Simulated significant wave height vs. measurements at NDBC station 44088. 
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Figure 140. Simulated significant wave height vs. measurements at NDBC station 44089. 

 

Figure 141. Simulated significant wave height vs. measurements at NDBC station 44091. 

 

Figure 142. Simulated significant wave height vs. measurements at NDBC station 44095. 

 

 

Figure 143. Simulated significant wave height vs. measurements at NDBC station 44099. 
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Figure 144. Simulated significant wave height vs. measurements at NDBC station 44100. 

 

Figure 145. Overall evaluation of simulated significant wave height at NDBC stations 44009 (left panel) 
and 44014 (right panel). 

 

 

Figure 146. Overall evaluation of simulated significant wave height at NDBC stations 44025 (left panel) 
and 44065 (right panel). 
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Figure 147. Overall evaluation of simulated significant wave height at NDBC stations 44066 (left panel) 
and 44086 (right panel). 

 

 

Figure 148. Overall evaluation of simulated significant wave height at NDBC stations 44088 (left panel) 
and 44089 (right panel). 
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Figure 149. Overall evaluation of simulated significant wave height at NDBC stations 44091 (left panel) 
and 44095 (right panel). 

 

 

Figure 150. Overall evaluation of simulated significant wave height at NDBC stations 44099 (left panel) 
and 44100 (right panel). 

6.6.3 Mean Wave Direction Validation (Scenario 1, SWAN) 

In terms of mean wave direction (Table 25) average RMSE was just above 1/12 of the trigonometric 

circle (37°) with an average angular bias less than 25° and an average circular correlation of 0.77. Figure 

151 to Figure 168 graphically illustrate the comparisons against data. 
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Table 25. Mean wave direction validation metrics at NDBC station locations. 

NDBC 
Station 

RMSE (deg) 
Angular 
Bias (deg) 

Circular 
Correlation 

MAE (deg) IOA 

44009 41.983 25.2 0.754 28.282 0.932 

44014 39.054 23.8 0.786 26.372 0.946 

44025 37.772 22.5 0.797 25.112 0.927 

44065 38.593 21.5 0.719 24.584 0.906 

44066 39.558 22.4 0.813 25.536 0.941 

44086 40.555 23.4 0.785 26.519 0.937 

44088 37.844 24.3 0.782 26.321 0.942 

44089 35.389 22.2 0.720 24.056 0.906 

44091 37.720 22.1 0.743 24.687 0.932 

44095 38.311 21.6 0.804 24.565 0.934 

44099 33.484 20.4 0.773 22.244 0.926 

44100 36.418 22.0 0.762 24.215 0.929 

 

Figure 151. Simulated mean wave direction (blue) vs. measurements (red) at NDBC station 44009. 

 

Figure 152. Simulated mean wave direction (blue) vs. measurements (red) at NDBC station 44014. 
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Figure 153. Simulated mean wave direction (blue) vs. measurements (red) at NDBC station 44025. 

 

 

Figure 154. Simulated mean wave direction (blue) vs. measurements (red) at NDBC station 44065. 

 

 

Figure 155. Simulated mean wave direction (blue) vs. measurements (red) at NDBC station 44066. 
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Figure 156. Simulated mean wave direction (blue) vs. measurements (red) at NDBC station 44086. 

 

 

 

Figure 157. Simulated mean wave direction (blue) vs. measurements (red) at NDBC station 44088. 

 

 

Figure 158. Simulated mean wave direction (blue) vs. measurements (red) at NDBC station 44089. 
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Figure 159. Simulated mean wave direction (blue) vs. measurements (red) at NDBC station 44091. 

 

 

Figure 160. Simulated mean wave direction (blue) vs. measurements (red) at NDBC station 44095. 

 

 

Figure 161. Simulated mean wave direction (blue) vs. measurements (red) at NDBC station 44099. 
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Figure 162. Simulated mean wave direction (blue) vs. measurements (red) at NDBC station 44100. 

 

 

Figure 163. Overall evaluation of simulated mean wave direction at NDBC stations 44009 (left panel) and 
44014 (right panel). 

 

Figure 164. Overall evaluation of simulated mean wave direction at NDBC stations 44025 (left panel) and 
44065 (right panel). 
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Figure 165. Overall evaluation of simulated mean wave direction at NDBC stations 44066 (left panel) and 
44086 (right panel). 

 

Figure 166. Overall evaluation of simulated mean wave direction at NDBC stations 44088 (left panel) and 
44089 (right panel). 
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Figure 167. Overall evaluation of simulated mean wave direction at NDBC stations 44091 (left panel) and 
44095 (right panel). 

 

Figure 168. Overall evaluation of simulated mean wave direction at NDBC stations 44099 (left panel) and 
44100 (right panel). 

6.6.4 Mean Wave Period Validation (Scenario 1, SWAN) 

In terms of mean wave period (Table 26), SWAN showed a tendency to be biased low (negative bias) for 

6 of 12 NDBC stations with a cross-station average RMSE of 0.82 seconds. Figure 169 to Figure 186 

visually compare mean wave period simulated in SWAN versus NDBC station data. 
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Table 26. Mean wave period validation metrics at NDBC station locations. 

NDBC 
Station 

RMSE 
(s) 

Bias 
(s) 

MAE 
(s) 

IOA 
Min 
Observed 
(s) 

Max 
Observed 
(s) 

Mean 
Observed 
(s) 

STD 
Observed 
(s) 

44009 0.839 0.065 0.605 0.872 2.98 11.11 5.075 1.007 

44014 0.655 0.116 0.490 0.926 3.04 13.59 5.421 1.141 

44025 0.781 0.073 0.559 0.893 2.95 10.31 5.081 1.019 

44065 1.059 0.128 0.760 0.849 2.67 11.24 4.939 1.122 

44066 0.685 0.012 0.511 0.917 3.24 12.01 5.513 1.105 

44086 0.845 -0.194 0.620 0.896 2.91 11.98 5.592 1.223 

44088 0.717 -0.303 0.537 0.930 3.36 13.61 5.837 1.434 

44089 0.905 -0.111 0.641 0.886 2.71 13.42 5.194 1.281 

44091 0.857 0.058 0.599 0.889 2.64 11.19 5.171 1.149 

44095 0.744 -0.199 0.543 0.916 3.07 13.86 5.579 1.254 

44099 0.888 -0.008 0.645 0.865 2.41 11.42 5.041 1.071 

44100 0.857 -0.255 0.624 0.893 2.81 13.08 5.446 1.246 

 

 

Figure 169. Simulated mean wave period vs. measurements at NDBC station 44009. 

 

 

Figure 170. Simulated mean wave period vs. measurements at NDBC station 44014. 
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Figure 171. Simulated mean wave period vs. measurements at NDBC station 44025. 

 

 

Figure 172. Simulated mean wave period vs. measurements at NDBC station 44065. 

 

 

Figure 173. Simulated mean wave period vs. measurements at NDBC station 44066. 
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Figure 174. Simulated mean wave period vs. measurements at NDBC station 44086. 

 

 

Figure 175. Simulated mean wave period vs. measurements at NDBC station 44088. 

 

 

Figure 176. Simulated mean wave period vs. measurements at NDBC station 44089. 
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Figure 177. Simulated mean wave period vs. measurements at NDBC station 44091. 

 

 

Figure 178. Simulated mean wave period vs. measurements at NDBC station 44095. 

 

 

Figure 179. Simulated mean wave period vs. measurements at NDBC station 44099. 
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Figure 180. Simulated mean wave period vs. measurements at NDBC station 44100. 

 

 

Figure 181. Overall evaluation of simulated mean wave period at NDBC stations 44009 (left panel) and 
44014 (right panel). 
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Figure 182. Overall evaluation of simulated mean wave period at NDBC stations 44025 (left panel) and 
44065 (right panel).  

 

 

Figure 183. Overall evaluation of simulated mean wave period at NDBC stations 44066 (left panel) and 
44086 (right panel). 

 

Figure 184. Overall evaluation of simulated mean wave period at NDBC stations 44088 (left panel) and 
44089 (right panel). 
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Figure 185. Overall evaluation of simulated mean wave period at NDBC stations 44091 (left panel) and 
44095 (right panel). 

 

Figure 186. Overall evaluation of simulated mean wave period at NDBC stations 44099 (left panel) and 
44100 (right panel). 

6.6.5 Conclusion on SWAN Baseline (Scenario 1) Validation 

The previous sections included model skill summary tables and validation figures (time series and XY 

plots). We first compared the wind forcing for ERA5 against the NDBC anemometer data (Section 6.6.1). 

We then compared the SWAN model simulated wave response for significant wave height (Section 

6.6.2), mean wave direction (Section 6.6.3), and mean wave period (Section 6.6.4), at the same and other 

NDBC buoy locations with such data (shown in Figure 5). Time series show that high wave events were 

also well captured by the model. Overall, the model skill was excellent and is similar to two other 

relatively recent wave models of the Mid-Atlantic Bight which used the Wave Watch III (WW3) and/or 

SWAN models forced with Climate Forecast System Reanalysis (CFSR) winds rather than ERA5 

(Allahdadi et al., 2019 and Medina et al., 2020). 
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7 Impact of Offshore Wind Farms on Winds 

This chapter describes the simulated effects of WEA development to 10-meter above surface wind 

speeds. Wind wake reductions for Scenarios 2 and 3 were simulated as explained in Chapter 4 by 

applying the wind deficits due to the clusters of WTGs in each scenario that were calculated with PyWake 

to the ERA5 10 m wind fields (in space and time). 

7.1 Wind Wake Effects 

Figure 187 shows examples of wind speed maps for different scenarios for the modeling domain at 

12:00AM UTC January 25, 2018. The ERA5 wind speed represents Scenario 1 (Baseline) with no wake. 

Scenario 2 (15MW Partial Build-out) and Scenario 3 (15MW Complete Build-out) are the wakes from 

turbines from five clusters and eight clusters, respectively. In Scenario 3, wake from some clusters in the 

north are seen impacting neighboring clusters. However, for both Scenarios, two of the clusters in the 

south did not show any wake as they are in an area where wind speed is below cut-in speed of 3 m/s. As a 

reminder, wind deficits relative to the free wind speed were calculated to be higher between the cut-in 

speed of 3 m/s and 11 m/s, over which they decrease up to the cut-off speed of 25 m/s, for the NREL 

15MW turbines (Section 4.7). 

Figure 188 shows average wind speed maps for the month of January 2018 for different scenarios as well 

as the difference between these monthly-mean wind fields between wake scenarios (scenarios 2 and 3) 

and baseline (Scenario 1). The difference maps show that wake-induced deficits are prominent at the 

locations of wind turbine clusters and, given the prevailing wind directions during that month, extend 

mostly along-shore and to the offshore northwest and southwest directions. Although, as noted in Chapter 

4, most of the wind reductions from the wind wake deficit are within the developed WEAs (Figure 188, 

bottom panels), the “shadow zones” (wind wakes) seen in Figure 187 and Figure 188, though 

substantially weakened, can span 100–200km downstream, consistent with Section 4.8. 

7.2 Effects on Wind Climatology 

Figure 189 shows both the median and 75th percentile winds during the two-year simulation periods, and 

their reduction due to the wind wakes for each WEA-development scenario. The strongest climatological 

winds are generally found offshore, blowing over the deep ocean plateau seaward of the continental shelf 

slope, at around 7.5m/s and 10m/s for the 50th and 75th percentiles, respectively. Wind speeds gradually 

decrease over the shelf toward land. At wind farm A shown on Figure 189 south of Long Island, the 

median wind blows at around 6m/s, while the 75th percentile is near 9 m/s. The Limited Buildout 

Scenario 2 does not include WTGs in any of the offshore-most WEAs, while some of the farms closer to 

shore, such as wind farm B (Figure 189) are not fully covered with WTGs in that scenario. At location A, 

50th percentile winds are simulated to decrease by ~1 m/s (1.2 m/s) or 15% (20%) in Scenario 2 

(Scenario 3) due to the wind wake. Since Scenario 3 has a more expansive buildout, the wake region 

expands spatially to cover a larger area depending on the prevailing climatological wind directions. 

Reductions become fairly small moving away from the WEAs both in absolute but also relative 

magnitude in the offshore direction. Although the NJ Shore region is closer to the WEAs, the 

climatological wind reduction is not more pronounced because of the prevailing wind directions which 

are either along-coast or from the coast (note wind roses in Figure 113).  
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Figure 187. Example of wind speed maps used as input for hydrodynamic and wave modeling.  
The upper panel represents Scenario 1 (ERA5 field with no wake), the bottom left panel shows the wake impacted 
wind field for Scenario 2 (15MW Limited - 5 clusters) and the bottom right panel shows the wake impacted wind field 
for Scenario 2 (15MW Build - out 8 clusters). The red region in the bottom panels shows locations of the wind turbine 
in the clusters. 
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Figure 188. Averaged wind speed maps for January 2018.  
The upper panel represents the baseline scenario (Scenario 1), the middle panels exhibit wake scenarios (Scenario 2 
and Scenario 3), and the bottom panels show the difference between the baseline and the WEA development 
scenarios with their wind wake. 
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Figure 189. 50th (top left) and 75th (bottom left) percentile wind speeds, m/s, over the model domain for 
the two-year period of simulation.  
Locations A, B, C, and D are highlighted in red text in the upper left panel. Center (Scenario 2, Limited Buildout) and 
right (Scenario 3, Full Buildout) panels show the difference (reduction) in the 50th (top) and 75th (bottom) percentile 
wind speeds for each WEA-development scenario against baseline conditions (Scenario 1).  

Figure 190 shows the two-year time series of the 10 m wind for the three scenarios at locations A and B 

shown in Figure 189. The corresponding wind-speed frequency distributions at the same locations for 

each run are illustrated in Figure 191 and show small differences between scenarios 2 and 3 at these 

locations within WEAs which, though developed in both scenarios, are developed further in Scenario 3. 

Locations C and D in Figure 189 are within WEAs that are fully built in both scenarios 2 and 3; Their 

distributions for scenarios 2 and 3 are almost identical, and similarly reduced against baseline (not 

shown).  

The reduction in the climatological winds discussed in the previous paragraphs and seen in Figure 189 

and Figure 191 describes a reduction in the mean distribution of winds blowing over the model domain 

(or specific locations) calculated in the span of the two simulation years. For example, the 75th percentile 

wind reduction seen in Figure 189 – and deduced from Figure 191 at locations A and B – describes the 

difference between the 75th higher percentile winds for a buildout scenario against the 75th higher 

percentile winds for the baseline case, with the percentiles calculated over the 2 year time series at each 

location, independently. The highest reductions at locations A and B happen around the 50th to 70th 

percentile: As climatological winds become higher than 11 m/s offshore the wake deficits decrease and 

reductions to climatological winds start to plateau (Figure 191). 
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Figure 190. Time series of wind speed for each of the three simulation scenarios for locations A (top) and 
B (bottom) shown on Figure 189 over the two-year period. 
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Figure 191. Frequency distributions of wind speeds at locations A (top) and B (bottom) shown in Figure 
189 for each of the three scenarios. 

Seasonality of the wind wake deficits is presented in Figure 192 (winter), Figure 193 (spring), Figure 194 

(summer), and Figure 195 (fall). On each figure the seasonal mean wind of the Baseline is shown as 

overlaid arrows, to help make clear the predominantly leeward directions of the wind energy areas, where 

the deficits are strongest. These overlaid arrows consist of offshore/eastward flow and a seasonal cycle 

that moves between higher-speed winds (reaching 3–4 m/s) toward the southeast during winter, and 

lower-speed winds (about 1–2 m/s) that are north-northeastward during summer. This demonstrates that 

the Baseline case is consistent with the well-known seasonal cycle of average winds over the Mid-

Atlantic Bight (see, e.g., Fig. 7 of Charles et al., 2012). 

In each of the four seasons, the deficits are strongest within the wind energy areas, where they reach 

maxima of up to about 1.5 m/s for Scenario 2 and about 1.9 m/s for Scenario 3.  The deficits extend 

outside the wind energy areas in all directions, with the distance limited to under about 10 km in the 

predominantly windward direction and much longer, up to at least 100 km in some areas, in the 

predominantly leeward direction. The deficits leeward from some wind energy areas therefore overlap 

with other wind energy areas. The figures include the simulated 0.5 m/s deficit contour which is mostly 

contained within the wind farms with some spreading between or leeward of them. Error! Reference s

ource not found. includes, for reference only, the 0.5 m/s deficit contour from Golbazi et al. (2022), 

simulated for the summer of 2018 using the WRF model with 10MW turbines and differences in the 

footprint of some wind energy areas.   
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Figure 192. Winter (Dec–Feb) differences (color shading) of mean wind speed in Scenario 2 (left) and 
Scenario 3 (right) relative to baseline.  
Arrows show winter mean baseline wind. The cyan coloring indicates the location of the 0.5 m/s deficit contours. 

 

 

Figure 193. Spring (Mar–May) differences (color shading) of mean wind speed in Scenario 2 (left) and 
Scenario 3 (right) relative to baseline.  
Arrows show spring mean baseline wind. The cyan coloring indicates the location of the 0.5m/s deficit contours. 
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Figure 194. Summer (Jun–Aug) differences (color shading) of mean wind speed in Scenario 2 (left) and 
Scenario 3 (right) relative to baseline.  
Arrows show summer mean baseline wind. The cyan lines indicate the location of the 0.5m/s deficit contours 
simulated in this work (in work by Golbazi et al. 2022 for a different study). 

 

Figure 195. Fall (Sep–Nov) differences (color shading) of mean wind speed in Scenario 2 (left) and 
Scenario 3 (right) relative to baseline.  
Arrows show fall mean baseline wind. The cyan coloring indicates the location of the 0.5m/s deficit contours. 
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7.3 Transient Effects 

Compared to the climatological effects described in the previous section, transient wakes and wind 

reductions are simulated to reach relatively higher values with longer wake spans in build-out scenarios 

compared to the baseline, depending on specific event conditions. The map in Figure 192 illustrates the 

99th percentile of the absolute wind speed difference time series at each point in the modeling domain 

over the two-year simulations. That is, statistically speaking, for three hours every 12.5 days, reductions 

can be as high as 3–5 m/s at some WEAs depending on the scenario. Given the findings of Section 4.7, 

this happens when winds are blowing around 10 m/s. Therefore, these rarer transient reductions can reach 

30–50%. The corresponding probability plot for the transient wind reductions at locations A and B is seen 

in Figure 193. 

 

 

Figure 196. 99th percentile of the transient wind reduction based on the time series of absolute wind 
speed difference between Scenario 2 and baseline (left) and Scenario 3 and baseline (right). 
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Figure 197. Probability distributions of absolute wind speed difference between Scenario 2 and baseline 
(top) and Scenario 3 and baseline (bottom) at locations A and B shown in Figure 192. 
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8 Impact Of Offshore Wind Farms on Wave Conditions  

In this section, surface wave model results after wind wake reduction (scenarios 2 and 3) are presented. 

The model was run for a period of two years (Feb-01-2018 to Jan-31-2020) by applying the wind results 

discussed in Section 4 for scenarios 2 and 3 to our validated wave model.  

8.1 Impact to Significant Wave Height 

The simulated wake effects of the offshore wind turbines on significant wave height, Hs, are illustrated in 

the scenario-difference maps of Figure 194 for each OWT scenario. Both the median (top row) and the 

99th percentile (bottom row) of these quantities, and the respective differences of each quantile to the 

baseline case are shown. Similar to the wind speeds, waves are highest offshore; The median waves are 

up to 1.8 m and the 99th percentile waves are as high as 6 m (Figure 194, A1 & B1). The reductions in 

the median waves are presented by darker blue color shades in Figure 194 (A2 & A3) and it indicates 

maximum reduction of 4 cm and 7 cm in Scenario 2 and 3 OWT layouts, respectively. The highest 

reductions in median waves are near the windfarms, especially in wind farms that are aligned with the 

principal wind directions, and they are more pronounced for Scenario 3. The decreases in median 

significant wave height are also summarized in Figure 195 for each bathymetric depth bin in Figure 51. 

Changes in local significant wave heights are the result of wind-wave and swell interactions and wave-

wave interactions from the altered wind-wave component. Thus, there is expected nonlinearity in the 

transient interaction of wind-waves (that are reduced as winds are reduced from the farms) and distant 

swell (that is not). Figure 196 (B2 & B3) indicate a higher value for 99th percentile of Hs absolute 

instantaneous differences in Scenario 2 in comparison with Scenario 3. Note that this is the 99th 

percentile of the instantaneous absolute differences at any moment, rather than the absolute difference of 

the 99th percentiles of individual scenarios; it is therefore a signature of a transient response. The results 

are interesting and counter-intuitive, as wind percentiles tend to be lower in Scenario 3 compared to 

Scenario 2 due to the presence of more wind turbines in Scenario 3, pointing to a non-linear process. 

Scenario 3 creates wind wake reductions at and near farms that do not have turbines in Scenario 2. 

However, farms that exist in both scenarios can see reduced winds in Scenario 3 due to wakes from new 

wave farms built upstream, and thus less instantaneous relative reduction depending on the operating 

power curve of the wind turbines and the local wind speed encountered during transient events. After 

analyzing wave height behavior in 20-meter bathymetric bins (Figure 196, 99th percentile), the effect of 

OWT is slightly greater in deeper areas (> 60m), further from the wind farms, for Scenario 3 compared to 

Scenario 2. Also, the 99th percentile of wave height difference is the same order of magnitude as the 

spatial standard deviation of the baseline waves at these bins (line 2, 3, and 4 of the table).  



 

191 

 

 

Figure 198. Median significant wave heights change and the 99th percentile of the instantaneous 
difference.  
Top row: Median significant wave height for Feb-01-2018 to Jan-31-2020 (A1) and OWT scenario changes: Median 
of Scenario 2 - Median of Baseline (A2) and Median of Scenario 3 - Median of Baseline (A3). Bottom row: The same 
as top row but for the 99th percentile (B1) and the 99th percentile of instantaneous absolute differences for each 
OWT scenario to the baseline: Scenario 2 (B2) and Scenario 3 (B3). 
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Figure 199. Mean value of the difference between the median wave heights of OWT Scenarios and 
Baseline for every bathymetric bin.  
Blue bar is for Scenario 2 – Baseline and orange bar is for Scenario 3 – Baseline. Depth-bin definition provided in 
Figure 51. 
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Figure 200. Mean value of 99th percentile of OWTs Scenarios and Baseline significant wave height 
instantaneous absolute differences for every bathymetry bin. 
Blue bar is for 99th percentile of |Scenario 2 – Baseline| and orange bar is for 99th percentile of |Scenario 3 – 
Baseline| instantaneous differences. Depth-bin definition provided in Figure 51. 

We also investigated significant wave height differences of 1st, 10th, 90th, and 99th percentiles to obtain 

a better insight on OWTs impacts on wave height and its spatial variation. Figure 197 indicates the 1st 

and 10th percentiles of significant wave height (E1 & F1) in addition to the differences of the 1st and 10th 

significant wave height percentiles of Scenario 2 and baseline (E2 & F2) and Scenario 3 and baseline (E3 

& F3). A similar figure for the 90th and 99th is presented in Figure 198. A summary for the decreases in 

the 90th and 99th percentiles of significant wave height is also provided in Figure 199 and Figure 200, 

respectively, for each bathymetric depth bin depicted in Figure 51. The pattern of wave height reduction 

in 1st, 10th and, 90th percentile (E2, E3 & F2, F3 & G2, G3) is almost the same as the pattern observed in 

the median wave height differences analysis: highest reductions occur where the turbines are located and 

especially near the OWT that are aligned with the dominant wind direction. The 99th percentile difference 

maps for scenarios 2 and 3 (H2, H3) also show wave height reduction for the most areas; however, areas 

with higher increase in wave height are captured near the northern boundary (darker red areas) which 

indicates we have higher Hs in scenarios 2 and 3 than baseline at high wave height events there (higher 

than 99% of the overall wave height at that location). Figure 201 shows significant wave height and peak 

wave direction time series at point F which is located within the darker red area; when the event occurs 

(March 13, 2018, red circle) the wave direction is from Northeast which indicates dominant swell coming 

from the open boundary. The OWT driven wind reduction in this area thus does not interact directly with 

the incoming swell, but it may interact with local wind-wave conditions that are reduced and which, in 

turn, may decrease destructive interference against the incoming waves from outside the domain; 

therefore, higher wave height occurs in scenarios 2 and 3 there at the 99% level. Although this can be an 

explanation for these local incidents, it should also be noted that for all scenarios the same wave boundary 
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conditions are used for baseline and scenarios 2 and 3 originating from ERA5 so the wind reduction is not 

indicated in the boundary forcings. This is a limitation that may then also contribute to capturing higher 

wave heights in Scenario 2 and 3 at the 99th percentile level during wave height spikes at the northeastern 

region of the grid. 

 

Figure 201. Changes to 1% and 10% significant wave height. 
Top row: 1st percentile significant wave height for Feb-01-2018 to Jan-31-2020 (E1) and OWT scenario changes: 1st 
percentile of Scenario 2 - 1st percentile of Baseline (E2) and 1st percentile of Scenario 3 - 1st percentile of Baseline 
(E3). Bottom row: The same as top row but for the 10th percentile (F1) and the differences of 10th percentile for each 
OWT scenario to the baseline: Scenario 2 (F2) and Scenario 3 (F3). 
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Figure 202. Changes to 90% and 99% significant wave height. 
Top row: 90th percentile significant wave height for Feb-01-2018 to Jan-31-2020 (G1) and OWT scenario changes: 
90th percentile of Scenario 2 - 90th percentile of Baseline (G2) and 90th percentile of Scenario 3 - 90th percentile of 
Baseline (G3). Bottom row: The same as top row but for the 99th percentile (H1) and the differences of 99th 
percentile for each OWT scenario to the baseline: Scenario 2 (H2) and Scenario 3 (H3). 
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Figure 203. Mean value of the difference between the 90th percentile wave heights of OWT Scenarios 
and Baseline for every bathymetry bins.  
Blue bar is for Scenario 2 – Baseline and orange bar is for Scenario 3 – Baseline. Depth-bin definition provided in 
Figure 51. 
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Figure 204. Mean value of the difference between the 99th percentile wave heights of OWT Scenarios 
and Baseline for every bathymetry bins.  
Blue bar is for Scenario 2 – Baseline and orange bar is for Scenario 3 – Baseline. Depth-bin definition provided in 
Figure 51. 

 

Figure 205. Stick plot of significant wave height and peak wave direction at Point F shown in Figure 198. 
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8.2 Impact to Mean Wave Period 

The simulated wake effects of the offshore wind turbines on the Mean Wave Period, Tm, are illustrated in 

the scenario-difference maps of Figure 202, Figure 205, and Figure 206 for each OWT scenario. Two-

year-Median mean wave period (Tm) varies from 4.6 s to 5.6 s from coastline to further offshore while 

the 99% percentile of Tm is as high as 10s offshore (Figure 202, C1, and D1). As expected, the highest 

impact of wind wake reduction on Tm occurs where the turbines are located; The maximum impact is 

0.16 s increase (3.2%) in median Tm for both Scenario 2 and 3 (Figure 202, C2, and C3). Like with 

median and quantile significant wave height maps, the simulated two-year-median Tm is seen to change 

(here, mostly increase) more for the full-build-out Scenario 3, compared to Scenario 2. The same pattern 

is observed in difference maps of Tm 1st, 10th percentiles in Figure 205 and 90th, and 99th percentiles in 

Figure 206. These difference quantile maps indicate localized increases in Tm where the OWT are 

located. It is hypothesized that this very small (relative to the present-day mean or standard deviation), 

localized increase in Tm is due to the WEA-related decrease in wind waves relative to the longer period 

swells. A summary for the changes in the median and 99th percentiles of the instantaneous Tm 

differences between scenarios and baseline is presented in Figure 203 and Figure 204, respectively. 

Similarly, the differences between the 90th, and 99th percentiles of Tm for each scenario against baseline 

are also summarized in Figure 207 and Figure 208, respectively, for each bathymetric depth bin in Figure 

51. 

Figure 202, panels D2 & D3, show the 99th percentile of the Tm instantaneous absolute differences for 

Scenario 2 and 3, respectively. They indicate the same order of impact for both scenarios (larger impact 

near the coastline and turbines’ locations and less impact further offshore. Figure 202 shows that, for the 

high percentiles of instantaneous differences that are more influenced by individual events, the more 

limited Scenario 2 is shown to have a higher impact, similarly to the finding for significant wave height. 
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Figure 206. Median mean wave period change and the 99th percentile of the instantaneous difference.  
Top row: Median Mean Wave Period for Feb-01-2018 to Jan-31-2020 (C1) and OWT scenario changes: Median of 
Scenario 2 - Median of Baseline (C2) and Median of Scenario 3 - Median of Baseline (C3). Bottom row: The same as 
top row but for the 99th percentile (D1) and the 99th percentile of instantaneous absolute differences for each OWT 
scenario to the baseline: Scenario 2 (D2) and Scenario 3 (D3). 
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Figure 207. Mean value of the difference between the median Mean Wave Period of OWT Scenarios and 
Baseline for every bathymetry bin.  
Blue bar is for Scenario 2 – Baseline and orange bar is for Scenario 3 – Baseline. Depth-bin definition provided in 
Figure 51. 
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Figure 208. Mean value of 99th percentile of OWTs Scenarios and Baseline mean wave period absolute 
instantaneous differences for every bathymetry bins.  
Blue bar is for 99th percentile of |Scenario 2 – Baseline| and orange bar is for 99th percentile of |Scenario 3 – 
Baseline| instantaneous differences. Depth-bin definition provided in Figure 51. 
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Figure 209. Change in 1st percentile and 10th percentile mean wave period. 
Top row: 1st percentile mean wave period for Feb-01-2018 to Jan-31-2020 (I1) and OWT scenario changes: 1st 
percentile of Scenario 2 - 1st percentile of Baseline (I2) and 1st percentile of Scenario 3 - 1st percentile of Baseline 
(I3). Bottom row: The same as top row but for the 10th percentile (J1) and the differences of 10th percentile for each 
OWT scenario to the baseline: Scenario 2 (J2) and Scenario 3 (J3). 
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Figure 210. Change in 90th percentile and 99th percentile mean wave period. 
Top row: 90th percentile mean wave period for Feb-01-2018 to Jan-31-2020 (K1) and OWT scenario changes: 90th 
percentile of Scenario 2 - 90th percentile of Baseline (K2) and 90th percentile of Scenario 3 - 90th percentile of 
Baseline (K3). Bottom row: The same as top row but for the 99th percentile (L1) and the differences of 99th percentile 
for each OWT scenario to the baseline: Scenario 2 (L2) and Scenario 3 (L3). 
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Figure 211. Mean value of the difference between the 90th percentile of Mean Wave Period of OWT 
Scenarios and Baseline for every bathymetry bins.  
Blue bar is for Scenario 2 – Baseline and orange bar is for Scenario 3 – Baseline. Depth-bin definition provided in 
Figure 51. 
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Figure 212. Mean value of the difference between the 99th percentile of Mean Wave Period of OWT 
Scenarios and Baseline for every bathymetry bins.  
Blue bar is for Scenario 2 – Baseline and orange bar is for Scenario 3 – Baseline. Depth-bin definition provided in 
Figure 51. 
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9 Impact Of Offshore Wind Farms on Hydrodynamics  

9.1 Background 

9.1.1 Middle-Atlantic Bight General Circulation 

Based on high frequency (HF) radar data collected in the New Jersey inner Shelf, Kohut et al. (2004) 

found that the annual mean current measured between May 1999 and May 2000 showed a weak 

alongshore southwestward flow (Figure 209). This study discussed the seasonal variation of the New 

Jersey Shelf current, where stratification caused by freshwater runoff and warmer temperatures can be 

seen during the summer season. However, during the winter season, the transient current is more variable, 

shows relatively less correlation with the wind and is strongly correlated with the topography of the inner 

shelf through vorticity dynamics (Kohut et al., 2004).  

 

Figure 213. Annual mean currents recorded by High Frequency Radar system between May 1999 and 
May 2000 (Kohut et al., 2004).  
Reproduced with permission. 

Gong et al. (2010) also characterized the spatial structure of the mean current and of the seasonal surface 

circulation in the New Jersey Shelf, using long‐range HF radar data from 2002 to 2007. The mean surface 

flow over the New Jersey Shelf is between 2 and 12 cm/s down shelf and towards the south, while the de-

tided root‐mean‐square (RMS) velocity variability ranges from 11 to 20 cm/s, being the same magnitude 

as the mean offshore current, but much larger than the mean current nearshore. The study also suggested 

that the surface flow in the New Jersey Shelf is a function of topography, seasonal stratification, and wind 

forcing. The current is in the same direction as the wind during the unstratified/mixed (winter) season, as 
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dominant northwesterly (cross-shelf) winds drive cross-shelf offshore flows. However, during the 

stratified season (summer), the flow direction is to the right of the wind due to Ekman forcing, as 

dominant southwesterly wind drives upwelling favorable cross-shelf offshore flow. During the transition 

seasons (spring and autumn), northeasterly winds drive energetic along-shelf flows.   

Roarty et al. (2020) also analyzed circulation over the Mid-Atlantic Bight (MAB) using HF radar data and 

found that the 10-year (2007–2016) annual mean surface currents are weaker and mostly cross-shelf near 

the coast, (about 3–6 cm/s) while the current speeds increase to about 8–10 cm/s and rotate to an 

alongshore direction near the shelf break. 

The nature of tides on the MAB shelf is semi-diurnal (i.e., tidal currents change direction about twice a 

day) and rotary. In offshore regions, tidal currents are weak (< 0.05 m/s); however, near the shore 

especially in the embayments and shoal areas tidal currents could reach velocities of 1.5 m/s (USDOI 

1982). Delft3D simulated cross-domain mean surface currents over the two year simulation period are 

generally consistent with the abovementioned magnitudes for the mean, transient low-pass filtered 

variability, and tidal current range (Figure 210), as well as with the general current directions and 

circulation patterns as shown in Appendix A (A-7 to A-9), with the New Jersey Shelf confined between 

the Hudson Valley and the southward flowing Shelf Break Jet (Gong et al, 2010 and Forsyth et al, 2020). 

Lentz (2008) found that the depth-averaged alongshelf flow in the Mid-Atlantic Bight is primarily driven 

by an alongshelf pressure gradient (sea surface slope of 3.7 × 10−8 increasing to the north) and an 
opposing mean wind stress that also drives the near-surface offshore flow. Thus, changes in wind stress 

are expected to have an impact on the alongshore residual flow in the MAB: a reduction in the wind stress 

may lead to an increased southward flow and upwelling-favorable surface offshore flow. This impact 

would also be consistent with the findings of Chen and Yang (2024).    

 

Figure 214. Delft3D FM modeled mean surface currents from Feb 2018 to Jan 2020. 

 

9.1.2 Cold Pool 

The Cold Pool in the Middle Atlantic Bight (MAB) and New York Bight forms from remnant winter 

water as the thermocline develops in spring (Chen et al., 2024) and persists between April and September. 
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During this period, the bottom waters remain cold due to the development of the seasonal stratification 

that separates them from the warmer surface waters. The Cold Pool undergoes significant seasonal 

warming during the summer, influenced by surface heating, horizontal advection of warmer waters, and 

mixing processes. Additionally, the Cold Pool moves southwest following the mean alongshore current at 

a rate of approximately 5 cm/s. The rate of warming varies spatially, ranging from 0.02°C to 0.06°C per 

day (Lentz, 2017). In the fall, the cooling of surface waters and wind mixing lead to the dissolution and 

destratification of the Cold Pool. 

The Cold Pool is a crucial habitat for various marine species, including the yellowtail flounder, which 

thrive in the cooler temperatures. Changes in the Cold Pool's temperature can significantly impact the 

distribution and recruitment success of these species (Sullivan et al., 2005 and Miller et al., 2016). 

Therefore, understanding the warming trends and dynamics of the Cold Pool is essential for predicting 

future changes in the MAB ecosystem, especially considering climate change and anthropogenic activity, 

which is expected to further alter temperature regimes. Recent studies have shown that the cold pool is 

warming and shrinking (Friedland et al., 2022). 

Four monthly vertical temperature transects taken across the continental shelf (Figure 211) display model-

simulated seasonal cold pool evolution for 2018 (Figure 212, Figure 214, Figure 216, and Figure 218) and 

2019 (Figure 213, Figure 215, Figure 217,  and Figure 219). In the winter months colder temperatures are 

distributed across the water column and in the spring and summer months the presence of a thermocline 

creates pockets of water colder than the surface. The temperature contours for the month of March are 

vertically distributed from the nearshore to offshore areas. The initial cold pool formation is shown in the 

month of May and more defined in the summer months of June and July. Regional temperature variations 

across the four temperature transects are expressed in higher surface temperatures in the southern 

transects. 
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Figure 215. Locations of cross-shelf temperature transects. 
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Figure 216. Temperature contours under baseline conditions from March to October 2018 at transect 1. 
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Figure 217. Temperature contours under baseline conditions from March to October 2019, at transect 1. 
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Figure 218. Temperature contours under baseline conditions from March to October 2018, at transect 2. 
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Figure 219. Temperature contours under baseline conditions from March to October 2019, at transect 2. 
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Figure 220. Temperature contours under baseline conditions from March to October 2018, at transect 3. 
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Figure 221. Temperature contours under baseline conditions from March to October 2019, at transect 3. 
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Figure 222. Temperature contours under baseline conditions from March to October 2018, at transect 4. 
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Figure 223. Temperature contours under baseline conditions from March to October 2019, at transect 4. 

9.1.3 Hydrodynamic Effects of Offshore Wind Developments 

Based on a recent literature view from the National Academies of Science (NAS 2023), the potential 

effects of offshore wind turbines on the ocean can be due to the physical presence of the structures (WTG 

monopiles here) across the water column and from the effects of wind energy extraction (wind wake) on 

wind-driven ocean circulation. In the water, at the turbine scale, monopile drag and flow obstruction can 

produce stronger separated currents, vortex shredding, vortex streets, and production of turbulent wakes 

downstream (NAS 2023, Chen et al., 2024). These phenomena are known to be present at length scales 

less than 1km, which is the size of the numerical mesh elements containing turbine foundation in this 

study, and thus are parameterized with the bridge pillar subgrid formulation (Section 5.8) in Delft3D-FM 

based on the CFD experiments of Johnson et al. (2021). At the wind farm scale (10-100km, depending on 

footprint), cumulative effects of the combined drag of monopiles in the literature include current speed 

reductions, increase in stratification, and doming of the pycnocline (e.g., Floeter et al., 2022, Christiansen 
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et al., 2023, Chen et al., 2024). Christiansen et al. (2023) found that the reduction in time-averaged North 

Sea residual currents were roughly 10%, though wind wake effects were not considered (NAS 2023). 

Observations and modeling show that wind wakes from the wind energy extraction at hub height can 

extend to the sea surface and can reach 10s and, in times of constructive farm to farm interactions, 100s of 

km downstream of wind farms (Hasager et al., 2015, Platis et al., 2018, Cañadillas et al., 2022, 

Christiansen et al., 2022, Golbazi et al., 2022). Peak events were found to occur during stable atmospheric 

conditions, which, over the MAB occur mostly in the spring and summer (Debnath et al., 2021). At these 

wind farm to regional scales, it can be hypothesized that the decrease of surface stress from wind energy 

extraction may dominate the response of the ocean.  

9.2 Effects of WEA Development on Cold Pool and Regional Currents 

9.2.1 Cold Pool 

Comparison of cold pool contours between the baseline scenario, Scenario 2 (partial wind farm) and 

Scenario 3 (full wind farm buildout) show the effect the proposed wind farm construction will have on the 

temperature dynamics over the water column. The largest impact to the cold pool dynamics is predicted 

under the full buildout of WEAs (Scenario 3). Contour comparisons at Transect 2 for the 2018 cold-pool 

season are shown in Figure 220 (for Scenario 2) and Figure 221 (for Scenario 3) against baseline. Cold 

pool contour comparisons at the other transects and for both years are included in Appendix D. Among 

four transects in Figure 211, the transect with the highest changes is Transect 2 and thus it is highlighted 

here. At other transects (included in the Appendix) changes are smaller. The figures also indicate that the 

installation of offshore wind farms raises the thermocline and shifts warmer bottom water toward the 

coast, likely as a result of increased coastal upwelling, as discussed in the final paragraph of section 9.1.1. 
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Figure 224. Temperature contours under baseline (solid black line) and Scenario 2 (dashed blue line) 
conditions, from March to October 2018, at transect 2. 
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Figure 225. Temperature contours under baseline (solid black line) and Scenario 3 (dashed blue line) 
conditions, from March to October 2018, at transect 2. 

9.2.2 Effects on Currents 

The simulated installation of the wind turbines in the WEAs contributes to changes in depth-averaged 

current. To assess this impact to the overall strength of the general circulation, including the tidal 

components, the 50th, 95th, and 99th percentile of the simulated depth-averaged current speed 

(magnitude) were calculated and differences going from baseline to Scenario 2, and Scenario 3 were 

analyzed (Figure 222). For instance, 99th percentile difference plot for Scenario 2 and Scenario 1 shows 

the 99th percentile of Scenario 2 - 99th percentile of Scenario 1 (not the 99th percentile of the 

instantaneous differences). The differences in 50th, 95th, and 99th percentile currents between the 

scenarios show mostly a relatively small decrease in current speed (less than 1 cm/s) after WEA 

development. Local increases in current speed (also less than 1cm/s) are also seen, especially shoreward 

of the northern WEAs along the New York Bight and New Jersey Coast. This can be attributed to 
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increased turbulence and mixing around the turbines. Furthermore, alterations in larger-scale circulation 

resulting from wake effects may also influence the variations in current speed. 
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Figure 226. Change in the median and 99th percentile depth-averaged current speed. 
50th percentile depth-averaged current speed for baseline scenario (A1), difference of 50th percentile between 
Scenario 2 and baseline (A2), and between Scenario 3 and baseline (A3). Middle row: The same as top row but 95th 
percentile depth-averaged current speed (B1), difference of 95th percentile between Scenario 2 and baseline (B2), 
and between Scenario 3 and baseline (B3). Bottom row: The same as top row but 99th percentile depth-averaged 
current speed (C1), difference of 99th percentile between Scenario 2 and baseline (C2), and between Scenario 3 and 
baseline (C3). 

Figure 222 involves statistics including tidal components in depth-averaged current. However, after tidal 

excursions and inertial oscillations are filtered out, particle motion is primarily controlled by the mean 

current. Thus, a similar analysis was conducted after applying a low-pass filter (LPF) to the current time 

series. The 50th, 95th, and 99th percentile residual currents were calculated and differences going from 

baseline to Scenario 2, and Scenario 3 were analyzed (Figure 223). The difference in the 50th percentile 

between the scenarios show mostly an increase in tidal residual current speed inside and along the WEAs 

in both scenarios and depending on the buildout of WEAs in each scenario. This, in relative terms against 

baseline currents, is more significant, as can be deduced by comparing the left column of Figure 223 to 

Figure 222, where the magnitude of the total current is much higher than that of the residual. However, as 

the effect of stronger events becomes more significant in the 95th and 99th percentiles of the residual 

current in Figure 223, a pattern consistent with the one in Figure 222 for the total current emerges, with 
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relatively significant increases closer to the coastal zone, shoreward of the WEAs, and decreases further 

offshore. 

 

Figure 227. Change in the median and 99th percentile Low-Pass-Filtered depth-averaged current speed. 
50th percentile depth-averaged current speed (LPF applied) for baseline scenario (D1), difference of 50th percentile 
between Scenario 2 and baseline (D2), and between Scenario 3 and baseline (D3). Middle row: The same as top row 
but 95th percentile depth-averaged current speed (LPF applied) (E1), difference of 95th percentile between Scenario 
2 and baseline (E2), and between Scenario 3 and baseline (E3). Bottom row: The same as top row but 99th 
percentile depth-averaged current speed (LPF applied) (F1), difference of 99th percentile between Scenario 2 and 
baseline (F2), and between Scenario 3 and baseline (F3). 

Figure 224 illustrates the mean difference in current speed and direction between the scenarios. Results 

indicate that the presence of offshore wind farms enhances the southward subtidal flow over most wind 

farms, consistent with the dynamics described in Lentz (2010) and Chen and Young (2024), whereas the 

mean regional alongshore water level gradient (positive toward the south) becomes less balanced from the 

decreased mean wind. The general circulation in the MAB retains its alongshore southward flow, but with 

increased shear around the WEAs. 
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Figure 228. Difference of depth-averaged velocity between Scenario 2 and baseline (upper panel), and 
Scenario 3 and baseline (lower panel).  
The green arrows indicate the direction of the changes (vector difference) in depth-averaged velocity. 

9.3 Impact Analysis at Specific Locations 

Figure 225 shows locations of stations in the model domain at which time series of several parameters 

were extracted for more detailed analysis. In Figure 225: 

• the cyan stations are located within the wind farms that are in both the partial buildout 

(Scenario 2) and full buildout (Scenario 3) scenarios,  

• the yellow stations are within the expanded farm field of Scenario 3 but not in 

Scenario 2, and 



 

225 

 

• the white stations are not located within a wind farm in either scenario. 

 

Figure 229. Locations of time series stations used in oceanographic impact analyses. 

Among these locations, the ones inside the WEAs (bright blue and yellow stations) are discussed in this 

section. The time series along with bi-annual mean and standard deviation (the average and standard 

deviation of all values within the two-year modeling period) for all stations in Figure 225 are provided in 

Appendix B. Although Figure 225 includes numbers from 5 to 27, only 21 stations are shown. This is 

because some of the original stations, including 8 and 18, were situated very close to each other and 

exhibited similar temporal variations. 

9.3.1 Annualized and Seasonal Changes 

To investigate impacts of WEA development to seasonal and annual-mean conditions at these locations, 

seasonal and annual means of model parameters were calculated from the extracted time series of the 

three simulated scenarios. For annualized means, all 24 simulated months were averaged together. With 

regard to seasonal means, and regardless of year: 
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• Winter considered data in December, January, and February,  

• Spring in March, April, and May,   

• Summer in June, July, and August, and 

• Fall in September, October, November. 

To test whether annualized and/or seasonal means of oceanographic parameters are simulated to differ 

significantly from baseline after WEA developments, we employed hypothesis testing for equality of 

means based on the student-t test. If the calculated t-statistic of the compared sets corresponded to a 

probability value (p-value) smaller or equal to 0.05, the null hypothesis of equality of means was rejected, 

and the differences were deemed statistically significant (at the 95% confidence level). Simulated 

annualized mean parameters for Scenario 1 (Baseline) and their difference between scenario 3 (Full 

Buildout) and Baseline for the cyan and yellow stations of Figure 225 are tabulated in Table 27. The 

relative percent change of simulated seasonal mean parameters between Scenario 3 (Full Buildout) and 

Scenario 1 (Baseline) at the same stations is tabulated in Table 28. Results for wind and current speed, 

water temperature and heat flux are discussed in the following sections. Analysis of the summer means 

for the gradient Richardson number of the surface layer, and the thermocline depth, are also included in 

Table 27 and are discussed in the corresponding subsections of section 9.3.2. 

9.3.1.1 Mean and Seasonal Wind Speed 

As winds are higher in fall through winter, maximum absolute reductions due to the simulated wind farms 

occurred then, compared to summer when winds tend to be weaker. Maximum reductions in the annual 

wind speed above 10% of baseline were found at stations 15 (S2: 10% to S3: 14%), 17 (S2 and S3: 11%), 

19 (S2:1% to S3: 12%), 20 (S2:4% to S3: 13%), 21 (S2:1% to S3: 9%), 23 (S2 and S3: 11%) with max 

reduction at station 25 (S2:1% to S3: 16%). 

9.3.1.2 Mean and Seasonal Current Speed 

Maximum relative bottom current speed reductions reached up to 5-6% annually at stations 15, 25, and 12 

(S3), though most reductions at other stations were less than 1%. 

Annual mean surface current speeds increased offshore New Jersey (stations 12, 13, and 20) up to 6–7%, 

as well as at stations 21 and 23 near the southern WEAs (2-3% for S3), although they were weaker at 

some other points. On the other hand, by far the strongest surface current weakening is at station 15, up to 

-8% for S3, yet the depth-averaged current increased somewhat there as well. The depth-averaged current 

was mostly stronger in scenarios with WEAs at the stations, with peak increase around 6% at stations 13 

and 20, and 4% at station 17. It was weaker by 1% at station 19. Results are consistent with the changes 

in the mean currents seen in Figure 224. 

9.3.1.3 Mean and Seasonal Temperature 

Mean annual and seasonal surface temperatures increase in simulations with developed WEAs compared 

to the baseline, more in Scenario 3 than Scenario 2. In absolute terms the increase is higher in the summer 

at most stations, and in the winter and spring at some stations. Surface waters are colder in the winter, 

and, in relative terms, highest % increases compared to baseline conditions are simulated for that season. 

They reach as high as 4% of baseline at station 15, from 8.89º C to 9.24º C in winter. Out of all stations 

evaluated, the highest simulated seasonal surface temperature increase is from 20.9º C to 21.5º C at 

station 25 in the summer, a 0.6º C change in surface temperature there in Scenario 3 compared to 

baseline. At these two stations, annual mean surface temperatures increase by 0.2º C at Station 15 and 

0.3º C at Station 25. Stations 17 and 20 also see their annual surface temperatures increase by about 0.2º 

C. These four stations are all within northern WEAs in Scenario 3. 
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Simulated changes in mean seasonal bottom temperatures vary by station and season and are generally 

smaller that at surface. As with surface temperatures, highest relative changes are found in the winter at 

stations 15 (+3%) and 20 (+4%) located within WEAs in Scenario 3 but are lower at other stations. 

Changes in annual mean bottom temperatures and are usually within a percent of baseline. 

9.3.1.4 Mean and Seasonal Heat Flux 

Statistically significant changes in the seasonal means of surface heat fluxes in the scenarios with 

developed WEAs compared to baseline conditions are found mostly in seasons with stronger winds (fall-

winter-spring) with lesser changes in the spring, and mostly on the stations that are closer to WEAs. As 

expected, statistically significant differences in the seasonal means were only found for sensible, 

evaporative, and total heat flux, and not in solar influx nor longwave back radiation. 

The seasonal mean of the sensible surface heat flux over the shelf (all stations in Figure 229, except for 

22, 24, and 27) is positive (incoming) in the spring and summer when the atmosphere is warmer than the 

ocean, and becomes negative (outgoing) in (mid-) fall and over the winter when the atmosphere is colder. 

With wind farms present (Scenarios 2 and 3), the sensible surface heat fluxes weaken at most stations, 

becoming less positive in the spring and summer, and less negative in the fall and winter. Accumulated 

over the two years, the change in sensible heat flux at most stations is cooling, from the ocean to the 

atmosphere (it becomes more negative in Table 27). 

The seasonal mean of evaporative surface heat flux is always negative, with peaks in fall (primarily) and 

winter; the exception is that it can be positive at stations closest to the Gulf Stream in the spring. With 

wind farms present (scenarios 2 and 3), the evaporative flux showed a tendency to become proportionally 

less negative in the fall, winter, and spring, and more negative in the summer. Accumulated over the two 

years, the change in evaporative heat flux is warming, from the atmosphere to the ocean. 

The total heat flux is positive (incoming) in the spring and summer and becomes negative (outgoing) in 

the fall and over the winter. The most significant changes in total surface heat flux between the scenarios 

with developed WEAs against baseline, mostly associated with the - greater, compared to the other terms 

- changes in evaporative heat flux, is a decrease in the outgoing total heat flux in the fall and winter, 

followed by a smaller decrease in the incoming total heat flux in the spring and/or summer, at most 

stations. Accumulated over the two years, the mean effect is a tendency to reduce the magnitude 

(exchange strength, either net incoming or outgoing) of total surface heat flux. 
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Table 27. Simulated annualized mean Scenario 1 (Baseline) parameters and their difference between Scenario 3 (Full buildout) and 
Scenario 1 at 7 of the stations shown in Figure 225. 

Station # 15 15 17 17 19 19 20 20 21 21 23 23 25 25 

 S1 = 
Baseline 

Delta 
(S3-S1) 

S1 = 
Baseline 

Delta 
(S3-S1) 

S1 = 
Baseline 

Delta 
(S3-S1) 

S1 = 
Baseline 

Delta 
(S3-S1) 

S1 = 
Baseline 

Delta 
(S3-S1) 

S1 = 
Baseline 

Delta 
(S3-S1) 

S1 = 
Baseline 

Delta 
(S3-S1) 

               

Surface T 14.12 +0.24 13.84 +0.16 14.69 +0.13 14.07 +0.19 18.53 -0.03 16.37 +0.06 14.25 +0.32 

Bottom T 9.72 +0.11 10.30 +0.12 9.84 +0.01 11.39 +0.07 15.85 -0.04 14.07 -0.07 10.52 +0.04 

               

Wind speed 6.961 -0.965 6.766 -0.768 7.190 -0.843 6.282 -0.830 6.708 -0.594 6.558 -0.734 7.028 -1.145 

Surface Cur 0.093 -0.007 0.092 +0.001 0.092 -0.006 0.122 +0.009 0.167 +0.004 0.140 +0.002 0.116 -0.002 

Bottom Cur 0.032 -0.001 0.034 -0.001 0.037 +0.000 0.045 +0.001 0.064 -0.001 0.053 -0.001 0.042 -0.002 

D-Ave Cur 0.060 +0.000 0.063 +0.003 0.058 -0.001 0.079 +0.005 0.114 +0.001 0.092 +0.002 0.073 +0.000 

               

Sensible -10.1 -0.7 -8.3 -0.6 -11.9 -0.2 -2.0 -2.5 -0.4 +1.0 +3,3 -1.2 -2.3 -3.1 

Evaporative -58.3 +5.5 -53.7 +4.2 -62.8 +4.7 -42.8 +1.0 -53.3 +5.8 -41.9 +3.1 -46.8 +2.2 

Total HF -10.1 +3.0 -2.7 +2.5 -16.8 +3.5 +23.0 -2.6 +16.0 +6.9 +40.3 +1.5 -17.4 -2.6 

               

Richardson*  1.78 +1.36 1.27 +0.20 0.50 +1.30 – – 2.22 +1.00 0.15 +0.01 0.08 +0.25 

               

Therm. D* 12.23 -0.50 11.06 -0.27 12.96 -0.30 9.29 -0.06 9.67 -1.04 10.06 -0.11 11.60 -0.61 

S1=Baseline: Annualized (2-simulated-year) mean of baseline (Scenario 1) conditions. Delta (S3-S1): Difference between annualized mean of Scenario 3 (Full 
buildout) and Scenario 1 (Baseline). 
Changes that are not statistically significant at the 95% level (p>0.05) are denoted with hyphen (-).  
Explanation of columns: Surface T: Surface Temperature, ºC. Bottom T: Bottom Temperature, ºC. Surface Cur: Surface Current Speed, m/s. Bottom Cur: Bottom 

Current Speed, m/s. D-Ave Cur: Depth-Averaged Current Speed, m/s. Sensible: Sensible Heat Flux, W/m2. Evaporative: Evaporative Heat Flux, W/m2. Total HF: 
Total Heat Flux, W/m2. Richardson: Gradient Richardson number (Summer only). Therm. D: Thermocline depth, m from surface (Summer only). 
* Summer Only  
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Table 28. Relative percent increase (+) or decrease (-) of simulated seasonal mean parameters between Scenario 3 (Full buildout) and 
Scenario 1 (Baseline) at 7 of the stations shown in Figure 225. 

Station # 15 15 15 15 17 17 17 17 19 19 19 19 20 20 20 20 21 21 21 21 23 23 23 23 25 25 25 25 

Season W Sp Su F W Sp Su F W Sp Su F W Sp Su F W Sp Su F W Sp Su F W Sp Su F 

                             

Surface T +4 +3 +1 +1 +2 +2 +1 – +1 +1 +1 +1 +2 +1 +2 +1 +0 -1 – +0 – – +1 – +2 +3 +3 +1 

Bottom T +3 +2 +1 +0 +2 +2 +2 – +1 -1 – – +4 +1 -1 – – -1 +0 - +0 – -2 – +2 +1 -1 – 

                             

Wind speed -13 -14 -16 -13 -11 -11 -13 -11 -10 -12 -15 -11 -10 -13 -19 -12 -9 -9 -11 -7 -10 -11 -14 -10 -14 -16 -22 -15 

Surface Cur -16 -6 +8 -15 -4 +2 +6 -2 -11 -8 – -5 -4 +9 +17 +3 -2 +3 +7 +2 -4 – +10 +1 -12 -7 +17 -5 

Bottom Cur – -8 -3 -6 – -3 -5 -4 – -2 -1 -2 +2 +3 -2 – – -3 – – – -3 -4 -2 -8 -4 – -7 

D-Ave Cur -2 -1 +10 -7 +4 +5 +8 +2 -2 -3 +1 -2 – +8 +13 +4 – – +5 – -2 – +8 – -9 -3 +26 -6 

                             

Sensible -4 -30 -37 -9 -5 -24 -29 -8 -7 -28 -38 – +15 -31 -36 – -17 +16 -10 -18 – -13 -22 -7 – -43 -43 – 

Evaporative -9 -6 – -13 -8 -4 +3 -11 -9 -5 – -8 – – +17 -7 -12 -14 – -9 -9 -8 +4 -9 -10 – +61 -11 

Total HF -3 – -4 -13 -4 – -4 -11 -6 – – -8 – -5 -6 -7 -11 +12 – -20 -7 – -3 -16 -5 -7 -10 -11 

W: Winter (Dec-Feb). Sp: Spring (Mar-May). Su: Summer (Jun-Aug). F: Fall (Sep-Nov). 
Percent values shown are rounded to nearest integer. 

Changes that are not statistically significant at the 95% level (p>0.05) are denoted with hyphen (-). 
Explanation of columns: Surface T: Surface Temperature. Bottom T: Bottom Temperature. Surface Cur: Surface Current Speed. Bottom Cut: Bottom Current 
Speed. D-Ave Cur: Depth-Averaged Current Speed. Sensible: Sensible Heat Flux. Evaporative: Evaporative Heat Flux. Total HF: Total Heat Flux. 
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9.3.2 Impacts at Weekly Timescale Relative to Baseline Variability 

To analyze temporal and spatial variation of windfarm effects on oceanographic parameters, time series 

of weekly means for the different scenarios and the weekly z-score statistic were calculated for different 

locations across the model. The z-score, a statistical measure of the relative difference between the 

weekly mean of a parameter between a scenario and the baseline, normalized over the weekly variability 

in the baseline (the present natural variability of each week), was calculated using the following formula: 

        
                                                                Eq. 6 

where: 𝑍𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒= 𝑍 − 𝑠𝑐𝑜𝑟𝑒 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 a 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (2 or 3) 𝑎𝑛𝑑 the baseline (Scenario 1) 

= Weekly mean value of scenario 

 = Weekly mean value of baseline 

and σ𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = Weekly standard deviation of baseline 

A significant z-score indicates the magnitude of the windfarm effects on the weekly mean is comparable 

to the temporal variability of the baseline conditions for that week of the year.  

The scenario evaluated above is either Scenario 2 (partial buildout) or Scenario 3 (full buildout). Note that 

the sign of the z-score reveals the increase (positive) or decrease (negative) of a weekly mean parameter 

in a scenario against baseline, but its magnitude depends on the variability of the natural condition 

(baseline) within a specific week. Thus, greater weekly z-score magnitudes do not necessarily translate to 

greater absolute changes in a weekly-mean parameter value.  

To quantify the instances the z-score value exceeds 95th percentile and is significantly different than 

present natural (baseline) weekly variability at that level, Table 29 and Table 30 list the percentage of 

time when the z-score is beyond ±1.96 for Scenario 2-baseline, and Scenario 3-baseline, respectively. The 

parameters shown in the tables are wind speed, current speed, water temperature, turbulent vertical eddy 

viscosity, turbulent kinetic energy, gradient Richardson number (a measure of water column stability, 

explained in Section 9.3.2.6), thermocline depth and thermocline depth. The heat flux parameters are not 

shown in the tables as for them the z-score never exceeded the 95th percentiles (see Section 9.3.2.3 

below). The tables illustrate how, for temperature, the increased instances of z-scores exceeding ±1.96 at 

certain stations (e.g., stations 15 and 17) affect the thermocline in both Scenario 2 and Scenario 3. In 

terms relative to transient weekly natural variability, the impact of the wind farms is found to mostly 

influence stability (Richardson number), water temperatures, and thermocline depth. Note however, that 

current speed here includes the main tidal component, while, and as mentioned earlier, tidal residual flows 

are the ones most impacted by the wind farms.  

Also note that, on a mean bi-annual basis (for the 24-month period treated) relatively smaller changes can 

be seen in other variables. For some parameters and some stations, these changes in the mean z-scores are 

sometimes consistently positive or negative throughout seasonal to annual time scales (Tables 27 and 

Table 28), and though they may tend to be small relative to intra-week variability, that is not always the 

case against interannual variability. An example is mean annual surface water temperature, which, as 
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mentioned, may surpass a quarter degree Celsius in some stations, in simulations with wind turbines, a 

change that is approaching the order of magnitude expected because of long-term climate forcing. 
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Table 29. Percentage of weeks that the z-score exceeds 95th percentile for Scenario 2 - baseline. 

Station 
Wind 

Speed 
Current 
Speed 

Current 
Speed 

Current 
Speed Temp Temp 

Vis-
cosity 

Vis-
cosity TKE TKE Ri Ri 

Therm-
ocline  

Therm-
ocline 

- - 
Surface Bottom 

Depth-
Averaged Surface Bottom Surface Bottom Surface Bottom Surface Bottom Depth Strength 

6           1 1   

7            1   

9              1 

10      1.9        1 

12      1.9       1.9 1 

13             1 1 

14      1       1.9  

15 1 1   7.6 13.3       11 3.8 

16             1  

17  1  1.9 1.9 5.7       9.5  

19             1.9 1 

20      1        1 

21           1  1  

23  1.9    5.7 1  1  4.8  2.9  

24              1 

25            1 1  

Note: Only stations with > 0% for any parameter are shown. For the remaining listed stations, only parameters with > 0% are shown. 
TKE = Turbulent Kinetic Energy. Ri = Richardson number. 
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Table 30. Percentage of weeks that the z-score exceeds 95th percentile for Scenario 3 - baseline. 

Station 
Wind 

Speed 
Current 
Speed 

Current 
Speed 

Current 
Speed Temp Temp 

Vis-
cosity 

Vis-
cosity TKE TKE Ri Ri 

Therm-
ocline 

Therm-
ocline 

- - 
Surface Bottom 

Depth-
Averaged Surface Bottom Surface Bottom Surface Bottom Surface Bottom Depth Strength 

5              1 

6            1   

7      1      1   

9            1 1 1 

10      1        1 

11            1   

12      7.6       1.9 3.8 

13      4.8       1.9 2.9 

14      2.9       1.9  

15  1  1 14.3 18.1     1  11.4 6.7 

16  1         1.9  3.8  

17  1  1 4.8 15.2     1  8.6 1.9 

19  1   1.9 5.7   1  4.8  5.7 3.8 

20  2.9   1.9 16.2     1 1.9 2.9 4.8 

21      1     5.7 1 2.9  

23  1    7.6 1  1  1.9  2.9 1 

24              1 

25  1.9  5.7 5.7 7.6     1.9  7.6 6.7 

26           1   1 

Note: Only stations with > 0% for any parameter are shown. For the remaining listed stations, only parameters with > 0% are shown. 
TKE = Turbulent Kinetic Energy. Ri = Richardson number. 
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The following subsections present time series plots showing detailed results for the full range of 

parameters. In the figures, months when the water column is typically vertically mixed (November to 

March, inclusive) are highlighted with gray to visually separate them from transition and stratified months 

(April to October) of the seasonal cycle of the Mid-Atlantic Bight cold pool. 

9.3.2.1 Effects on Surface Wind and Currents 

Wind speed and current (surface, bottom, and depth-averaged) magnitude time series for stations located 

in the WEAs are presented in Figure 226 - Figure 232. The top left panels of these figures show that 

winds are stronger during the autumn and winter season (from October to March), when they contribute 

to destratification and mixing. Yet, except perhaps at the station closest to the NY Bight Apex (Station 

17, Figure 227), the larger differences in current speeds due to WEA development are seen during the 

spring and summer, when the MAB shelf is stratified. The change in magnitude (left panels) and 

difference time series (middle and right panels) for wind speed both are consistent with both Scenario 2 

and 3 experiencing reduction in wind speed compared to baseline due to wind wakes (as also seen in 

Table 27 and Table 28 and discussed in Section 9.3.1). 

The differences in current speed (primarily depth-average and surface current) show both positive and 

negative peaks. In the difference plots the surface and depth-averaged currents show more positive peaks 

compared to bottom-current which is more decoupled from the wind stress changes, and there is a small 

net decrease in bottom current speed, consistent with Table 27 and Table 28. 
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Figure 230. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
wind speed and current speed (surface, bottom, and depth-averaged) at station 15. 
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Figure 231. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
wind speed and current speed (surface, bottom, and depth-averaged) at station 17. 
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Figure 232. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
wind speed and current speed (surface, bottom, and depth-averaged) at station 19. 
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Figure 233. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
wind speed and current speed (surface, bottom, and depth-averaged) at station 20. 
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Figure 234. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
wind speed and current speed (surface, bottom, and depth-averaged) at station 21. 
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Figure 235. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
wind speed and current speed (surface, bottom, and depth-averaged) at station 23. 
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Figure 236. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
wind speed and current speed (surface, bottom, and depth-averaged) at station 25. 
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9.3.2.2 Effects on Water Temperature 

Simulated surface and bottom temperature time series at stations located in the WEAs are presented in 

Figure 233 to Figure 239. Overall, and for both baseline conditions but also the two wind farm 

development scenarios, surface temperatures tend to rise in April–June (resulting in higher weekly natural 

variability), peak in the summer for both years (2018 and 2020), start falling between August-September 

until mid-winter and be at their lowest between February and March. Bottom waters warm slower and 

reach their peak in early fall (September–October) after which time overturning occurs and bottom 

temperatures drop following surface cooling.  

Comparing wind farm scenarios and baseline, Scenario 3 (full buildout) has greater magnitude changes 

from baseline compared to Scenario 2 (partial buildout). A rise in SST is simulated by the model, which 

can at times reach about 1° C at stations 20 and 25 east of the NJ Shore for full-buildout conditions under 

Scenario 3. Station 25 also exhibits the highest annualized increase in SST at 0.32° C for Scenario 3 

(Table 27). The difference panels also show positive peaks across the two years for surface temperature, 

and increasingly so between Scenario 2 and Scenario 3, especially at stations with wind turbines only in 

Scenario 3. The exception is the southern-most station of the ones shown, station 21, where the 

differences from baseline are small (Table 27), and the differences fluctuate the least from week to week. 

In general, the difference panels for surface temperature mostly show positive weekly peaks with few 

exceptions. For bottom temperature, they show both positive (relative warming) and negative (relative 

cooling) peaks. Stations 15 (Figure 233), 17 (Figure 234), and 23 (Figure 238) appear in WEAs of both 

scenarios (Scenario 2 and 3) the differences do not change significantly going from Scenario 2-baseline to 

Scenario 3-baseline. However, the rest of the stations (shown by yellow in Figure 225) show different 

variations. 
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Figure 237. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
surface (upper panels) and bottom temperature (lower panels) at station 15. 
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Figure 238. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
surface (upper panels) and bottom temperature (lower panels) at station 17. 
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Figure 239. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
surface (upper panels) and bottom temperature (lower panels) at station 19. 
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Figure 240. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
surface (upper panels) and bottom temperature (lower panels) at station 20. 
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Figure 241. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
surface (upper panels) and bottom temperature (lower panels) at station 21. 
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Figure 242. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
surface (upper panels) and bottom temperature (lower panels) at station 23. 
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Figure 243. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
surface (upper panels) and bottom temperature (lower panels) at station 25. 
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9.3.2.3 Effects on Surface Heat Fluxes 

Time series of surface heat fluxes at the air-sea interface located in the WEAs are presented in Figure 240 

through Figure 246, positive being downward to the water column (e.g., solar incoming heat flux year 

round and total heat flux in the spring and summer months), and negative being upward (e.g., total heat 

flux in the fall and winter months, and longwave back radiation). It is important to note that the wind 

wake effect was taken into account when calculating the sensible and latent heat fluxes for Scenario 2 and 

Scenario 3. For solar and longwave heat fluxes, the differences in Scenario 2 or 3 relative to Baseline are 

null or insignificant as they are not directly impacted by the change in wind; the longwave heat flux 

emitted back to the atmosphere increases (becomes more negative), but slightly, due to the simulated 

increase in sea surface temperature. The differences for the evaporative heat flux time series show both 

positive and negative values (caused by change in moisture transport near the sea surface) while, for 

sensible heat flux, difference time series are almost always negative, meaning water receive relatively less 

sensible heat flux in Scenario 2 and 3 compared to baseline (as explained in Section 9.3.1.4). This can 

occur because, with lower wind speeds, the mechanisms of sensible and latent heat transfer become less 

efficient, and their magnitude (both downward and upward) decreases. For example, the waters may 

receive less heat through convection but may also lose less heat through evaporation. Even though the 

changes in total heat flux are overall small, the differences of water temperature (section 9.3.2.2) shows 

temperature is relatively higher in Scenario 2 and 3. 
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Figure 244. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
different heat fluxes at station 15. 
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Figure 245. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
different heat fluxes at station 17. 
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Figure 246. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
different heat fluxes at station 19. 
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Figure 247. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
different heat fluxes at station 20. 
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Figure 248. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
different heat fluxes at station 21. 
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Figure 249. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
different heat fluxes at station 23. 
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Figure 250. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
different heat fluxes at station 25. 
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9.3.2.4 Effects on Turbulent Vertical Eddy Viscosity 

Time series of turbulent vertical eddy viscosity located in the WEAs are presented in Figure 247 through 

Figure 253. The seasonality of vertical eddy viscosity is driven by strong vertical mixing during winter, 

due to stronger winds, whereas in summer, there is reduced mixing and increased stratification. The 

difference time series for eddy viscosity shows mostly negative peaks, especially at the surface layer. This 

is expected, since turbulent vertical eddy viscosity scales with surface wind at the surface mixed layer, 

and linearly with near-bottom current at the bottom, both of which, and especially surface wind, have 

been shown to also decrease in WEA development scenarios. Some of the negative peaks in the surface 

viscosity difference time series can also be correlated to the difference time series of the surface current. 

For instance the trough for viscosity at station 17 (Figure 248) in June 2019 can be associated to the 

trough in the surface current speed difference at the same station in Figure 227, as well as the trough in 

surface wind in the same figure. 
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Figure 251. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
turbulent vertical eddy viscosity (surface and bottom) at station 15. 
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Figure 252. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
turbulent vertical eddy viscosity (surface and bottom) at station 17. 
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Figure 253. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
turbulent vertical eddy viscosity (surface and bottom) at station 19. 
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Figure 254. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
turbulent vertical eddy viscosity (surface and bottom) at station 20. 
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Figure 255. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
turbulent vertical eddy viscosity (surface and bottom) at station 21. 
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Figure 256. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
turbulent vertical eddy viscosity (surface and bottom) at station 23. 
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Figure 257. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
turbulent vertical eddy viscosity (surface and bottom) at station 25. 
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9.3.2.5 Effects on Turbulent Kinetic Energy 

Time series of Turbulent Kinetic Energy (TKE) located in the WEAs are presented in Figure 254 through 

Figure 260. The difference time series for TKE shows mostly negative values, especially at the surface 

layer. These time series follow similar seasonal patterns to the corresponding results for vertical eddy 

viscosity (Figure 247 through Figure 253) as TKE directly influences eddy viscosity (based on the k-

epsilon closure model). Overall, mixing, especially surface mixing, is simulated to decrease within the 

WEAs, as driven by the decrease in surface wind stress, primarily, and bottom current, secondarily. 
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Figure 258. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
TKE (surface and bottom) at station 15. 
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Figure 259. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
TKE (surface and bottom) at station 17. 
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Figure 260. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
TKE (surface and bottom) at station 19. 
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Figure 261. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
TKE (surface and bottom) at station 20. 
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Figure 262. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
TKE (surface and bottom) at station 21. 

 



 

272 

 

 

Figure 263. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
TKE (surface and bottom) at station 23. 
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Figure 264. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
TKE (surface and bottom) at station 25. 
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9.3.2.6 Effects on Stability (Richardson Number) 

Time series of the gradient Richardson number (Ri) located in the WEAs are presented in Figure 261 

through Figure 267 where –  

                                                                    Eq. 7 

for g = gravitational constant 9.8 m s-2, rho = density as a function of depth z, and (u,v) are eastward and 

northward horizontal velocity components. For 𝑅𝑖 ≥ 0 the stratification is stable, while for 𝑅𝑖 < 0 the 

stratification is unstable. Stable stratification reduces turbulent mixing, whereas unstable stratification 

results in increased mixing. 

The difference time series for the gradient Richardson number shows mostly positive peaks (beside 

winter) for most of the stations in the WEAs. The gradient Richardson number is a dimensionless number 

that quantifies the balance between potential energy (due to stratification) and kinetic energy (due to shear 

or turbulence) in a fluid flow. In other words, it is the ratio of buoyancy (stratification production) divided 

by shear (mixing production). Thus, increases in the Richardson number represent a more stable water 

column, and these positive differences in the stratified season, though transient and at times reversible, 

indicate that the water column is more stratified for Scenarios 2 and 3, compared to the baseline, at most 

stations. This is further corroborated by the increase in the summertime Richardson numbers tabulated in 

Table 27. 
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Figure 265. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
Richardson Number (surface and bottom) at station 15. 
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Figure 266. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
Richardson Number (surface and bottom) at station 17. 

 



 

277 

 

 

Figure 267. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
Richardson Number (surface and bottom) at station 19. 
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Figure 268. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
Richardson Number (surface and bottom) at station 20. 
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Figure 269. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
Richardson Number (surface and bottom) at station 21. 
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Figure 270. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
Richardson Number (surface and bottom) at station 23. 
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Figure 271. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
Richardson Number (surface and bottom) at station 25. 
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9.3.2.7 Effects on the Thermocline 

Time series of thermocline depth (the depth of the peak thermal gradient) and strength (the thermal 

gradient at that depth) at stations located in the WEAs are presented in Figure 268 through Figure 274. 

The difference time series for thermocline depth shows mostly negative peaks (beside winter) for most of 

the stations in developed WEAs. These negative changes are consistent with a phenomenon known in the 

offshore wind farm literature as “thermocline shoaling” (“doming” or uplifting) linked to the wind wake 
(Floeter et al., 2022) and are likely caused by less mixing and potential changes in shear and Ekman 

pumping due to the reduction in wind speed for Scenario 2 and 3, which leads to decrease in thermocline 

depth over the summer (as also seen in Table 27). The figures also demonstrate that the thermocline 

strength drops to zero in the winter, indicating a well-mixed water column, making the thermocline depth 

an irrelevant metric in this condition. 
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Figure 272. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
thermocline depth and strength at station 15. 
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Figure 273. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
thermocline depth and strength at station 17. 
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Figure 274. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
thermocline depth and strength at station 19. 
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Figure 275. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
thermocline depth and strength at station 20. 
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Figure 276. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
thermocline depth and strength at station 21. 
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Figure 277. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
thermocline depth and strength at station 23. 
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Figure 278. Weekly mean (left panels), and weekly differences for Scenario 2-baseline (middle panels) and Scenario 3-baseline (right panels) for 
thermocline depth and strength at station 25. 
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9.4 Effects on Stratification and Thermocline 

The addition of the WEA turbines effects the temperature throughout the water column. This is exhibited 

in the cold pool dynamics, temperature time series analysis, and the difference (delta) in temperature 

between the surface and bottom levels of the water column. A positive (negative) change between this 

temperature delta between wind farm scenarios and baseline conditions indicates the areas of increased 

(decreased) thermal stratification under the partial (Scenario 2) and full build out (Scenario 3).   

The full build out of the WEA turbines (Scenario 3) has the largest area of increased temperature delta 

(increased thermal stratification) compared to baseline conditions. The model results display increased 

variability in temperature during the summer season. An increase in thermal stratification in the wind 

farms located in the Mid-Atlantic region, offshore of New Jersey, is predicted in August 2018 (Figure 

221). The cold pool dynamics of the region in August 2018, are consistent with the temperature change. 

Transect 2 cold pool contours in August 2018, show an increase in the cold pool area towards the 

nearshore region (Figure 221). The temperature analysis conducted at station 25 is also consistent with 

these findings. Station 25 displays large changes in temperature in the bottom of the water column under 

full build out conditions compared to baseline conditions in August 2018.  

Monthly thermal stratification maps over the model duration are included in Appendix C.  

 

Figure 279. Change in thermal stratification for Scenario 2 (partial build out) and Scenario 3 (full buildout) 
against baseline conditions for August 2018. 

In the previous subsections, it is shown how wind wakes affect surface and bottom temperature (see 

Section 9.3.2.2), which result in a change in thermocline depth and strength (Section 9.3.2.7). Two 

example scenarios are discussed next, to analyze how the change in wind speed influences change in 

temperature in the water column. For Scenario 3-baseline analysis at station 19, a significant change was 

seen in the z-score for temperature (Figure 235) as well as thermocline depth and strength (Figure 270) at 

the end of April, 2019. The wind velocity, current velocity, and temperature throughout the water column 

for all three scenarios are presented in Figure 276. The wind time series show that around April 28, the 

wind speed during Scenario 3 was lower compared to Scenario 2 and baseline. This reduction in wind 
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speed causes more stratification and decrease in thermocline depth (Figure 270). Thus, the volume of 

water susceptible to heat flux warming through mixing decreases and that leads to increased temperature 

of surface water at station 19. The temperature plot for Scenario 3 around the same time shows that near 

the surface, temperature increased compared to Scenario 2 and baseline. 
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Figure 280. Wind velocity (top first panel), current velocity (second panel), and temperature with depth 
(panels 3 through 5) for all three scenarios during April 15–April 30, 2019 at station 19. 

Another similar analysis based on the relationship of wind velocity and temperature is presented in Figure 

277 for station 25. A significant change was seen in Scenario 3-baseline calculation for temperature 
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(Figure 239) as well as thermocline (Figure 273) at the start of August, 2019. The wind velocity, current 

velocity, and temperature throughout the water column for all three scenarios are presented in Figure 277. 

The wind time series show that around August 2, the wind speed during Scenario 3 was lower compared 

to Scenario 2 and baseline. This subsequently causes more stratification/higher thermocline and warmer 

surface water. The temperature plot for Scenario 3 around the same time shows that near the surface, 

temperature was relatively higher compared to Scenario 2 and baseline. 
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Figure 281. Wind velocity (first panel), current velocity (second panel), and temperature with depth 
(panels 3 through 5) for all three scenarios during August 1–August 15, 2019 at station 25. 
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10 Impact Of Offshore Wind Farms on Bed Shear Stress and 
Sediment Mobility 

10.1 Methodology 

Ocean current and wave forces produce bed shear stress, which represents the friction exerted by the 

moving water against the seabed. Constructing offshore wind energy facilities may impact the marine 

environment by altering bottom shear stress, thereby affecting sediment movement. These alterations in 

bottom stress may stem from changes in current velocity and wave parameters in and around the offshore 

wind farm. 

The impacts were analyzed by separately employing hydrodynamic and wave models, and then 

integrating them by superimposing their effects for every time-step. The calculations for bed shear stress 

and sediment mobility were conducted for fully forced 3D baroclinic simulations of Scenario 1 (baseline), 

Scenario 2 (limited), and Scenario 3 (buildout). The bed shear stress was calculated using the 

methodology developed by Soulsby and Clarke (2005). For sediment mobility analysis, the Shields 

criterion for the critical bed shear stress was applied, following the approach of van Rijn (2018). 

10.2 Bed Shear Stress 

The following plots show the 50th, 95th, and 99th percentile bed shear stress results for currents and 

waves separately and for combined currents and waves. 

In the model’s domain, bed shear stresses arising from currents are generally low for baseline (Scenario 
1) (Figure 278) with an exception in the southern region where the Gulf Stream current produces a 

significant shear stress. Except in the area north of 40° N, where the northern-most assessed windfarm is 

located, high bed shear stress at the 99th percentile is observed to some extent across the shelf. Going 

from baseline to Scenario 2, and Scenario 3 no significant change in bed shear stress is detected. 

The 50th percentile bed shear stress generated by waves for Scenario 1 (Figure 279) is relatively small. 

However, 95th and 99th percentile stresses induced by wave, are more significant in the shelf compared 

to deep water. Among the areas shown, the northern wind farms (north of Hudson Canyon at ~40°N) 

located in a relatively deeper region (Figure 39) with lower currents (Figure 222 and Figure 223) 

experience relatively lower bed shear stress compared to the rest of the MAB shelf. For the 99th 

percentile current this area also experiences an increase in bed shear stress going from baseline to 

Scenario 2. For baseline to Scenario 3, this area shows a decrease, but the bed shear increases around the 

southernmost wind farm. The rest of MAB mostly shows decrease in bed shear for both Scenario 2, and 

Scenario 3. 

The RMS bed shear stress for waves-plus-current (Figure 280) is mostly dominated by shear stress 

induced by wave especially on the shelf. The 50th percentile bed shear stress is small while the 95th 

percentile stress for baseline is relatively bigger. The decrease in shear stress is higher from baseline to 

Scenario 3 when compared to baseline-Scenario 2 for 95th percentile stress. This greater reduction in 

stress is caused by the presence of additional wind farm in Scenario 3. Similar to the differences in wave 

induced 99th percentile stress between different scenarios, changes in RMS of wave-plus-current from 

baseline to Scenario 2, and Scenario 3, also depicts increased stress in some areas. This may be due to 

nonlinear changes in transient wave heights and periods of individual events. 
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Figure 282. Change in median, 95th percentile, and 99th percentile of bed shear stress due to currents. 
Top row: 50th percentile bed shear stress due to current (A1) and OWT scenario changes: 50th percentile of 
Scenario 2 - 50th percentile of Baseline (A2) and 50th percentile of Scenario 3 - 50th percentile of Baseline (A3). 
Middle row: The same as top row but for the 95th percentile (B1) and the differences of 95th percentile for each OWT 
scenario to the baseline: Scenario 2 (B2) and Scenario 3 (B3). Bottom row: The same as top row but for the 99th 
percentile (C1) and the differences of 99th percentile for each OWT scenario to the baseline: Scenario 2 (C2) and 
Scenario 3 (C3). 
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Figure 283. Change in median, 95th percentile, and 99th percentile of bed shear stress due to waves. 
Top row: 50th percentile bed shear stress due to wave (D1) and OWT scenario changes: 50th percentile of Scenario 
2 - 50th percentile of Baseline (D2) and 50th percentile of Scenario 3 - 50th percentile of Baseline (D3). Middle row: 
The same as top row but for the 95th percentile (E1) and the differences of 95th percentile for each OWT scenario to 
the baseline: Scenario 2 (E2) and Scenario 3 (E3). Bottom row: The same as top row but for the 99th percentile (F1) 
and the differences of 99th percentile for each OWT scenario to the baseline: Scenario 2 (F2) and Scenario 3 (F3). 
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Figure 284. Change in median, 95th percentile, and 99th percentile of bed shear stress due to combined 
currents and waves. 
Top row: 50th percentile RMS bed shear stress for waves-plus-current (G1) and OWT scenario changes: 50th 
percentile of Scenario 2 - 50th percentile of Baseline (G2) and 50th percentile of Scenario 3 - 50th percentile of 
Baseline (G3). Middle row: The same as top row but for the 95th percentile (H1) and the differences of 95th percentile 
for each OWT scenario to the baseline: Scenario 2 (H2) and Scenario 3 (H3). Bottom row: The same as top row but 
for the 99th percentile (I1) and the differences of 99th percentile for each OWT scenario to the baseline: Scenario 2 
(I2) and Scenario 3 (I3). 

 

10.3 Sediment Mobility 

Sediment mobility was calculated based on the Shields relation which utilized the RMS bed shear stress 

for waves-plus-current depicted in the previous section. First, the grain size diameters that can be 
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mobilized under 50th/95th/99th percentile RMS bed shear stresses, were calculated at all the cells of the 

model, consistent with the bottom roughness used in the model (van Rijn, 2018). If the calculated 

diameter of the grain size that can be mobilized exceeded the equivalent model grain size diameter, then 

sediment is set in motion. Based on this criterion, if a location of the model shows moving sediment 

during Scenario 1 but not in Scenario 2 or Scenario 3, it experiences decreased mobility. On the other 

hand, if sediment was not moving in Scenario 1 but shows movement in Scenario 2 or Scenario 3, then 

the location would undergo increased mobility. Figure 281 shows the minimum mobile grain size 

diameters based on 50th, 95th, and 99th percentile RMS bed shear stresses (waves-plus-current) for the 

baseline as well as changes in sediment mobility going from baseline to Scenario 2, and Scenario 3. 

The minimum mobile grain size diameters based on different RMS bed shear stresses for waves-plus-

current show that larger grain diameter can be moved with increasing shear stress on the shelf (Figure 

281). Also, the footprints of change in sediment mobility are consistent with the RMS bed shear stresses 

for waves-plus-current shown in Figure 280. 

For the 50th percentile RMS bed shear stresses for waves-plus-current, no change of mobility is seen in 

Scenario 2 and Scenario 3 as the change in shear stress/grain size diameter is minimum. However, for the 

95th percentile stress, decrease in mobility is detected from baseline to Scenario 2 and Scenario 3. 

Scenario 2 also shows few locations where mobility is increased. For the 99th percentile stress, the 

decrease in mobility is seen going from baseline to Scenario 2 in more cells of the model while some of 

the locations depict increased mobility (mostly in between 37°N and 38°N, and 40°N to around 41°N 

which is consistent with the increase in shear stress (Figure 280). For 99th percentile stress change from 

baseline to Scenario 3, more places show decrease in mobility while few places show increase. 
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Figure 285. Sediment mobility changes. 
Bed material grain size diameter (A1) for baseline that can be moved by 50th percentile RMS bed shear stresses for 
waves-plus-current, change in sediment mobility from baseline to Scenario 2 (A2), and from baseline to Scenario 3 
(A3). Middle row: The same as top row but by 95th percentile RMS bed shear stresses (B1), change in sediment 
mobility caused by 95th percentile RMS bed shear stress from baseline to Scenario 2 (B2), and from baseline to 
Scenario 3 (B3). Bottom row: The same as top row but by the 99th percentile RMS bed shear stresses (C1), change 
in sediment mobility caused by 99th percentile RMS bed shear stress from baseline to Scenario 2 (C2), and from 
baseline to Scenario 3 (C3). 
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11 Selection of Species of Interest 

11.1 Literature Review and Species Selection 

Planktonic organisms, including the larval life stages of fish, bivalves, and arthropods, are highly 

susceptible to changes in hydrodynamic circulation. Changes in circulation, stratification, and mixing, 

such as that which may be caused by the presence of offshore wind turbines (OWTs) within WEAs, may 

potentially alter larval dispersion dynamics and lead to a reduction in recruitment success and survival 

(Iles and Sinclair, 1982). Larval position in the water column may also be affected causing deviations in 

prey availability and vulnerability to predation. Incorporating species-specific ontogenetic behaviors for 

potentially affected organisms via individual-based models is important for capturing individual-level 

mechanisms that influence populations (DeAngelis and Grimm, 2014). 

Commercial species with high economic interest in the Mid-Atlantic Bight were considered for this study. 

The initial list of potential candidate species included the Atlantic sea scallop (Placopecten 

magellanicus), Atlantic surfclam (Spisula solidissima), summer flounder (Paralichthys dentatus), black 

sea bass (Centropristis striata), and longfin inshore squid (Loligo pealeii). In 2021, commercial landings 

of these species ranged between 1,300 to 7,000 metric tons in the middle Atlantic, accounting for 8 to 43 

percent of total landings (NOAA commercial landings database). Atlantic cod (Gadus morhua) and 

American lobster (Homarus americanus) were excluded from consideration as they are small contributors 

to the Mid-Atlantic economy, making up 1 percent or less of total landings. The Calanus copepod 

(Calanus spp.) was another planktonic organism of interest due to its importance in the diet of North 

Atlantic right whales. However, it was determined that the geographic region and scope of this study did 

not warrant inclusion of copepods in the analysis. 

An extensive literature review was conducted for the five candidate species to consolidate information on 

species-specific spawning locations and timing, larval life stages and characteristics, larval distributions 

and behavior, larval stage duration, and settlement habitats. The summer flounder, which was the focus of 

a recent BOEM larval modeling study (Johnson et al., 2021), was removed from the target species list 

after consultation with BOEM. Larval information on the longfin inshore squid was limited and 

insufficient for use in a particle tracking model. Attempts were made to acquire recent larval longfin 

inshore squid data from NOAA’s Northeast Fisheries Science Center (NEFSC), but this dataset was still 
unavailable as of the writing of this report. The three remaining species with adequate information for 

larval transport modeling were the Atlantic sea scallop, Atlantic surfclam, and black sea bass. Previous 

modeling work has been done for each of these species, with the following publications serving as 

additional resources to inform biological parameters for modeling: 

1. Atlantic sea scallop – Munroe et al. (2018) and Chen et al. (2021) 

2. Atlantic surfclam – Zhang et al. (2016) 

3. Black sea bass – Edwards et al. (2008) 

11.2 Larval Biological Parameters 

A summary of the larval biological parameters to be used in the larval transport model can be found in 

Table 31. The parameters presented include spawning location, spawning depth, spawning time, 

fecundity, larval dispersal duration, temperature tolerance, onset of metamorphosis to juvenile stage, 

settlement depth, settlement habitat, and vertical swimming velocity. In addition, Figure 282, Figure 283 

and Figure 284 show the distribution of sea scallop spawning beds (Hart and Chute, 2004), the 

distribution of adult surfclam (Fay et al., 1983), and the distribution of black sea bass eggs from NOAA-

NEFSC ichthyoplankton surveys (Drohan et al., 2007), respectively. All three target species exhibit active 
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spawning in shallower continental shelf waters of the Mid-Atlantic Bight. Spawning typically occurs 

yearly between the spring and fall for the Atlantic surfclam and black sea bass while the Atlantic sea 

scallop follows a semi-annual spawning cycle occurring first from May to June then followed by a second 

spawning from September to November. Both bivalve species produce eggs in the order of millions per 

reproductive individual. Atlantic sea scallop can reach 270 million eggs per individual, compared to 13 

million eggs per individual for Atlantic surfclam. Black sea bass shows the lowest fecundity, with 

reproductive females producing approximately 200,000 to 300,0000 eggs per individual in the Mid-

Atlantic Bight. The duration of each species’ larval stays in a planktonic phase also varies. Black sea bass 

has the shortest larval dispersal duration of up to 24 days, Atlantic surfclam follows at 35 days, and 

Atlantic sea scallop has the longest larval dispersal duration of up to 82 days. Settlement, which ensues 

once larvae metamorphose to juveniles, occurs over low to medium complexity substrates at depths of 

less than 60-meters for Atlantic sea scallop and surfclam while black sea bass settles in high complexity 

habitats at depths shallower than 20-meters. Data sources are listed as footnotes of the table and provided 

in the reference section. 

Table 31. Summary of pertinent larval biological parameters for each target species specific to the 
Mid Atlantic Bight 

-- 
Atlantic sea scallop 1 

(Placopecten 
magellanicus) 

Atlantic surfclam 2 
(Spisula solidissima) 

Black sea bass 3 
(Centropristis striata) 

Spawning locations Shallower coastal waters 
(Figure 2) 

Shallow subtidal depths   
to 60 m (Figure 3) 

Nearshore continental 
shelf (Figure 4) 

Spawning depth 18 to 110 m shallow up to 60 m 20 to 50 m 

Spawning season May to June; September     
to November 

May to October April to October 

Fecundity 1–270 million eggs per 
individual 

0.14–13 million eggs per 
individual 

191,000–369,500 eggs 
per individual 

Larval dispersal duration 28 to 82 days 35 days 21 to 24 days 

Temperature tolerance 10 to 18 C 14 to 30 C 11 to 26 C 

Metamorphosis to juvenile 30 to 40 days 19 to 35 days 21 to 24 days 

Settlement depth 15 to 60 m < 60 m < 20 m 

Settlement habitat Coarse substrates over 
clay or sand 

Medium to coarse sand 
to gravel bottoms 

Complex 
microtopographies 

Vertical swimming velocity 1 to 1.5 mm/s 0.2 to 0.5 mm/s 10 to 20 mm/s 

1 Hart and Chute (2004), DuPaul et al. (1989), Schmitzer et al. (1991), Langton et al. (1987), Culliney (1974), 
McGarvey et al. (1992), Pearce et al. (2004), Tremblay and Sinclair (1990), Tremblay et al. (1994), Thouzeau et al. 
(1991), Manuel et al. (2000). 
2 Fay et al. (1983), Cargnelli et al. (1999), Walker et al. (1996), Rumrill (1990), Loosanoff and Davis (1963), Hoffman 
et al. (2018), Mann et al. (1991). 
3 Drohan et al. (2007), Mercer (1978), Berrien and Sibunka (1999), Able and Fahay (1998), Berlinsky et al. (2000), 
Able et al. (1995), Edwards et al. (2008). 
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Figure 286. Distribution of Atlantic sea scallop (Placopecten magellanicus) spawning beds off the 
Northeast coast of North America. 
Figure from Hart and Chute, 2004. 
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Figure 287. Distribution of Atlantic surfclam (Spisula solidissima) in the Mid-Atlantic. 
Figure from Cargnelli et al., 1999. 



 

305 

 

 

Figure 288. Distribution of black sea bass (Centropristis striata) eggs collected during NOAA-NEFSC 
ichthyoplankton surveys. 
Figure from Drohan et al., 2007 
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12 Larval Transport Modeling and Impact of Offshore Wind Farms on 
Larval Connectivity 

12.1 Introduction 

For offshore WEA development to be sustainable, it is necessary to investigate its potential impacts on 

marine species, particularly their ecological functions. Many species exhibit complex life cycles with a 

pelagic larval stage and a benthic or pelagic adult stage. Understanding how different sub-populations 

within a species range are interconnected through the exchange of larvae (i.e., larval connectivity) 

(Palumbi, 2003) is key to understanding population dynamics and the spatial management of marine 

species (Burgess et al., 2014). Maintaining larval connectivity is crucial for local stock persistence 

(Garavelli et al., 2018) and for preserving the structure and functioning of the ecosystems that species 

inhabit (Bergström et al., 2013).  

Larval dispersal between spawning and settlement habitats is mainly influenced by hydrodynamic 

processes such as currents, turbidity, and temperature (Cowen & Sponaugle, 2009). These processes may 

be locally or regionally affected by the presence of developed WEAs, consequently altering larval 

dispersal dynamics (Iles & Sinclair, 1982). On a local scale, turbulence and stratification can be increased 

with the presence of WEAs (Schultze et al., 2020), potentially affecting temperature and nutrients 

(Daewel et al., 2022; Dorrell et al., 2022). On a regional scale, the presence of WEAs has been shown to 

decrease stratification and create wind wake effects (van Berkel et al., 2020). These hydrodynamic 

changes associated with WEA development could impact larval survival and connectivity (Daewel et al., 

2011). The success of larval connectivity through larval dispersal also depends on several biological 

factors such as larval behavior, larval mortality, and the availability of spawning and settlement habitats 

(Pineda et al., 2007).  

To investigate the effects of WEA development on both the physical and biological processes driving 

larval connectivity, biophysical individual-based models can be used to incorporate species-specific 

behavior and capture the mechanisms influencing populations (DeAngelis & Grimm, 2014). Biophysical 

models are frequently used to assess the importance of biotic and abiotic processes for larval connectivity 

and the spatial management and conservation of marine species (Garavelli et al., 2018; Munroe et al., 

2018). The application of such models to assess the impact of WEA development on larval connectivity is 

less common, but biophysical models have been used in two recent studies to assess the impacts of WEA 

development on larval connectivity of different species along the U.S. Atlantic coast (Chen et al., 2024; 

Johnson et al., 2021).  

Johnson et al. (2021) assessed the effects of WEA development off Massachusetts and Rhode Island on 

the larval distribution and settlement of Atlantic sea scallop (Placopecten magellanicus), silver hake 

(Merluccius bilinearis), and summer flounder (Paralichthys dentatus) for one year using an agent-based 

model developed with ABM Lab. Reduced current speeds associated with the presence of WEA turbines 

were identified as causing a decrease in larval settlement for Atlantic scallop and summer flounder, and a 

change in larval distribution for silver hake. Chen et al. (2024) also assessed the effects of WEA 

development in the same region for Atlantic sea scallop larvae from September to November for three 

years using the larval model Scallop-IBM. Their model predicted that the presence of one offshore wind 

farm increases offshore subtidal flow, contributing to larvae being transported further offshore, compared 

to when the farm is not considered in the model. 

To understand the impacts of WEA development on larval connectivity, it is essential to identify which 

environmental processes might be influenced and how potential changes compare to the natural 

variability of the ecosystem. These effects will likely differ among species, depending on their life cycle 

and habitats. In this study, we developed a biophysical larval dispersal model to investigate the effects of 
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WEAs on the larval connectivity of three commercial species in the Mid-Atlantic Bight (MAB), from 

New York to North Carolina: Atlantic sea scallop, Atlantic surfclam (Spisula solidissima), and black sea 

bass (Centropristis striata). To identify the influence of physical and biological processes on larval 

connectivity, different model simulations were performed for three scenarios: one baseline scenario 

without WEA, one with partial WEA development, and one with full WEA development. 

12.2 Methods 

12.2.1 Hydrodynamic Model 

The MAB hydrodynamic modeling was performed using the Deltares Delft3D Flexible Mesh (Delft3D 

FM) Modeling Suite, specifically using its hydrodynamic module, DFLOW (Delft, 2023) (see previous 

Chapter 5 for full details of the model). Three scenarios of the hydrodynamic simulations were conducted 

to allow for the direct comparison of larval connectivity: one baseline scenario without WEA turbines 

(Scenario 1), one with partial WEA development (Scenario 2), and one with full WEA development 

(Scenario 3) (Table 1). 

12.2.2 Biophysical Larval Dispersal Model 

To model the larval dispersal of the three species of interest (Atlantic sea scallop, Atlantic surfclam, and 

black sea bass), a biophysical larval dispersal model was developed using the individual-based 

Lagrangian model Ichthyop (Barrier et al., 2023; Lett et al., 2008). Ichthyop is commonly used to model 

transport processes and assess the effects of hydrodynamics on plankton dynamics (Amorim et al., 2024; 

Garavelli et al., 2016; Garavelli et al., 2014; Marchessaux et al., 2023). In the model, the virtual larvae are 

characterized by their latitude, longitude, and depth in three dimensions.  

Ichthyop (Barrier et al., 2023; Lett et al., 2008) was primarily developed to work with the Regional Ocean 

Modeling System (ROMS). It has also been expanded to work with the following ocean models: the 

Model for Applications at Regional Scale (MARS), the Nucleus for European Modelling of the Ocean 

(NEMO), SYMPHONIE, and most recently the Finite Volume Community Ocean Model (FVCOM) 

(Chen et al., 2003), but not Delft3D. We modified the version of Ichthyop adapted to FVCOM to be able 

to read and work with Delft3D FM outputs using the following steps. We expanded the FVCOM version 

of Ichthyop because of the similarity of the mesh-style grid and sigma-layering between FVCOM and 

Delft3D FM. 

We implemented an inverse weighted distance average interpolation for all location-dependent variables 

(i.e., velocity, bathymetry, surface water level, and temperature), following what Delft3D FM uses for its 

own internal particle tracking model (Delft, 2023). As these variables are saved on the center of the 

triangle, we first interpolate to the edge of the triangle and then interpolate to the point of interest. We 

interpolate in a two-step process to reduce skewness error. For example, to determine the velocity at a 

given point within a triangle, we first perform an inverse weighted average of the velocity at the center of 

the triangle to each of the edges of the triangle (Eq. 8, Figure 285a and b): 

 

𝒖𝐸1 = 𝒖1𝑑1 + 𝒖2𝑑21𝑑1 + 1𝑑2 =  𝑑2 ∗ 𝒖1 + 𝑑1 ∗ 𝒖2𝑑1 + 𝑑2 Eq. 8 
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Where vector u is the horizontal (u) and vertical (v) velocity components as shown in Figure 285 located 

at position 1, 2, or along the edge (E1) and d is the relevant distance. We then perform an inverse 

weighted average from each of the edges to our point of interest (Eq. 9 and Figure 285c):  

 

𝒖𝑝 = 𝒖𝐸1𝑑1 +  𝒖𝐸2𝑑2 + 𝒖𝐸3𝑑31𝑑1 + 1𝑑2 + 1𝑑3 = 𝑑2 ∗ 𝑑3 ∗ 𝒖𝐸1 + 𝑑1 ∗ 𝑑3 ∗ 𝒖𝐸2 + 𝑑1 ∗ 𝑑2 ∗ 𝒖𝐸3𝑑2 ∗ 𝑑3 + 𝑑1 ∗ 𝑑3 + 𝑑1 ∗ 𝑑2 Eq. 9 

 

where subscript p denotes the position of interest and other parameters are the same as in Eq. 8.  

 

 

            
   

   

   

      

   

    

    

    

    

    

    

    

    

   

   

   

  

 

Figure 289. Plot a shows the center points on two adjoining triangles (blue or black dot) of the mesh grid 
with distances from the edge that connects them, d1 and d2.Inverse distance interpolation of those initial 
two center points gives the velocities at the center of the edge (orange dot, plot b). Using these edge 
velocities (orange), we then interpolate with the same formula to a random point in the triangle (green, 
plot c). 

12.2.3 Larval Dispersal Model Setup 

Biological parameters of the Atlantic sea scallop, Atlantic surfclam, and black sea bass are reviewed in 

Table 31 and discussed in the previous Chapter 11. We selected a subset of those parameters for the larval 

dispersal model (Table 32). Biological parameters included in the model were the spawning location, 

spawning depth, spawning time, larval dispersal duration, temperature tolerance, settlement depth, 

settlement habitat, and diel vertical migration (DVM) behavior. For each species, the value of each 

parameter was based on the literature (Table 32). 

Table 32: Relevant biological parameters for the larval dispersal model for each species.  

-- Atlantic sea scallop 
(Placopecten 
magellanicus) 

Atlantic surfclam 
(Spisula solidissima) 

Black sea bass 
(Centropristis striata) 

Larvae spawning (release) 
and settlement areas  
(Figure 286) 

-- -- -- 

-Bathymetry 15 to 110 m 
 (Hart & Chute, 2004) 

15 to 60 m 
 (Cargnelli, 1999)  

20 to 50 m 
 (Drohan et al., 2007) 
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-- Atlantic sea scallop 
(Placopecten 
magellanicus) 

Atlantic surfclam 
(Spisula solidissima) 

Black sea bass 
(Centropristis striata) 

-Release/ 
settlement Area 

From 36.5 N to 40.5 N 
Virginia Beach to Long 
Island 
 (Hart & Chute, 2004) 

From 37 N to 40.5 N 
 (Cargnelli, 1999) 

From 36.5 N to 40.5 N 
Nearshore Continental 
Shelf 
 (Drohan et al., 2007) 

-Release Depth Bottom Bottom 20 to 50 m 
 (Drohan et al., 2007) 

-Settlement Depth 15 to 60 m 
 (Hart & Chute, 2004) 

< 20 m 
 (Cargnelli, 1999) 

< 20 m  
 (Able & Fahay, 1998) 

Larvae release times -- -- -- 

-Seasons First day of the week 
from May to October, 
inclusive 
 (Hart & Chute, 2004) 

First day of the week from 
May to November, 
inclusive 
 (Cargnelli, 1999) 

First day of the week 
from April to October, 
inclusive 
 (Able & Fahay, 1998) 

-Years 
 

2018 and 2019 2018 and 2019 2018 and 2019 

Larval dispersal duration 
 

45 days 
 (Chen et al., 2024; Hart 
& Chute, 2004) 

35 days 
 (Rumrill, 1990) 

24 days 
 (Berlinsky et al., 2007) 

Pre-competency period 
(minimum settlement age) 
 

28 days 
 (John Tremblay et al., 
1994) 

19 days 
 (Fay et al., 1983) 

21 days 
 (Berlinsky et al., 2007) 

# Larvae released per event 
 

1,000 1,000 1,000 

Diel Vertical  
Migration (DVM) 

3 to 20 m 
 (Chen et al., 2021) 

3 to 20 m 5 to 20 m 
 (Edwards et al., 2008) 

Temperature tolerance 
range 

10 to 18°C 
 (Trembl ay & Sinclair, 
1990) 

14 to 30° C 
 (Fay et al., 1983) 

11 to 26° C 
 (Drohan et al., 2007) 

 

In the model, spawning and settlement areas were designed based on the habitat of each species along the 

shallow continental shelf waters of the MAB (Figure 286). Release (spawning) and settlement areas for 

each species were defined by equally dividing up the habitat for each species. The bathymetry of each 

area and the release depth of larvae were based on habitat preference and species distribution in the water 

column, respectively (Figure 286). For example, scallop and surfclam larvae were released at the bottom 

of the water column in the model because both species are benthic. Sea bass larvae were released between 

20 and 50 m depth because the species rise in the water column to spawn. 
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Figure 290. Larvae release (spawning) and settlement zones for sea scallop (green, a, b, c), surfclam 
(blue, d, e, f), and sea bass (red, g, h, i). 
Turbines are shown in yellow: Scenario 1 (no turbines) are the maps in the left-most column (plots a, d, g), Scenario 
2 (partial buildout) are the maps in the center column (plots b, e, h), and Scenario 3 (full buildout) are the maps in the 
right-most column (plots c, f, i). The grid of the hydrodynamic model is shown with the black mesh in each map. 
Zones numbers and color shading are to help visualize the different zones but do not hold specific significance. Plot j 
is an image of all zones for each of the species together. 

In the model, larvae were released weekly from the defined release areas (Figure 286) during the 

spawning season for two years (from February 2018 to January 2020) (see Table 32 for details). Larvae 
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were tracked every half hour (time step of the hydrodynamic model) using a forward-Euler advection 

scheme. Following Peliz et al. (2007), horizontal diffusion was included in the model with a turbulent 

dissipation rate є = 10−9 m2s-3. The larval dispersal duration (maximum of time during which the larvae 

can be transported by currents in the model) was set to 45 days for sea scallop, 35 days for surfclam, and 

24 days for sea bass. The pre-competency period, or the minimum age at settlement, was set to 28 days 

for sea scallop, 19 days for surfclam, and 21 days for sea bass. Settlement ensues before larvae 

metamorphose into juveniles. In the model, larvae were considered settled when located in a settlement 

area after the pre-competency period (see Table 32). 

To represent the vertical behavior of larvae in the water column (i.e., nighttime at the water surface to 

feed and daytime at depth to avoid predators), DVM was included as follows: sea scallop and surfclam at 

3 m depth during nighttime (6:00 PM to 6:00 AM) and 20 m depth during daytime (6:00 AM to 6:00 

PM); sea bass at 5 m depth during nighttime (6:00 PM to 6:00 AM) and 20 m depth during daytime (6:00 

AM to 6:00 PM). 

12.2.4 Model Configurations 

Five sets of model configurations (referred to as M1 through M5) were performed for each of the three 

hydrodynamic scenarios to test the sensitivity of the model (Table 33). Models M1 and M2 do not include 

behavior (passive) and were designed to study the effect of hydrodynamics on larval connectivity for the 

three species and to test the sensitivity of the model to the number of larvae released: 1,000 in M1 and 

10,000 in M2. M2 was only performed for Atlantic sea scallop because of computing constraints. M3 

aimed at investigating the effect of DVM on larval connectivity (see Table 32 for DVM amplitudes for 

each species). M4 was designed to assess the effects of temperature-dependent larval mortality on larval 

connectivity and was performed for each species. Finally, M5 includes DVM and temperature 

dependence for all species. 

Table 33: Summary of parameters included in the different model configurations.  

Model configurations M2 was performed for Atlantic sea scallop only due to computing constraints. 

Model 
configurations 

Behavior Number of 
larvae 
released 

Temperature-
dependent larval 
mortality 

Species 

M1 Passive 1,000 No Atlantic sea scallop, 
Atlantic surfclam, Black 
sea bass 

M2 Passive 10,000 No Atlantic sea scallop 

M3 Diel vertical 
migration 

1,000 No Atlantic sea scallop, 
Atlantic surfclam, Black 
sea bass 

M4 Passive 1,000 Yes Atlantic sea scallop, 
Atlantic surfclam, Black 
sea bass 

M5 Diel vertical 
migration 

1,000 Yes Atlantic sea scallop, 
Atlantic surfclam, Black 
sea bass 

 

12.2.5 Analysis 

Connectivity matrices were primarily used to interpret the model results. Values of the connectivity 

matrix represent the larval settlement success Ci,j, which is the number of larvae released from zone i that 

successfully settled to zone j. To calculate the percentage of larval settlement success between two zones, 

Ci,j was normalized to the total larvae released per zone, Ci,j/ni*100, where ni is the number of larvae 
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released in zone i. The total percentage of successfully settled larvae in one given settlement zone was 

calculated as the row sum of the matrix normalized to the number of larvae released, or ∑j Ci,j/N*100, 

where N is the total larvae released per event (i.e., 1,000 or 10,000 released weekly during the species 

spawning time; see Table 32). Lastly, mean connectivity was calculated by summing all values in the 

connectivity matrix and then normalizing to the total larvae released, ∑i∑j Ci,j/N*100. Larval dispersal 

distances were also calculated, representing the distance traveled by larvae from the time of release in one 

given spawning zone to the time of settlement in one given settlement zone. To compare the results 

between the hydrodynamic scenarios, we performed a multifactor analysis of variance (ANOVA) of the 

simulated values of larval dispersal distances (minimum, mean, maximum) and mean connectivity for all 

simulations for each species.  

12.3 Results 

12.3.1 Influence of Hydrodynamics on Larval Connectivity 

In Figure 287 to Figure 291 results are described for the model configuration M1 (passive transport of 

1,000 particles) for each hydrodynamic scenario as outlined in Table 1. Figure 287 only shows the 

trajectories of all larvae released on May 1, 2018. Overall, most of the larvae followed a southward 

trajectory from their release to their settlement zones. Scallop larvae trajectories are observed further 

offshore than surfclam and sea bass. For all species, larvae trajectories are observed up to 36o N, with 

some larvae being transported offshore, particularly for sea scallop and surfclam. Between the three 

hydrodynamic scenarios, slight changes in larval trajectories are observed for each species. For sea 

scallop (Figure 287a, b, c), in all scenarios, some offshore trajectories move south throughout the study 

domain. In Scenario 3, fewer trajectories are observed between 39 and 40o N, where the WEAs are 

present. For surfclam (Figure 287d, e, f), larvae released north of 40o N do not travel south of the study 

domain. In scenarios 2 and 3, larvae released close to the shore and north of 40 oN were transported 

southward and went around the northernmost WEA. In Scenario 3, fewer trajectories are observed at 

39.6o N, close to the eastern WEAs, and fewer larvae were transported towards the southern areas, 

between 37 and 38o N. For black sea bass, larvae trajectories are located further from the shore compared 

to scallop and surfclam and are similar between the three scenarios, with fewer trajectories observed 

around the WEAs. 
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Figure 291. Trajectories of all larvae released on May 1, 2018 for simulation M1. 
Top row (a, b, c) sea scallop, middle row (d, e, f) surfclam, and bottom row (g, h, i) sea bass. WEAs from Scenario 3 
are shown with red outlines in each plot. Left column (a, d, g) is Scenario 1 (no turbines), middle column (b, e, h) is 
Scenario 2 (partial buildout), and right column (c, f, i) is Scenario 3 (full buildout). 

Figure 288 shows the density of successfully settled larvae binned in hexagons with color corresponding 

to the number of larvae in that bin for simulation M1. The maps are zoomed in on the northern portion of 

the domain. Sea scallop (Figure 288a, b, and c) shows a higher density of larvae around 40.5° N for all 

scenarios. There are gaps in the density map for all three scenarios, highlighting the patchiness of scallop 

settlement. Surfclam (Figure 288d, e, and f) has less gaps and a hotspot around 40.5° N. This hotspot is 

not discernably different between the three scenarios. Sea bass (Figure 288g, h, and i) has the least 

amount of gaps in the density plot and the hot spot is further south than scallop and surfclam, occurring 
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between 40 and 40.5° N. There is not a discernable difference between the densities for the three 

scenarios. 

 

Figure 292. Density of all successfully settled larvae for simulation M1.  
This image is a zoomed-in portion of the total domain near the northern WEAs. 
Top row (a, b, c) sea scallop, middle row (d, e, f) surfclam, and bottom row (g, h, i) sea bass. WEAs from scenario 3 
are shown with red outlines in each plot. Left column (a, d, g) is scenario 1 (no turbines), middle column (b, e, h) is 
scenario 2 (partial buildout), and right column (c, f, i) is scenario 3 (full buildout). 

 

Dispersal distances of larvae from their release areas to their settlement areas are shown in Figure 289. 

Larval dispersal distances are mostly between 25 and 100 km for sea scallop and surfclam and between 

25 and 200 km for sea bass. Around 45% of scallop and 70% of surfclam larvae were transported 50 km 
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or less from their release locations. Overall, compared to Scenario 1, larvae disperse slightly further when 

WEA turbines are included. Summary statistics on the distance traveled of successfully settled larvae for 

sea scallop, surfclam, and sea bass are in Table 34, Table 35, and Table 36, respectively. For sea scallop, 

the mean larval dispersal distance slightly increases from scenarios 1 to 3 (from 88.3 km to 89.28 km). 

The minimum larval dispersal distance is greater for Scenario 2 (1.91 km) than the other scenarios, and 

the maximum dispersal is higher in Scenario 1 (494.67 km; Table 34). For surfclam, the mean and 

maximum dispersal distances increase from scenarios 1 to 3 (mean = 45.53 km for Scenario 1 and 48.18 

km for Scenario 3; max = 256.56 km for Scenario 1 and 285.55 km for Scenario 3; Table 35). The lowest 

minimum dispersal distance occurs in Scenario 2. For sea bass, the minimum dispersal distance is lowest 

for Scenario 1 (Table 36). From scenarios 1 to 3, the mean dispersal distance increases (from 78.93 km to 

82.88 km), and the maximum dispersal distance decreases (from 339.87 km to 333.4 km). 
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Figure 293. Larval dispersal distance between release and settlement locations for Scenario 1 (no 
turbines, white), Scenario 2 (partial buildout; light shading), and Scenario 3 (full buildout; dark shading). 
For sea scallop (a, green), surfclam (b, blue), and sea bass (c, red) for simulation M1. 
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The larval settlement success (%, as defined in Section 12.2.5) between release and settlement areas is 

represented for each species and the three hydrodynamic scenarios (Figure 290). For Scenario 1, the 

larval settlement success is higher for surfclam and sea bass (up to 12%) compared to scallop (up to 4%) 

(Figure 290 a, d, g). For the three species, larvae are generally transported from the northern to the 

southern part of the study domain and larval connectivity is higher in the northern part with a hotspot of 

connectivity (brighter colors on the matrix) between 39.9o N and 40.35o N (zones 2 to 4). Higher local 

retention (ratio of locally produced settlement to total local larval release; (Lett et al., 2015)) is noted in 

zones 2 and 3 for sea scallop and zone 3 for surfclam. For scenarios 2 and 3, the positive and negative 

differences in larval settlement success with Scenario 1 are relatively low: around 0.5% for sea scallop, 

1% for surfclam, and 1.5% for sea bass. For Scenario 2, the larval connectivity increases in the northern 

part for all species and local retention decreases in some zones (for sea scallop: zones 1–3, 5–8, 11; for 

surfclam: 1, 3, 5–6, 8–9; for sea bass: 1, 4–9). For Scenario 3, the connectivity observations from 

Scenario 2 remain and are generally more accentuated (Figure 290c, f, i). Some key differences between 

scenarios 1 and 3 are a decrease in local retention in the northern zones and an increase in larval 

settlement success from north to south. Mean connectivity is consistent across the three scenarios for each 

species (Table 34, Table 35, and Table 36). 

Larval settlement success within each settlement zone is represented in Figure 291. For Scenario 1, more 

larvae settled in zones 3 and 4. Larval settlement success in the zones located south of 40o N is higher for 

sea bass (Figure 291g) compared to scallop and surfclam (Figure 291a, d). In Scenario 2, more larvae 

were transported to the northern settlement zones (above 39o N) and less to the southern ones for sea 

scallop. Differences in larval settlement success for surfclam and sea bass vary depending on the zone. 

For Scenario 3, higher settlement success of scallop larvae is observed in zones 4 and 10, compared to 

Scenario 1 (Figure 291c). Larval settlement success is generally lower for surfclam, except in the 

southernmost zone (Figure 291f). For sea bass, settlement success decreases typically in the northern 

settlement zones and increases in the southern ones (Figure 291i). 
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Figure 294. Connectivity matrix for each species for simulation M1; top row (a, b, c) is sea scallop, middle 
row (d, e, f) is surfclam, and bottom row (g, h, i) is sea bass. 
Left column (a, d, g) is the connectivity matrix for Scenario 1 (baseline). Center (b, e, h) and right-most column (c, f, i) 
are the difference between the connectivity matrices of either Scenario 2 or 3 and Scenario 1, respectively, with red 
reflecting a positive difference and blue a negative difference. 
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Figure 295. Maps of settlement success per settlement zone for Scenario 1 (baseline, left column, a, d, g) 
for each species – top row sea scallop (a, b, c), center row surfclam (d, e, f), bottom row sea bass (g, h, i) 
for simulation M1. 
Settlement success here is the total number of larvae in each settlement zone (sum of the columns of the connectivity 
matrix) normalized to the total released (in all areas and during all runs) * 100. Center (b, e, h) and right (c, f, i) 
column are the difference between the settlement success maps of either Scenario 2 or 3 and Scenario 1, 
respectively, with red reflecting a positive difference and blue a negative difference. The color bar for the Scenario 3 
panels is the same as Scenario 2 for each species. WEAs from Scenario 3 are outlined in black on all plots. 

With 10,000 larvae included in the model configurations (M2), trajectories of scallop larvae released on 

May 1, 2018, (Figure 292a through c) are overall similar to the ones observed in M1 (1,000 larvae; Figure 

287a through c), with more larvae being transported in the northern part of the study domain. Larval 

connectivity from north to south increases in M2 compared to M1; settlement zones between 38.66o N and 
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37.04o N receive larvae from all the release zones of the study domain and larvae released in the northern 

zones were transported further south. Similar connectivity patterns are observed in M2 compared to M1 

with a decrease in local retention in the northern zones (except zones 1 and 2) and an increase in larval 

settlement success from north to south. Mean connectivity is also consistent across the three scenarios for 

each species (Table 34, Table 35, Table 36). The range of larval dispersal distances in M2 (Figure 292g) 

is similar to M1 (Figure 289a) with most larvae settling within 100 km of their release zone. In M2, 

Scenario 2 increases larval dispersal distances around 50 km range and Scenario 3 increases distances 

around 100 km range. As in M1, the mean larval dispersal distance slightly increases from scenarios 1 to 

3 (from 88.82 km to 89.3 km) and the maximum dispersal is higher in Scenario 1 (495.4 km for Scenario 

1; 465.07 km for Scenario 2; 471.77 km for Scenario 3). Minimum and maximum distances are more 

extreme than in M1, particularly for scenarios 2 and 3 (min = 0.3 km for Scenario 2, 0.73 km for Scenario 

3; max = 465.07 km for Scenario 2, 471.77 km for Scenario 3). Figure 292h, i, and j show that with 

10,000 larvae (M2) the density of successfully settled scallop isn’t as patchy as it was with 1,000 larvae 
(Figure 288a, b, and c). The hot spot is more clearly defined and occurs between 40.0° N and 40.5° N. 
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Figure 296. Scallop trajectories (a, b, c), connectivity matrices (d, e, f), distance distribution (g), and 
successfully settled end location density plot (h, i, j) for 10,000 released larvae (M2). 
Left column (a, d) is scenario 1 (baseline). Plot (b) and (c) are the trajectories for scenario 2 and 3 with the WEAs 
from scenario 3 outlined in red. Plot (e) and (f) are the difference between the connectivity matrices of either scenario 
2 or 3 and scenario 1, respectively, with red reflecting a positive difference and blue a negative difference. 
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12.3.2 Effect of DVM on Larval Connectivity 

When including DVM (model configuration M3), the trajectories between the three species are 

comparable. Figure 293 only shows the trajectories of all larvae released on May 1, 2018. Scallop and 

surfclam larval trajectories follow a similar path with more scallop larvae transported to the eastern model 

boundary than surfclam (Figure 293). Sea bass larvae do not travel as far south in Scenario 3 compared to 

scenarios 1 and 2. Compared to the model without DVM (M1; Figure 287), most larvae released in the 

northern areas (above 40o N) were transported further offshore with scallop larvae reaching the southern 

boundary of the study domain, surfclam larvae being transported to around 38o N, and sea bass larvae 

being transported to around 39o N. With DVM, larvae trajectories stopped before the southernmost 

WEAs. 

Looking at settlement density, scallop with DVM (simulation M3, Figure 294a, b, and c) shows a higher 

density of larvae around 39.0° N for all scenarios. This is further south than simulation M1 (Figure 288a, 

b, and c). There are less gaps in the density map for all three scenarios than the M1 case, highlighting the 

reduction in patchiness of scallop settlement with DVM. Surfclam (Figure 294d, e, and f) has relatively 

consistent larval density throughout the domain across the scenarios with slightly higher density on the 

edge of the zone definitions. Sea bass (Figure 294g, h, and i) shows a relatively consistent larval density 

across the domain, with slightly increased density further offshore. There is higher density further south 

in scenario 3 than scenario 1.  

DVM increased the similarity of the distribution of the larval dispersal distances between species (Figure 

295). With DVM, larval dispersal distances are more evenly distributed across a wider range of distances 

compared to those without DVM showing higher frequency near shorter distances (Figure 289). The 

maximum frequency of larval dispersal distances is lower with DVM compared to without, with a broader 

peak spread over 100–200 km for sea scallop and 50–125 km for surfclam and sea bass. A large 

percentage of scallop larvae (82%) settle between 25 and 200 km from their release areas. Similarly, a 

large proportion of surfclam larvae (77%) and sea bass larvae (75%) settle between 15 and 150 km from 

their release areas. For the three species, larvae settle further with Scenario 3 than with scenarios 1 and 2, 

particularly for distances longer than 100km. Across all the species, Scenario 2 has the lowest mean 

dispersal distance (Table 34, Table 35, Table 36). For all scenarios, the mean dispersal distance is greater 

with DVM than without (e.g., for surfclam and Scenario 3: 48.18 km without DVM and 87.6 km with 

DVM), and for scenarios 2 and 3, maximum dispersal distance is greater for larvae with DVM than 

without.  

When including DVM, larval connectivity largely increases for all the species (Figure 296). In Scenario 1, 

the larval settlement success in zone 4 is multiplied by around seven for sea scallop and is double for 

surfclam and sea bass compared to M1 (Figure 296a, d, g). The hotspot of larval connectivity is larger 

compared to M1 with larvae being transported between 40.28o N (zone 3) and 38.61oN (zone 7). Local 

retention of larvae is qualitatively similar in all the zones. The differences in connectivity for scenarios 2 

and 3 are also higher compared to M1. Overall, for Scenario 2, more scallop larvae are successfully 

transported in the northern part of the domain, and local retention increases in the northern zones. For 

surfclam and sea bass, less connectivity is observed except between zones 3 and 6. For Scenario 3, larval 

connectivity increases in the hotspot observed in Scenario 1 for the three species, and local retention 

decreases mainly for surfclam and sea bass. Mean connectivity is higher for larvae with DVM than larvae 

without DVM by six times, and mean connectivity increases from Scenario 1 to 3 (Table 34, Table 35, 

Table 36). Mean connectivity is highest for sea bass with DVM, but all species have a mean connectivity 

of around 3–3.5% with DVM and 0.5–1.5% without DVM. 
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Figure 297. Trajectories over time for all larvae released on May 1, 2018 with DVM (simulation M3). Top 
row (a, b, c) sea scallop, middle row (d, e, f) surfclam, and bottom row (g, h, i) sea bass. 
WEAs from Scenario 3 outlined in red in each plot. Left-most column (a, d, g) is the base scenario (no turbines), 
middle column (b, e, h) is Scenario 2 (partial buildout), and right-most column (c, f, i) is full buildout. 
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Figure 298. Density of all successfully settled larvae for simulation M3.  
This image is a zoomed in portion of the total domain near the northern WEAs. 
Top row (a, b, c) sea scallop, middle row (d, e, f) surfclam, and bottom row (g, h, i) sea bass. WEAs from scenario 3 
are shown with red outlines in each plot. Left column (a, d, g) is scenario 1 (no turbines), middle column (b, e, h) is 
scenario 2 (partial buildout), and right column (c, f, i) is scenario 3 (full buildout). 
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Figure 299. Distance between larvae release and settle for Scenario 1 (baseline, no turbines, white), 
Scenario 2 (partial buildout, light shading), and Scenario 3 (full buildout, dark shading). 
For sea scallop (a, greens), surfclam (b, blues), and sea bass (c, reds) with DVM (simulation M3). 
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Figure 300. Connectivity matrix for each species with DVM (simulation M3); top row (a, b, c) is sea 
scallop, middle row (d, e, f) is surfclam, and bottom row (g, h, i) is sea bass. 
Left column (a, d, g) is the connectivity matrix for the Scenario 1 (baseline). Center (b, e, h) and right columns (c, f, i) 
are the difference between the connectivity matrices of either Scenario 2 or 3 and Scenario 1, respectively, with red 
reflecting a positive difference and blue a negative difference. 

12.3.3 Effect of Temperature Tolerance on Larval Connectivity 

When including larval temperature dependence for sea scallop (model configuration M4), most larvae 

released on May 1, 2018 exhibit short trajectories (Figure 297a, b, and c), likely due to their narrow range 

of temperature tolerance (10 to 18° C; see Table 32). In scenarios 2 and 3, some trajectories are longer. 

Figure 298a, b, and c shows that significantly less scallop successfully settle in the northern portion of the 

study domain with temperature dependence (M4) than without it (M1, Figure 288a, b, and c). There is not 



 

327 

 

much discernable difference between the three scenarios. Larval dispersal distances (Figure 299a) range 

from 0 to 250 km for sea scallop. In Scenario 1, the distance distribution for less than 50 km is uniform, 

whereas in scenarios 2 and 3, it steadily declines with increasing distance. Typically, scallop larval 

dispersal distances in scenarios 2 and 3 are greater than those in Scenario 1. Larval connectivity also 

decreases with only two spots of connectivity observed, one between 40.48oN and 39.91oN (zones 1 to 4) 

and one between 38.66o N and 37.5o N (zones 7-10) (Figure 300a, b, c). The difference in connectivity is 

low for scenarios 2 and 3 compared to Scenario 1 with higher larval settlement success of scallop 

observed in the northern connectivity spot and more larvae that settled in 39.45o N (zone 5). When larval 

temperature dependence is included in the model, the mean dispersal distance, maximum dispersal 

distance, and mean connectivity are low compared to the other simulations by 50% or more (Table 34). 

There is no significant difference between the three scenarios for the temperature dependence case, except 

that the maximum dispersal distance is higher for Scenario 3 than for scenarios 1 or 2. 

When including larval temperature dependence for surfclam (model configuration M4), larvae similarly 

have short trajectories. Surfclam settled larval density (Figure 298d, e, and f) is much less dense with 

temperature dependence than without (M1, Figure 288d, e, and f). Larval dispersal distances (Figure 

299b) range from 0 to 200 km for surfclam. All three scenarios follow a right-skewed normal distribution; 

the frequency of observations increases to 25 km and then steadily decreases for greater distances. 

Typically, larval dispersal distances in scenarios 2 and 3 are greater than those in Scenario 1. Mean 

dispersal distance is similar between the M4 and the model including passive behavior (M1) (Table 35). 

The connectivity matrices for surfclam larvae with a temperature dependence (Figure 300d, e, f) appear 

much more similar to the connectivity matrix with passive behavior included in the model (Figure 290d, 

e, f; configuration M1). With the temperature dependence, the connectivity hotspot occurs in zone 5 

(latitude 40° N) and there is high local retention for many of the zones in Scenario 1. Scenario 2 increases 

local retention in zone 10 and there is less larval connectivity from zone 6 to zone 5. In Scenario 3, local 

retention decreases in zone 9, with a slight increase in settlement success in the surrounding zones. Mean 

connectivity is lower for simulation M4 than simulation M1 by a factor of 5 or M3 by more than an order 

of magnitude (Table 35). 

Sea bass trajectories when larvae temperature dependence is included in the model (M4) are longer than 

for sea scallop or surfclam (Figure 297g, h, i). There are more trajectories around 40° N in Scenario 1 

than in Scenario 2 or 3, otherwise the trajectories are similar across the scenarios. The sea bass larval 

density with temperature dependence (Figure 298g, h, and i) appears very similarly to how it did without 

temperature dependence (Figure 288g, h, and i). The sea bass dispersal distances (Figure 299c) follow a 

similar pattern to surfclam Figure 299b): the frequency of observations increases from 0 to 50km and then 

steadily decreases. Larval dispersal distances in scenarios 2 and 3 are greater than those in Scenario 1. 

The upper bound of distance is higher for sea bass than the other species (300 km). Mean dispersal 

distance is lower for sea bass with temperature dependence (configuration M4) than with passive behavior 

(M1, by about 10 km) or DVM (M3, by about 30 km) (Table 36). The connectivity of sea bass larvae with 

temperature dependence (Figure 300g, h, i) shows a hotspot of connectivity from release zones 2 and 3 to 

settlement zones 3 and 4, which is a slightly expanded hotspot from when passive behavior is included 

(M1) (Figure 290g, h, i). Introducing WEAs reduces connectivity for scenarios 2 and 3. Mean 

connectivity for temperature-dependent sea bass larvae (M4) is more than half that of the passive (M1) 

and a fifth of the DVM (M3) (Table 36). 
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Figure 301. Trajectories over time for all larvae released on May 1, 2018 with temperature dependence 
(simulation M4). 
Top row (a, b, c) sea scallop, middle row (d, e, f) surfclam, and bottom row (g, h, i) sea bass. WEAs from Scenario 3 
outlined in red in each plot. Left-most column (a, d, g) is the base scenario (no turbines), middle column (b, e, h) is 
Scenario 2 (partial buildout), and right-most column (c, f, i) is full buildout. 
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Figure 302. Density of all successfully settled larvae for simulation M4.  
This image is a zoomed in portion of the total domain near the northern WEAs. 
Top row (a, b, c) sea scallop, middle row (d, e, f) surfclam, and bottom row (g, h, i) sea bass. WEAs from scenario 3 
are shown with red outlines in each plot. Left column (a, d, g) is scenario 1 (no turbines), middle column (b, e, h) is 
scenario 2 (partial buildout), and right column (c, f, i) is scenario 3 (full buildout). 
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Figure 303. Larval dispersal distance between larvae release and settlement for Scenario 1 (baseline, no 
turbines, white), Scenario 2 (partial buildout, light shading), and Scenario 3 (full buildout, dark shading). 
For sea scallop (a, greens), surfclam (b, blues), and sea bass (c, reds) with temperature dependence (simulation 
M4). 
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Figure 304. Connectivity matrix for each species with temperature dependence (simulation M4); top row 
(a, b, c) is scallop, middle row (d, e, f) is surfclam, and bottom row (g, h, i) is sea bass. 
Left column (a, d, g) is the connectivity matrix for the Scenario 1 (baseline). Center (b, e, h) and right columns (c, f, i) 
are the difference between the connectivity matrices of either Scenario 2 or 3 and Scenario 1, respectively, with red 
reflecting a positive difference and blue a negative difference. 

12.3.4 Effect of DVM and Temperature Tolerance on Larval Connectivity  

When including DVM and larval temperature dependence for scallop (model configuration M5), most 

larvae released on May 1, 2018 exhibit short trajectories (Figure 301a, b, and c), likely due to their narrow 

range of temperature tolerance (10 to 18° C; see Table 32). However, trajectories extend further south for 

scallop with DVM and temperature dependence (Figure 301a, b, and c) compared to passive larvae with 

temperature dependence only (Figure 297a, b, and c). Figure 302a, b, and c show even less larval density 

for scallop with DVM and temperature dependence (simulation M5) than just temperature dependence 
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(Figure 298a, b, and c, M4). Larval dispersal distances (Figure 303a) range from 0 to 225 km for scallop. 

For all scenarios, the distance distribution is bimodal: peaks occur between 25–50 km and 75–150 km. 

This matches the trajectories (Figure 301), larvae either move short distances or medium distances. 

Typically, scallop larval dispersal distances in scenarios 2 and 3 are greater than those in scenario 1. 

Larval connectivity also decreases with only two spots of connectivity observed, one between 40.48° N 

and 39.91° N (zones 1 to 4) and one between 38.66° N and 38.0° N (zones 6–7) (Figure 304a, b, c). The 

difference in connectivity is low for scenarios 2 and 3 compared to scenario 1 with higher larval 

settlement success of scallop observed in the northern connectivity spot and more larvae that settled in 

39.91° N (zone 4) released from zone 1 but less larvae released from zone 1 settling in zones 2 and 3. 

When DVM and larval temperature dependence is included in the model, mean connectivity is slightly 

lower than larval temperature dependence alone (M4 vs M5 in Table 34), whereas the min, mean, and 

max dispersal distances are all higher than simulation M4. Between the three scenarios for the DVM and 

temperature dependence case, the mean dispersal distance is higher for scenarios 2 and 3 than for scenario 

1 and mean connectivity is reduced for scenario 3 than scenarios 1 or 2.  

When including DVM and larval temperature dependence for surfclam (model configuration M5), larvae 

similarly have short trajectories (Figure 301d, e, and f), similar to when larval temperature dependence 

only is included (Figure 297d, e, and f). Surfclam show a decrease in larval density with DVM and 

temperature dependence (M5, Figure 302d, e, and f) than just temperature dependence (M4, Figure 298d, 

e, and f). Larval dispersal distances (Figure 303b) range from 0 to 250 km for surfclam. All three 

scenarios follow a right-skewed normal distribution; the frequency of observations increases to 25 km and 

then steadily decreases for greater distances. Typically, larval dispersal distances in scenarios 2 and 3 are 

greater than those in scenario 1, but very slightly. Mean dispersal distance is similar between M5 and the 

model including DVM (M3) (Table 35). The connectivity matrices for surfclam larvae with DVM and 

temperature dependence (Figure 304d, e, f) appear similar to the connectivity matrix with DVM behavior 

included in the model (Figure 296d, e, f; configuration M3). With DVM and temperature dependence, the 

connectivity hotspot occurs in zone 2 (latitude 40.5° N) and there is high connectivity moving southward. 

Scenario 2 increases local retention in zones 4–6 and there is less larval connectivity from zone 2 to zone 

3. In scenario 3, local retention decreases in zones 2–4, with a slight increase in settlement success in the 

surrounding zones, especially from zone 4 to zone 6. Mean connectivity is about the same for simulation 

M5 as simulation M1 (Table 35). 

Sea bass trajectories when DVM and larvae temperature dependence are included in the model (M5) are 

longer than for scallop or surfclam, especially around 37° N (Figure 301g, h, i). There are more 

trajectories around 39° N in scenario 1 than in scenario 2 or 3, otherwise the trajectories are similar across 

the scenarios. Sea bass show a decrease in larval density with DVM and temperature dependence (M5, 

Figure 302g, h, and i) than just temperature dependence (M4, Figure 298g, h, and i). The sea bass 

dispersal distances (Figure 303c) follow a similar pattern to surfclam Figure 303b): the frequency of 

observations increases from 0 to 75 km and then steadily decreases. Larval dispersal distances in 

scenarios 2 and 3 are greater than those in scenario 1. The upper bound of distance is higher for sea bass 

than the other species (300 km). Mean dispersal distance is higher for sea bass with DVM and 

temperature dependence (configuration M5) than with passive behavior (M1, by about 5 km) and lower 

than with DVM (M3, by about 10 km) (Table 36). The connectivity of sea bass larvae with DVM and 

temperature dependence (Figure 304g, h, i) shows a hotspot of connectivity from release zones 2 and 3 to 

settlement zones 3 and 4, which is a slightly expanded hotspot from when passive behavior is included 

(M1) (Figure 290g, h, i) and very similar to when only temperature dependence is included (Figure 300g, 

h, i). Introducing WEAs reduces connectivity for scenarios 2 and 3. Mean connectivity for DVM 

temperature-dependent sea bass larvae (M5) is slightly more than with temperature dependence only (M4, 

Table 36). 
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Figure 305. Trajectories over time for all larvae released on May 1, 2018 with DVM and temperature 
dependence (simulation M5). 
Top row (a, b, c) sea scallop, middle row (d, e, f) surfclam, and bottom row (g, h, i) sea bass. WEAs from scenario 3 
outlined in red in each plot. Left-most column (a, d, g) is the base scenario (no turbines), middle column (b, e, h) is 
scenario 2 (partial buildout), and right-most column (c, f, i) is full buildout. 
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Figure 306. Density map of all successfully settled larvae for simulation M5.  
This image is a zoomed in portion of the total domain near the northern WEAs. 
Top row (a, b, c) sea scallop, middle row (d, e, f) surfclam, and bottom row (g, h, i) sea bass. WEAs from scenario 3 
are shown with red outlines in each plot. Left column (a, d, g) is scenario 1 (no turbines), middle column (b, e, h) is 
scenario 2 (partial buildout), and right column (c, f, i) is scenario 3 (full buildout). 
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Figure 307. Larval dispersal distance between larvae release and settlement for scenario 1 (baseline, no 
turbines, white), scenario 2 (partial buildout, light shading), and scenario 3 (full buildout, dark shading). 
For sea scallop (a, greens), surfclam (b, blues), and sea bass (c, reds) with DVM and temperature dependence 
(simulation M5). 
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Figure 308. Connectivity matrix for each species with DVM and temperature dependence (simulation M5); 
top row (a, b, c) is sea scallop, middle row (d, e, f) is surfclam, and bottom row (g, h, i) is sea bass. 
Left column (a, d, g) is the connectivity matrix for the scenario 1 (baseline). Center (b, e, h) and right columns (c, f, i) 
are the difference between the connectivity matrices of either scenario 2 or 3 and scenario 1, respectively, with red 
reflecting a positive difference and blue a negative difference. 

12.3.5 Summary of Larval Connectivity Statistics 

When comparing model outputs across all simulations (Table 34–Table 36), introducing WEAs does not 

lead to a statistically significant difference for minimum dispersal distance, mean dispersal distance, 

maximum dispersal distance, or mean connectivity for any of the species; all p-value statistics from an 

analysis of variance test are greater than 0.05 (Table 37). The lowest p-value statistics occur for minimum 

dispersal distance of Atlantic surfclam and black sea bass and maximum dispersal distance of black sea 

bass.  
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Table 34.  Summary of results obtained for all model simulations  for Atlantic sea scallop.  

See Table 3 for details. Disp. Dist. is dispersal distance, min is minimum, max is maximum. 

Species and 
Simulations 

Metric Unit Scenario 1 
(Baseline) 

Scenario 2 
(Partial) 

Scenario 3  
(Full) 

Scallop – M1 Min Disp. Dist. km 0.87 1.91 0.54 

Scallop – M1 Mean Disp. Dist. km 88.3 88.8 89.28 

Scallop – M1 Max Disp. Dist. km 494.67 380.57 369.63 

Scallop – M1 Mean Connectivity % 0.46 0.45 0.46 

Scallop – M2 Min Disp. Dist. km 0.09 0.3 0.73 

Scallop – M2 Mean Disp. Dist. km 88.82 88.75 89.3 

Scallop – M2 Max Disp. Dist. km 495.4 465.07 471.77 

Scallop – M2 Mean Connectivity % 0.46 0.45 0.46 

Scallop – M3 Min Disp. Dist. km 1.45 0.83 0.83 

Scallop – M3 Mean Disp. Dist. km 147.03 142.88 146.58 

Scallop – M3 Max Disp. Dist. km 459.87 462.47 460.96 

Scallop – M3 Mean Connectivity % 3.09 3.11 3.21 

Scallop – M4 Min Disp. Dist. km 1.67 1.16 1.38 

Scallop – M4 Mean Disp. Dist. km 41.37 39.37 41.35 

Scallop – M4 Max Disp. Dist. km 132.67 138.93 231.63 

Scallop – M4 Mean Connectivity % 0.03 0.02 0.03 

Scallop – M5 Min Disp. Dist. km 15.69 22.42 19.01 

Scallop – M5 Mean Disp. Dist. km 84.03 91.66 94.55 

Scallop – M5 Max Disp. Dist. km 169.45 214.06 202.49 

Scallop – M5 Mean Connectivity % 0.02 0.02 0.01 

 

Table 35. Summary of results obtained for all model simulations for Atlantic surfclam.  

See Table 3 for details. Disp. Dist. is dispersal distance, min is minimum, max is maximum. 

Species and 
Simulations 

Metric Unit Scenario 1 
(Baseline) 

Scenario 2 
(Partial) 

Scenario 3  
(Full) 

Surfclam – M1 Min Disp. Dist. km 0.38 0.08 0.64 

Surfclam – M1 Mean Disp. Dist. km 45.53 47.52 48.18 

Surfclam – M1 Max Disp. Dist. km 256.56 265.48 285.55 

Surfclam – M1 Mean Connectivity % 0.94 0.95 0.92 

Surfclam – M3 Min Disp. Dist. km 0.46 0.69 0.08 

Surfclam – M3 Mean Disp. Dist. km 85.5 84.39 87.6 

Surfclam – M3 Max Disp. Dist. km 318.31 320.94 319.16 

Surfclam – M3 Mean Connectivity % 3.69 3.62 3.75 

Surfclam – M4 Min Disp. Dist. km 0.59 0.37 1.59 

Surfclam – M4 Mean Disp. Dist. km 41.95 44.12 43.52 

Surfclam – M4 Max Disp. Dist. km 171.2 205.7 200.39 

Surfclam – M4 Mean Connectivity % 0.2 0.19 0.2 

Surfclam – M5 Min Disp. Dist. km 0.69 1.38 1.28 

Surfclam – M5 Mean Disp. Dist. km 75.81 72.66 77.52 

Surfclam – M5 Max Disp. Dist. km 297.54 297.19 310.82 

Surfclam – M5 Mean Connectivity % 0.95 0.93 0.92 
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Table 36. Summary of results obtained for all model simulations  for black sea bass. 

See Table 3 for details. Disp. Dist. is dispersal distance, min is minimum, max is maximum. 

Species and 
Simulations 

Metric Unit Scenario 1 
(Baseline) 

Scenario 2 
(Partial) 

Scenario 3  
(Full) 

Sea bass – M1 Min Disp. Dist. km 1.06 0.3 0.38 

Sea bass – M1 Mean Disp. Dist. km 78.93 80.94 82.88 

Sea bass – M1 Max Disp. Dist. km 339.87 337.36 333.4 

Sea bass – M1 Mean Connectivity % 1.53 1.54 1.54 

Sea bass – M3 Min Disp. Dist. km 0.66 0.41 0.47 

Sea bass – M3 Mean Disp. Dist. km 96.33 94.34 99.37 

Sea bass – M3 Max Disp. Dist. km 306.54 315.11 303.02 

Sea bass – M3 Mean Connectivity % 3.32 3.36 3.52 

Sea bass – M4 Min Disp. Dist. km 0.63 0.94 1.08 

Sea bass – M4 Mean Disp. Dist. km 65.66 65.59 66.93 

Sea bass – M4 Max Disp. Dist. km 286.72 328.87 299.92 

Sea bass – M4 Mean Connectivity % 0.66 0.63 0.61 

Sea bass – M5 Min Disp. Dist. km 0.56 0.46 0.91 

Sea bass – M5 Mean Disp. Dist. km 84.71 83.62 87.66 

Sea bass – M5 Max Disp. Dist. km 299.69 301.47 302.48 

Sea bass – M5 Mean Connectivity % 0.78 0.75 0.73 
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Table 37. P-value statistics for each of the metrics shown in Table 34, Table 35, and Table 36 
calculated over all simulations for each species comparing the variance between the 
hydrodynamic scenarios. 

 A p-value above 0.05 means there is no statistical difference between the three hydrodynamic scenarios for that 
summary statistic for that species. 

Species Min Disp. Dist. Mean Disp. Dist. Max Disp. Dist. Mean Connectivity 

Atlantic sea scallop 0.9652 0.9945 0.9803 0.9995 

Atlantic surfclam 0.5940 0.9878 0.9025 0.9997 

Black sea bass 0.5695 0.9309 0.5943 0.9993 

 

12.4 Discussion 

Larval dispersal models were run for three hydrodynamic scenarios (baseline without WEAs, with partial 

WEA development, and with full WEA development) for each of the three species of interest (Atlantic 

sea scallop, Atlantic surfclam, and black sea bass). These three scenarios were conducted for different 

model configurations that included more larvae released per week (10,000 vs 1,000), larval behavior 

(DVM), and larval temperature dependence.  

For all model simulations and scenarios for the three species, some similar connectivity patterns are 

identified. The model predicts the transport of larvae between their spawning and settlement zones mainly 

from north to south. In the MAB region, the southwestward flow along the continental shelf (Lentz, 2008) 

likely drives the larval connectivity patterns in the region (Zhang et al., 2015) and is captured by the 

hydrodynamic model. A hotspot of larval connectivity is observed for all three species in the northern 

zones of the study area, between 39.9o N and 40.35o N, with also high local retention. Higher larval 

settlement in this region was also observed for sea scallop (Munroe et al., 2018) and surfclam (Zhang et 

al., 2016) larvae compared to the southern regions of the MAB. The higher settlement rate in this region 

indicates a source of larvae for local and southern regions, as proposed by Zhang et al. (2016) for 

surfclam. The hydrodynamic model predicts lower currents in this region (the shelf north of the Hudson 

River canyon), which likely explains the connectivity hotspot.  

Between the three species, the varying bathymetry of the release zones influences larval trajectories. 

Scallop and surfclam larvae are mainly transported along the continental shelf for the three hydrodynamic 

scenarios. Sea bass larvae trajectories are located further from the coast. Compared to scallop and 

surfclam larvae released at the bottom of the water column in the model, sea bass larvae were released all 

along 20–50 m of the water column. This biological characteristic of sea bass and hydrodynamics features 

likely explain their larval distribution in the entire study area even if their larval dispersal duration is 

shorter than scallop and surfclam. Currents weaken with depth; the larvae released near the bottom will be 

influenced by the weakest currents and the ones released higher in the water column will encounter 

stronger currents. For all model configurations, scenarios, and species, larvae are mainly transported 

south and toward the coast. For all species, larvae released in the northern zones, north of 40o N, get 

caught in eddies and remain in the region. Larvae released south of 40o N are transported south and some 

are retained in mesoscale eddies around 36o N and transported offshore to the eastern model boundary or, 

upon exiting the shelf, get entrained into the Gulf Stream and are lost. 

The inclusion of WEAs along the coast in the model suggests relatively similar connectivity patterns in 

the MAB between the three scenarios for each of the three species. However, the model predicted 
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differences at the regional scale, particularly in the zones where WEAs are present, and an increase in 

larval dispersal distances. The effect of WEAs is not uniform along the release zones with both an 

increase and decrease in larval settlement and local retention observed for all the species. In the partial 

WEA scenario, larval connectivity increases in the northern zones. In the full WEA scenario, local 

retention decreases in most of the zones with WEAs, particularly for sea scallop and surfclam in the 

northern zones. The decrease in local retention is associated with increased larval dispersal distances with 

the full WEA scenario, expanding the larval transport from north to south. The noticeable differences in 

larval connectivity patterns with the full WEA scenario could be explained by the larger spatial footprint 

of WEAs compared to the partial scenario, as well as the cumulative impacts of multiple WEAs along the 

coastline (Methratta et al. 2020). While cumulative effects from the operation of multiple large wind 

farms on adult fish are expected to be negligible (Ecology and Environment Engineering, P.C. 2017), 

cumulative hydrodynamic effects on larval dynamics remain uncertain. In our study, larval trajectories 

show that some larvae are transported away from the WEA areas but stay in the study domain. The 

predicted increase in larval dispersal distance and their offshore transport in our model aligns with the 

findings of Chen et al. (2024)’s study, which found that larvae were transported further offshore when 

wind turbines were included in their model. Chen et al. (2024) explained the offshore transport observed 

by the presence of a downwind wake associated with the presence of offshore wind turbines. In our study, 

downstream-depth averaged currents increase where WEAs are present, likely explaining the higher 

dispersal distances observed. 

Larval behavior accentuates the differences in larval connectivity observed with passive behavior when 

WEAs are present. Unlike passive larvae that are dependent on the release location and depth in the 

model, the inclusion of DVM forces the larvae to stay at a given depth range during the entire larval 

dispersal duration. The depth range of DVM tested in the model was very similar for each species 

(between 3 and 20 m), explaining the similarities in larval trajectories and distances compared to without 

behavior. Larval settlement success and mean dispersal distances are higher when DVM is included for 

all the species. With the partial WEA scenario, the larval settlement success between spawning and 

settlement zones did not change significantly overall. A slight decrease in larval supply from the north is 

observed in the northern area for surfclam and a slight increase around 39.9o N is observed for the three 

species. With the full WEA scenario, differences in larval connectivity are mainly observed between 

39.1o N and 40.2o N with a decrease in local retention and an increase in larval transport from north to 

south. The hydrodynamic features related to the presence of WEA turbines (i.e., increase of stratification, 

reduction of mixing, and strong mean depth-averaged tidal residual currents, Figure 224) transport the 

larvae away from their spawning zones, which is also noted by longer larval dispersal distances.  

Including the temperature dependence of larvae in the model significantly decreases the success of 

settlement for all the species. This is particularly observed for sea scallop larvae because of their high 

larval mortality. Scallop larvae have the narrowest temperature tolerance, from 10 to 18° C, contributing 

to their mortality during both colder (April and May) and warmer months (July and August) of the scallop 

spawning season. Surfclam and sea bass larvae have a higher upper-bound temperature tolerance. Their 

survival is then higher in the summer and their overall connectivity is less affected. As observed in the 

other model configurations, a northern hotspot of connectivity is identified for each species. Compared to 

other model configurations, the local retention is higher and larval dispersal distances are shorter. When 

including WEAs, local retention decreases. The survival temperature ranges of larvae are based on 

laboratory studies. In the open ocean, larvae encounter a high variability of temperature. Marine species 

can adapt to temperature changes, to a certain level, and potentially delay spawning events until 

conditions are more favorable (Bonardelli et al., 1996) or tolerate a suboptimal temperature for a short 

period. This is not represented in the model as the model immediately kills the larvae when the 

temperature is outside their survival range. Temperatures tend to increase slightly in the hydrodynamic 

simulations with WEA buildout, which may lead to increased larval dispersal distance with WEAs as 

larvae can survive longer. Regardless of the presence of WEAs, climate change is expected to lead to a 
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change of species distribution in the MAB (Hare et al., 2016; Hofmann et al., 2018). When both larval 

behavior and temperature dependence are included, more settlement success in observed, particularly in 

the northern zones, compared to when larval behavior is not included. DVM forces the larvae to stay 

closer to the surface in the model, where waters are warmer, therefore decreasing the larval mortality. 

When WEAs are included in the model, the main difference observed is a decrease in local retention in 

the northern zones. 

Differences in larval connectivity patterns were noted for sea scallop, surfclam, and sea bass with and 

without the presence of WEAs depending on the biological processes included in the model. Biological 

processes included in the model were based on the available literature. Larval mortality was driven by 

seawater temperature only, but other factors can influence larval mortality such as food availability and 

predation (Morgan, 2020). Because of computing limitations when running a model over a large domain, 

only 1,000 larvae were included in most model configurations (except M2). Although the connectivity 

results are overall qualitatively similar between releasing 1,000 and 10,000 larvae weekly in the model, 

further simulations are needed for all species and scenarios to compare the model sensitivity to the 

number of larvae released. Furthermore, the biophysical model only provides a snapshot of the larval 

dynamics of scallop, surfclam, and sea bass in the MAB. Johnson et al. (2021) performed their model 

simulations for one year and Chen et al. (2024) included three non-consecutive years of hydrodynamics in 

their model. Running the biophysical larval dispersal model over more than a couple of years would 

enable to account for annual variability in hydrodynamic patterns and gain a better understanding of how 

these patterns influence larval connectivity. Increasing the number of modeled years would enable 

assessing the potential of WEAs in the MAB to act as steppingstones (Adams et al., 2014) and evaluating 

their effects on larval spillover into surrounding habitats (Halouani et al., 2020). 
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13 Study Conclusions 

To investigate potential impacts of proposed offshore wind energy development on marine environmental 

conditions of the Mid-Atlantic Bight continental shelf from North Carolina to New York, we developed a 

calibrated and validated modeling system incorporating multiple wind energy areas with clusters of 

individual 15 MW wind turbines on monopile foundations. We treated three modeling scenarios: baseline 

conditions with no wind energy areas; partial buildout, five clusters with 1,852 total turbines at sites in 

publicly available Construction and Operation Plans; and complete buildout, eight clusters with 6,353 

total turbines augmenting the partial buildout to span all lease areas. We examined effects of wind energy 

areas on wind conditions; wave characteristics; oceanographic processes including currents, water 

temperature, stratification, and cold pool evolution; bed shear stress and sediment mobility; and larval 

connectivity for Atlantic sea scallop, Atlantic surfclam, and black sea bass.  

The wind energy areas cause reductions in the wind field within and downwind from clusters of turbines. 

The complete buildout has stronger reductions, which span larger areas, than partial buildout. Owing to 

the thrust vs wind speed curves characterizing the turbines, the deficits are strongest for wind speeds 

between the cut-in speed of about 3 m/s and the speed at which the rated power is reached, about 11 m/s. 

Maximum reductions of climatological wind speed at 10 m height (used to force the model) for complete 

buildout reach about 20% in limited areas within wind energy areas and about 10% on their downwind 

edge. They weaken rapidly with distance from wind energy arrays but can extend up to 100–200 km 

downwind. There is some overlap of wind reductions due to nearby wind energy arrays, depending on the 

orientation of the wind direction relative to the clusters of turbines. Relatively rare and transient maximal 

wind reductions, occurring about 1% of the time, can reach 30–50% for 10 m/s wind speeds, and are more 

widespread across the domain. Golbazi et al. (2022) used 1.33 km-resolution WRF numerical simulations 

to model wind wakes of Mid-Atlantic Bight wind energy areas and reported 10% maximum deficits and 

wake lengths near 50 km downwind, extending up to 150km during days with farm-to-farm interactions. 

Our PyWake-based results have stronger wake effects, which could be because Golbazi et al. used power 

and thrust curves for 10 MW turbines and we used 15MW turbines. 

The wind deficits change wave conditions, with the main effect to reduce the wind-wave component of 

the total wave field. This mainly occurs within the wind energy areas where the wind deficits are strong, 

particularly clusters of turbines aligned with the wind direction, and in areas farther inshore. Median 

significant wave heights are reduced by up to 4 cm and 7 cm for the partial and complete build-out 

scenarios, respectively, which is about 5% of climatology or less in the wind energy areas nearer to the 

coast and relatively less further offshore. These results are consistent with the 3.5% max reduction and 

reductions reaching about 50km downstream reported in Fischereit et al. (2022) and Bärfus et al. (2021) 

for smaller turbines (5–10MW) than in the present study. We also find reduced wind-waves cause swell 

to be a relatively larger contribution to the total wave field, so dominant wave periods in the most 

strongly affected areas increase slightly by 0.16 s. In general, these effects are stronger and occur over a 

larger area for complete buildout than partial buildout. 

Oceanographic circulation processes also are changed by wind energy arrays. In this study, the effect of 

wind deficits has the dominant influence, with the effects of monopile turbine foundations more minor; 

for the latter, this study chose parameterization using a CD (hydrodynamic drag) equation available in 

Delft3D (Delft, 2023), with CD values based on CFD model experiments from Johnson et al. (2021). 

These results differ from the findings of Chen et al. (2024) for the area just to the northwest of this study, 

which found that water column vortex shredding from the monopile foundations was the dominant effect 

on ocean circulation. It should be noted however that wind wake calculation subgrid methodologies (1km 

subgrid Delft with PyWake here compared to > 1m FVCOM with 1km subgrid WRF in Chen et al., 

2023), turbine specifications (larger 15MW turbines here versus smaller 10MW ones with simplified 

thrust in Chen et al., 2024), and domains (NY to NC here vs RI to MA in Chen et al., 2024) differ 
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between the two studies. It should also be noted that Chen et al. (2024) calculated much smaller wind 

wakes with their subgrid WRF-based study: maximum 0.2–0.3m/s deficits and size about the length of a 

wind farm. Their findings were similar in spatial scale to the ones produced in Golbazi et al. (2022) and–
through other methods–used in Johnson et al. (2021). However, those findings appear to differ from other 

studies and experiments including SAR and LiDAR data in the literature that show larger and longer wind 

wake deficits more similar to the present study (e.g., Christiansen et al. 2013, Platis et al. 2018, Fischereit 

et al. 2021, Christiansen et al. 2022, Raghukumar et al. 2022, Cañadillas et al. 2022). The latter group of 

studies, for lower power turbines than the ones consider here, show wind-wake length scales exceeding 

50 km downstream of farms and 30% reductions at 10m/s wind speeds (3 m/s), especially during stably 

stratified atmospheric conditions (mostly during spring and summer in the MAB, Debnath et al., 2021). 

Our results indicate that wind farms cause statistically significant changes in annual- and seasonal-mean 

winds; surface heat fluxes; surface and bottom temperatures; surface, bottom, and vertical-mean currents; 

water column stability; and thermocline depth. Scenario results indicate wind energy areas cause 50th, 

95th, and 99th percentile total current (not low-pass filtered) speeds to decrease modestly (less than 2 

mm/s on the median, less than 1 cm/s on the upper percentiles), with smaller-magnitude (less than 1 cm/s) 

local increases also seen especially shoreward of the northern wind energy areas along the NY Bight and 

NJ coast at the 99th percentile level. 

The main characteristic of Mid-Atlantic Bight general circulation is a 2–12 cm/s alongshore southward 

flowing mean current over the shelf, driven mainly by the southward regional alongshore pressure 

gradient and influenced by wind stress (Lentz, 2010; Chen and Yang, 2024). The Scenario 2 and 3 tidal 

residual, low-passed, mean current vectors of the southward general circulation strengthen along the wind 

energy areas. These changes appear to be due to alterations in larger-scale circulation patterns resulting 

from wind wake effects, rather than increased turbulence and mixing around the turbine foundations. A 

consistent interpretation is that weaker winds due to wind energy areas shift the dynamical balance of 

alongshore flow to enhance its southward component. Another feature in the scenario results is increased 

horizontal shear of currents, due to weakening of southward flow adjacent to wind energy areas where it 

has increased. 

In the two scenarios with reduced winds due to wind energy area buildout, surface temperatures are 

higher over most of the domain, and the thermocline shoals, both characteristics that are consistent with 

suppressed wind-driven vertical turbulence in the surface mixed layer. The strength of the seasonal 

thermocline increases, with surface to bottom temperature stratification increasing in the full buildout 

scenario by as much as 1° C in certain areas during summer. These scenarios also have higher bottom 

temperatures at the New Jersey shelf. These changes affect the seasonal cold pool formation and 

evolution, but do not fundamentally alter it. Consistent with these effects, statistical analysis of 

representative stations shows that parameters most likely to have weekly-mean values that differ between 

complete buildout and baseline by more than baseline variability (weekly standard deviations) are 

temperature, near-surface stability, and thermocline depth and strength. In contrast, this is less likely for 

wind speed, current speed, vertical turbulent eddy viscosity, and turbulent kinetic energy. 

Changes in waves and currents due to wind energy areas affect bed shear stress and sediment mobility. 

The main influence is the changes in winds, not currents, even though bottom currents decrease slightly 

within the WEAs. The reductions in waves lead to smaller bed shear stress and sediment mobility, 

particularly within wind energy areas and father inshore. These changes are stronger for complete 

buildout than partial buildout, and most pronounced for the 95th and 99th percentiles of bed shear stress 

and sediment mobility.  

Larval connectivity results for passive larvae under baseline conditions indicate that, for Atlantic sea 

scallop, Atlantic surfclam, and black sea bass, transport occurs from the northern to the southern region of 

the study area consistent with the regional residual currents. The consistent connectivity patterns and the 
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effects of WEAs observed across model configurations suggest that larval connectivity for Atlantic sea 

scallop, Atlantic surfclam, and black sea bass is primarily influenced by hydrodynamic processes in the 

MAB. While the calculated larval connectivity values did not differ significantly between the tested 

hydrodynamic scenarios, the larval dispersal model for these three commercial species predicted reduced 

local retention, especially in the northern region, and increased larval dispersal distances in some regions 

where WEAs are present. These effects are more pronounced with complete buildout compared to partial 

buildout. They are likely due to the alteration of hydrodynamic conditions by wind energy areas, 

including stronger along-shelf flow in some areas, reduced mixing, and increased stratification. The 

increased larval dispersal distances in the presence of WEAs may prevent larvae from settling in habitats 

close to their spawning areas, potentially altering the species’ distribution range over time. Although 

regional connectivity remains qualitatively similar with and without WEAs, the model indicates that 

WEAs have the potential to modify preferred spawning and settlement habitats of scallop, sea bass, and 

surfclam. When adding diel vertical migration behavior in the larval dispersal model, the mean and range 

of larval dispersal distances are larger and mean larval connectivity increases (to about 3.0–3.5% from 

0.5–1.5%), consistent with larvae spending more time higher in the water column where currents are 

generally stronger. Simulations adding temperature-dependent mortality show a decrease in larval 

connectivity due to high mortality, likely because of exposure to a wider range of temperatures than in 

laboratory studies on which threshold temperatures are based.  

Overall, the impact of wind energy areas on marine environmental conditions is stronger for the complete 

buildout scenario, with some exceptions due to variations in local conditions. The changes in waves, bed 

shear stress, and sediment mobility are likely not of sufficient magnitude to be important relative to 

natural variability. Furthermore, because the effects of buildout are more pronounced within wind energy 

arrays and weaker outside them, impacts generally are minor on regionwide water column oceanographic 

processes, for example the seasonal development of stratification, and formation and evolution of the cold 

pool. However, the increases in water temperature and stratification strength are of sufficient magnitude 

to potentially alter ecology, particularly when superposed on climate warming (Georgas et al., 2016, 

Brickman et al., 2021, Wang 2023) that is causing warm-water species guilds to displace cold-water 

guilds northward. The decreased local retention in the NY Bight north of 40°N is consistent with 

formulating a hypothesis of offshore wind development having the potential to change estuarine mouth 

dynamics in the Hudson River bulge recirculation area. More work is needed to fully evaluate the 

importance of the changes identified.  

Data availability: The larval dispersal model is a modification of the original Ichthyop2 . To recreate the 

larval dispersal modeling results in this report, use the following GitHub repository which includes the 

Ichthyop-Delft3D-FM modifications with the hydrodynamic modeling data mentioned above3. Delft 

Model Inputs to Ichthyop for each scenario and Ichthyop model outputs are in the Azure share folder. 
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15 Appendices 

Please see Supplementary File (Volume 2) containing Appendices A, B, C, and D. 
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