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1 Introduction 
Under the Energy Policy Act of 2005, the Bureau of Ocean Energy Management (BOEM) has 
responsibilities for evaluating and mitigating negative impacts of offshore renewable energy activities on 
human, coastal, and marine communities. Furthermore, BOEM requires up-to-date information to address 
potential impacts when developing environmental impact statements and assessments under the National 
Environmental Policy Act regulations. Along the Pacific coast of the contiguous U.S., the states of 
California, Oregon, and Washington are also evaluating siting alternatives for developing offshore energy 
projects within their state waters and adjacent Outer Continental Shelf (OCS) regions (Porter and Phillips 
2016). 

Marine birds (i.e., birds that predominantly feed in marine waters and are well adapted to the marine 
environment [Furness and Monaghan 1987]) can be adversely affected by offshore wind energy 
infrastructure. For example, birds can collide directly with the rotors of wind turbines or experience 
displacement from migration routes or foraging and resting habitats. Therefore, an understanding of 
marine bird spatial distribution and density becomes important when considering development of offshore 
renewable energy resources in an environmentally sound manner. Moreover, experience from onshore 
wind energy development, offshore development in Europe, and recent developments on the Atlantic 
coast of the U.S. indicates that strategic siting of offshore energy infrastructure away from areas of 
concentrated bird activity may eliminate many potential bird-turbine conflicts (de Lucas et al. 2007). 

An important prerequisite for minimizing impacts of offshore wind energy development is knowledge of 
marine bird spatial distributions at sea. Presently, there are extensive marine bird survey datasets that 
provide density estimates along survey transects on the Pacific OCS of the contiguous U.S. (e.g., NCCOS 
2003; Ford et al. 2004; Rintoul et al. 2006; Mason et al. 2007, NCCOS 2007). However, species-specific 
estimates of location and density from these datasets are only relevant to the locations where marine bird 
surveys occurred. In general, the observed distributions of marine birds at sea likely result from 
interactions among behaviors (e.g., foraging) and the environment (e.g., prey distribution) (Ainley et al. 
2005; Ballance et al. 2006; Yen et al. 2006, Ainley et al. 2009). Atmospheric and oceanographic features 
and processes operating across a range of spatial and temporal scales can influence the environmental 
conditions and prey availability experienced by marine birds, and thus ultimately influence their at-sea 
distributions (Oedekoven et al. 2001; Ballance et al. 2006; Ainley et al. 2009; Renner et al. 2013; Goyert 
et al. 2016; Suryan et al. 2016). Consequently, distributions based on observations can be extrapolated to 
areas between survey transects or non-surveyed areas by using models to relate marine bird observations 
with environmental and oceanographic covariates to predict their distribution and density in non-surveyed 
areas. Under certain assumptions, high-resolution maps of predicted density created from these model 
outputs can be used to assess risk for marine birds and guide strategic siting of renewable energy projects 
that minimize negative environmental impacts of offshore wind energy development. 

With the exceptions of Nur et al. (2011) and Dick (2016), previous marine bird spatial modeling efforts 
on the Pacific OCS of the contiguous U.S. were relatively limited in geographic scope (e.g., Clarke et al. 
2003; McGowan et al. 2013; Manugian et al. 2015; Raphael et al. 2015; Studwell et al. 2017). Both Nur 
et al. (2011) and Dick (2016) provided spatially explicit assessments of multispecies abundance covering 
much of the Pacific OCS of the contiguous U.S. However, spatially explicit estimates were not provided 
for individual species. In addition, spatially explicit measures of model uncertainty were not provided, 
limiting the applicability of these studies for risk assessment or spatial planning processes. The National 
Oceanic and Atmospheric Administration (NOAA) National Centers for Coastal Ocean Science 
(NCCOS) has successfully developed high-resolution (1.2–3 km) model-based estimates of marine bird 
distributions and associated maps of uncertainty for multiple geographic regions (e.g., Menza et al. 2016; 
Winship et al. 2016; Winship et al. 2018). Similar high-resolution spatial models of marine bird 
distributions for the Pacific OCS of the contiguous U.S. will provide critical information for renewable 
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energy siting and allow BOEM to evaluate potential environmental effects of management actions and 
apply project decision criteria with respect to marine birds throughout the region in a manner that is 
consistent with other regional evaluations of renewable energy siting. 

This report describes the at-sea spatial distributions of marine birds in Pacific OCS waters off the 
contiguous U.S. (Figure 1.1) to inform marine spatial planning in the region. The goal was to estimate 
long-term average spatial distributions for marine bird species using all available science-quality transect 
survey data and numerous bathymetric, oceanographic, and atmospheric predictor variables. We 
developed seasonal habitat-based spatial models of the at-sea distribution for 33 individual species and 13 
taxonomic groups of marine birds throughout the study region. A statistical modeling framework was 
used to estimate numerical relationships between bird sighting data (i.e., standardized counts) and a range 
of temporal (e.g., Pacific Decadal Oscillation [PDO] index), spatially static (e.g., depth), and spatially 
dynamic (e.g., sea surface chlorophyll-a concentration) environmental variables. The estimated 
relationships were then used to predict spatially explicit long-term average density (individuals per km2) 
throughout the study area for each species/group in each of four seasons. Bird sighting data came from 
multiple scientific survey programs and consisted of at-sea counts of birds collected between 1980 and 
2017 using boat-based and fixed-wing aerial transect survey methods. Spatial environmental variables 
were derived from remote sensing satellite data and an ocean dynamics model. 
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Figure 1.1. Map of the study area showing BOEM’s Pacific OCS Region 
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2 Methods 

2.1 Overview 
A statistical modeling framework was used to relate bird sighting data from historical surveys to a range 
of temporal and spatial environmental predictor variables. The estimated relationships between the counts 
of birds and the predictor variables, after accounting for survey effort, were then used to predict spatially 
explicit long-term average density throughout the entire study area of roughly 1.2 million km2. Separate 
models were developed for each combination of species and season with sufficient data. Seasons 
encompassed four major transitions in environmental conditions in the study region: spring (March 1 to 
May 31), summer (June 1 to August 31), fall (September 1 to November 30), and winter (December 1 to 
February 29). 

2.2 Survey Data 
Twenty-one survey datasets were combined for analyses (Table 2.1 and Appendix A). Data included 
visual at-sea counts of birds collected between 1980 and 2017 from fixed-wing aerial and boat-based 
survey platforms. All surveys except the Northwest Forest Plan Marbled Murrelet Monitoring Program 
Zone 2 used strip transect survey methods (Tasker et al. 1984) with variable strip width to accommodate 
different species, observation conditions, number of observers, and survey-specific protocols (Appendix 
A). Data from the Northwest Forest Plan Marbled Murrelet Monitoring Program Zone 2 were collected 
using line transect survey methods (Burnham et al. 1980). Line transect data were truncated to a strip 
width of 300 m (i.e., observations beyond 150 m on either side of the survey vessel were excluded), 
assuming constant detectability within the strip, so that survey effort could be quantified consistently 
among all datasets. Aerial surveys were conducted using strip widths of 50–150 m and a target elevation 
of 61 m. Boat-based surveys used strip widths of 100–600 m with observation height varying according to 
vessel size and survey-specific protocols. Bird observations were recorded to the lowest taxonomic level 
possible. 

Where possible, transect data were divided into spatially-discrete segments with a target length of 4 km. 
The distance traveled along each segment was calculated using the boat/plane location data assuming 
travel between recorded locations followed a line of constant bearing and speed. Species-specific bird 
counts were summed within each segment and geographically referenced using the geographic midpoint 
of each segment. Data from eight survey programs were obtained pre-segmented and could not be further 
divided (Table 2.1). Pre-segmented data longer than 16 km were excluded from analyses to limit the 
geographic error in bird sightings assigned to each segment midpoint. Segments shorter than 500 m were 
excluded because of a greater probability of extreme values in observed density (i.e., birds per area 
surveyed), especially when large flocks were encountered. 

A total of 108,169 km2 of survey segments were used for analyses with more survey effort during spring, 
summer, and fall than during winter (Table 2.1). Survey effort was variable both interannually and 
spatially (Figures 2.1 and 2.2). Boat-based surveys accounted for nearly 86% of the overall survey effort 
and 98% of survey effort beyond 100 km from shore. 

2.3 Species Modeled 
To the extent possible, species-specific models were developed. However, identification uncertainty for 
some species, mainly from visual aircraft-based surveys, may have increased the probability of species 
misidentification and also resulted in a greater proportion of observations not identified to species (see 
Table 2.2). Therefore, for some species, species-specific observations (e.g., Surf Scoter [Melanitta 
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perspicillata]) were combined with species-nonspecific observations (e.g., unidentified scoter) to create 
broad taxonomic groups prior to modeling. Thirteen taxonomic groups were identified (Table 2.2). In 
these cases, taxonomic group models were developed in place of individual species-level models. 
However, individual species models were developed in addition to taxonomic group models for Pomarine 
Jaeger (Stercorarius pomarinus), Red-throated Loon (Gavia stellata)1, and Common Loon (Gavia 
immer)1. Individual cormorant species models were developed for spring and summer seasons, when 
breeding plumage allowed species to be more easily distinguished. All cormorant observations were 
combined into a single taxonomic group for fall and winter season models. 

For each season, all species/groups with at least 100 segments with sightings were modeled. By these 
criteria, 46 species/groups and 135 species/group-season combinations were modeled based on sightings 
of 1,952,696 individual birds (Table 2.3). These species/groups comprised 12 avian families. The five 
species/group-season combinations with the greatest numbers of segments with sightings were 
Western/Glaucous-winged Gull (Larus occidentalis/glaucescens) in spring (9,204), Short-
tailed/Sooty/Flesh-footed Shearwater (Ardenna tenuirostris/grisea/carneipes) in spring (8,406) and 
summer (7,850), Common Murre (Uria aalge) in spring (7,078), and Western/Glaucous-winged Gull in 
fall (5,475). 

2.4 Predictor Variables 
A wide range of predictor variables were used to model variation in the number of birds observed and to 
predict the spatial distributions of birds throughout the study area (Tables 2.4, 2.5, 2.6, and Appendix 
B). Predictor variables fell into one of six categories: survey, temporal, geographic, bathymetric, 
oceanographic, and atmospheric. 

Survey predictor variables (Table 2.4) were selected to account for variation in counts arising from 
heterogeneity in the type of survey platform, characteristics of the survey platform (e.g., observation 
height), observer identity and expertise, and sighting conditions. These factors influence the probability 
that individual birds will be detected (Heinänen et al. 2017) and correctly identified to the species level. 
Of these factors, only the type of survey platform (aerial or boat) was consistently available for all 
datasets, and thus directly usable as a predictor variable. We attempted to account for the effects of the 
remaining factors through two random-effect predictor variables representing survey identity, or ID, and 
transect ID, respectively. Survey ID was defined as the combination of survey name (see Table 2.1) and 
year of data collection. Transect ID was defined as the combination of survey name and date of data 
collection. 

Temporal predictor variables (Table 2.4) were selected to account for variation in counts through time. 
Day of the year was used to account for changes in the numbers of birds in the study area through time 
within a season (i.e., resulting from migratory movements in and out of the study area). Year was 
included to account for interannual changes in the number of birds in the study area (i.e., resulting from 
changes in population abundance or distributional shifts). Effects of day of the year and year were 
modeled as smooth continuous changes through time. Three climate indices, multivariate El Niño-
Southern Oscillation index (MEI), North Pacific Gyre Oscillation (NPGO; Di Lorenzo et al. 2008) index, 
                                                      

 
1 Previous studies suggest loon species may be particularly vulnerable to displacement impacts from offshore wind 
energy development (Furness et al. 2013; Bradbury et al. 2014; Kelsey et al. 2018; Heinänen et al. 2020). Therefore, 
individual species models were developed for Red-throated Loon and Common Loon. Because Arctic/Pacific Loons 
(Gavia artica/pacifica) accounted for the majority of all loon observations in every season, and especially in spring, 
summer, and fall (see Table 2.2), model outputs for the Loon spp. taxonomic group largely represent Arctic/Pacific 
Loon. 
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and PDO index, were also included as temporal predictor variables to account for interannual and 
intraseasonal variation in counts arising from linkages among the environment, abundance, and 
distribution. Because linkages among climate indices and marine birds are likely indirect, there may be a 
delay in the effects on upper trophic levels (e.g., marine birds). Therefore, two values for each climate 
index were included as predictor variables: the value for the month and year of a given survey segment 
and the value for the same month one year previous to account for possible lagged effects. 

Geographic predictor variables (Table 2.5) were selected to account for variation in counts arising from 
spatial location. Projected longitude and latitude were included as predictor variables and their effects 
were modeled two ways. The first longitude-latitude predictor term allowed for smooth changes in 
numbers across the study area arising from spatial factors not captured by the other predictor variables. 
The second longitude-latitude predictor term was formulated using radial basis functions with the intent 
of capturing some of the spatial autocorrelation in the data after accounting for the effects of other 
predictor variables. Distance to nearest land and nearest submarine canyon, as defined by Harris et al. 
(2014), were also included as geographic predictor variables. 

Bathymetric predictor variables (Table 2.5) were selected to account for variation in counts arising from 
the direct and indirect effects of bathymetry on bird distributions. Fifty-three high-resolution multibeam 
bathymetry datasets (Appendix C) were merged into a single gridded depth dataset with a spatial 
resolution of 100 m. Supplemental depth values from the NOAA Coastal Relief Models (CRMs; NOAA 
NGDC 2003a, 2003b, 2012) and the General Bathymetric Chart of the Oceans (GEBCO) 2014 grid 
(Weatherall et al. 2015) were used where no multibeam data existed. Additional bathymetric variables 
were derived from depth including slope, slope of slope, and planform and profile curvature. Variables 
derived from depth were calculated at both 10-km and 20-km scales by first “smoothing” the 100-m 
resolution depth grid using a Gaussian filter with kernel size equal to these scales (i.e., 10 or 20 km) and 
then performing the relevant calculations using the coarsened depth grid. 

Oceanographic and atmospheric predictor variables (Table 2.6) were selected to account for variation in 
counts arising from the direct and indirect effects of the physical state and dynamics of the ocean and air 
above the ocean as well as biological productivity. Twenty-five oceanographic and atmospheric predictor 
variables were developed from a range of data sources (Table 2.6). Remote sensing data were used to 
quantify chlorophyll-a concentration, turbidity, sea surface height, temperature, Ekman driven upwelling, 
and wind stress. Additional variables were derived from the remotely sensed variables including 
chlorophyll-a front strength and temperature front strength (Cayula and Cornillon 1992; Miller 2009; 
Miller et al. 2015), frequencies of cyclonic and anticyclonic eddy ring structure2, temperature anomaly 
frequency3, and wind stress divergence. Estimates from the HYbrid Coordinate Ocean Model (HYCOM; 
HYCOM Consortium 2018), a global data-assimilating ocean dynamics model, were used to characterize 
water currents, salinity, and mixed layer depth4. 

All of the oceanographic and atmospheric variables that we considered were dynamic. We rendered 
appropriate temporally-composited data for these predictor variables to characterize long-term spatial 
patterns in average values and variability. Data time series ranging in duration from 9 to 35 years were 
used. To characterize average values, monthly mean climatologies among years were developed and then 

                                                      

 
2 Presence/absence of eddy ring structures were identified using Marine Geospatial Ecology Tools version 0.8a64: 
Find Okubo-Weiss Eddies in AVISO DUACS 2014 SSH Product tool (Roberts et al. 2010) in ArcGIS version 
10.4.1 (ESRI 2016). 
3 Temperature anomaly frequency was defined as the proportion of days where the single-day sea surface 
temperature was greater than the monthly climatological mean temperature by more than 1ºC. 
4 Mixed layer depth was defined as the depth at which temperature differed from the surface by ≥0.5ºC. 
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averaged to create seasonal climatologies to match our four predefined seasons (spring, summer, fall, and 
winter). To characterize variability, standard deviations were calculated from the native temporal 
resolution of the corresponding predictor variables. 

Geographic, bathymetric, oceanographic, and atmospheric predictor variables were spatially explicit. 
Each resulting variable was projected onto a standard study grid with a spatial resolution of 2 km and an 
oblique Mercator projected coordinate system (origin: 39ºN 125ºW; azimuth: 75º; scale: 0.9996; geodetic 
datum: WGS84). When the native spatial resolution of a predictor variable was finer than that of the study 
grid, predictor values were averaged within study grid cells. When the native spatial resolution of a 
predictor variable was equal to or coarser than that of the study grid, bilinear interpolation was used to 
derive predictor values at the center of study grid cells. Each survey segment was matched to the predictor 
variable values from the study grid cell that contained the midpoint of that segment. 

Some spatially explicit predictor variables were highly correlated (Figures 2.3 and 2.4). Predictor 
variables were chosen to avoid absolute Spearman correlations (𝑟𝑟𝑠𝑠) greater than 0.9, although each season 
except spring had at least one pairwise absolute correlation greater than 0.9: distance to land and depth 
(summer, fall, winter), distance to land and chlorophyll-a (summer), depth and chlorophyll-a (summer), 
and current speed and salinity (winter). Because of the high correlations between some predictor 
variables, inferences regarding relative variable importance should be made with caution. The accuracy of 
predictions should be less affected by collinearity among predictor variables. 

2.5 Statistical Modeling Framework 
A boosted generalized additive modeling framework (Bühlmann and Hothorn 2007; Hofner et al. 2014) 
was used to estimate relationships between the number of birds observed and the predictor variables. 
Those relationships were then used to predict the estimated density of each species/group throughout the 
study area in each season. Our main objective was to provide accurate predictions so we chose a modeling 
framework that allowed for flexible relationships and multiple interactions between predictor variables 
while accounting for sampling heterogeneity between and within datasets. 

2.5.1 Likelihoods and Model Components 

The number of individuals of a given species/group counted per segment was modeled using zero-inflated 
Poisson (ZIP; Equation 2.1) and zero-inflated negative binomial (ZINB; Equation 2.2) likelihoods to 
account for the overdispersed nature of the count data. Each component (i.e., parameter) of the likelihood 
was modeled as a separate function of the predictor variables (Schmid et al. 2010; Mayr et al. 2012). For 
the ZIP likelihood, the two model components were the probability of an “extra” zero (𝑝𝑝) and the mean of 
the Poisson distribution (𝜇𝜇). The same components were modeled for the ZINB likelihood (with 𝜇𝜇 being 
the mean of the negative binomial distribution) in addition to the dispersion parameter of the negative 
binomial distribution (𝜃𝜃). The probability of an extra zero (𝑝𝑝) was modeled on the logit scale while the 
mean of the Poisson/negative binomial distribution (𝜇𝜇) and the dispersion parameter of the negative 
binomial distribution (𝜃𝜃) were modeled on the log scale. In Equations 2.1 and 2.2, 𝑦𝑦𝑖𝑖 represents the total 
count for segment 𝑖𝑖, 𝒚𝒚 is the vector of counts for all segments, 𝑛𝑛 is the total number of segments, 𝐼𝐼𝑦𝑦𝑖𝑖=0 
and 𝐼𝐼𝑦𝑦𝑖𝑖>0 are indicators of whether 𝑦𝑦𝑖𝑖 is equal to or greater than zero, respectively (i.e., 𝐼𝐼 = 1 when the 
condition is true and 𝐼𝐼 = 0 when the condition is false), and Γ() denotes the gamma function, Γ(𝛼𝛼) =
∫ 𝑡𝑡𝛼𝛼−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑑𝑑∞
0 . 
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2.5.2 Effort Offset 

To account for variation in the lengths and widths of survey segments, an effort offset was included in the 
model. Specifically, the area surveyed per segment was used as an effort offset in the 𝜇𝜇 model 
component, enforcing a proportional relationship between the area surveyed and the expected number of 
individuals counted on a segment conditional on that segment not being an “extra” zero count. Model 
predictions correspond to estimated counts per km2 of survey effort. 

2.5.3 Base-learners 

Within the boosting framework, each model component was modeled as a function of an ensemble of 
“base-learners.” Each base-learner represented a specific functional relationship between a model 
component and one or more predictor variables. We utilized a suite of base-learners each representing 
different predictor variables, and different sets of base-learners were employed for different model 
components (Table 2.7). 

All spatially explicit predictor variables except projected longitude and latitude were included together in 
a single tree base-learner. The trees for that learner had a maximum depth of 5, which allowed for 
interacting effects among the spatially explicit predictor variables. Projected longitude and latitude 
appeared in two base learners, and those variables always entered the model as a pair. The remaining 
survey and temporal predictor variables entered the model individually, either through their own base-
learners or in the case of climate indices one at a time through a tree base-learner with a maximum depth 
of 1. Because our goal was to estimate long-term average patterns of density, our model structure did not 
allow for interactions between temporal and spatial predictor variables. 

2.5.4 Stochastic Gradient Boosting 

Stochastic gradient boosting was used to fit models whereby a sub-sample of the data (80% during tuning, 
see Section 2.5.6, or 67% otherwise) was fitted in each boosting iteration (Friedman 2002). Rather than 
re-sampling the data for each boosting iteration, a set of 25 or 50 random sub-samples was created before 
boosting, and one sub-sample was randomly drawn from this set for each boosting iteration. Mean square 
error was used to select the base-learner that gave the best fit to the gradient in each boosting iteration. 

2.5.5 Boosting Offsets 

Model component estimates were initialized (“offset” in boosting terminology) by fitting an intercepts-
only ZIP or ZINB model with an effort offset to the data (Zeileis et al. 2008; Hofner et al. 2014; Jackman 
2015). The estimated intercepts for each component of that model were used as the boosting offsets. 

2.5.6 Tuning of Learning Rate and Number of Boosting Iterations 

A stratified (by transect ID) 5-fold cross-validation approach was used to determine the number of 
boosting iterations (𝑀𝑀) and component-wise learning rates that resulted in the best predictive 
performance. Three different learning rates were considered for each model component: 0.001, 0.01, and 
0.1. For each unique combination of component-wise learning rates and cross-validation fold the model 
was fit to the in-bag data (i.e., 80% of the data), and 𝑀𝑀 at which the negative log-likelihood of the out-of-
bag data (i.e., 20% of the data) was minimized was determined. This cross-validation was repeated four 
times. For each combination of component-wise learning rates the optimal 𝑀𝑀 and their corresponding 
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performance were averaged among cross-validation folds and replicates. Finally, the combination of 
component-wise learning rates with the best average performance and its corresponding average optimal 
𝑀𝑀 were identified. The maximum 𝑀𝑀 allowed was 20,000, so models with 𝑀𝑀 near 20,000 should be 
interpreted with caution as their performance may have improved with additional boosting iterations. 

2.5.7 Model Performance and Selection 

Both a ZIP and ZINB model were fitted for each species/group-season combination. The performance of 
the two models was evaluated from a suite of six performance metrics. The first performance metric was 
percentage of deviance explained (PDE), which is a measure of the percentage of variation in the data 
explained by the fitted model beyond the amount of variation explained by a simpler model without 
predictor variables. PDE indicates overall model fit and is somewhat analogous to the 𝑅𝑅2 metric for a 
linear regression. The second performance metric was the area under the receiver operating characteristic 
curve (AUC), which indicates how well a model predicts binary data. We calculated AUC by converting 
the count data to presence/absence data. The AUC metric indicates how well the models predicted the 
observed presence of a species/group, but not necessarily how well the models predicted the count of a 
species. The third performance metric was the Gaussian rank correlation coefficient (𝑟𝑟𝐺𝐺) (Boudt et al. 
2012; Bodenhofer et al. 2013) between the observed and predicted data. This metric indicates how well 
the model predictions for each segment correlate with the number of individuals counted. The fourth and 
fifth performance metrics were the median absolute residual error (AE) and mean AE, expressed as a 
proportion of the mean observed value (i.e., mean count). The last performance metric was root mean 
square error (RMSE), the square root of the average squared residual error. 

It is important to recognize that the model performance metrics mainly reflect the statistical fit of the 
models to the data. They reflect only the data that were analyzed, and they do not reflect the quality of 
model predictions away from the data. For example, the survey data did not cover the full extent of the 
study area, so some model predictions are essentially interpolations/extrapolations from data in other parts 
of the study area. The accuracy of those predictions is not necessarily reflected by the model performance 
metrics. Nevertheless, the performance metrics give an indication of how accurately a model was able to 
predict the observed data, and higher performance provides a measure of increased confidence in the 
modeled distributions, especially within the temporal and spatial coverage of the observed data. 

The values of each of these performance metrics were ranked5 for the two models applied to each 
species/group-season combination, and the model with the lowest sum of ranks for these performance 
metrics was chosen as the final selected model. In the case of a tie, the model with the greatest PDE was 
selected. 

2.5.8 Spatial Prediction 

The final selected model of each species/group and season was used to predict density throughout the 
study area. It is important to recognize that the model predictions do not represent absolute density. 
Furthermore, the predicted densities for each species/group and season are not directly comparable among 
species/groups and seasons. During visual surveys, individual birds may be missed either because they are 
below the surface of the water (availability bias) or simply because observers failed to notice them 
(perception bias) (Barlow 2015). The failure to count some individuals biases estimates of density 
downward relative to absolute density. Animal movement can also bias estimates of density. For example, 
birds may be attracted or repelled by ships, small boats, and planes biasing estimates upward or 
downward, respectively. Flying birds can also bias estimates, with the direction of the bias depending on 

                                                      

 
5 Lower rank value corresponded to better performance. 
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the speed and direction of the animals’ movement relative to those of the survey platform (Spear et al. 
1992). Furthermore, non-randomized survey data can result in biased estimates of abundance and density 
in species distribution models (Conn et al. 2017). Therefore, our model predictions should only be 
interpreted as indices of absolute density, proportional to the expected number of individuals per km2, but 
not representative of the actual number of individuals per km2. 

The predicted density in a given grid cell corresponds to predictions for a segment whose mid-point falls 
within that grid cell. Spatially explicit predicted values were calculated for each cell of the study grid 
from the values of the spatially explicit predictor variables for that cell. Temporal predictor variables (i.e., 
year, day of year, climate indices) were set to their mean values in each season. The predictions integrated 
the zero-inflated and Poisson/negative binomial components of the likelihood. 

2.5.9 Variable Importance 

We calculated the relative importance of each predictor variable in the final selected models by summing 
the decrease in the negative log-likelihood in each boosting iteration attributable to that predictor variable. 
Thus, variable importance reflects the frequency with which a given predictor variable occurred in the 
selected base-learners across boosting iterations and that variable’s ability to explain variation in the data 
when it was selected. When multiple predictor variables occurred in the selected base-learner for a given 
boosting iteration, the decrease in the negative log-likelihood was divided evenly among those predictor 
variables. Relative variable importance was re-scaled so that it summed to 1 across predictor variables. 

2.5.10 Uncertainty 

Uncertainty in model predictions was estimated using a non-parametric bootstrapping framework. For 
each bootstrap iteration, the set of unique transect IDs was resampled with replacement, and the data for 
each transect ID were assigned weights proportional to the frequency of that ID in the sample. These 
weights were then applied when fitting the model during that bootstrap iteration. Predictor variables that 
were not included in the final selected model were excluded from the bootstrap analysis. Two hundred 
bootstrap iterations were conducted producing a sample of predictions from which we calculated means, 
standard deviations (as an estimate for standard error), coefficients of variation, 5%, 25%, 50%, 75%, and 
95% quantiles, and 50% and 90% confidence interval widths to characterize uncertainty in the 
predictions. The 50% and 90% confidence intervals were defined as the intervals between the 25% and 
75% quantiles and between the 5% and 95% quantiles, respectively. 

As with the model performance metrics, the estimated uncertainty in the model predictions is conditional 
on the model and the data. It does not capture all of the uncertainty associated with our model predictions. 
Nevertheless, the estimated uncertainty is an important indication of the precision of the model 
predictions, and it should be an integral consideration when using the model predictions. 

The median value (i.e., 50% quantile) of the bootstrapped predictions was generally better (e.g., smoother 
density gradients and fewer artifacts) than both the mean of the bootstrapped predictions and the non-
bootstrapped predictions, so we chose the median of the bootstrapped predictions as the best 
representation of the predicted spatial distributions of density. 

2.5.11 Implementation 

The analysis was conducted with R version 3.6.0 64-bit (R Core Team 2019) running under CentOS 
Linux 7 using custom scripts that relied on multiple R packages, including boot version 1.3-17 (Davison 
and Hinkley 1997; Canty and Ripley 2015), DBI version 0.3.1 (R Special Interest Group on Databases 
2014), fields version 8.2-1 (Nychka et al. 2015), gsubfn version 0.6-6 (Grothendieck 2014a), lattice 
version 0.20-31 (Sarkar 2008), maps version 3.3.0 (Becker et al. 2018), maptools version 0.8-36 (Bivand 
and Lewin-Koh 2015), MASS version 7.3-42 (Venables and Ripley 2002), Matrix version 1.2-17 (Bates 
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and Maechler 2019), mboost version 2.4-2 (Bühlmann and Hothorn 2007; Hothorn et al. 2010; Hothorn 
et al. 2015), mgcv version 1.8-28 (Wood 2011, 2017), modeltools version 0.2-21 (Hothorn et al. 2013), 
mvtnorm version 1.0-2 (Genz and Bretz 2009; Genz et al. 2014), nlme version 3.1-139 (Pinheiro et al. 
2019), party version 1.0-21 (Hothorn et al. 2006), pROC version 1.8 (Robin et al. 2011), proto version 
0.3-10 (Kates and Petzoldt 2012), pscl version 1.4.9 (Jackman 2015), raster version 2.4-15 (Hijmans 
2015), reshape version 0.8.5 (Wickham 2007), rgdal version 1.0-4 (Bivand et al. 2015), rgeos version 
0.3-11 (Bivand and Rundel 2015), rococo version 1.1.2 (Bodenhofer and Klawonn 2008; Bodenhofer et 
al. 2013), RSQLite version 1.0.0 (Wickham et al. 2014), sandwich version 2.3-3 (Zeileis 2004, 2006), sp 
version 1.1-1 (Pebesma and Bivand 2005; Bivand et al. 2013), spam version 1.3-0 (Furrer and Sain 2010; 
Gerber and Furrer 2015), sqldf version 0.4-10 (Grothendieck 2014b), stabs version 0.5-1 (Hofner and 
Hothorn 2015; Hofner et al. 2015), strucchange version 1.5-1 (Zeileis et al. 2002), VGAM version 0.9-8 
(Yee 2015), and zoo version 1.8-6 (Zeileis and Grothendieck 2005). 

2.6 Map Display 
Spatial predictions within the study area are displayed as a pair of maps for each species/group and season 
(Figure 2.5). The first map for each species/group and season displays the predicted density (median 
value of bootstrapped predictions), and the second map displays the coefficient of variation (CV) of 
predicted density, both at a 2-km spatial resolution. The first map also contains an inset map of observed 
density: the total count divided by the total area surveyed at a 10-km spatial resolution. 

Color ramps are employed to visualize spatial variation in values throughout the study area. For predicted 
density, the colors range from blue (lower density) to red (higher density), and for the CV the colors range 
from light orange (lower CV, more precise) to dark orange (higher CV, less precise). For each predicted 
density map, the color gradient was based on predicted density values on the natural logarithmic scale. 

A histogram is included next to the color bar in each map to show the relative frequency of each color 
represented within the study area. This can be useful when attempting to link the color shown at a specific 
location on the map to its corresponding predicted density value listed to the right of the color bar. 

Both maps also display two semi-transparent overlays indicating areas with spatial extrapolations. The 
lighter gray overlay (labeled, “No survey effort”) indicates areas without survey effort at a 10-km spatial 
resolution. The darker gray overlay (labeled, “Predictor extrapolation”) indicates areas where the values 
of one or more spatial predictor variables were beyond the range of values used in fitting the model. Only 
the spatial predictor variable values at grid cell locations with survey effort were used to fit the models; 
therefore, predictions based on values beyond these ranges are considered extrapolations. Spatial 
extrapolations should be interpreted with caution. 

Maps were created using QGIS version 3.10.9 (QGIS.org 2020). 
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Figure 2.1. Total area surveyed each year 
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Figure 2.2. Total area surveyed each season within the study area 
Area surveyed is summarized into 10 x 10 km grid cells and does not necessarily represent unique area surveyed; 
some surveys covered similar areas over multiple days, months, or years. Color gradient is linear on the natural 
logarithmic scale. White areas represent no survey effort.
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Figure 2.3. Spearman correlation matrix for spatial predictor variables used in spring (above diagonal) and summer (below diagonal) 
models 

Positive correlations are shown in red, negative correlations in blue, with the strength increasing relative to the shading. Correlation coefficients are only displayed 
for values greater than 0.7 or less than -0.7. 
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Figure 2.4. Spearman correlation matrix for spatial predictor variables used in fall (above diagonal) and winter (below diagonal) models 
Positive correlations are shown in red, negative correlations in blue, with the strength increasing relative to the shading. Correlation coefficients are only displayed 
for values greater than 0.7 or less than -0.7. 
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Figure 2.5. Example maps of predicted density (left panel) and coefficient of variation (right panel) for one species (Rhinoceros Auklet 
[Cerorhinca monocerata]) and season (summer) 
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Table 2.1. At-sea survey data used for analyses 

  Year Area Surveyed (km2) 
Survey Name Platform Start End Spring Summer Fall Winter Total 

Applied California Current Ecosystem Studies (ACCESS) boat 2010 2015 172 679 480 0 1,331 

California Cooperative Oceanic Fisheries Investigations (CalCOFI)a boat 1987 2015 14,595 13,953 10,205 9,358 48,111 

California Current Cetacean and Ecosystem Assessment Survey (CalCurCEAS) boat 2014 2014 0 907 2,275 231 3,414 

California Seabird Ecology Study (CDAS dataset code: SBECOL)a aerial 1985 1985 200 0 0 0 200 

Collaborative Survey of Cetacean Abundance and the Pelagic Ecosystem (CSCAPE) boat 2005 2005 0 2,176 2,702 166 5,044 

Equatorial Pacific Ocean Climate Studies (EPOCS)a boat 1980 1995 350 109 258 681 1,397 

Juvenile Salmon Ocean Ecosystem Survey (JSOES) boat 2005 2017 396 836 0 0 1,232 
Marine Mammal and Seabird Surveys of Central and Northern California  
(CDAS dataset codes: CLALL1 and CLALL2)a aerial 1980 1983 1,560 1,475 1,459 1,571 6,065 

Northwest Forest Plan Marbled Murrelet Monitoring Program Zone 2 boat 2000 2013 903 3,396 0 0 4,299 

Northwest Forest Plan Marbled Murrelet Monitoring Program Zones 3-5a,b boat 2000 2017 245 1,516 0 0 1,761 

Olympic Coast NMS Seabird and Marine Mammal Surveys boat 2002 2004 240 207 0 0 447 

Olympic Coast NMS Pelagic Seabird Surveys boat 2006 2016 331 86 177 0 595 
Oregon and Washington Marine Mammal and Seabird Surveys  
(CDAS dataset code: OWPELB)a aerial 1989 1990 659 621 473 152 1,904 

Oregon, California, and Washington Line-transect Expedition (ORCAWALE) boat 1996 2008 0 3,505 8,363 267 12,134 

Pacific Coast Winter Sea Duck Survey aerial 2011 2011 45 0 0 61 106 

Pacific Continental Shelf Environmental Assessment (PaCSEA) aerial 2011 2012 45 992 963 804 2,804 

Pacific Orca Distribution Survey (PODS) boat 2006 2012 1,018 0 0 46 1,064 

Pelagic Juvenile Rockfish Recruitment and Ecosystem Assessment Surveya boat 1996 2015 7,924 1,791 0 0 9,715 

Santa Barbara Channel Surveys (CDAS dataset code: MMSSBC)a aerial 1995 1997 132 110 85 117 444 

Southern California Bight Surveys aerial 1999 2002 1,218 27 1,234 1,234 3,712 

Wind to Whales boat 1997 2007 365 1,009 951 68 2,393 

Total  1980 2017 30,396 33,394 29,624 14,755 108,169 
a contained pre-segmented data         
b only used in Marbled Murrelet models         
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Table 2.2. Species composition of taxonomic group models  
For each taxonomic group, the total number of birds observed in each season are shown in italics. Non-italicized values represent the percentage of group-level 
observations contributed by each group member (e.g., total number of Surf Scoters observed in spring divided by total number of scoters observed in spring). 

  Number of Birds Observed /  
Percent Contributions 

Group / Member Common Name Scientific Name Spring Summer Fall Winter 

Scoter spp.   22,003 31,481 5,159 6,573 

    Surf Scoter Melanitta perspicillata 28.9% 31.9% 63.5% 70.9% 

    White-winged Scoter Melanitta deglandi 53.8% 49.4% 3.1% 3.7% 

    Black Scoter Melanitta americana 0.4% 0.1% 2.0% 1.0% 

    Unidentified scoter   16.9% 18.6% 31.3% 24.4% 

Western/Clark's Grebe   1,865 669 1,867 6,688 

    Western Grebe Aechmophorus occidentalis 99.6% 99.4% 95.3% 99.8% 

    Clark's Grebe Aechmophorus clarkii 0.4% 0.6% 0.0% 0.2% 

    Unidentified Western/Clark's Grebe   0.0% 0.0% 4.7% 0.0% 

Phalarope spp.   124,955 29,755 40,928 5,802 

    Wilson's Phalarope Phalaropus tricolor 0.0% 0.0% 0.0% 0.0% 

    Red-necked Phalarope Phalaropus lobatus 41.7% 36.3% 9.5% 3.1% 

    Red Phalarope Phalaropus fulicarius 17.4% 13.2% 19.9% 36.5% 

    Unidentified phalarope   40.9% 50.4% 70.6% 60.4% 

Parasitic/Long-tailed Jaeger   155 461 1,171 55 

    Parasitic Jaeger Stercorarius parasiticus 78.7% 24.5% 33.0% 83.6% 

    Long-tailed Jaeger Stercorarius longicaudus 21.3% 75.5% 65.8% 16.4% 

    Unidentified Parasitic/Long-tailed Jaeger   0.0% 0.0% 1.3% 0.0% 

Jaeger spp.   867 671 2,474 501 

    Pomarine Jaeger Stercorarius pomarinus 74.7% 24.4% 44.7% 78.4% 

    Parasitic Jaeger Stercorarius parasiticus 14.1% 16.8% 15.6% 9.2% 

    Long-tailed Jaeger Stercorarius longicaudus 3.8% 51.9% 31.1% 1.8% 

    Unidentified Parasitic/Long-tailed Jaeger   0.0% 0.0% 0.6% 0.0% 

    Unidentified jaeger   7.4% 6.9% 8.0% 10.6% 
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  Number of Birds Observed /  
Percent Contributions 

Group / Member Common Name Scientific Name Spring Summer Fall Winter 

Scripps's/Guadalupe/Craveri's Murrelet   402 145 151 64 

    Scripps's/Guadalupe Murrelet Synthliboramphus scrippsi/hypoleucus 57.0% 33.1% 60.9% 26.6% 

    Craveri's Murrelet Synthliboramphus craveri 0.7% 22.1% 13.9% 39.1% 

    Unidentified Scripps’s/Guadalupe/Craveri's Murrelet   42.3% 44.8% 25.2% 34.4% 

Western/Glaucous-winged Gull   32,518 19,463 27,276 16,461 

    Western Gull Larus occidentalis 90.2% 78.5% 94.1% 91.8% 

    Glaucous-winged Gull Larus glaucescens 2.0% 2.5% 4.9% 7.8% 

    Western x Glaucous-winged Gull hybrid   7.8% 19.0% 1.0% 0.5% 

Herring/Iceland Gull   1,061 369 3,753 4,919 

    Herring Gull Larus argentatus 97.1% 100.0% 99.5% 98.6% 

    Iceland Gull Larus glaucoides 2.9% 0.0% 0.5% 1.4% 

Common/Arctic Tern   263 1,252 2,016 6 

    Common Tern Sterna hirundo 31.2% 4.6% 6.2% 16.7% 

    Arctic Tern Sterna paradisaea 46.4% 95.3% 76.3% 0.0% 

    Unidentified Common/Arctic Tern   22.4% 0.1% 17.6% 83.3% 

Royal/Elegant Tern   811 1,043 500 109 

    Royal Tern Thalasseus maximus 14.3% 4.2% 6.8% 38.5% 

    Elegant Tern Thalasseus elegans 60.4% 95.8% 57.0% 2.8% 

    Unidentified Royal/Elegant Tern   25.3% 0.0% 36.2% 58.7% 

Loon spp.   9,870 4,039 3,531 2,218 

    Red-throated Loon Gavia stellata 4.9% 11.7% 4.4% 6.6% 

    Arctic/Pacific Loon Gavia artica/pacifica 69.6% 61.2% 81.2% 50.5% 

    Common Loon Gavia immer 10.4% 11.6% 3.4% 4.5% 

    Yellow-billed Loon Gavia adamsii 0.0% 0.0% 0.0% 0.0% 

    Unidentified loon   15.1% 15.5% 11.0% 38.4% 

Short-tailed/Sooty/Flesh-footed Shearwater   201,074 368,019 35,809 457 

    Short-tailed Shearwater Ardenna tenuirostris 0.1% 0.0% 2.3% 10.9% 
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  Number of Birds Observed /  
Percent Contributions 

Group / Member Common Name Scientific Name Spring Summer Fall Winter 

    Sooty Shearwater Ardenna grisea 97.3% 97.8% 97.1% 65.2% 

    Flesh-footed Shearwater Ardenna carneipes 0.0% 0.0% 0.1% 6.3% 

    Unidentified Short-tailed/Sooty Shearwater   2.6% 2.2% 0.6% 17.5% 

Cormorant spp.   14,245 41,906 4,080 2,943 

    Brandt's Cormorant Phalacrocorax penicillatus 37.7% 12.7% 64.8% 39.0% 

    Pelagic Cormorant Phalacrocorax pelagicus 39.0% 42.2% 2.8% 4.2% 

    Double-crested Cormorant Phalacrocorax auritus 7.8% 28.5% 2.7% 9.7% 

    Unidentified cormorant   15.4% 16.7% 29.8% 47.2% 
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Table 2.3. Modeled individual species and taxonomic groups  
Only combinations with ≥100 segments with sightings are shown. 

   Number of Segments with 
Sightings Number of Birds Observed 

Common Name Scientific Name Family 
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Scoter spp. Melanitta spp. Anatidae          690 1,107 151 380 2,328 22,003 31,481 5,159 6,573 65,216 
Western/Clark's 
Grebe 

Aechmophorus 
occidentalis/clarkii Podicipedidae     215  169 310 694 1,865  1,867 6,688 10,420 

Phalarope spp. Phalaropus spp. Scolopacidae      4,790 2,285 3,284 1,437 11,796 124,955 29,755 40,928 5,802 201,440 

South Polar Skua Stercorarius maccormicki Stercorariidae      117  117   131  131 

Pomarine Jaeger Stercorarius pomarinus Stercorariidae    472 134 853 303 1,762 648 164 1,106 393 2,311 
Parasitic/Long-tailed 
Jaeger 

Stercorarius 
parasiticus/longicaudus Stercorariidae    136 301 678  1,115 155 461 1,171  1,787 

Jaeger spp. 
Stercorarius 
pomarinus/parasiticus/ 
longicaudus 

Stercorariidae    649 468 1,641 394 3,152 867 671 2,474 501 4,513 

Common Murre Uria aalge Alcidae           5,275 7,078 2,740 1,826 16,919 111,905 267,961 37,381 27,680 444,927 

Pigeon Guillemot Cepphus columba Alcidae           455 1,108   1,563 1,835 5,251   7,086 

Marbled Murrelet Brachyramphus marmoratus Alcidae           461 2,351   2,812 2,741 18,514   21,255 
Scripps's/Guadalupe/
Craveri's Murrelet 

Synthliboramphus 
scrippsi/hypoleucus/craveri Alcidae           151    151 402    402 

Ancient Murrelet Synthliboramphus antiquus Alcidae           214    214 1,098    1,098 

Cassin's Auklet Ptychoramphus aleuticus Alcidae           2,827 2,095 1,995 2,697 9,614 20,282 19,694 13,763 14,216 67,955 

Rhinoceros Auklet Cerorhinca monocerata Alcidae           2,701 2,850 1,261 1,526 8,338 15,649 65,822 3,888 7,475 92,834 

Tufted Puffin Fratercula cirrhata Alcidae           290 1,042   1,332 1,397 8,240   9,637 
Black-legged 
Kittiwake Rissa tridactyla Laridae           1,040  187 1,802 3,029 5,510  370 4,688 10,568 

Sabine's Gull Xema sabini Laridae           605 170 334  1,109 2,691 422 1,509  4,622 

Bonaparte's Gull Chroicocephalus philadelphia Laridae           549  397 192 1,138 3,915  3,151 2,632 9,698 

Heermann's Gull Larus heermanni Laridae            626 686 368 1,680  1,372 2,239 1,170 4,781 

California Gull Larus californicus Laridae           2,319 728 3,152 2,315 8,514 8,089 2,007 19,968 22,025 52,089 
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   Number of Segments with 
Sightings Number of Birds Observed 

Common Name Scientific Name Family 
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Herring/Iceland Gull Larus argentatus/glaucoides Laridae           590 191 1,103 1,296 3,180 1,061 369 3,753 4,919 10,102 
Western/Glaucous-
winged Gull 

Larus 
occidentalis/glaucescens Laridae           9,204 5,298 5,475 3,354 23,331 32,518 19,463 27,276 16,461 95,718 

Caspian Tern Hydroprogne caspia Laridae           104 584   688 490 4,564   5,054 

Common/Arctic Tern Sterna hirundo/paradisaea Laridae           110 282 477  869 263 1,252 2,016  3,531 

Royal/Elegant Tern Thalasseus maximus/elegans Laridae           173 308 140  621 811 1,043 500  2,354 

Red-throated Loon Gavia stellata Gaviidae          183 166   349 479 473   952 

Common Loon Gavia immer Gaviidae          391 250   641 1,027 468   1,495 

Loon spp. Gavia spp. Gaviidae          1,871 1,104 550 633 4,158 9,870 4,039 3,531 2,218 19,658 

Laysan Albatross Phoebastria immutabilis Diomedeidae       155   200 355 163   261 424 
Black-footed 
Albatross Phoebastria nigripes Diomedeidae       3,158 2,016 1,125 311 6,610 6,179 3,886 1,836 406 12,307 

Fork-tailed Storm-
Petrel Hydrobates furcatus Hydrobatidae      501 762 385 145 1,793 1,265 4,932 2,406 250 8,853 

Leach's Storm-Petrel Hydrobates leucorhous Hydrobatidae      1,491 4,221 3,337 979 10,028 3,438 9,986 8,350 1,904 23,678 

Ashy Storm-Petrel Hydrobates homochroa Hydrobatidae      181 156 246  583 606 2,108 1,348  4,062 

Black Storm-Petrel Hydrobates melania Hydrobatidae      185 348 116  649 514 1,445 324  2,283 

Northern Fulmar Fulmarus glacialis Procellariidae    2,011 1,000 2,330 1,813 7,154 3,800 4,674 7,795 4,016 20,285 

Murphy's Petrel Pterodroma ultima Procellariidae    150    150 193    193 

Cook's Petrel Pterodroma cookii Procellariidae    457 631 144  1,232 987 1,569 214  2,770 

Buller's Shearwater Ardenna bulleri Procellariidae     421 527  948  1,314 1,460  2,774 
Pink-footed 
Shearwater Ardenna creatopus Procellariidae    2,367 2,389 1,595  6,351 6,828 14,409 8,087  29,324 

Short-
tailed/Sooty/Flesh-
footed Shearwater 

Ardenna 
tenuirostris/grisea/carneipes Procellariidae    8,406 7,850 3,223 278 19,757 201,074 368,019 35,809 457 605,359 

Black-vented 
Shearwater Puffinus opisthomelas Procellariidae    165  584 243 992 1,013  10,132 3,699 14,844 

Brandt's Cormorant Phalacrocorax penicillatus Phalacrocoracidae 1,027 871   1,898 5,373 5,315   10,688 
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   Number of Segments with 
Sightings Number of Birds Observed 

Common Name Scientific Name Family 
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Pelagic Cormorant Phalacrocorax pelagicus Phalacrocoracidae 560 1,511   2,071 5,558 17,686   23,244 
Double-crested 
Cormorant Phalacrocorax auritus Phalacrocoracidae 270 647   917 1,116 11,923   13,039 

Cormorant spp. Phalacrocorax spp. Phalacrocoracidae   944 760 1,704   4,080 2,943 7,023 

Brown Pelican Pelecanus occidentalis Pelecanidae       771 1,196 1,094 520 3,581 2,976 9,853 5,521 1,562 19,912 

Total               613,609 940,605 259,543 138,939 1,952,696 
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Table 2.4. Survey and temporal predictor variables 

Predictor Variable Description Source 
survey platform platform used for data collection (i.e., aerial or boat) survey data 

survey ID combination of survey name and year survey data 

transect ID combination of survey name and date survey data 

Year year of data collection survey data 

day of year calculated from date of data collection; represented as number of days after December 
31 within a given year (e.g., a value of 1 represents January 1 regardless of year) survey data 

MEI monthly multivariate El Niño-Southern Oscillation index NOAA Physical Sciences Laboratory 
(https://psl.noaa.gov/data/correlation/meiv2.data) 

NPGO index monthly North Pacific Gyre Oscillation index http://www.o3d.org/npgo/npgo.php 
(Di Lorenzo et al. 2008) 

PDO index monthly Pacific Decadal Oscillation index NOAA Physical Sciences Laboratory 
(https://psl.noaa.gov/data/correlation/pdo.data) 

https://psl.noaa.gov/data/correlation/meiv2.data
http://www.o3d.org/npgo/npgo.php
https://psl.noaa.gov/data/correlation/pdo.data
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Table 2.5. Geographic and bathymetric predictor variables 

Predictor Variable Description Units Source 

projected longitude 
representation of longitude corresponding to grid cell midpoint in 
custom oblique Mercator projected space (i.e., x-coordinate of grid 
cell) 

m derived from study grid 

projected latitude 
representation of latitude corresponding to grid cell midpoint in 
custom oblique Mercator projected space (i.e., y-coordinate of grid 
cell) 

m derived from study grid 

distance to land distance to nearest land km 

derived from full resolution GSHHG coastline 
data version 2.3.6 

(https://www.ngdc.noaa.gov/mgg/shorelines; 
Wessel and Smith 1996) 

distance to canyon distance to nearest seafloor canyon km 
derived from Global Seafloor Geomorphology 
'Canyons' data (http://www.bluehabitats.org; 

Harris et al. 2014) 

depth seafloor depth derived from a synthesis of bathymetry datasets m 

multibeam bathymetry (Appendix C),  
NOAA CRM – Southern California Version 2,  

NOAA CRM Vol. 7 – Central Pacific,  
NOAA CRM Vol. 8 – Northwest Pacific,   
GEBCO_2014 grid version 20150318 

slopea steepness of the seafloor, calculated as the magnitude of the 
maximum gradient in depth from a 3 x 3 pixel array degrees derived from depth 

slope of slopea rate of change in slope of the seafloor, calculated as the magnitude 
of the maximum gradient in slope from a 3 x 3 pixel array degrees of degrees derived from depth 

planform curvaturea 
curvature of the seafloor along the line of intersection between the 
depth surface and the horizontal plane; indicates whether seafloor 
is convex (>0), concave (<0), or flat (0) 

radians / 100 m derived from depth 

profile curvaturea 

curvature of the seafloor along the line of intersection between the 
depth surface and the plane formed by the direction of slope and 
the z-axis; indicates whether the seafloor is convex (<0), concave 
(>0), or flat (0) 

radians / 100 m derived from depth 

a calculated at 10- and 20-km scales 

 
  

https://www.ngdc.noaa.gov/mgg/shorelines
http://www.bluehabitats.org/
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Table 2.6. Oceanographic and atmospheric predictor variables 

Predictor 
Variable Description Statisticsa Units 

Native 
Spatial 

Resolution 
Source 

chlorophyll-a 
concentration concentration of chlorophyll-a at the ocean surface mean mg / m3 4 x 4 km NASA OceanColor Aqua and Terra 

MODIS and VIIRS (1997-2017) 

chlorophyll-a 
front strength 

gradient magnitude of fronts derived from chlorophyll-a 
concentration at the ocean surface from a 32 x 32 pixel 
array 

mean log(mg / m3) 
/ km 1 x 1 km derived from NOAA CoastWatch (dataset: 

erdMEchla1day; 2002-2013) 

turbidity ocean surface reflectance at 447 nm mean, standard 
deviation 1 / sr 4 x 4 km NASA OceanColor Aqua and Terra 

MODIS (2000-2017) 

current velocity 
(east-west) 

east-west component (u) of current speed at the ocean 
surface mean m / s 8 x 8 km HYCOM Global Reanalysis GLBu0.08 

(1992-2012) 

current velocity 
(north-south) 

north-south component (v) of current speed at the 
ocean surface mean m / s 8 x 8 km HYCOM Global Reanalysis GLBu0.08 

(1992-2012) 

current speed current speed at the ocean surface mean m / s 8 x 8 km derived from HYCOM Global Reanalysis 
GLBu0.08 (1992-2012) 

current 
divergence current divergence at the ocean surface mean unitless 8 x 8 km derived from HYCOM Global Reanalysis 

GLBu0.08 (1992-2012) 

current vorticity current vorticity at the ocean surface mean unitless 8 x 8 km derived from HYCOM Global Reanalysis 
GLBu0.08 (1992-2012) 

sea surface 
height height of the ocean surface relative to the geoid mean, standard 

deviation m 25 x 25 km 
CMEMS (dataset: 

SEALEVEL_GLO_PHY_L4_REP_OBSER
VATIONS_008_047; 1993-2017) 

eddy frequency 
(anticyclonic) proportion of days with anticyclonic eddy ring presence mean unitless 25 x 25 km derived from AVISO (1994-2015) 

eddy frequency 
(cyclonic) proportion of days with cyclonic eddy ring presence mean unitless 25 x 25 km derived from AVISO (1994-2015) 

temperature water temperature at the ocean surface mean, standard 
deviation ºC 5 x 5 km 

CMEMS (dataset: 
SST_GLO_SST_L4_REP_OBSERVATIO

NS_010_024; 1981-2016) 

temperature 
anomaly 
frequency 

proportion of days where daily ocean surface 
temperature was more than 1ºC greater than the 
monthly climatological mean ocean surface 
temperature 

mean unitless 1 x 1 km 
derived from CMEMS (dataset: 

SST_GLO_SST_L4_REP_OBSERVATIO
NS_010_024; 1981-2016) 

temperature 
front strength 

gradient magnitude of fronts derived from water 
temperature at the ocean surface from a  
32 x 32 pixel array 

mean ºC / km 1 x 1 km derived from NOAA CoastWatch (dataset: 
erdMEssta1day; 2003-2012) 
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Predictor 
Variable Description Statisticsa Units 

Native 
Spatial 

Resolution 
Source 

Ekman driven 
upwelling 

upwelling driven by Ekman transport (wind driven 
surface currents) mean m / s 13 x 13 km NOAA CoastWatch (dataset: 

erdQSstress1day; 1999-2009) 

salinity salinity at the ocean surface mean, standard 
deviation psu 8 x 8 km HYCOM Global Reanalysis GLBu0.08 

(1992-2012) 

mixed layer 
depth 

depth at which temperature differed from the surface by 
≥0.5ºC 

mean, standard 
deviation m 8 x 8 km derived from HYCOM Global Reanalysis 

GLBu0.08 (1992-2012) 

wind stress 
(east-west) 

zonal east-west component (u) of wind shear stress on 
the ocean surface mean Pa 13 x 13 km NOAA CoastWatch (dataset: 

erdQSstress1day; 1999-2009) 
wind stress 
(north-south) 

meridional north-south component (v) of wind shear 
stress on the ocean surface mean Pa 13 x 13 km NOAA CoastWatch (dataset: 

erdQSstress1day; 1999-2009) 

wind stress 
divergence wind shear stress divergence on the ocean surface mean 1 / s 13 x 13 km derived from NOAA CoastWatch (dataset: 

erdQSstress1day; 1999-2009) 
a calculated as seasonal climatologies 
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Table 2.7. Base-learners used in the boosted generalized additive modeling framework 

Name Description Predictor Variables Model 
Component 

bols linear intercept 𝑝𝑝, 𝜇𝜇,𝜃𝜃 

bols linear (fixed effect) survey platform 𝑝𝑝, 𝜇𝜇,𝜃𝜃 

brandom random effect survey ID 𝜃𝜃 

brandom random effect transect ID 𝑝𝑝, 𝜇𝜇 

bbs penalized regression splinea year 𝑝𝑝, 𝜇𝜇 

bbs penalized regression splinea day of year 𝑝𝑝, 𝜇𝜇 

bspatial penalized tensor producta projected longitude, projected latitude 𝑝𝑝, 𝜇𝜇 

brad penalized radial basisb projected longitude, projected latitude 𝑝𝑝, 𝜇𝜇 

btree treec all climate indices 𝑝𝑝, 𝜇𝜇 

btree treed distance land, distance to canyon, and all bathymetric, 
oceanographic, and atmospheric variables 𝑝𝑝, 𝜇𝜇 

a p-spline basis 
b matérn correlation function 
c maximum depth = 1 
d maximum depth = 5 
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3 Results 

3.1 Model Selection and Performance 
The final selected model (i.e., ZIP or ZINB) varied among species/groups and seasons (Appendix D). 
ZINB models were selected more frequently than ZIP models (102 versus 33 models). Models with 
different likelihoods (i.e., ZIP or ZINB) were often selected for different seasons for the same 
species/group. 

The statistical performance of the final selected models was variable among species/groups and seasons 
(Appendix D). Over half of the models had 𝑀𝑀 ≥ 19,000, close or equal to the maximum of 20,000 (see 
Section 2.5.6). PDE ranged from 2% to 77%. AUC ranged from 0.777 to 0.996. 𝑟𝑟𝐺𝐺 ranged from 0.06 to 
0.68. The median AE and mean AE ranged from 0.1% to 85.0% and 71% to 207% of the mean count, 
respectively. RMSE ranged from 0.1 to 169.4. 

Performance metrics were often correlated with each other, usually in the expected direction, although the 
correlations were often weak (|𝑟𝑟𝑠𝑠| < 0.5). PDE was strongly correlated with AUC (𝑟𝑟𝑠𝑠 = 0.84), median AE 
(𝑟𝑟𝑠𝑠 = -0.88), and mean AE (𝑟𝑟𝑠𝑠 = -0.71). AUC was strongly correlated with median AE (𝑟𝑟𝑠𝑠 = -0.76). 𝑟𝑟𝐺𝐺 
was strongly correlated with mean AE (𝑟𝑟𝑠𝑠 = -0.73) and RMSE (𝑟𝑟𝑠𝑠 = -0.67). Median AE was strongly 
correlated with mean AE (𝑟𝑟𝑠𝑠 = 0.75). Unexpectedly, RMSE was positively correlated with PDE (𝑟𝑟𝑠𝑠 = 
0.42) and negatively correlated with both median AE (𝑟𝑟𝑠𝑠 = -0.51) and mean AE (𝑟𝑟𝑠𝑠 = -0.59). 

The five best performing models, determined by summing the ranks of the individual performance 
metrics, were Pelagic Cormorant (Phalacrocorax pelagicus), Pigeon Guillemot (Cepphus columba), and 
Marbled Murrelet (Brachyramphus marmoratus) in summer, Marbled Murrelet in spring, and Loon spp. 
(Gavia spp.) in summer – all highly coastal species. The models with the worst performance were (in 
order of decreasing performance) Pomarine Jaeger in summer, Ashy Storm-Petrel (Hydrobates 
homochroa) in spring, Phalarope spp. (Phalaropus spp.) in fall, Common/Arctic Tern (Sterna 
hirundo/paradisaea) in spring, and Ashy Storm-Petrel in summer. Some models had a mix of high and 
low performance metric rankings. For example, Pelagic Cormorant in summer had the second highest 
PDE and AUC values, a high 𝑟𝑟𝐺𝐺 value, the sixth lowest median AE, the lowest mean AE, yet a 
moderately high (86th lowest) RMSE. Pomarine Jaeger in summer had poorly ranked PDE (134th), AUC 
(118th), 𝑟𝑟𝐺𝐺 (133rd), median AE (129th), and mean AE (134th), yet it ranked 4th in RMSE. It is possible that 
low species prevalence in the data contributed to the poor performance of some models. For example, 
Pomarine Jaeger in summer had the fifth lowest number of segments with sightings, the fourth lowest 
number of individuals counted, and the fourth lowest count per segment when sighted (Table 2.3). 
Common/Arctic Tern in spring had the second lowest number of segments with sightings. 

3.2 Predicted Spatial Distributions 
3.2.1 Spatial and Seasonal Patterns 

Given the large number of species/groups modeled, the spatial distributions of predicted density varied 
widely (Appendix E). Broad patterns in predicted density generally aligned with observed densities and 
usually were consistent with known patterns in distributions of these marine bird species. Predicted 
distributions of Scoter spp. (Melanitta spp.), Western/Clark’s Grebe (Aechmophorus occidentalis/clarkii), 
Common Murre, Pigeon Guillemot, Marbled Murrelet, Caspian Tern (Hydroprogne caspia), 
Royal/Elegant Tern (Thalasseus maximus/elegans), Loon spp., Black-vented Shearwater (Puffinus 
opisthomelas), cormorants, and Brown Pelican (Pelecanus occidentalis) were mostly coastal with highest 
predicted densities near shore. Auklets, Tufted Puffin (Fratercula cirrhata), Black-legged Kittiwake 
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(Rissa tridactyla), gulls, Black-footed Albatross (Phoebastria nigripes), Fork-tailed Storm-Petrel 
(Hydrobates furcatus), Ashy Storm-Petrel, Black Storm-Petrel (Hydrobates melania), Northern Fulmar 
(Fulmarus glacialis), Pink-footed Shearwater (Ardenna creatopus), and Short-tailed/Sooty/Flesh-footed 
Shearwater had highest predicted densities along the edge of the continental shelf in spring, summer, and 
fall, with predicted distributions expanding offshore during the winter season. South Polar Skua 
(Stercorarius maccormicki) and jaegers (Stercorarius pomarinus/parasiticus/longicaudus) also had 
predicted distributions concentrated over shelf/slope waters, except Parasitic/Long-tailed Jaeger 
(Stercorarius parasiticus/longicaudus) and the Jaeger spp. taxonomic group during summer and fall, 
where distributions expanded farther offshore. Predicted distributions of Laysan Albatross (Phoebastria 
immutabilis), Leach’s Storm-Petrel (Hydrobates leucorhous), Murphy’s Petrel (Pterodroma ultima), and 
Cook’s Petrel (Pterodroma cookii) were generally far offshore, beyond the continental slope. Areas of 
highest predicted density for Common/Arctic Tern and Buller’s Shearwater (Ardenna bulleri) were a 
mixture of continental shelf/slope waters and waters farther offshore. 

The predicted distributions for some species/groups within the study area were relatively restricted in 
area, at least seasonally. For example, the highest density areas for Parasitic/Long-tailed Jaeger in spring 
were predicted along the continental slope offshore of north-central California. 
Scripps’s/Guadalupe/Craveri’s Murrelet (Synthliboramphus scrippsi/hypoleucus/craveri) during spring 
had the highest predicted densities near the California Channel Islands. Several breeding alcid species had 
relatively high predicted densities directly offshore of the Olympic Peninsula in Washington including 
Ancient Murrelet (Synthliboramphus antiquus) in spring, Rhinoceros Auklet (Cerorhinca monocerata) in 
spring and summer, and Tufted Puffin in spring and summer. Predictions of high density for 
Royal/Elegant Tern in spring, Black Storm-Petrel in spring and summer, and Black-vented Shearwater 
were mostly confined to the Southern California Bight. The highest predicted densities for Pelagic 
Cormorant during the spring and summer breeding seasons were confined to coastal Washington. Most 
other predicted distributions were less restricted in area, but highest predicted densities were usually still 
confined to specific regions within the study area. Predicted distributions for some species/groups were 
concentrated in the northern part of the study area (e.g., loons in summer and Fork-tailed Storm-Petrel). 
Other species/groups had more southerly predicted distributions, either coastal (e.g., Brown Pelican in 
winter) or offshore (e.g., Ashy Storm-Petrel in spring and Cook’s Petrel in summer). Several 
species/groups showed relatively high predicted densities near the Columbia River mouth, especially 
during spring and summer (e.g., Caspian Tern, Short-tailed/Sooty/Flesh-footed Shearwater, Double-
crested Cormorant [Phalacrocorax auritus], and Brown Pelican). 

The predicted spatial distributions for many species/groups changed seasonally, reflecting seasonal 
movements and migrations. As mentioned above, the seasonal distributions of alcids that breed in the 
study area were more concentrated nearshore around the colonies during summer transitioning to more 
widely dispersed offshore distributions during winter. For some species/groups, predictions of relatively 
high densities extended to areas farther north during the summer and/or farther south during the winter 
(e.g., Bonaparte’s Gull [Chroicocephalus philadelphia], California Gull [Larus californicus], and Brown 
Pelican). Migrations among species that mostly leave the study area altogether were reflected by the 
absence of models for these species/groups during certain seasons (e.g., Western/Clark’s Grebe, Black-
legged Kittiwake, Bonaparte’s Gull, Laysan Albatross, and Black-vented Shearwater during summer, and 
Sabine’s Gull [Xema sabini], terns, storm-petrels, petrels, and most shearwaters during winter). 

Within taxonomic group models, the individual species proportions were unequal and variable among 
seasons (Table 2.2); therefore, resulting predicted spatial distributions comprise different species 
compositions during the different seasons. For example, Parasitic Jaegers accounted for the majority of all 
Parasitic/Long-tailed Jaeger observations during the winter and spring seasons. The proportions reversed 
during summer and fall when Long-tailed Jaegers accounted for the majority of observations. Because of 
this, predicted densities for the Parasitic/Long-tailed Jaeger taxonomic group largely represent Parasitic 
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Jaeger during the winter and spring seasons, whereas during summer and fall, Long-tailed Jaeger 
abundance disproportionately was responsible for the predicted distribution of this group. This was 
similar for all taxonomic group models except Western/Clark’s Grebe and Herring/Iceland Gull (Larus 
argentatus/glaucoides), where individual species proportions remained consistent among seasons with 
Western Grebe and Herring Gull comprising the vast majority of observations for the two groups. 

3.2.2 Uncertainty 

The estimated uncertainty in the model predictions generally was high. The minimum CV for predictions 
in individual spatial grid cells ranged from 0.02 to 1.05 across all models, and the maximum CV ranged 
from 1.53 to 14.14. Thus, all models had at least some predictions with CVs exceeding 1 indicating that 
the bootstrap standard deviation was greater than the mean. CVs were influenced by variable amounts of 
survey effort (resulting in small sample sizes among less-common species), species-specific aggregation, 
extrapolation based on predictor variable values that were outside the range of values observed during 
survey efforts, and unmodeled variation in the spatial distributions of birds (e.g., changes in spatial 
distributions over time). It is difficult to quantify the contribution of each of these unknown sources of 
variability to the CV for any particular prediction. The spatial patterns in the estimated CV of predictions 
varied widely among species/groups and seasons (Appendix E). In some cases the CV was lower in areas 
with higher predicted density (e.g., Rhinoceros Auklet in spring), but in others, the CV was higher in 
areas with higher predicted density (e.g., Black Storm-Petrel in fall). Higher CVs sometimes reflected an 
absence of survey effort in areas with relatively low predicted density (Jaeger spp. in spring, offshore of 
Washington and northern Oregon) or relatively high predicted density (Cassin’s Auklet [Ptychoramphus 
aleuticus] in fall, off the coast of Vancouver Island). Many of the questionable predictions (see Section 
3.2.3) were associated with relatively high CVs (e.g., Marbled Murrelet and Tufted Puffin offshore in 
spring). The spatial patterns in the estimated CV often reflected the influence of particular predictor 
variables, even when that influence was not as apparent in predicted density itself (e.g., Cook’s Petrel in 
fall, anticyclonic eddy frequency and slope of slope at 10-km scale). The estimated standard errors and 
confidence interval widths for predicted density were highly correlated with the predicted density values, 
usually resulting in similar spatial patterns. As indicated by the magnitude of the CVs, the values of the 
standard errors and confidence interval widths generally were large relative to the corresponding 
predicted densities. 

3.2.3 Questionable Predictions 

Predicted densities for some species/groups in some areas were questionable, especially in areas with 
little or no survey effort. Predictions for these areas were often associated with higher CVs. For example, 
there was much less survey effort beyond the shelf break than near the coast and over the shelf, especially 
during winter and spring (Figure 2.2). Although predicted densities for some species/groups were 
relatively high far offshore, some were plausible but others were questionable. For example, some coastal 
species had relatively moderate predicted densities extending farther offshore during spring than were 
realistic (e.g., Scoter spp., Pigeon Guillemot, Common Loon). Even for species that are generally found 
far from shore, areas with relatively moderate to high predicted densities offshore may be larger than are 
realistic given the limited survey coverage there (e.g., Phalarope spp., Pomarine Jaeger, Black-legged 
Kittiwake, Laysan Albatross, Fork-tailed Storm-Petrel, Leach’s Storm-Petrel, Northern Fulmar, Murphy’s 
Petrel, and Cook’s Petrel). Additionally, some species/groups (e.g., Black Storm-Petrel, Black-vented 
Shearwater, and Brown Pelican during winter) had relatively moderate to high predicted densities near 
Vancouver Island and the Strait of Juan de Fuca in an area without survey effort; these patterns are 
questionable given our understanding of these species’ historic seasonal ranges based on their presence in 
these comprehensive survey datasets (see Section 2.2). 

Predicted spatial distributions sometimes exhibited patterning or extremely localized areas with relatively 
high predicted densities that seem unrealistic. Unrealistic patterning often reflected disproportional 
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influence of individual predictor variables on model predictions, especially in areas with little or no 
survey effort, and was often associated with higher CVs. For example, several winter and spring models 
exhibited a vertical band of relatively moderate to high predicted densities along the western edge of the 
study area. This band resulted from extrapolating the estimated relationship between projected longitude 
and the bird sighting data to areas outside the range of values observed in the survey data. The predicted 
distribution of Red-throated Loon in spring exhibited an obvious effect of turbidity standard deviation 
that resulted in unrealistic patches with higher predicted densities near the northwestern edge of the study 
area. The distribution of Laysan Albatross in spring exhibited circular patterning of relatively moderate to 
high predicted densities that corresponded with areas of relatively high frequency of cyclonic eddy 
formations. Some predictions were clearly extrapolations of the relationship between bathymetric 
predictor variables and bird counts to areas without survey effort (e.g., Pomarine Jaeger in winter, 
Marbled Murrelet in spring, Sabine’s Gull in spring and summer, Common/Arctic Tern in spring, Laysan 
Albatross in winter, Leach’s Storm-Petrel in spring, Ashy Storm-Petrel in fall). It is likely that the discrete 
nature of these distribution patterns is unrealistic. 

The highest predicted densities were sometimes limited to one or a few small areas indicating localized 
long-term aggregations that likely also are unrealistic. These predictions were sometimes associated with 
higher CVs, but not always. Some example species/groups and seasons exhibiting this behavior were 
Phalarope spp. in spring, Parasitic/Long-tailed Jaeger in spring, Jaeger spp. in fall, Common/Arctic Tern 
in spring, summer, and fall, and Cook’s Petrel in fall. It is difficult to ascribe these highly-localized 
distribution patterns to a specific cause, but in at least some cases they may partially reflect large temporal 
and spatial aggregations of birds, possibly during migration, that coincided with survey effort rather than 
realistic average long-term spatial patterns. It is unlikely that these are persistent areas with higher 
absolute densities than adjacent areas. Although our spatial predictive modeling framework accounted for 
effort and attempted to account for the aggregated nature of bird distributions and sightings, small sample 
size combined with extreme aggregations can unduly influence model predictions. 

3.3 Predictor Variable Relative Importance 
The modeling framework used in this study was designed to provide accurate predictions. It was not 
designed to identify which environmental predictors were most ecologically relevant for determining the 
distribution of marine birds. Ecological inferences from the variable importance results should be made 
with caution. Nevertheless, these results may indicate interesting hypotheses for future research. Also, as 
discussed in Section 3.2.3 extrapolations of the predicted relationships between observed bird count and 
predictor variables to areas with little or no survey effort were often questionable or unrealistic. 

The most important predictor variables varied among species/groups and seasons (Appendix F); 
however, some consistent patterns emerged. Averaged among all species/groups and seasons, day of year, 
distance to land, depth, chlorophyll-a concentration, current speed and mean temperature were the most 
important predictor variables for both the 𝑝𝑝 and 𝜇𝜇 model components. Mean salinity and mean mixed 
layer depth were also important for the 𝑝𝑝 model component, but transect ID and year were important for 
the 𝜇𝜇 component only. In addition to the predictor variables mentioned above, turbidity standard deviation 
and mean mixed layer depth were important in the spring season models when averaged among all 
species/groups. For summer models, salinity (both mean and standard deviation), mean turbidity, and to a 
lesser extent chlorophyll-a front strength (mainly for the 𝑝𝑝 model component) and current vorticity 
(mainly for the 𝑝𝑝 model component) were also important. In fall, current velocity in the east-west 
direction and mean sea surface height were also important. Slope (20-km scale) and mean sea surface 
height were important, mainly for the 𝑝𝑝 model component, for winter season models averaged among all 
species/groups. 
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Transect ID was an especially important predictor in the 𝜇𝜇 model component and its importance indicates 
substantial variation in the count data that was not explained by the temporal and spatial predictor 
variables. Year was one of the top four most important predictor variables on average for the 𝜇𝜇 model 
component in all seasons, reflecting the interannual variability in seasonal abundance within the study 
area. Day of year was the first or second most important predictor on average for the 𝜇𝜇 model component 
in spring (first), summer (first), and fall (second) models likely reflecting the movement of migratory 
species in and out of the study area during transitions between summer and winter. Distance to land was 
often an important predictor for coastal species but was also often important for species with more 
offshore distributions (e.g., Fork-tailed Storm-Petrel). Averaged among all species/groups, mean 
chlorophyll-a concentration was the most important predictor for the 𝑝𝑝 model component in all seasons, 
underscoring the importance of this variable in predicting spatial distribution patterns, especially for 
coastal and continental shelf species. Mean temperature was a relatively important predictor for most 
models, reflecting its ability to capture broad latitudinal and California Current-related patterns in 
distribution. 

In general, the climate index predictor variables were relatively unimportant. They were more important 
in the winter and spring than in the summer and fall models. The NPGO index was the most important of 
the three indices on average, although the MEI and the PDO index were important in some models. 

4 Discussion 

4.1 Interpretation of Maps 
This report presents maps of the seasonal spatial distributions of predicted density for 33 marine bird 
species and 13 taxonomic groups observed during surveys in Pacific OCS waters off the contiguous U.S. 
(Appendix E) that can be used to inform marine spatial planning in the region. The maps of predicted 
density are accompanied by corresponding maps of the estimated CV of model predictions. It is important 
that these uncertainty maps are considered alongside the predicted density maps. In many cases the CVs 
are relatively large indicating substantial statistical uncertainty and variability associated with the 
corresponding predictions, and those predictions should be interpreted cautiously. Although model 
predictions are at 2-km resolution, interpretation of the maps presented to inform spatial planning is more 
reliable at scales of 10–100 km. The maps of predicted density are also accompanied by inset maps of 
observed density. These inset maps indicate where species/groups were seen during a given season by the 
surveys analyzed herein, and this information should also be considered when interpreting model 
predictions. 

The maps represent model-derived spatial predictions of long-term average density. They do not provide 
predictions of the actual number of individuals of a given species or taxonomic group that would be 
expected in a given area; they only indicate where a given species/group may be more or less abundant. 
Also, the maps do not provide predictions of density at a specific time; they only indicate seasonal 
distributions averaged across the timeframe of the survey dataset (1980–2017). The spatial distributions 
of marine birds often change during the course of a season and from year to year in response to 
fluctuations in environmental conditions, prey distributions, and fisheries, so it is likely that the spatial 
distributions of many if not all of the modeled species/groups have changed over time. Furthermore, 
predictions of long-term average density do not necessarily highlight areas including movement corridors 
that are consistently used by a large number of birds but only for a short period during the year (e.g., 
hours or days). 

The maps represent predicted density throughout the study area only. The study area excluded nearshore 
waters within 50 m of the shoreline and coastal sounds and bays (e.g., Salish Sea, Grays Harbor, Willapa 
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Bay, mouth of the Columbia River, San Francisco Bay) that are used by multiple marine bird species, 
sometimes with large numbers of birds occurring in these areas at certain times of year (e.g., scoters, 
grebes, alcids, loons). More generally, areas with relatively high known densities occur adjacent to the 
study area for some species, and these areas are not represented on the maps. Thus, the areas with the 
highest predicted densities are not necessarily the areas of greatest absolute density for a species were its 
entire range to be considered. Depending on data availability, habitat-based predictive modeling could be 
extended to nearshore waters and coastal sounds and bays, but such modeling would entail additional 
considerations. For example, relationships between bird count and environmental predictors may be 
different in these areas than in more offshore areas. Another consideration would be an appropriate spatial 
modeling technique for complex coastlines (Scott-Hayward et al. 2014). 

4.2 Species Identification 
A fundamental assumption of the analysis presented here is that all species, when present, were recorded. 
This assumption may not have been met on all surveys. A related issue is the identification of observed 
birds to the species level. From some survey platforms, some birds might have been less likely to be 
identified to species. Our decision to combine certain species into taxonomic groups prior to modeling 
should limit the effect of potential biases in species identification by including birds not identified to the 
species level (see Section 2.3); however, inference is then restricted to the group of species as a whole. 
For individual species models, birds that were not identified to species were not included in the analysis. 

Our statistical modeling framework allowed for differences in the expected count of a given species 
between survey platforms and among transects, so theoretically the models could account for some 
differences arising from failure to record or identify species. However, if a geographic area was covered 
by a limited number of surveys or a single platform, then it would have been difficult or impossible for 
the model to determine whether differences in counts in that area were because of fewer birds in that area 
or because of differences in species recording and identification in that area. Alternative modeling 
techniques in combination with appropriate survey data may provide some ability to make individual 
species inferences from sightings of unidentified species (e.g., Johnston et al. 2015). 

4.3 Data Limitations and Information Gaps 
The maps presented here represent model predictions that ultimately rely on the survey data that the 
models were fit to. The distribution of survey effort was uneven throughout the study area and through 
time (Figures 2.1 and 2.2), so some regions and years were better sampled than others. For example, 
there were fewer data offshore than nearshore, especially in the northern extent of the study area. Model 
predictions in areas with no survey effort are indicated by light gray semi-transparent overlays on the 
maps. Predictions in these areas should be interpreted with caution. Additional field surveys in under-
sampled areas would help to improve future model predictions. In order for future survey data to be 
amenable for similar analysis, surveys should adhere to standardized survey protocols for marine birds at 
sea and document key information related to survey effort (e.g., complete spatial descriptions of transects, 
duration of observation, strip width, etc.). 

Future habitat-based predictive modeling could also benefit from data on additional environmental 
predictor variables. Most of the environmental predictors used in this study would be indirect drivers of 
marine bird distributions. The fact that transect ID was a relatively important predictor in several models 
(especially in the 𝜇𝜇 model component) indicates considerable variation in the count data that were not 
explained by the suite of environmental predictor variables used in these analyses (see Section 3.3 and 
Appendix F). Data on variables that birds are responding to more directly (e.g., zooplankton or fish 
availability) could improve model predictions, particularly in areas with little or no survey effort. 
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Unfortunately, comprehensive estimates of seasonal prey densities across the entire study area were not 
available for this study. For species that breed in close proximity to the study area, data on colony 
location and size, both current and historic, could also improve model predictions and may be valuable for 
future spatial modeling efforts in the region. 

4.4 Combining Seasonal Maps 
The seasonal maps presented in Appendix E represent periods of 3 months of the year for individual 
species and certain taxonomic groups. For some applications it may be of interest to consider an annual 
average distribution for individual species/group or a seasonal/annual average distribution among species. 
Such combining of seasonal maps should be done cautiously while acknowledging important 
assumptions. 

To derive an annual map for a single species or modeled taxonomic group, we suggest averaging the 
seasonal predicted grids for that species/group assuming zero predicted density for seasons that were not 
modeled. Ideally for bootstrapped predictions, a bootstrapped sample of annual predicted grids would be 
derived first and then desired quantities calculated from that sample (e.g., median, quantiles, etc.). The 
averaging of seasonal grids entails several important assumptions. First, species are often present in the 
study area at low density during seasons that were not modeled, so the assumption of zero density during 
those seasons is an approximation. Second, the predictions in each seasonal grid correspond to the 
average year of the survey data (see Section 2.5.8), which varied among seasons (spring: 2000, summer: 
2001, fall: 1999, winter: 1998). Thus, the seasonal maps represent predictions for different years, so any 
interannual variation in density will influence predictions averaged among seasons. Third, as discussed 
previously the predictions do not explicitly account for several potential biases (e.g., detectability; see 
Section 2.5.8). Any interseasonal variation in these biases will influence predictions averaged among 
seasons. Figure 4.1 shows annual maps for an example species, Rhinoceros Auklet. By averaging the 
seasonal predicted grids, the annual map most reflects the seasons with the highest predicted density 
values, in this case spring and summer. 

To derive multi-species maps, we suggest first normalizing the predicted grids for individual 
species/groups and then averaging grids among species. Predicted density values are not comparable 
among species/groups (see Section 2.5.8), so it would be inappropriate to directly average predicted grids 
among species. Normalization scales each grid the same, which makes averaging of grids among species 
more appropriate. Predicted grids can be normalized by dividing the predicted density value for each grid 
cell by the sum of predicted density values in all grid cells. If the grid dimensions are identical among 
species/groups, as they are here, dividing by the mean predicted density value will achieve an equivalent 
normalization. Averaged normalized predicted values do not have a straightforward interpretation, so as 
with all predictions of density presented in this report it is the relative differences in predictions across 
space that are relevant, not the actual numbers themselves. It is important to note that because of 
normalization each species will essentially contribute equally to the average grid. Such equal weighting 
for all species may be desirable in some applications, but in others it may be desirable to weight species 
differently, for example by their population abundance or species-specific vulnerability (see Adams et al. 
2017 and Kelsey et al. 2018). The results presented here could theoretically be used to derive weighted 
averages, but such an approach would require supplementary information to inform the weighting (e.g., 
independent estimates of population abundance). 

4.5 Conclusion 
The maps presented in this report can be used to inform planning for ocean activities such as offshore 
wind energy development. The maps identify areas where the densities of marine bird species are likely to 
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be relatively higher or lower on a seasonal basis. This information can contribute to assessments of 
relative risk exposure aimed at minimizing the impacts of activities on marine birds (Winiarski et al. 
2014; Fifield et al. 2017). As discussed in Section 4.3, the survey data analyzed here had some 
limitations. Any full assessments of risk exposure in specific areas at specific times should augment the 
information provided here with more targeted analyses and potentially additional survey (or tracking) data 
to inform those analyses, especially when there are few existing data. Nevertheless, our maps provide a 
starting point for assessing relative risks associated with exposure, which when combined with 
information about other aspects of vulnerability (e.g., flight height, avoidance/attraction, demographic 
impacts), can inform assessments of overall risk for marine birds in Pacific OCS waters off the 
contiguous U.S. (Garthe and Hüppop 2004; Robinson Willmott et al. 2013; Bailey et al. 2014; Bradbury 
et al. 2014; Adams et al. 2017; Kelsey et al. 2018). 
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Figure 4.1. Example annual maps of predicted density (left panel) and coefficient of variation (right panel) for one species (Rhinoceros 
Auklet [Cerorhinca monocerata]) 
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Appendix A: Survey Dataset Information 
Table A-1. Survey program information 

Survey Name Institutions Principal Investigators Platform Details Transect Width (m) References 

Applied California Current 
Ecosystem Studies 
(ACCESS) 

Point Blue Conservation 
Science, Cordell Bank NMS, 
Greater Farallones NMS 

Jaime Jahncke, Danielle 
Lipski, Jan Roletto 

Moss Landing Marine 
Laboratories R/V John H. Martin 
and NOAA R/V Fulmar 

200 

McGowan et al. 
2013; Manugian 
et al. 2015; 
Studwell et al. 
2017 

California Cooperative 
Oceanic Fisheries 
Investigations (CalCOFI)a 

Farallon Institute, SIO 
Richard Veit, David 
Hyrenbach, William 
Sydeman 

NOAA Ships Bell M. Shimada, 
David Starr Jordan, Reuben 
Lasker and SIO R/Vs New 
Horizon, Robert Gordon Sproul, 
Roger Revelle, Sally Ride 

300 

Veit et al. 1997; 
Hyrenbach and 
Veit 2003; Yen et 
al. 2006 

California Current Cetacean 
and Ecosystem 
Assessment Survey 
(CalCurCEAS) 

NOAA Southwest Fisheries 
Science Center Lisa T. Ballance R/V Ocean Starr 200-300d  

California Seabird Ecology 
Study (CDAS dataset code: 
SBECOL)a 

UCSC, MMS Kenneth Briggs Partenavia P-68/P-68-Observer 
fixed-wing aircraft 50 

Briggs et al. 
1987a; Briggs et 
al. 1987b; CDAS 
2009 

Collaborative Survey of 
Cetacean Abundance and 
the Pelagic Ecosystem 
(CSCAPE) 

NOAA Southwest Fisheries 
Science Center Lisa T. Ballance NOAA Ships David Starr Jordan 

and McArthur II 300 Forney 2007 

Equatorial Pacific Ocean 
Climate Studies (EPOCS)a 

H. T. Harvey & Associates, 
NOAA Environmental 
Research Laboratories 

David Ainley, Larry 
Spear 

NOAA Ships Discoverer and 
Researcher 250-600e Spear et al. 1995 

Juvenile Salmon Ocean 
Ecosystem Survey (JSOES) 

NOAA Northwest Fisheries 
Science Center Jeannette E. Zamon F/Vs Chellissa, Frosti, Miss Sue, 

Pacifc Fury, Piky 300 
Zamon et al. 
2014; Phillips et 
al. 2017 

Marine Mammal and 
Seabird Surveys of Central 
and Northern California 
(CDAS dataset codes: 
CLALL1 and CLALL2)a 

UCSC, MMS Thomas Dohl, Kenneth 
Briggs 

Partenavia P-68/P-68-Observer 
fixed-wing aircraft 50 

Briggs et al. 
1983; CDAS 
2009 

Northwest Forest Plan 
Marbled Murrelet Monitoring 
Program Zone 2 

USFS Pacific Northwest 
Research Station, WDFW 

Scott Pearson, William 
McIver R/V Almar 300 

Raphael et al. 
2007; Falxa and 
Raphael 2016; 
McIver et al. 2019 
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Survey Name Institutions Principal Investigators Platform Details Transect Width (m) References 

Northwest Forest Plan 
Marbled Murrelet Monitoring 
Program Zones 3-5a,b 

USFS Pacific Northwest 
Research Station, CDFW 

Craig Strong, William 
McIver  110 

Raphael et al. 
2007; Falxa and 
Raphael 2016; 
McIver et al. 2019 

Olympic Coast NMS 
Seabird and Marine 
Mammal Surveysc 

Olympic Coast NMS C. Edward Bowlby, Liam 
Antrim NOAA Ship McArthur II 300 

Calambokidis et 
al. 2004; Lopez et 
al. 2011 

Olympic Coast NMS 
Pelagic Seabird Surveysc Olympic Coast NMS Liam Antrim NOAA Ship McArthur II and 

NOAA R/V Tatoosh 300  

Oregon and Washington 
Marine Mammal and 
Seabird Surveys (CDAS 
dataset code: OWPELB)a 

Ebasco Environmental, 
Ecological Consulting, Inc., 
MMS 

G. A. Green, Michael L. 
Bonnell, Kenneth Briggs 

Partenavia P-68/P-68-Observer 
fixed-wing aircraft 50 

Briggs et al. 
1991; CDAS 
2009 

Oregon, California, and 
Washington Line-transect 
Expedition (ORCAWALE) 

NOAA Southwest Fisheries 
Science Center Lisa T. Ballance NOAA Ships David Starr Jordan 

and McArthur 200-300d 
Philbrick et al. 
2003; Appler et 
al. 2004 

Pacific Coast Winter Sea 
Duck Survey 

WDFW, Sea Duck Joint 
Venture Joseph Evenson Partenavia P-68 fixed-wing 

aircraft 200 Evenson et al. 
2011 

Pacific Continental Shelf 
Environmental Assessment 
(PaCSEA) 

USGS Western Ecological 
Research Center Josh Adams 

Partenavia P-68/P-68-Observer 
and Commander AC-500 fixed-
wing aircraft 

75-150e Adams et al. 
2014, 2016 

Pacific Orca Distribution 
Survey (PODS) 

NOAA Northwest Fisheries 
Science Center 

Bradley Hanson, Dawn 
Noren, Jeannette E. 
Zamon 

NOAA Ships Bell M. Shimada 
and McArthur II 300 Hanson et al. 

2010 

Pelagic Juvenile Rockfish 
Recruitment and Ecosystem 
Assessment Surveya 

Farallon Institute, NOAA 
Southwest Fisheries Science 
Center 

David Ainley, William 
Sydeman 

NOAA Ships David Starr Jordan 
and McArthur II 300 

Ainley and 
Hyrenbach 2010; 
Santora et al. 
2011 

Santa Barbara Channel 
Surveys (CDAS dataset 
code: MMSSBC)a 

UCSC, CDFW Office of Spill 
Prevention and Response, 
MMS 

Michael L. Bonnell Partenavia P-68/P-68-Observer 
fixed-wing aircraft 50 CDAS 2009 

Southern California Bight 
Surveys 

USGS Western Ecological 
Research Center, MMS 

Josh Adams, John 
Takekawa 

Partenavia P-68/P-68-Observer 
fixed-wing aircraft 50-100e 

Mason et al. 
2007; Takekawa 
et al. 2017 

Wind to Whales UCSC, Moss Landing Marine 
Laboratories 

Donald Croll, James 
Harvey 

Moss Landing Marine 
Laboratories R/V John H. Martin 
and NOAA R/V Fulmar 

100-300e Newton et al. 
2009 

a contained pre-segmented data 
b only used in Marbled Murrelet models 
c current point of contact: Jeannette E. Waddell (Olympic Coast NMS) 
d varied by species 
e varied by observation conditions and number of observers 
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Figure A-1. Applied California Current Ecosystem Studies (ACCESS) 
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Figure A-2. California Cooperative Oceanic Fisheries Investigations (CalCOFI) 
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Figure A-3. California Current Cetacean and Ecosystem Assessment Survey (CalCurCEAS) 
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Figure A-4. California Seabird Ecology Study 
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Figure A-5. Collaborative Survey of Cetacean Abundance and the Pelagic Ecosystem (CSCAPE) 
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Figure A-6. Equatorial Pacific Ocean Climate Studies (EPOCS) 
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Figure A-7. Juvenile Salmon Ocean Ecosystem Survey (JSOES) 
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Figure A-8. Marine Mammal and Seabird Surveys of Central and Northern California 
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Figure A-9. Northwest Forest Plan Marbled Murrelet Monitoring Program Zone 2 
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Figure A-10. Northwest Forest Plan Marbled Murrelet Monitoring Program Zones 3-5 



 

60 

 

Figure A-11. Olympic Coast NMS Pelagic Seabird Surveys 
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Figure A-12. Olympic Coast NMS Seabird and Marine Mammal Surveys 
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Figure A-13. Oregon and Washington Marine Mammal and Seabird Surveys 
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Figure A-14. Oregon, California, and Washington Line-transect Expedition (ORCAWALE) 
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Figure A-15. Pacific Coast Winter Sea Duck Survey 
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Figure A-16. Pacific Continental Shelf Environmental Assessment (PaCSEA) 
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Figure A-17. Pacific Orca Distribution Survey (PODS) 
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Figure A-18. Pelagic Juvenile Rockfish Recruitment and Ecosystem Assessment Survey 
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Figure A-19. Santa Barbara Channel Surveys 
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Figure A-20. Southern California Bight Surveys 
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Figure A-21. Wind to Whales 
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Appendix B: Predictor Variable Figures 
 

 

Figure B-1. Temporal climate index predictors 
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Figure B-2. Seafloor depth 
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Figure B-3. Seafloor slope (top panel) and slope of slope (bottom panel) 
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Figure B-4. Seafloor planform curvature (top panel) and profile curvature (bottom panel) 
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Figure B-5. Projected geographic coordinates (top panel) and distance to nearest land and nearest 
canyon (bottom panel) 
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Figure B-6. Seasonal chlorophyll-a concentration 
Color gradient is linear on the natural logarithmic scale 
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Figure B-7. Seasonal chlorophyll-a front strength 
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Figure B-8. Seasonal turbidity 
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Figure B-9. Seasonal turbidity standard deviation 
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Figure B-10. Seasonal surface current velocity east-west 
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Figure B-11. Seasonal surface current velocity north-south 
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Figure B-12. Seasonal surface current speed 
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Figure B-13. Seasonal surface current divergence 
Positive values = divergence, negative values = convergence 
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Figure B-14. Seasonal surface current vorticity 
Positive values = counterclockwise, negative values = clockwise 
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Figure B-15. Seasonal surface height 
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Figure B-16. Seasonal surface height standard deviation 
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Figure B-17. Seasonal anticyclonic eddy frequency 
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Figure B-18. Seasonal cyclonic eddy frequency 
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Figure B-19. Seasonal surface temperature 
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Figure B-20. Seasonal surface temperature standard deviation 
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Figure B-21. Seasonal surface temperature anomaly frequency 
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Figure B-22. Seasonal surface temperature front strength 
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Figure B-23. Seasonal Ekman driven upwelling 
Positive values = upwelling, negative values = downwelling 
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Figure B-24. Seasonal salinity 
Color gradient is linear on the exponential scale 
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Figure B-25. Seasonal salinity standard deviation 
Color gradient is linear on the natural logarithmic scale 
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Figure B-26. Seasonal mixed layer depth 
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Figure B-27. Seasonal mixed layer depth standard deviation 
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Figure B-28. Seasonal wind stress east-west 
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Figure B-29. Seasonal wind stress north-south 
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Figure B-30. Seasonal wind stress divergence 
Positive values = divergence, negative values = convergence  

 



 

101 

Appendix C: Multibeam Bathymetry Dataset Information 
Table C-1. Multibeam bathymetry datasets included in bathymetry synthesis 

Dataset Data Source Grid Resolution Coordinate System 
MBARI_Axial_Volcano_40m Monterey Bay Aquarium Research Institute 40 x 40 m WGS84 

MBARI_Central_Gorda_Ridge_40m Monterey Bay Aquarium Research Institute 40 x 40 m WGS84 

MBARI_Cleft_Segment_A_30m Monterey Bay Aquarium Research Institute 30 x 30 m WGS84 

MBARI_Eel_River_Basin_10m Monterey Bay Aquarium Research Institute 10 x 10 m WGS84 

MBARI_Escanaba_Trough_40m Monterey Bay Aquarium Research Institute 40 x 40 m WGS84 

MBARI_Guide_to_Gumdrop_Seamounts_30m Monterey Bay Aquarium Research Institute 30 x 30 m WGS84 

MBARI_Mendocino_Fracture_Zone_20m Monterey Bay Aquarium Research Institute 20 x 20 m WGS84 

MBARI_Monterey_Bay_40m Monterey Bay Aquarium Research Institute 40 x 40 m WGS84 

MBARI_North_Gorda_Ridge_40m Monterey Bay Aquarium Research Institute 40 x 40 m WGS84 

MBARI_Northern_California_Transit_1A_40m Monterey Bay Aquarium Research Institute 40 x 40 m WGS84 

MBARI_Northern_California_Transit_1B_40m Monterey Bay Aquarium Research Institute 40 x 40 m WGS84 

MBARI_Northern_California_Transit_1C_40m Monterey Bay Aquarium Research Institute 40 x 40 m WGS84 

MBARI_Northern_California_Transit_1D_40m Monterey Bay Aquarium Research Institute 40 x 40 m WGS84 

MBARI_Northern_California_Transit_1E_10m Monterey Bay Aquarium Research Institute 10 x 10 m WGS84 

MBARI_Northern_California_Transit_1F_20m Monterey Bay Aquarium Research Institute 20 x 20 m WGS84 

MBARI_Northern_California_Transit_1G_10m Monterey Bay Aquarium Research Institute 10 x 10 m WGS84 

MBARI_Northern_California_Transit_1H_10m Monterey Bay Aquarium Research Institute 10 x 10 m WGS84 

MBARI_Oregon_Margin_40m Monterey Bay Aquarium Research Institute 40 x 40 m WGS84 

MBARI_President_Jackson_Seamounts_30m Monterey Bay Aquarium Research Institute 30 x 30 m WGS84 

MBARI_Santa_Barbara_Basin_40m Monterey Bay Aquarium Research Institute 40 x 40 m WGS84 

MBARI_Santa_Barbara_Basin_Rodriguez_Seamount_40m Monterey Bay Aquarium Research Institute 40 x 40 m WGS84 

MBARI_Taney_Seamounts_40m Monterey Bay Aquarium Research Institute 40 x 40 m WGS84 

MBARI_Transit_2A_40m Monterey Bay Aquarium Research Institute 40 x 40 m WGS84 

MBARI_Transit_2B_40m Monterey Bay Aquarium Research Institute 40 x 40 m WGS84 

MBARI_Transit_3A_40m Monterey Bay Aquarium Research Institute 40 x 40 m WGS84 

MBARI_Transit_3B_40m Monterey Bay Aquarium Research Institute 40 x 40 m WGS84 
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Dataset Data Source Grid Resolution Coordinate System 
MBARI_Transit_3C_40m Monterey Bay Aquarium Research Institute 40 x 40 m WGS84 

MBARI_Vance_Seamounts_40m Monterey Bay Aquarium Research Institute 40 x 40 m WGS84 

EX0801_MB_10m_UTM_Zone10N NOAA Office of Exploration and Research 10 x 10 m WGS84, UTM Zone 10N 

EX0903_Mendocino_Central_bathy NOAA Office of Exploration and Research 50 x 50 m WGS84 

EX0903_Mendocino_East_bathy NOAA Office of Exploration and Research 50 x 50 m WGS84 

EX0903_Mendocino_West_bathy NOAA Office of Exploration and Research 50 x 50 m WGS84 

EX0904_Geog_LatLong_50m_All NOAA Office of Exploration and Research 50 x 50 m WGS84 

EX0905_Geog_LatLong_100m_All NOAA Office of Exploration and Research 100 x 100 m WGS84 

EX0907_Geog_LatLong_100m_Transit NOAA Office of Exploration and Research 100 x 100 m WGS84 

EX0907_Geog_LatLong_50m_Sanctuary NOAA Office of Exploration and Research 50 x 50 m WGS84 

EX1101_MB_FNL_CINMS_30m_WGS84 NOAA Office of Exploration and Research 30 x 30 m WGS84 

EX1101_MB_FNL_Hancock_109_Seamnts_25m_WGS84 NOAA Office of Exploration and Research 25 x 25 m WGS84 

EX1101_MB_FNL_PatchTest_50m_WGS84 NOAA Office of Exploration and Research 50 x 50 m WGS84 

EX1101_MB_FNL_SanJuanSeamnt_75m_WGS84 NOAA Office of Exploration and Research 75 x 75 m WGS84 

EX1101_MB_FNL_SouthMBNMS_25m_WGS84 NOAA Office of Exploration and Research 25 x 25 m WGS84 

EX1101_MB_FNL_SurRidge_30m_WGS84 NOAA Office of Exploration and Research 30 x 30 m WGS84 

EX1101_MB_FNL_Transit_North_50m_WGS84 NOAA Office of Exploration and Research 50 x 50 m WGS84 

EX1101_MB_FNL_Transit_South_50m_WGS84 NOAA Office of Exploration and Research 50 x 50 m WGS84 

EX1102_MB_FNL_50m_WGS84 NOAA Office of Exploration and Research 50 x 50 m WGS84 

ocnms_multibeam_2011 Olympic Coast NMS 8 x 8 m NAD83, UTM Zone 10N 

wa_offshr_25m OSU Active Tectonics and Seafloor Mapping Lab 25 x 25 m WGS84, UTM Zone 10N 

tn174_50m University of Washington 50 x 50 m WGS84, UTM Zone 10N 

tn177_35m University of Washington 35 x 35 m WGS84, UTM Zone 10N 

tn207_35m University of Washington 35 x 35 m WGS84, UTM Zone 10N 

tn252_n_50m University of Washington 50 x 50 m WGS84, UTM Zone 10N 

Farallon_Escarpment_10m USGS 10 x 10 m NAD83, UTM Zone 10N 

s_ca_merged_intercontinental_25mbathy USGS 25 x 25 m NAD83, UTM Zone 11N 
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Appendix D: Model Performance Metrics 
Table D-1. Model performance metrics of the final selected model for each species/group-season combination  
Model performance metrics were calculated using the full (i.e., non-bootstrapped) dataset. 

Species Season Distribution M PDE AUC rG Median AE Mean AE RMSE 
Scoter spp. spring ZINB 18,063 66.6% 0.98 0.30 0.00 1.25 11.89 

Scoter spp. summer ZINB 17,724 77.0% 0.99 0.37 0.00 1.18 14.79 

Scoter spp. fall ZINB 20,000 41.1% 0.95 0.14 0.83 1.95 5.68 

Scoter spp. winter ZINB 14,207 68.7% 0.99 0.29 0.02 1.11 6.46 

Western/Clark's Grebe spring ZINB 20,000 61.2% 0.98 0.16 0.10 1.78 1.58 

Western/Clark's Grebe fall ZINB 19,181 69.6% 0.99 0.17 0.23 1.70 1.47 

Western/Clark's Grebe winter ZINB 19,667 69.2% 0.99 0.26 0.01 1.17 9.00 

Phalarope spp. spring ZIP 6,463 53.8% 0.79 0.32 0.20 1.44 95.77 

Phalarope spp. summer ZINB 19,999 38.0% 0.87 0.31 0.11 1.46 16.02 

Phalarope spp. fall ZINB 19,999 30.1% 0.78 0.25 0.27 1.58 24.98 

Phalarope spp. winter ZIP 11,607 37.2% 0.85 0.29 0.38 1.58 2.88 

South Polar Skua fall ZINB 19,220 36.0% 0.88 0.10 0.43 1.85 0.07 

Pomarine Jaeger spring ZIP 19,997 28.7% 0.87 0.17 0.37 1.71 0.18 

Pomarine Jaeger summer ZIP 16,063 18.4% 0.86 0.09 0.55 1.98 0.08 

Pomarine Jaeger fall ZIP 19,007 18.8% 0.82 0.19 0.54 1.82 0.24 

Pomarine Jaeger winter ZIP 19,986 30.0% 0.87 0.18 0.34 1.74 0.18 

Parasitic/Long-tailed Jaeger spring ZIP 18,158 19.9% 0.87 0.09 0.60 1.92 0.07 

Parasitic/Long-tailed Jaeger summer ZIP 19,989 31.5% 0.91 0.16 0.26 1.77 0.17 

Parasitic/Long-tailed Jaeger fall ZINB 19,237 32.0% 0.84 0.19 0.34 1.64 0.38 

Jaeger spp. spring ZIP 19,997 25.6% 0.86 0.19 0.47 1.73 0.20 

Jaeger spp. summer ZINB 19,634 30.1% 0.84 0.15 0.40 1.80 0.20 

Jaeger spp. fall ZIP 19,979 21.8% 0.79 0.23 0.56 1.69 0.45 

Jaeger spp. winter ZIP 19,971 27.5% 0.86 0.19 0.41 1.74 0.19 

Common Murre spring ZINB 19,983 66.9% 0.96 0.57 0.00 1.07 26.31 

Common Murre summer ZINB 18,732 74.8% 0.98 0.68 0.00 0.81 47.57 
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Species Season Distribution M PDE AUC rG Median AE Mean AE RMSE 
Common Murre fall ZINB 17,356 72.1% 0.98 0.50 0.00 1.05 9.76 

Common Murre winter ZINB 18,013 58.3% 0.96 0.48 0.01 1.11 12.41 

Pigeon Guillemot spring ZINB 18,130 65.6% 0.98 0.25 0.04 1.16 0.69 

Pigeon Guillemot summer ZINB 19,156 74.2% 0.99 0.37 0.01 0.93 1.16 

Marbled Murrelet spring ZINB 15,046 75.5% 1.00 0.27 0.02 0.90 0.72 

Marbled Murrelet summer ZINB 18,518 70.7% 0.99 0.47 0.01 0.92 2.45 

Scripps's/Guadalupe/Craveri's Murrelet spring ZINB 20,000 45.7% 0.95 0.12 0.32 1.85 0.21 

Ancient Murrelet spring ZINB 18,573 65.4% 0.98 0.17 0.04 1.70 0.91 

Cassin's Auklet spring ZIP 17,444 40.8% 0.88 0.36 0.26 1.43 5.15 

Cassin's Auklet summer ZIP 18,256 47.5% 0.91 0.37 0.10 1.29 5.02 

Cassin's Auklet fall ZINB 19,997 49.8% 0.91 0.35 0.05 1.49 5.41 

Cassin's Auklet winter ZINB 19,988 37.5% 0.85 0.41 0.23 1.31 5.10 

Rhinoceros Auklet spring ZINB 19,988 55.7% 0.92 0.41 0.08 1.19 4.68 

Rhinoceros Auklet summer ZINB 19,953 70.7% 0.97 0.50 0.00 1.05 20.96 

Rhinoceros Auklet fall ZINB 19,998 57.7% 0.93 0.31 0.05 1.43 1.08 

Rhinoceros Auklet winter ZINB 19,966 44.2% 0.85 0.33 0.18 1.35 10.84 

Tufted Puffin spring ZINB 19,978 65.1% 0.98 0.20 0.03 1.25 0.86 

Tufted Puffin summer ZINB 19,789 75.2% 0.99 0.36 0.01 1.03 2.68 

Black-legged Kittiwake spring ZINB 19,632 58.8% 0.96 0.32 0.03 1.27 2.32 

Black-legged Kittiwake fall ZIP 19,650 41.2% 0.94 0.15 0.31 1.95 0.23 

Black-legged Kittiwake winter ZINB 19,954 42.5% 0.88 0.37 0.23 1.41 1.78 

Sabine's Gull spring ZINB 18,330 38.5% 0.86 0.17 0.22 1.65 1.31 

Sabine's Gull summer ZINB 19,090 41.0% 0.90 0.11 0.25 1.61 0.28 

Sabine's Gull fall ZIP 12,204 53.3% 0.94 0.18 0.20 1.54 1.27 

Bonaparte's Gull spring ZINB 19,678 45.0% 0.91 0.19 0.10 1.49 2.47 

Bonaparte's Gull fall ZINB 18,125 45.4% 0.94 0.19 0.11 1.49 3.79 

Bonaparte's Gull winter ZINB 19,996 57.7% 0.92 0.17 0.03 1.10 5.89 

Heermann's Gull summer ZINB 19,999 52.8% 0.95 0.24 0.08 1.56 0.52 

Heermann's Gull fall ZINB 19,997 61.0% 0.97 0.27 0.03 1.38 1.30 
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Species Season Distribution M PDE AUC rG Median AE Mean AE RMSE 
Heermann's Gull winter ZINB 19,973 71.9% 0.97 0.26 0.04 1.29 1.27 

California Gull spring ZINB 20,000 42.6% 0.89 0.33 0.18 1.45 3.70 

California Gull summer ZINB 19,998 55.8% 0.93 0.26 0.09 1.26 0.71 

California Gull fall ZINB 19,832 63.8% 0.93 0.44 0.03 1.03 5.80 

California Gull winter ZIP 9,449 57.1% 0.91 0.44 0.10 1.20 10.84 

Herring/Iceland Gull spring ZINB 19,945 46.0% 0.92 0.21 0.16 1.67 0.45 

Herring/Iceland Gull summer ZINB 19,560 55.3% 0.94 0.14 0.18 1.64 0.23 

Herring/Iceland Gull fall ZINB 18,162 54.4% 0.91 0.27 0.07 1.39 1.95 

Herring/Iceland Gull winter ZINB 19,064 42.1% 0.87 0.32 0.13 1.43 3.34 

Western/Glaucous-winged Gull spring ZINB 19,991 47.1% 0.89 0.56 0.29 1.07 6.36 

Western/Glaucous-winged Gull summer ZINB 19,990 59.0% 0.94 0.55 0.07 1.04 4.74 

Western/Glaucous-winged Gull fall ZINB 16,533 58.1% 0.91 0.53 0.05 1.08 9.08 

Western/Glaucous-winged Gull winter ZINB 19,998 57.2% 0.88 0.49 0.11 1.25 20.04 

Caspian Tern spring ZINB 19,996 66.1% 0.97 0.13 0.10 1.15 0.46 

Caspian Tern summer ZINB 17,692 68.1% 0.98 0.29 0.01 0.90 1.56 

Common/Arctic Tern spring ZINB 20,000 22.4% 0.83 0.06 0.64 1.95 0.19 

Common/Arctic Tern summer ZINB 16,672 48.4% 0.94 0.18 0.12 1.45 0.78 

Common/Arctic Tern fall ZINB 17,147 49.6% 0.92 0.20 0.10 1.38 1.15 

Royal/Elegant Tern spring ZINB 18,620 75.2% 0.98 0.15 0.10 1.49 0.86 

Royal/Elegant Tern summer ZINB 19,186 59.4% 0.97 0.19 0.05 1.58 0.58 

Royal/Elegant Tern fall ZINB 18,490 65.5% 0.95 0.12 0.14 1.74 0.54 

Red-throated Loon spring ZINB 19,996 62.7% 0.96 0.15 0.08 1.65 0.29 

Red-throated Loon summer ZIP 19,961 60.2% 0.99 0.17 0.04 1.44 0.25 

Common Loon spring ZIP 17,686 47.1% 0.94 0.20 0.11 1.47 0.42 

Common Loon summer ZIP 19,081 55.9% 0.98 0.19 0.03 1.47 0.19 

Loon spp. spring ZINB 19,995 55.6% 0.93 0.37 0.05 1.26 3.23 

Loon spp. summer ZIP 17,590 65.2% 0.98 0.36 0.01 0.94 0.91 

Loon spp. fall ZIP 12,525 63.1% 0.97 0.25 0.04 1.26 2.15 

Loon spp. winter ZINB 18,609 58.1% 0.94 0.29 0.05 1.45 1.79 
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Species Season Distribution M PDE AUC rG Median AE Mean AE RMSE 
Laysan Albatross spring ZINB 19,874 21.9% 0.86 0.09 0.57 1.97 0.07 

Laysan Albatross winter ZIP 19,994 46.9% 0.95 0.20 0.21 1.45 0.12 

Black-footed Albatross spring ZINB 19,998 45.1% 0.89 0.41 0.24 1.28 0.88 

Black-footed Albatross summer ZINB 19,992 44.8% 0.89 0.35 0.23 1.36 0.75 

Black-footed Albatross fall ZINB 19,985 38.2% 0.86 0.25 0.33 1.46 0.40 

Black-footed Albatross winter ZIP 19,999 35.7% 0.92 0.21 0.21 1.70 0.17 

Fork-tailed Storm-Petrel spring ZIP 17,213 39.4% 0.96 0.23 0.17 1.59 0.53 

Fork-tailed Storm-Petrel summer ZINB 18,581 71.9% 0.96 0.28 0.01 1.20 3.68 

Fork-tailed Storm-Petrel fall ZINB 14,405 49.7% 0.95 0.19 0.07 1.56 3.39 

Fork-tailed Storm-Petrel winter ZIP 19,334 48.6% 0.97 0.18 0.22 1.49 0.17 

Leach's Storm-Petrel spring ZINB 19,998 50.0% 0.92 0.32 0.08 1.37 0.78 

Leach's Storm-Petrel summer ZINB 19,995 52.3% 0.92 0.50 0.17 1.07 1.13 

Leach's Storm-Petrel fall ZIP 19,538 39.6% 0.89 0.41 0.15 1.32 1.41 

Leach's Storm-Petrel winter ZIP 19,989 44.5% 0.93 0.36 0.09 1.35 0.55 

Ashy Storm-Petrel spring ZINB 18,534 33.0% 0.86 0.10 0.36 1.67 1.06 

Ashy Storm-Petrel summer ZIP 1,326 2.5% 0.94 0.12 0.85 2.07 5.50 

Ashy Storm-Petrel fall ZINB 18,835 61.6% 0.90 0.14 0.08 1.27 3.22 

Black Storm-Petrel spring ZINB 17,472 59.3% 0.96 0.16 0.14 1.37 0.43 

Black Storm-Petrel summer ZINB 18,770 60.4% 0.95 0.21 0.06 1.45 1.48 

Black Storm-Petrel fall ZINB 18,155 46.4% 0.90 0.10 0.25 1.61 0.36 

Northern Fulmar spring ZIP 19,968 40.6% 0.89 0.32 0.27 1.46 0.97 

Northern Fulmar summer ZINB 19,994 59.1% 0.95 0.31 0.04 1.17 5.79 

Northern Fulmar fall ZIP 19,530 60.6% 0.91 0.38 0.12 1.04 1.73 

Northern Fulmar winter ZINB 19,997 44.4% 0.85 0.36 0.28 1.36 1.45 

Murphy's Petrel spring ZINB 18,700 40.0% 0.93 0.12 0.34 1.73 0.09 

Cook's Petrel spring ZINB 17,258 50.1% 0.95 0.21 0.10 1.59 0.59 

Cook's Petrel summer ZINB 19,999 52.4% 0.95 0.24 0.05 1.52 0.57 

Cook's Petrel fall ZIP 19,718 26.7% 0.90 0.11 0.30 1.85 0.12 

Buller's Shearwater summer ZINB 19,994 54.7% 0.96 0.21 0.05 1.43 0.86 
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Species Season Distribution M PDE AUC rG Median AE Mean AE RMSE 
Buller's Shearwater fall ZINB 17,447 37.5% 0.86 0.17 0.22 1.71 0.79 

Pink-footed Shearwater spring ZINB 19,999 44.4% 0.89 0.35 0.16 1.37 1.85 

Pink-footed Shearwater summer ZINB 16,899 50.1% 0.91 0.37 0.09 1.30 10.21 

Pink-footed Shearwater fall ZINB 19,526 51.9% 0.90 0.32 0.07 1.34 4.40 

Short-tailed/Sooty/Flesh-footed Shearwater spring ZINB 19,997 47.3% 0.87 0.52 0.11 1.29 67.56 

Short-tailed/Sooty/Flesh-footed Shearwater summer ZINB 16,790 51.5% 0.90 0.50 0.07 1.42 169.38 

Short-tailed/Sooty/Flesh-footed Shearwater fall ZIP 8,431 49.0% 0.84 0.36 0.11 1.41 24.20 

Short-tailed/Sooty/Flesh-footed Shearwater winter ZIP 19,964 29.5% 0.87 0.18 0.32 1.62 0.23 

Black-vented Shearwater spring ZINB 19,408 64.6% 0.98 0.15 0.05 1.27 2.04 

Black-vented Shearwater fall ZINB 17,418 67.0% 0.98 0.26 0.01 1.41 7.36 

Black-vented Shearwater winter ZINB 16,040 71.7% 0.97 0.23 0.02 1.14 6.40 

Brandt's Cormorant spring ZINB 17,753 62.7% 0.95 0.30 0.03 1.19 2.43 

Brandt's Cormorant summer ZINB 17,266 61.0% 0.96 0.30 0.02 1.25 5.99 

Pelagic Cormorant spring ZINB 12,857 73.2% 0.99 0.29 0.02 0.77 2.01 

Pelagic Cormorant summer ZINB 13,039 76.6% 0.99 0.43 0.00 0.71 2.67 

Double-crested Cormorant spring ZINB 19,994 60.5% 0.96 0.18 0.06 1.34 1.05 

Double-crested Cormorant summer ZINB 16,098 71.2% 0.98 0.29 0.00 1.30 13.12 

Cormorant spp. fall ZINB 19,530 67.6% 0.96 0.31 0.02 1.31 2.57 

Cormorant spp. winter ZINB 16,545 67.0% 0.96 0.35 0.02 1.23 2.86 

Brown Pelican spring ZINB 18,787 63.2% 0.95 0.26 0.02 1.39 1.12 

Brown Pelican summer ZINB 19,749 59.0% 0.95 0.33 0.01 1.34 4.36 

Brown Pelican fall ZINB 18,706 56.8% 0.94 0.30 0.02 1.42 4.32 

Brown Pelican winter ZINB 19,983 57.3% 0.96 0.29 0.04 1.40 0.79 
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Appendix E: Maps of Predicted Density and Coefficient of Variation 

 

Figure E-1. Predicted density for Scoter spp. (Melanitta spp.) in the spring season 
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Figure E-2. Coefficient of variation for Scoter spp. (Melanitta spp.) in the spring season 
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Figure E-3. Predicted density for Scoter spp. (Melanitta spp.) in the summer season 
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Figure E-4. Coefficient of variation for Scoter spp. (Melanitta spp.) in the summer season 
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Figure E-5. Predicted density for Scoter spp. (Melanitta spp.) in the fall season 
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Figure E-6. Coefficient of variation for Scoter spp. (Melanitta spp.) in the fall season 
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Figure E-7. Predicted density for Scoter spp. (Melanitta spp.) in the winter season 
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Figure E-8. Coefficient of variation for Scoter spp. (Melanitta spp.) in the winter season 
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Figure E-9. Predicted density for Western/Clark's Grebe (Aechmophorus occidentalis/clarkii) in 
the spring season 
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Figure E-10. Coefficient of variation for Western/Clark's Grebe (Aechmophorus 
occidentalis/clarkii) in the spring season 
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Figure E-11. Predicted density for Western/Clark's Grebe (Aechmophorus occidentalis/clarkii) in 
the fall season 
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Figure E-12. Coefficient of variation for Western/Clark's Grebe (Aechmophorus 
occidentalis/clarkii) in the fall season 
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Figure E-13. Predicted density for Western/Clark's Grebe (Aechmophorus occidentalis/clarkii) in 
the winter season 
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Figure E-14. Coefficient of variation for Western/Clark's Grebe (Aechmophorus 
occidentalis/clarkii) in the winter season 
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Figure E-15. Predicted density for Phalarope spp. (Phalaropus spp.) in the spring season 
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Figure E-16. Coefficient of variation for Phalarope spp. (Phalaropus spp.) in the spring season 
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Figure E-17. Predicted density for Phalarope spp. (Phalaropus spp.) in the summer season 
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Figure E-18. Coefficient of variation for Phalarope spp. (Phalaropus spp.) in the summer season 
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Figure E-19. Predicted density for Phalarope spp. (Phalaropus spp.) in the fall season 
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Figure E-20. Coefficient of variation for Phalarope spp. (Phalaropus spp.) in the fall season 
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Figure E-21. Predicted density for Phalarope spp. (Phalaropus spp.) in the winter season 
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Figure E-22. Coefficient of variation for Phalarope spp. (Phalaropus spp.) in the winter season 
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Figure E-23. Predicted density for South Polar Skua (Stercorarius maccormicki) in the fall season 
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Figure E-24. Coefficient of variation for South Polar Skua (Stercorarius maccormicki) in the fall 
season 



 

132 

 

Figure E-25. Predicted density for Pomarine Jaeger (Stercorarius pomarinus) in the spring season 
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Figure E-26. Coefficient of variation for Pomarine Jaeger (Stercorarius pomarinus) in the spring 
season 
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Figure E-27. Predicted density for Pomarine Jaeger (Stercorarius pomarinus) in the summer 
season 
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Figure E-28. Coefficient of variation for Pomarine Jaeger (Stercorarius pomarinus) in the summer 
season 
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Figure E-29. Predicted density for Pomarine Jaeger (Stercorarius pomarinus) in the fall season 
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Figure E-30. Coefficient of variation for Pomarine Jaeger (Stercorarius pomarinus) in the fall 
season 
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Figure E-31. Predicted density for Pomarine Jaeger (Stercorarius pomarinus) in the winter season 
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Figure E-32. Coefficient of variation for Pomarine Jaeger (Stercorarius pomarinus) in the winter 
season 
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Figure E-33. Predicted density for Parasitic/Long-tailed Jaeger (Stercorarius 
parasiticus/longicaudus) in the spring season 
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Figure E-34. Coefficient of variation for Parasitic/Long-tailed Jaeger (Stercorarius 
parasiticus/longicaudus) in the spring season 
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Figure E-35. Predicted density for Parasitic/Long-tailed Jaeger (Stercorarius 
parasiticus/longicaudus) in the summer season 
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Figure E-36. Coefficient of variation for Parasitic/Long-tailed Jaeger (Stercorarius 
parasiticus/longicaudus) in the summer season 
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Figure E-37. Predicted density for Parasitic/Long-tailed Jaeger (Stercorarius 
parasiticus/longicaudus) in the fall season 



 

145 

 

Figure E-38. Coefficient of variation for Parasitic/Long-tailed Jaeger (Stercorarius 
parasiticus/longicaudus) in the fall season 
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Figure E-39. Predicted density for Jaeger spp. (Stercorarius pomarinus/parasiticus/longicaudus) 
in the spring season 



 

147 

 

Figure E-40. Coefficient of variation for Jaeger spp. (Stercorarius 
pomarinus/parasiticus/longicaudus) in the spring season 
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Figure E-41. Predicted density for Jaeger spp. (Stercorarius pomarinus/parasiticus/longicaudus) 
in the summer season 
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Figure E-42. Coefficient of variation for Jaeger spp. (Stercorarius 
pomarinus/parasiticus/longicaudus) in the summer season 
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Figure E-43. Predicted density for Jaeger spp. (Stercorarius pomarinus/parasiticus/longicaudus) 
in the fall season 
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Figure E-44. Coefficient of variation for Jaeger spp. (Stercorarius 
pomarinus/parasiticus/longicaudus) in the fall season 
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Figure E-45. Predicted density for Jaeger spp. (Stercorarius pomarinus/parasiticus/longicaudus) 
in the winter season 
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Figure E-46. Coefficient of variation for Jaeger spp. (Stercorarius 
pomarinus/parasiticus/longicaudus) in the winter season 
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Figure E-47. Predicted density for Common Murre (Uria aalge) in the spring season 
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Figure E-48. Coefficient of variation for Common Murre (Uria aalge) in the spring season 



 

156 

 

Figure E-49. Predicted density for Common Murre (Uria aalge) in the summer season 
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Figure E-50. Coefficient of variation for Common Murre (Uria aalge) in the summer season 
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Figure E-51. Predicted density for Common Murre (Uria aalge) in the fall season 
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Figure E-52. Coefficient of variation for Common Murre (Uria aalge) in the fall season 
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Figure E-53. Predicted density for Common Murre (Uria aalge) in the winter season 
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Figure E-54. Coefficient of variation for Common Murre (Uria aalge) in the winter season 
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Figure E-55. Predicted density for Pigeon Guillemot (Cepphus columba) in the spring season 
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Figure E-56. Coefficient of variation for Pigeon Guillemot (Cepphus columba) in the spring season 
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Figure E-57. Predicted density for Pigeon Guillemot (Cepphus columba) in the summer season 
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Figure E-58. Coefficient of variation for Pigeon Guillemot (Cepphus columba) in the summer 
season 
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Figure E-59. Predicted density for Marbled Murrelet (Brachyramphus marmoratus) in the spring 
season 
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Figure E-60. Coefficient of variation for Marbled Murrelet (Brachyramphus marmoratus) in the 
spring season 
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Figure E-61. Predicted density for Marbled Murrelet (Brachyramphus marmoratus) in the summer 
season 



 

169 

 

Figure E-62. Coefficient of variation for Marbled Murrelet (Brachyramphus marmoratus) in the 
summer season 
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Figure E-63. Predicted density for Scripps's/Guadalupe/Craveri's Murrelet (Synthliboramphus 
scrippsi/hypoleucus/craveri) in the spring season 
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Figure E-64. Coefficient of variation for Scripps's/Guadalupe/Craveri's Murrelet (Synthliboramphus 
scrippsi/hypoleucus/craveri) in the spring season 
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Figure E-65. Predicted density for Ancient Murrelet (Synthliboramphus antiquus) in the spring 
season 
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Figure E-66. Coefficient of variation for Ancient Murrelet (Synthliboramphus antiquus) in the 
spring season 
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Figure E-67. Predicted density for Cassin's Auklet (Ptychoramphus aleuticus) in the spring season 
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Figure E-68. Coefficient of variation for Cassin's Auklet (Ptychoramphus aleuticus) in the spring 
season 
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Figure E-69. Predicted density for Cassin's Auklet (Ptychoramphus aleuticus) in the summer 
season 
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Figure E-70. Coefficient of variation for Cassin's Auklet (Ptychoramphus aleuticus) in the summer 
season 
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Figure E-71. Predicted density for Cassin's Auklet (Ptychoramphus aleuticus) in the fall season 
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Figure E-72. Coefficient of variation for Cassin's Auklet (Ptychoramphus aleuticus) in the fall 
season 
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Figure E-73. Predicted density for Cassin's Auklet (Ptychoramphus aleuticus) in the winter season 
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Figure E-74. Coefficient of variation for Cassin's Auklet (Ptychoramphus aleuticus) in the winter 
season 
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Figure E-75. Predicted density for Rhinoceros Auklet (Cerorhinca monocerata) in the spring 
season 
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Figure E-76. Coefficient of variation for Rhinoceros Auklet (Cerorhinca monocerata) in the spring 
season 
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Figure E-77. Predicted density for Rhinoceros Auklet (Cerorhinca monocerata) in the summer 
season 
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Figure E-78. Coefficient of variation for Rhinoceros Auklet (Cerorhinca monocerata) in the 
summer season 
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Figure E-79. Predicted density for Rhinoceros Auklet (Cerorhinca monocerata) in the fall season 
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Figure E-80. Coefficient of variation for Rhinoceros Auklet (Cerorhinca monocerata) in the fall 
season 
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Figure E-81. Predicted density for Rhinoceros Auklet (Cerorhinca monocerata) in the winter 
season 
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Figure E-82. Coefficient of variation for Rhinoceros Auklet (Cerorhinca monocerata) in the winter 
season 
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Figure E-83. Predicted density for Tufted Puffin (Fratercula cirrhata) in the spring season 
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Figure E-84. Coefficient of variation for Tufted Puffin (Fratercula cirrhata) in the spring season 



 

192 

 

Figure E-85. Predicted density for Tufted Puffin (Fratercula cirrhata) in the summer season 
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Figure E-86. Coefficient of variation for Tufted Puffin (Fratercula cirrhata) in the summer season 
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Figure E-87. Predicted density for Black-legged Kittiwake (Rissa tridactyla) in the spring season 
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Figure E-88. Coefficient of variation for Black-legged Kittiwake (Rissa tridactyla) in the spring 
season 
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Figure E-89. Predicted density for Black-legged Kittiwake (Rissa tridactyla) in the fall season 
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Figure E-90. Coefficient of variation for Black-legged Kittiwake (Rissa tridactyla) in the fall season 



 

198 

 

Figure E-91. Predicted density for Black-legged Kittiwake (Rissa tridactyla) in the winter season 
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Figure E-92. Coefficient of variation for Black-legged Kittiwake (Rissa tridactyla) in the winter 
season 
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Figure E-93. Predicted density for Sabine's Gull (Xema sabini) in the spring season 
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Figure E-94. Coefficient of variation for Sabine's Gull (Xema sabini) in the spring season 
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Figure E-95. Predicted density for Sabine's Gull (Xema sabini) in the summer season 
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Figure E-96. Coefficient of variation for Sabine's Gull (Xema sabini) in the summer season 
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Figure E-97. Predicted density for Sabine's Gull (Xema sabini) in the fall season 
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Figure E-98. Coefficient of variation for Sabine's Gull (Xema sabini) in the fall season 
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Figure E-99. Predicted density for Bonaparte's Gull (Chroicocephalus philadelphia) in the spring 
season 
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Figure E-100. Coefficient of variation for Bonaparte's Gull (Chroicocephalus philadelphia) in the 
spring season 
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Figure E-101. Predicted density for Bonaparte's Gull (Chroicocephalus philadelphia) in the fall 
season 



 

209 

 

Figure E-102. Coefficient of variation for Bonaparte's Gull (Chroicocephalus philadelphia) in the 
fall season 
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Figure E-103. Predicted density for Bonaparte's Gull (Chroicocephalus philadelphia) in the winter 
season 
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Figure E-104. Coefficient of variation for Bonaparte's Gull (Chroicocephalus philadelphia) in the 
winter season 
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Figure E-105. Predicted density for Heermann's Gull (Larus heermanni) in the summer season 
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Figure E-106. Coefficient of variation for Heermann's Gull (Larus heermanni) in the summer 
season 
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Figure E-107. Predicted density for Heermann's Gull (Larus heermanni) in the fall season 
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Figure E-108. Coefficient of variation for Heermann's Gull (Larus heermanni) in the fall season 
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Figure E-109. Predicted density for Heermann's Gull (Larus heermanni) in the winter season 
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Figure E-110. Coefficient of variation for Heermann's Gull (Larus heermanni) in the winter season 
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Figure E-111. Predicted density for California Gull (Larus californicus) in the spring season 
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Figure E-112. Coefficient of variation for California Gull (Larus californicus) in the spring season 
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Figure E-113. Predicted density for California Gull (Larus californicus) in the summer season 
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Figure E-114. Coefficient of variation for California Gull (Larus californicus) in the summer season 
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Figure E-115. Predicted density for California Gull (Larus californicus) in the fall season 
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Figure E-116. Coefficient of variation for California Gull (Larus californicus) in the fall season 
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Figure E-117. Predicted density for California Gull (Larus californicus) in the winter season 
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Figure E-118. Coefficient of variation for California Gull (Larus californicus) in the winter season 
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Figure E-119. Predicted density for Herring/Iceland Gull (Larus argentatus/glaucoides) in the 
spring season 
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Figure E-120. Coefficient of variation for Herring/Iceland Gull (Larus argentatus/glaucoides) in the 
spring season 
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Figure E-121. Predicted density for Herring/Iceland Gull (Larus argentatus/glaucoides) in the 
summer season 
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Figure E-122. Coefficient of variation for Herring/Iceland Gull (Larus argentatus/glaucoides) in the 
summer season 
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Figure E-123. Predicted density for Herring/Iceland Gull (Larus argentatus/glaucoides) in the fall 
season 
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Figure E-124. Coefficient of variation for Herring/Iceland Gull (Larus argentatus/glaucoides) in the 
fall season 
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Figure E-125. Predicted density for Herring/Iceland Gull (Larus argentatus/glaucoides) in the 
winter season 
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Figure E-126. Coefficient of variation for Herring/Iceland Gull (Larus argentatus/glaucoides) in the 
winter season 
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Figure E-127. Predicted density for Western/Glaucous-winged Gull (Larus 
occidentalis/glaucescens) in the spring season 
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Figure E-128. Coefficient of variation for Western/Glaucous-winged Gull (Larus 
occidentalis/glaucescens) in the spring season 
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Figure E-129. Predicted density for Western/Glaucous-winged Gull (Larus 
occidentalis/glaucescens) in the summer season 
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Figure E-130. Coefficient of variation for Western/Glaucous-winged Gull (Larus 
occidentalis/glaucescens) in the summer season 
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Figure E-131. Predicted density for Western/Glaucous-winged Gull (Larus 
occidentalis/glaucescens) in the fall season 
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Figure E-132. Coefficient of variation for Western/Glaucous-winged Gull (Larus 
occidentalis/glaucescens) in the fall season 
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Figure E-133. Predicted density for Western/Glaucous-winged Gull (Larus 
occidentalis/glaucescens) in the winter season 
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Figure E-134. Coefficient of variation for Western/Glaucous-winged Gull (Larus 
occidentalis/glaucescens) in the winter season 
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Figure E-135. Predicted density for Caspian Tern (Hydroprogne caspia) in the spring season 
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Figure E-136. Coefficient of variation for Caspian Tern (Hydroprogne caspia) in the spring season 
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Figure E-137. Predicted density for Caspian Tern (Hydroprogne caspia) in the summer season 
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Figure E-138. Coefficient of variation for Caspian Tern (Hydroprogne caspia) in the summer 
season 
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Figure E-139. Predicted density for Common/Arctic Tern (Sterna hirundo/paradisaea) in the spring 
season 
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Figure E-140. Coefficient of variation for Common/Arctic Tern (Sterna hirundo/paradisaea) in the 
spring season 
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Figure E-141. Predicted density for Common/Arctic Tern (Sterna hirundo/paradisaea) in the 
summer season 
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Figure E-142. Coefficient of variation for Common/Arctic Tern (Sterna hirundo/paradisaea) in the 
summer season 
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Figure E-143. Predicted density for Common/Arctic Tern (Sterna hirundo/paradisaea) in the fall 
season 
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Figure E-144. Coefficient of variation for Common/Arctic Tern (Sterna hirundo/paradisaea) in the 
fall season 
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Figure E-145. Predicted density for Royal/Elegant Tern (Thalasseus maximus/elegans) in the 
spring season 
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Figure E-146. Coefficient of variation for Royal/Elegant Tern (Thalasseus maximus/elegans) in the 
spring season 
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Figure E-147. Predicted density for Royal/Elegant Tern (Thalasseus maximus/elegans) in the 
summer season 
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Figure E-148. Coefficient of variation for Royal/Elegant Tern (Thalasseus maximus/elegans) in the 
summer season 
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Figure E-149. Predicted density for Royal/Elegant Tern (Thalasseus maximus/elegans) in the fall 
season 
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Figure E-150. Coefficient of variation for Royal/Elegant Tern (Thalasseus maximus/elegans) in the 
fall season 
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Figure E-151. Predicted density for Red-throated Loon (Gavia stellata) in the spring season 
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Figure E-152. Coefficient of variation for Red-throated Loon (Gavia stellata) in the spring season 
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Figure E-153. Predicted density for Red-throated Loon (Gavia stellata) in the summer season 
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Figure E-154. Coefficient of variation for Red-throated Loon (Gavia stellata) in the summer season 
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Figure E-155. Predicted density for Common Loon (Gavia immer) in the spring season 
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Figure E-156. Coefficient of variation for Common Loon (Gavia immer) in the spring season 
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Figure E-157. Predicted density for Common Loon (Gavia immer) in the summer season 
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Figure E-158. Coefficient of variation for Common Loon (Gavia immer) in the summer season 
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Figure E-159. Predicted density for Loon spp. (Gavia spp.) in the spring season 
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Figure E-160. Coefficient of variation for Loon spp. (Gavia spp.) in the spring season 
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Figure E-161. Predicted density for Loon spp. (Gavia spp.) in the summer season 
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Figure E-162. Coefficient of variation for Loon spp. (Gavia spp.) in the summer season 
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Figure E-163. Predicted density for Loon spp. (Gavia spp.) in the fall season 
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Figure E-164. Coefficient of variation for Loon spp. (Gavia spp.) in the fall season 
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Figure E-165. Predicted density for Loon spp. (Gavia spp.) in the winter season 
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Figure E-166. Coefficient of variation for Loon spp. (Gavia spp.) in the winter season 
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Figure E-167. Predicted density for Laysan Albatross (Phoebastria immutabilis) in the spring 
season 
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Figure E-168. Coefficient of variation for Laysan Albatross (Phoebastria immutabilis) in the spring 
season 
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Figure E-169. Predicted density for Laysan Albatross (Phoebastria immutabilis) in the winter 
season 
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Figure E-170. Coefficient of variation for Laysan Albatross (Phoebastria immutabilis) in the winter 
season 
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Figure E-171. Predicted density for Black-footed Albatross (Phoebastria nigripes) in the spring 
season 
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Figure E-172. Coefficient of variation for Black-footed Albatross (Phoebastria nigripes) in the 
spring season 
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Figure E-173. Predicted density for Black-footed Albatross (Phoebastria nigripes) in the summer 
season 
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Figure E-174. Coefficient of variation for Black-footed Albatross (Phoebastria nigripes) in the 
summer season 
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Figure E-175. Predicted density for Black-footed Albatross (Phoebastria nigripes) in the fall 
season 
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Figure E-176. Coefficient of variation for Black-footed Albatross (Phoebastria nigripes) in the fall 
season 
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Figure E-177. Predicted density for Black-footed Albatross (Phoebastria nigripes) in the winter 
season 
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Figure E-178. Coefficient of variation for Black-footed Albatross (Phoebastria nigripes) in the 
winter season 
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Figure E-179. Predicted density for Fork-tailed Storm-Petrel (Hydrobates furcatus) in the spring 
season 
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Figure E-180. Coefficient of variation for Fork-tailed Storm-Petrel (Hydrobates furcatus) in the 
spring season 
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Figure E-181. Predicted density for Fork-tailed Storm-Petrel (Hydrobates furcatus) in the summer 
season 
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Figure E-182. Coefficient of variation for Fork-tailed Storm-Petrel (Hydrobates furcatus) in the 
summer season 
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Figure E-183. Predicted density for Fork-tailed Storm-Petrel (Hydrobates furcatus) in the fall 
season 
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Figure E-184. Coefficient of variation for Fork-tailed Storm-Petrel (Hydrobates furcatus) in the fall 
season 
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Figure E-185. Predicted density for Fork-tailed Storm-Petrel (Hydrobates furcatus) in the winter 
season 
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Figure E-186. Coefficient of variation for Fork-tailed Storm-Petrel (Hydrobates furcatus) in the 
winter season 
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Figure E-187. Predicted density for Leach's Storm-Petrel (Hydrobates leucorhous) in the spring 
season 
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Figure E-188. Coefficient of variation for Leach's Storm-Petrel (Hydrobates leucorhous) in the 
spring season 
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Figure E-189. Predicted density for Leach's Storm-Petrel (Hydrobates leucorhous) in the summer 
season 
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Figure E-190. Coefficient of variation for Leach's Storm-Petrel (Hydrobates leucorhous) in the 
summer season 
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Figure E-191. Predicted density for Leach's Storm-Petrel (Hydrobates leucorhous) in the fall 
season 
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Figure E-192. Coefficient of variation for Leach's Storm-Petrel (Hydrobates leucorhous) in the fall 
season 
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Figure E-193. Predicted density for Leach's Storm-Petrel (Hydrobates leucorhous) in the winter 
season 
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Figure E-194. Coefficient of variation for Leach's Storm-Petrel (Hydrobates leucorhous) in the 
winter season 
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Figure E-195. Predicted density for Ashy Storm-Petrel (Hydrobates homochroa) in the spring 
season 
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Figure E-196. Coefficient of variation for Ashy Storm-Petrel (Hydrobates homochroa) in the spring 
season 
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Figure E-197. Predicted density for Ashy Storm-Petrel (Hydrobates homochroa) in the summer 
season 
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Figure E-198. Coefficient of variation for Ashy Storm-Petrel (Hydrobates homochroa) in the 
summer season 
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Figure E-199. Predicted density for Ashy Storm-Petrel (Hydrobates homochroa) in the fall season 
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Figure E-200. Coefficient of variation for Ashy Storm-Petrel (Hydrobates homochroa) in the fall 
season 
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Figure E-201. Predicted density for Black Storm-Petrel (Hydrobates melania) in the spring season 
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Figure E-202. Coefficient of variation for Black Storm-Petrel (Hydrobates melania) in the spring 
season 
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Figure E-203. Predicted density for Black Storm-Petrel (Hydrobates melania) in the summer 
season 
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Figure E-204. Coefficient of variation for Black Storm-Petrel (Hydrobates melania) in the summer 
season 



 

312 

 

Figure E-205. Predicted density for Black Storm-Petrel (Hydrobates melania) in the fall season 
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Figure E-206. Coefficient of variation for Black Storm-Petrel (Hydrobates melania) in the fall 
season 
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Figure E-207. Predicted density for Northern Fulmar (Fulmarus glacialis) in the spring season 
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Figure E-208. Coefficient of variation for Northern Fulmar (Fulmarus glacialis) in the spring season 
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Figure E-209. Predicted density for Northern Fulmar (Fulmarus glacialis) in the summer season 
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Figure E-210. Coefficient of variation for Northern Fulmar (Fulmarus glacialis) in the summer 
season 
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Figure E-211. Predicted density for Northern Fulmar (Fulmarus glacialis) in the fall season 
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Figure E-212. Coefficient of variation for Northern Fulmar (Fulmarus glacialis) in the fall season 
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Figure E-213. Predicted density for Northern Fulmar (Fulmarus glacialis) in the winter season 
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Figure E-214. Coefficient of variation for Northern Fulmar (Fulmarus glacialis) in the winter season 
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Figure E-215. Predicted density for Murphy's Petrel (Pterodroma ultima) in the spring season 
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Figure E-216. Coefficient of variation for Murphy's Petrel (Pterodroma ultima) in the spring season 
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Figure E-217. Predicted density for Cook's Petrel (Pterodroma cookii) in the spring season 
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Figure E-218. Coefficient of variation for Cook's Petrel (Pterodroma cookii) in the spring season 
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Figure E-219. Predicted density for Cook's Petrel (Pterodroma cookii) in the summer season 
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Figure E-220. Coefficient of variation for Cook's Petrel (Pterodroma cookii) in the summer season 
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Figure E-221. Predicted density for Cook's Petrel (Pterodroma cookii) in the fall season 
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Figure E-222. Coefficient of variation for Cook's Petrel (Pterodroma cookii) in the fall season 
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Figure E-223. Predicted density for Buller's Shearwater (Ardenna bulleri) in the summer season 
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Figure E-224. Coefficient of variation for Buller's Shearwater (Ardenna bulleri) in the summer 
season 
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Figure E-225. Predicted density for Buller's Shearwater (Ardenna bulleri) in the fall season 
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Figure E-226. Coefficient of variation for Buller's Shearwater (Ardenna bulleri) in the fall season 
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Figure E-227. Predicted density for Pink-footed Shearwater (Ardenna creatopus) in the spring 
season 
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Figure E-228. Coefficient of variation for Pink-footed Shearwater (Ardenna creatopus) in the spring 
season 
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Figure E-229. Predicted density for Pink-footed Shearwater (Ardenna creatopus) in the summer 
season 
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Figure E-230. Coefficient of variation for Pink-footed Shearwater (Ardenna creatopus) in the 
summer season 
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Figure E-231. Predicted density for Pink-footed Shearwater (Ardenna creatopus) in the fall season 
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Figure E-232. Coefficient of variation for Pink-footed Shearwater (Ardenna creatopus) in the fall 
season 
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Figure E-233. Predicted density for Short-tailed/Sooty/Flesh-footed Shearwater (Ardenna 
tenuirostris/grisea/carneipes) in the spring season 
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Figure E-234. Coefficient of variation for Short-tailed/Sooty/Flesh-footed Shearwater (Ardenna 
tenuirostris/grisea/carneipes) in the spring season 
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Figure E-235. Predicted density for Short-tailed/Sooty/Flesh-footed Shearwater (Ardenna 
tenuirostris/grisea/carneipes) in the summer season 
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Figure E-236. Coefficient of variation for Short-tailed/Sooty/Flesh-footed Shearwater (Ardenna 
tenuirostris/grisea/carneipes) in the summer season 
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Figure E-237. Predicted density for Short-tailed/Sooty/Flesh-footed Shearwater (Ardenna 
tenuirostris/grisea/carneipes) in the fall season 
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Figure E-238. Coefficient of variation for Short-tailed/Sooty/Flesh-footed Shearwater (Ardenna 
tenuirostris/grisea/carneipes) in the fall season 
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Figure E-239. Predicted density for Short-tailed/Sooty/Flesh-footed Shearwater (Ardenna 
tenuirostris/grisea/carneipes) in the winter season 
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Figure E-240. Coefficient of variation for Short-tailed/Sooty/Flesh-footed Shearwater (Ardenna 
tenuirostris/grisea/carneipes) in the winter season 
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Figure E-241. Predicted density for Black-vented Shearwater (Puffinus opisthomelas) in the spring 
season 
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Figure E-242. Coefficient of variation for Black-vented Shearwater (Puffinus opisthomelas) in the 
spring season 
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Figure E-243. Predicted density for Black-vented Shearwater (Puffinus opisthomelas) in the fall 
season 
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Figure E-244. Coefficient of variation for Black-vented Shearwater (Puffinus opisthomelas) in the 
fall season 
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Figure E-245. Predicted density for Black-vented Shearwater (Puffinus opisthomelas) in the winter 
season 
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Figure E-246. Coefficient of variation for Black-vented Shearwater (Puffinus opisthomelas) in the 
winter season 
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Figure E-247. Predicted density for Brandt's Cormorant (Phalacrocorax penicillatus) in the spring 
season 
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Figure E-248. Coefficient of variation for Brandt's Cormorant (Phalacrocorax penicillatus) in the 
spring season 
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Figure E-249. Predicted density for Brandt's Cormorant (Phalacrocorax penicillatus) in the 
summer season 
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Figure E-250. Coefficient of variation for Brandt's Cormorant (Phalacrocorax penicillatus) in the 
summer season 
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Figure E-251. Predicted density for Pelagic Cormorant (Phalacrocorax pelagicus) in the spring 
season 
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Figure E-252. Coefficient of variation for Pelagic Cormorant (Phalacrocorax pelagicus) in the 
spring season 
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Figure E-253. Predicted density for Pelagic Cormorant (Phalacrocorax pelagicus) in the summer 
season 
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Figure E-254. Coefficient of variation for Pelagic Cormorant (Phalacrocorax pelagicus) in the 
summer season 
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Figure E-255. Predicted density for Double-crested Cormorant (Phalacrocorax auritus) in the 
spring season 
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Figure E-256. Coefficient of variation for Double-crested Cormorant (Phalacrocorax auritus) in the 
spring season 
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Figure E-257. Predicted density for Double-crested Cormorant (Phalacrocorax auritus) in the 
summer season 
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Figure E-258. Coefficient of variation for Double-crested Cormorant (Phalacrocorax auritus) in the 
summer season 
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Figure E-259. Predicted density for Cormorant spp. (Phalacrocorax spp.) in the fall season 



 

367 

 

Figure E-260. Coefficient of variation for Cormorant spp. (Phalacrocorax spp.) in the fall season 
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Figure E-261. Predicted density for Cormorant spp. (Phalacrocorax spp.) in the winter season 
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Figure E-262. Coefficient of variation for Cormorant spp. (Phalacrocorax spp.) in the winter season 
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Figure E-263. Predicted density for Brown Pelican (Pelecanus occidentalis) in the spring season 
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Figure E-264. Coefficient of variation for Brown Pelican (Pelecanus occidentalis) in the spring 
season 
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Figure E-265. Predicted density for Brown Pelican (Pelecanus occidentalis) in the summer season 
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Figure E-266. Coefficient of variation for Brown Pelican (Pelecanus occidentalis) in the summer 
season 
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Figure E-267. Predicted density for Brown Pelican (Pelecanus occidentalis) in the fall season 



 

375 

 

Figure E-268. Coefficient of variation for Brown Pelican (Pelecanus occidentalis) in the fall season 
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Figure E-269. Predicted density for Brown Pelican (Pelecanus occidentalis) in the winter season 
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Figure E-270. Coefficient of variation for Brown Pelican (Pelecanus occidentalis) in the winter 
season 
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Appendix F: Predictor Variable Relative Importance Figures 

 

Figure F-1. Relative importance of predictor variables for the 𝒑𝒑 component of the final selected 
model of each species/group during the spring season 
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Figure F-2. Relative importance of predictor variables for the 𝝁𝝁 component of the final selected 
model of each species/group during the spring season 
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Figure F-3. Relative importance of predictor variables for the 𝒑𝒑 component of the final selected 
model of each species/group during the summer season 
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Figure F-4. Relative importance of predictor variables for the 𝝁𝝁 component of the final selected 
model of each species/group during the summer season 
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Figure F-5. Relative importance of predictor variables for the 𝒑𝒑 component of the final selected 
model of each species/group during the fall season 
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Figure F-6. Relative importance of predictor variables for the 𝝁𝝁 component of the final selected 
model of each species/group during the fall season 



 

384 

 

Figure F-7. Relative importance of predictor variables for the 𝒑𝒑 component of the final selected 
model of each species/group during the winter season 
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Figure F-8. Relative importance of predictor variables for the 𝝁𝝁 component of the final selected 
model of each species/group during the winter season 
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