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Abstract 
Species distribution models (SDMs) are a state-of-the-art statistical modeling approach that quantifies the 
relationships between species and spatially explicit environmental data. SDMs work by extending the 
identified species-habitat relationships to the entire distribution of species under consideration. These 
predictive modeling results are ideal to inform management decisions. In this volume, we used a variety 
of fisheries-independent data sources in the Gulf of Mexico and South Atlantic to produce SDMs for 
select marine fish and shrimp species. Environmental data on habitats included oceanographic conditions, 
geomorphology, geography, prey, and the nearby ecosystems of wetlands and estuaries. For the Greater 
Atlantic, we summarize SDMs developed by the Northeast Fisheries Science Center that combined trawl 
surveys with data on oceanographic conditions, substrate, and zooplankton. Together, these maps and 
quantified habitat relationships (or lack thereof) add to the information synthesized in Volume 1: Fish 
Habitat Associations and the Potential Effects of Dredging on the Atlantic and Gulf of Mexico Outer 
Continental Shelf. The analyses evaluated the best habitat predictors of marine species and depicted the 
distribution of select marine fish and shrimp species. Species' relationships with geomorphology 
characteristics were limited and of minor importance compared to other habitat predictors. None of the 
Gulf of Mexico species examined were related to bottom currents, slope, or the heterogeneity of depth. Of 
minor importance in the models, white shrimp had a higher catch per unit effort (CPUE) farther away 
from shoals, and pink shrimp were positively related to sand grain sizes. Red snapper age-0 had a higher 
CPUE in close proximity to shoals and where the bathymetric position index predominately showed a hill 
topography. In the South Atlantic, none of the five species examined were associated with 
geomorphology characteristics. Overall, species' distributions were primarily related to oceanographic 
conditions, nearby wetlands and estuaries, and prey species. When applicable, geomorphology predictors 
only had minor influence on species distribution. 
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1 Predicting the Marine Distribution of Three Penaeid Shrimp 
Species in the Northern Gulf of Mexico 

1.1 Introduction 
In the northern Gulf of Mexico (nGoM), USA, the Penaeid species of brown shrimp (Penaeus aztecus), 
pink shrimp (Farfantepenaeus duorarum), and white shrimp (Litopenaeus setiferus) have high economic 
value. From 2006 to 2015, annual commercial catches of shrimp in the region had an economic value 
ranging from $327.6 to $585.8 million and catches have ranged from 178.9 to 289.0 million pounds 
(National Marine Fisheries Service 2017). As a specific example of the Penaeid species, 2016 landings 
included brown shrimp ($157 million), white shrimp ($206 million), and pink shrimp ($24.4 million) 
(NOAA NMFS Office of Science and Technology 2019). In addition to their economic importance, 
shrimp are key components of the ecosystem as a common prey for both benthic and pelagic fish 
(Tarnecki et al. 2016). In particular, brown shrimp have been documented as an integral part of the nGoM 
food web, as they are described as prey of small pelagic fish, small demersal fish, flatfish, king mackerel, 
Spanish mackerel, benthic feeding sharks, several snapper and grouper species, black drum, red drum, 
and others (Tarnecki et al. 2016). 

Brown, pink, and white shrimp are estuarine-dependent in their early life stages, which is when they are 
relatively well studied. Within estuaries, juvenile white and brown shrimp are most abundant at open 
water-marsh edges, and they respond positively to the amount of time the marsh is flooded (Minello and 
Rozas 2002; Rozas and Minello 2015; Rozas et al. 2007). As adults, these three Penaeids are demersal 
and utilize the marine environment. Of the three Penaeids, brown shrimp are the best studied in the 
nGoM. Of particular importance, research has concentrated on the effects of hypoxia on brown shrimp 
(Craig 2012; Craig and Crowder 2005; Craig et al. 2005). These studies show that brown shrimp 
aggregate at the edge of hypoxic zones and may move farther inshore or offshore to avoid hypoxic waters. 
Since 2007, the development of species distribution models (SDMs) have begun to proliferate for marine 
species (Melo-Merino et al. 2020). SDMs use statistical species-habitat relationships to predict the spatial 
distribution of species (Guisan and Zimmermann 2000). Montero et al. (2016) developed an SDM for 
brown shrimp and found brown shrimp relative abundance was positively related to mud, shallow depths 
(< 100 m), lower salinities (< 20 ppt), higher bottom temperatures (> 20℃), latitude/longitude, and were 
uncommon in hypoxic conditions. For pink shrimp, Drexler and Ainsworth (2013) developed an SDM 
and tested five predictor variables. Their results were initially modeled at a 10-km scale and were 
aggregated into broad polygons that improved model accuracy (Drexler and Ainsworth 2013). Their 
model showed pink shrimp were less abundant in waters with mud sediments compared to other grain 
sizes. Drexler and Ainsworth (2013) also showed pink shrimp abundance declined most in waters > 120 
m in depth and with waters < 15℃. They found a negative relationship with chlorophyll and a positive 
relationship with dissolved oxygen of ≥ 5 ml -L. Concerning adult white shrimp, their habitat use and 
marine distribution remains poorly documented. 

Recent advances in modeling the distribution of brown and pink shrimp have greatly improved our 
knowledge of the marine distribution of Penaeids. However, even with these species, much remains 
unknown about their relationships to geomorphology, ocean currents, and the nearby ecosystems on 
which each species depends. Turner (1977) found a strong positive correlation between coarse measures 
of inshore brown shrimp landings and emergent wetland area in the nGoM. Diop et al. (2007) found 
landings of white shrimp over time were positively, but weakly, correlated with late juvenile abundances. 
Yet, the distribution of Penaeids in the offshore, marine ecosystem has not yet been related to nearby 
wetlands and estuaries. Overall, testing the relationships of shrimp species' distribution with a 
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comprehensive suite of habitat variables has the potential to inform management, strengthen 
environmental impact assessments, and refine our knowledge of important waters for each species. 

The need to fill these knowledge gaps is exemplified by marine resource extraction activities like 
dredging. The demand for offshore marine sand is increasing in the United States (Drucker et al. 2004), 
and sand is commonly used for beach renourishment, barrier island restoration, and wetland restoration. 
Throughout this report, we use the term "sand" to broadly characterize sediment resources, and we 
recognize that sediment dredging may include a variety of grain sizes depending on the application. Sand 
shoals are often preferred resources because of the quantity of sand per unit area, and the dredging of 
Outer Continental Shelf (OCS) sand shoals is likely to increase in the future as demand increases due to 
renourishment cycles for beaches, emergency repairs of beaches after storms, and the projected effects of 
sea-level rise (Nairn et al. 2004). In particular, the nGoM coast benefits greatly from barrier islands that 
reduce storm surge (Grzegorzewski et al. 2011), and these islands require regular sediment replenishment. 
The Bureau of Ocean Energy Management (BOEM), as part of the US Department of the Interior, is 
responsible for the management and development of mineral resources on the OCS, including sediment 
resources. As demand for OCS sand increases, BOEM faces complex multi-user interactions, including 
issues of resource allocation, cumulative impacts from repeated use, fisheries use and potential conflicts, 
protection of archaeological sites, oil and gas infrastructure, potential renewable energy infrastructure, 
and impacts on Essential Fish Habitat (EFH) (Michel et al. 2013). 

As part of our project, we have identified shoal locations and developed a classification scheme based on 
expert opinion and shoal characteristics of interest (Volume 2). The classification includes characteristics 
hypothesized to be related to fish such as bottom current direction and velocity, slope, depth, sediment 
grain size, rugosity (i.e., depth heterogeneity), and shell presence. In addition to the effect of shoals 
themselves, these characteristics are largely untested in relation to fish and shrimp species. Here, our 
objectives were to: 

1) Test for habitat relationships of brown, pink, and white shrimp with a broad suite of 
environmental factors, including geomorphology, oceanographic characteristics, and nearby 
ecosystems 

2) Model the spatial distribution of white, brown, and pink shrimp with multiscale predictors 

1.2 Methods 
1.2.1 Study Area 

The study area spanned the extent of the nGoM from Texas to Florida, USA. The landward boundary 
began with federally managed waters (3 nm from the shoreline of Louisiana, Mississippi, and Alabama; 9 
nm from the shoreline of Texas and Florida) through the 50-m depth contour. More specifically, we 
defined the landward boundary of the study area by the 1953 Outer Continental Shelf Lands Act 
(OCSLA), which distinguishes Federal- and state-managed waters. The oceanic boundary of the study 
area was defined by a 50-m contour line from National Oceanic and Atmospheric Administration’s 
(NOAA’s) Coastal Relief Model (CRM) (NOAA National Centers for Environmental Information 2010). 
Only waters ≤ 50 m in depth were included in the study because our focus was on the potential impact of 
sediment dredging and the logistics of dredging limit potential areas to these shallow depths. The study 
area had a total surface area covered of 162,985 km2. The benthic substrate of the area consists of 
unconsolidated sediments ranging from mud to gravel with natural patches of hard bottom reefs. 
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1.2.2 Biological Data 

We obtained offshore shrimp data from fishery-independent trawl surveys of the Southeast Area 
Monitoring and Assessment Program (SEAMAP) in the nGoM. With the exception of minor changes in 
sample selection procedures in 2010 and thereafter, surveys have used similar gear, protocols, and a 
random stratified sampling design based on depth and shrimp statistical area since 1992 (Craig et al. 
2005; Gulf States Marine Fisheries Commission 2017). From these data, we used the years of 2003–2017 
because we wanted to depict current conditions as best as possible, and this timeframe still provided us 
with an adequate sample size. Trawl surveys from the SEAMAP program span the entire nGoM and are 
conducted in the summer (June–August) and fall (October–December) seasons. Trawl surveys targeted 
shrimp and groundfish using a 12.8-m net in the central and eastern nGoM and with a 6.1-m net near 
Texas. Surveys were conducted at all hours of the day. Complete counts of shrimp were conducted in 
summer surveys. In the fall, complete counts were conducted for samples < 22.7 kg. For larger catches, 
totals counts were estimated by extrapolating from a subset of the catch. We used the centroid of trawl 
survey tows to represent survey locations and to calculate environmental variables. We removed 
extremely long or short tow survey lengths, and subsequently, trawls ranged from 11–52 min and 1.0–5.2 
km. We calculated the relative abundance of each shrimp species by calculating catch per unit effort 
(CPUE) as shrimp km-1 of survey. Because initial relative abundance models showed below-average 
results for pink shrimp, we used presence/absence data for modeling this species. Prior to analyses, we 
used Generalized Additive Models (GAMs) (knots=3) to explore the effects of trawl length and duration 
on the presence/absence or CPUE of species. All tests showed <1% of the deviance was explained by 
these effects except for the effect of length on white shrimp CPUE, which explained 3% of the deviance. 
Given these minimal effects, we proceeded with using CPUE and presence/absence data. We used 
summer (June–August) and fall (October–December) trawl surveys for analyses of shrimp. 

Pink shrimp ranged throughout the nGoM, and we used the entire study area for the analysis. We 
restricted the analyses of white shrimp and brown shrimp to their primary geographic ranges because the 
inclusion of hundreds, or thousands, of absence points outside a species’ range may skew the results 
towards predictor variables characterizing the species’ geographic range rather than their fine-scale 
distribution and habitat associations. Additionally, our goal was to add to existing knowledge of 
distributions to aid in management applications. For white shrimp, we excluded trawl surveys east of a 
longitude of W 87.9°. Only 1 of 1,653 trawl surveys east of this latitude recorded a white shrimp, and this 
longitude was > 200 km from that presence location. For brown shrimp, we excluded trawl surveys east 
of a longitude of W 84.5° because only 6 of 1,203 locations (8 of 570,733 individuals) were found east of 
this longitude. The next nearest brown shrimp in a trawl survey east of this longitude was > 100 km away. 

1.2.3 Geographic Information System (GIS) Methods and Environmental Data 

We converted all fish survey and environmental GIS data to the North America Albertson Equal Area 
Conic map projection. To calculate environmental variables with focal statistics (e.g., mean depth within 
a 3-km radius), we initially included a 5-km buffer of the study area. We removed this buffer after final 
maps were developed. Because we anticipated hierarchical relationships of shrimp with predictor 
variables (e.g., broad oceanographic factors and fine-scale substrate factors and depth), we predicted all 
SDMs to a 90-m resolution raster. The 90-m resolution was the same as several, but not all environmental 
variables. For data initially at a resolution > 90 m, we conducted a bilinear resampling and then aligned 
the data to the other 90-m datasets. 

We developed predictor variables to depict oceanographic conditions, substrate, geography, and nearby 
ecosystems (Table 1-1). For bathymetry, and variables derived from bathymetry, we used the CRM 
(NOAA National Centers for Environmental Information) for offshore waters of Texas, Louisiana, 
Mississippi, and Alabama. Offshore of Florida, we observed large errors in depth values that spanned tens 
of kilometers and were usually observed as rectangular boxes with little variability. Therefore, we used 
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sounding data developed into a 50-m raster grid by the US Geological Survey (Robbins et al. 2007). To 
be consistent with the regional analysis, we resampled to a 90-m resolution using bilinear interpolation. 
To correspond to the approximate length of trawl surveys, we used ArcGIS focal statistics to calculate the 
CV (coefficient of variation) of depth, mean slope, mean sediment grain size, proportion of area with 
shoal, and proportion of area with a positive bathymetric position index (BPI) within a 3-km radius. 

Table 1-1. Predictor variables developed to predict the distribution of brown, pink, and white 
shrimp in the nGoM.  
Oceanographic predictors were obtained from aggregations of monthly means spanning 2003–2017 unless otherwise 
noted. 

Variable type Predictor variable (units) Resolution Data source 
Substrate CV of depth 90 m CRM + modifications 

Substrate Distance to shoal (km) 
90 m Pickens and Taylor, NOAA Biogeography 

Branch, identification of shoals 

Substrate Proportion of area with shoal  
90 m Pickens and Taylor, NOAA Biogeography 

Branch, identification of shoals 

Substrate Mean sediment grain size (mm) 
370 m Chris Jenkins, University of Colorado, 

interpolation of usSEABED data 

Substrate Proportion of area with BPI ≥1 
 

90 m CRM + modifications 

Substrate Slope (degrees) 90 m CRM + modifications 
Oceanographic Mean depth (m) 90 m CRM + modifications 
Oceanographic Bottom temperature (℃) 4.4 km HYCOM + NCODA 
Oceanographic Chlorophyll-a (mg m-3) 5.5 km Aqua MODIS satellite, 8-day composites 
Oceanographic Bottom salinity (psu) 4.4 km HYCOM + NCODA 

Oceanographic Bottom current, U- and V-
directional velocity (m s-1) 9.3 km HYCOM + NCODA 

 

Oceanographic 
Mixed layer thickness (m) (depth 
where temperature change from 
surface is 0.2℃) 

4.4 km HYCOM + NCODA 

Oceanographic Hypoxia (mean probability of 
hypoxia)  North Carolina State University 

Geography East or West of W 88º longitude  90 m  
Geography Distance to shoreline (km) 90 m Submerged Lands Act 
Nearby 
ecosystems Nearby wetlands (km2) 90 m National Wetlands Inventory  

Nearby 
ecosystems Nearby estuaries (km2) 90 m National Wetlands Inventory 

* HYCOM + NCODA = HYbrid Coordinate Ocean Model + Navy Coupled Ocean Data Assimilation; MODIS = 
Moderate Resolution Imaging Spectroradiometer 

We used the ArcGIS Benthic Terrain Modeler (Wright et al. 2012) to calculate the slope and BPI. The 
BPI is an index that represents underwater hill and valley topography, with values ≥ 1 indicating a cell is 
higher than surrounding cells and a BPI ≤ -1 indicating a cell is lower than surrounding cells. We used the 
BPI to calculate the proportion of area as a topographic high. For mean sediment grain size, we used a 
data interpolation of usSeabed from NOAA/National Ocean Service (NOS) National Centers for Coastal 
Ocean Science (NCCOS) (Kinlan et al. 2013). Aspect, BPI classified as a valley, and sediment grain size 
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classes were initially explored but did not provide further information beyond slope, sediment grain size, 
and shoal features that were already depicted. 

We obtained oceanographic predictor variables by using Duke University’s Marine Geospatial Ecology 
Toolbox (Roberts et al. 2010) within ArcGIS to summarize monthly means. Variables included bottom 
water temperature, chlorophyll-a (chlorophyll), bottom salinity, mixed layer thickness, and bottom 
current velocity for U and V directions (Table 1-1). All measures were averaged monthly over the period 
extending from January 2003 through December 31, 2017. Monthly measures were then averaged by 
seasons: spring = March 1–May 31, summer = June 1–Aug 31, fall = Sept 1–Nov 30, and winter = Dec 1–
Feb 29. We used only remote sensing data to characterize oceanographic conditions because these 
measures are consistent across the geography and variables represented a relatively long-term 
characterization of the water column (i.e., monthly averages rather than a single day of a specific survey). 
Therefore, oceanographic measures represented spatial tendencies and related ecological processes rather 
than instantaneous conditions. Data on bottom temperature, bottom salinity, and bottom currents (U- and 
V- directions) were obtained from the HYCOM + NCODA Gulf of Mexico 1/25 degree analysis 
(GLMI0.04) (Chassignet et al. 2009). The Marine Geospatial Ecology Toolbox derived values calculated 
each day from the following datasets that have identical spatial extents and resolutions: 

• 1 January 2003–30 April 2009: HYCOM dataset expt_20.1 
• 1 May 2009–1 April 2014: HYCOM dataset expt_31.0 
• 2 April 2014 and later: HYCOM dataset expt_32.5 

The v-directional raster characterized the north (+) and south (-) currents and the u-directional raster 
characterized the east (+) and west (-) currents. 

To quantify hypoxia ( ≤ 2 mg L-1 dissolved oxygen), we used the results of Matli et al. (2018), who 
modeled the extent and probability of hypoxic conditions for each year based on three separate data 
collection efforts. To obtain a relative index of long-term conditions, we used the mean probability of 
hypoxia for July and August from 2003–2017 as a predictor variable. As the data were initially points, we 
created an interpolated raster dataset by using ordinary, spherical kriging with calculations including eight 
adjacent points. Because the dataset ended abruptly at an area of high hypoxia probability, we used the 
ArcGIS “Expand” tool to extrapolate all values up to 35 km. 

Geographic and nearby ecosystem predictor variables considered included distance to shoreline, nearby 
wetland area, nearby estuarine area, and a longitudinal threshold that depicted whether the location was 
east (1) or west (0) of the W 88º longitude near Mobile Bay, Alabama, USA. Waters west of this 
longitude are dominated by mud sediments, large river influences, lower salinities, and higher chlorophyll 
concentrations that extend farther offshore compared to eastward waters. Waters east of this longitude are 
dominated by sandy substrates and higher salinities. The abundance of brown shrimp (Montero et al. 
2016) and juvenile red snapper (Dance and Rooker 2019) have been shown to differ at this longitude 
threshold. To determine if coastal wetlands contributed to the distribution of shrimp in the marine 
environment, we used National Wetlands Inventory (NWI) data (U.S. Fish and Wildlife Service 2018) 
and its classification of “estuarine and marine wetland”. To quantify nearby wetland area (km2), we first 
calculated the farthest distance from a wetland in the study area. Using the resulting 160 km distance, we 
then used ArcGIS focal statistics to sum all wetland cells (90 m resolution) within 160 km of a cell in the 
marine environment. The metric was converted to wetlands km2. Unfortunately, we could not use NWI 
data to define estuaries because of large areas of missing data. Therefore, we defined nearby estuary area 
from a map of EFH from red drum Sciaenops ocellatus (NOAA NMFS n.d.) that characterized all 
estuaries in the nGoM. As the layer included some nearshore waters, we removed all waters that were 
seaward of the shoreline position. Similar to nearby wetlands, estuary cells within 160 km of each cell 
were summarized for the study area. Distance to shoreline was calculated from the boundaries of the 
Submerged Lands Act (Bureau of Ocean Energy Management 2010; 2012), which depicts a distance of 3 
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or 9 nm from shoreline, depending on the state. We used the buffer tool to re-create the approximate 
shoreline boundaries and then calculated the Euclidean distance from the shoreline to each cell in the 
study area.  

1.2.4 Statistical Analysis 

We examined predictor variables for multicollinearity, and we removed highly correlated variables (r > 
0.80) prior to analyses. In an initial analysis of pink shrimp, we found a strong negative relationship with 
nearby estuaries. This was likely a result of pink shrimp being common on the Florida shelf, which 
coincides with low estuarine areas. Because this relationship was likely because of other correlates on the 
Florida shelf (e.g., sand sediments, higher salinity), we did not include nearby estuaries as a predictor of 
pink shrimp. In addition to environmental predictors, we used season (summer or fall trawl survey) and 
start time of surveys as predictors. The time at which surveys are conducted can affect the detectability of 
species and has previously been documented as affecting brown shrimp catch (Craig and Crowder 2005). 
Regarding seasonality, changes in summer and fall distributions are likely because of species’ natural 
history. We did not use year as an explanatory factor because the primary objective of our research was to 
determine long-term value of waters and substrates of the nGoM. Therefore, we assume years of high or 
low abundance are representative of long-term shrimp distribution. 

Our trawl survey dataset had a large number of locations, which led to some being in close proximity to 
others. Individual surveys are likely to be independent over the 15 years of data collection, but we wanted 
to ensure our models were robust to specific survey locations. Fourcade et al. (2018) found that a purely 
random split of training and validation data for SDM assessments led to a high validation accuracy 
assessment for models derived from fake predictors. They found a “checkerboard” approach of 
aggregated training or validation locations was helpful, and a “block” approach was best at distinguishing 
models as being poor when they were truly poor (Fourcade et al. 2018). Similarly, we aggregated training 
and validation data with alternating bands along a longitudinal gradient (Figure 1.1). The use of a 
longitudinal gradient maintained a depth gradient in each block. More specifically, we reclassified a raster 
of longitude into 70 equal interval divisions, which resulted in 23-km bands across the study area. We 
then alternated the delineation of training (two bands) and validation (one band) datasets to achieve the 
desired ratio of training and validation data. 

 

Figure 1.1. The study area with training and validation zones depicted with trawl surveys overlaid. 
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We used boosted regression trees (BRT) to model species-habitat relationships with the training data. In 
comparative studies of SDM statistical methods, BRTs and similar techniques have outperformed 
generalized linear models (GAMs), Maxent, and other techniques (Couce et al. 2012; Rooper et al. 2017; 
Smolinski and Radtke 2017). Classification and regression decision trees are the basis of BRT. Decision 
tree analyses are ideal for quantifying nonlinear relationships and complex interactions, which are both 
inherent in ecological data (De'ath and Fabricius 2000). The predictive power of decision trees are 
enhanced by boosting, which sequentially adds trees that improve the model; the results are then derived 
from an ensemble of hundreds of trees (De'Ath 2007; Elith et al. 2008). We followed the general 
procedures outlined by Elith et al. (2008) to develop BRTs. We iteratively assessed tree complexities of 
1–5 and used learning rates that resulted in > 1,000 trees. The tree complexity represents the level of 
interaction allowed to occur (e.g., 1 = no interaction effects, 2 = interaction between two variables), and 
the number of trees are iterations. For brown and white shrimp, we used a Poisson log-linear model using 
CPUE as the dependent variable. For pink shrimp, we used a binomial model to predict probability of 
presence. We followed the BRT model “simplification” procedure described by Elith et al. (2008). In this 
procedure, the weakest predictor is dropped sequentially, predictors are ranked in order of importance, 
and the change in model deviance with each drop is assessed. The inflection point where the model’s 
deviance sharply increases after a drop defines which variables remain in the model with the goal of 
having a parsimonious model without losing predictive power. To be consistent, we defined an inflection 
point as an increase of > 2% of the deviance explained when dropping a single variable and ≥ 3% for 
multiple dropped variables.  

To assess accuracy of relative abundance models, we report the percent deviance explained (similar to an 
r2 for Poisson regression) from the cross-validation and validation datasets. A Spearman rank correlation 
(Rs) was also calculated between observations and predictions of the validation dataset. For the pink 
shrimp presence/absence model, we used a receiver operator characteristic, area under the curve statistic 
(AUC). The AUC has been commonly used to test predictive ability of SDMs (Guisan and Zimmermann 
2000) and is independent of thresholds. Measures of the AUC range from 0.0 to 1.0 and were interpreted 
as suggested by Manel et al. (2001) and Swets (1988) as follows: < 0.50 = no discriminatory power; 0.50–
0.69 = poor power; 0.70–0.89 = good power; and 0.90–1.0 = excellent discriminatory power. In addition, 
we report the confusion matrix for the presence/absence model at the probability of presence threshold 
determined by the maximum Kappa that optimally discriminates presence and absence. We report relative 
importance of each variable in the model as suggested by Elith (2008). The relative importance of all 
variables in the model sums to 100%. Likewise, we assessed the strength of interaction, and these results 
are on a continuous scale with zero showing no interaction effect. We report interaction effect (IE) 
measures with a score of > 10 because these were most straightforward to interpret.  

We used the statistical program R (R Core Team 2018) and the package “dismo” (Hijmans et al. 2017) to 
implement BRT. To predict models to the extent of the study area, or geographic range of species, we 
used the R packages “rgdal” (Bivand et al. 2019) and “raster” (Hijmans 2019). We assumed the effect of 
time of survey represented a detectability effect rather than a change in distribution. Therefore, we 
applied the models during each species' peak time of detectability: 10:30 for brown shrimp, 02:00 for 
white shrimp, and 06:00 for pink shrimp.  

1.3 Results 
Brown and white shrimp models explained a substantial amount of variation in CPUE, and the pink 
shrimp model was very good at predicting presence/absence (Table 1-2). Brown shrimp were present on 
76.3% of trawl surveys with a total of 570,725 individuals. Mixed layer depth (MLD) in the spring and 
summer were most influential in the model with a deeper mixing of water related to a higher brown 
shrimp CPUE (Figure 1.2 and Figure 1.3). Brown shrimp CPUE was lowest from 11:00 through 24:00, 
and the season effect showed CPUE was greatest during summer. We found a slight positive relationship 



 

8 

of brown shrimp with fall bottom temperature, and nearby wetlands had a positive effect on CPUE. There 
was a strong interaction between spring MLD and nearby wetlands (IE = 41), which showed the highest 
predicted CPUE where high nearby wetland area was combined with a relatively deep spring MLD.  

Table 1-2. BRT specifications and measures of accuracy for the shrimp species distribution 
models. 

Species n 
Tree 

complexity 
Learning 

rate 
# of 

trees 
Cross-

validation  Validation 

Validation 
Spearman 
correlation 

 
Brown 
shrimp 4,417 4 0.02 1,850 

Deviance 
explained = 
45% 

Deviance 
explained= 
37% 

 
0.64 

White 
shrimp 3,967 5 0.01 1,200 

Deviance 
explained = 
41%  

Deviance 
explained = 
30%  

 
0.55 

Pink shrimp 5,620 3 0.01 2,000 AUC = 0.84 AUC = 0.85 NA 

 

 

Figure 1.2. Relative importance of variables from the a) brown shrimp, b) pink shrimp, and c) white 
shrimp SDMs for the nGoM. 
MLD = mixed layer depth, Temp = bottom water temperature, Grain size = sediment grain size, Dist = distance  
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White shrimp were present on 39.1% of trawl surveys, with a total of 44,455 individuals. White shrimp 
were most abundant with salinities of 22–30 psu, high chlorophyll concentrations, within 30 km of the 
shoreline, and with greater amounts of nearby estuaries and wetlands (Figure 1.2 and Figure 1.4). They 
had a higher CPUE during the fall season, with higher summer bottom temperatures, and with depths of 
approximately 15–30 m; they had a lower CPUE near midnight. White shrimp were slightly more 
abundant farther away from shoals. There was an interaction between salinity and nearby wetland area (IE 
= 17) that showed CPUE was greatest where high salinity coincided with a high nearby wetland area. The 
lowest predicted CPUE was at lower salinities with few nearby wetlands. An interaction between 
chlorophyll and season (IE = 13) showed chlorophyll had a greater influence on CPUE during the fall. 

Pink shrimp were present on 22.6% of trawl surveys with a total of 36,015 individuals. Surveys from 
11:00 to 23:00 had an extremely low probability of presence (Figure 1.2 and Figure 1.4). Pink shrimp 
presence was associated with salinities spanning 31–36 psu and substrate with sand grain sizes (less likely 
with silt or granule gravel grain sizes) (see Wentworth 1922). The relationship with nearby wetland area 
showed substantial variability, but pink shrimp were less likely when wetland area was extremely low and 
when wetland area was very high. Pink shrimp had the highest likelihood of presence with depths of 18–
30 m, although considerable uncertainty existed at shallow depths. Survey time interacted with both 
salinity (IE = 65) and wetlands (IE = 65). This showed that these habitat variables had the greatest effect 
during times when pink shrimp were catchable. The pink shrimp model discriminated absence much 
better than presence (Table 1-3), and the overall accuracy represented by the AUC score was very good. 
The spatial models of the three species showed distinct patterns (Figure 1.3 to Figure 1.5).  

Table 1-3. Confusion matrix from the validation data of the pink shrimp model at the optimal 
threshold to distinguish presence/absence, which was with a probability of 0.38. 

 
Observed 
absence 

Observed 
presence 

User's 
accuracy (% 

correct) 
Predicted 
absence 1,323 180 88% 

Predicted 
presence 132 241 65% 
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Figure 1.3. Predicted brown shrimp CPUE in the a) summer and b) fall seasons.  
The study area is indicated by the dashed line, and CPUE represents the predicted number of shrimp per km of trawl survey.  
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Figure 1.4. Predicted white shrimp CPUE in the a) summer and b) fall seasons.  
The study area is indicated by the dashed line, and CPUE represents the predicted number of shrimp per km of trawl survey.  
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Figure 1.5. Predicted pink shrimp probability of presence in the summer and fall combined.  
The study area is indicated by the dashed line, and probability of presence represents the probability of capture given a trawl survey.  
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1.4 Discussion 
Few studies have linked marine and terrestrial ecosystems despite important linkages such as between 
coastal estuaries and offshore marine habitats (Beger et al. 2010). By analyzing three Penaeid species, we 
found a consistent pattern that the distributions of these species in the offshore, marine environment were 
positively related to the amount of nearby coastal wetlands and estuaries. In fact, brown and white shrimp 
both had interaction effects that included nearby wetlands and an oceanographic factor (MLD and 
salinity, respectively). These interactions directly demonstrate the linkages between these two 
ecosystems. Wetland loss and the loss of open water-marsh edges have been independently identified as 
contributors of shrimp declines in estuarine (Rozas et al. 2007) and marine environments over time (Diop 
et al. 2007). However, the relationships we quantified further suggest that wetland loss is likely to lead to 
changes in shrimp distribution in the marine environment.  

None of the three Penaeid species' distributions were related to bottom currents or geomorphology 
metrics of slope, BPI, or CV of depth. Of the geomorphology variables, only distance to shoal and 
sediment grain size were selected as predictors, and the importance of these variables were relatively 
minor. Predicted white shrimp CPUE was less in close proximity to shoals and pink shrimp were 
positively associated with sand grain sizes. Similar to findings of Drexler and Ainsworth (2013) and a 
qualitative assessment by Mulholland (1984), we found pink shrimp occurred with sand substrates and 
had a lower probability of occurrence with mud, silt, or gravel substrates. In contrast to Montero et al. 
(2016), we did not find brown shrimp were associated with mud and silt sediments. However, we 
excluded trawl data offshore of Florida because it appeared to be outside of the geographic range of the 
species. If we had included the hundreds of absence locations in those eastern nGoM waters with sand 
substrates, then the results may have been similar to Montero et al. (2016). By analyzing the three Penaeid 
species separately, we observed the spatial distinctions among species. Brown shrimp had the highest 
CPUE in the western nGoM, while pink shrimp were most common east of the W 88º longitude near 
Mobile Bay, Alabama. White shrimp mostly occurred near the shoreline of the central nGoM. 

1.4.1 Brown Shrimp 

A greater CPUE of brown shrimp in summer coincides with their peak spawning season in the nGoM 
(Gulf of Mexico Fishery Management Council 1981). Notably, there was no direct relationship with the 
high frequency hypoxic zone. Nonetheless, the predicted CPUE of brown shrimp was extremely low in 
the hypoxic zone. This is likely because brown shrimp had a higher CPUE with a deeper MLD, and these 
waters tended to occur outside of the high frequency hypoxic zone. The association with fall bottom 
temperature is also associated with farther offshore habitats. Craig et al. (2005) found brown shrimp move 
both farther inshore and offshore when hypoxia is severe (i.e., leaving the intermediate depth zone), and 
this spatial pattern is observed in our model of brown shrimp distribution. We note that our data describes 
the long-term average brown shrimp distribution rather than annual events that other studies have 
considered. Harvest strategies for shrimp also do differ in Louisiana and Texas. In Louisiana, shrimp 
trawlers work in the most shallow waters (< 20 m depth) near estuaries earlier in the year. For Texas, 
harvest does not occur until later and shrimp trawlers use areas > 20 m in depth (Craig et al. 2005). 

1.4.2 Pink Shrimp 

The time of day for surveys was influential for pink shrimp and brown shrimp, as CPUE was far higher 
from approximately midnight to 11:00 for these species. In a lab study, pink shrimp buried themselves in 
response to daylight and were active in dark conditions (Hughes 1968). Hughes (1968) also found 
individuals synchronized emergence within a 20–30 minute timeframe. Studies of other Penaeids 
worldwide have also documented this phenomenon (Wassenberg and Hill 1994). Our pink shrimp model 
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showed the association with salinity resulted in a distribution skewed towards Florida, although pink 
shrimp were also predicted to be in other parts of the central nGoM where sand sediments were present. 
The interaction effects among habitat variables and the time of surveys suggests that surveys at 
ineffective times are likely to complicate the quantification of species-habitat relationships. The confusion 
matrix for pink shrimp showed absence can be more accurately predicted compared to presence. This 
result is expected given that species are detected imperfectly in surveys (see MacKenzie et al. 2002 for 
details on the topic), and our results depict the predicted catch in a trawl survey. In essence, a species may 
be present even though a single survey did not detect that species. Applications of these SDMs should 
consider the results as relative rather than absolute numbers. Waters with a greater probability of 
occurrence or relative abundance (CPUE) of species should be interpreted in the context of waters with 
lower probability of occurrence or relative abundance.   

1.4.3 White Shrimp 

White shrimp CPUE was much higher in the coastal zone where salinity was < 30 psu. White shrimp 
selected waters closer to the shoreline, with a greater chlorophyll-a concentration, and depths of 12–30 m. 
White shrimp also had a positive association with summer bottom temperatures that were > 28℃. 
Research on the temporal dynamics of white shrimp in Louisiana coastal waters showed greater water 
temperatures related to higher abundances of early juveniles, and to a lesser extent, more adult white 
shrimp. A greater CPUE of white shrimp in the fall coincides with their peak spawning season in the 
nGoM (Gulf of Mexico Fishery Management Council 1981). 

1.4.4 Conclusions and Implications for Dredging 

In summary, we have identified habitat associations and modeled the distribution of three federally 
managed Penaeid shrimp species. Nearby wetlands and oceanographic characteristics, such as bottom 
temperature, salinity, MLD, and chlorophyll drove the majority of the spatial patterns for these species. 
Bottom currents, slope, and depth heterogeneity were not associated with species' distributions. In the 
cases where sediment grain size and distance to shoal were associated with species, the variables 
explained only a small portion of the variance compared to other variables. We do caution that fishery-
independent trawl surveys typically sample ~3 km tows, and microhabitats within these areas were not 
assessed by our study. Shoals themselves are poorly sampled because of their depth, and, therefore, 
samples near shoals were assumed to represent those areas. Importantly, the spatial models do show 
strong spatial patterns that will help inform the identification of important waters for Penaeid species, and 
their predators, in the nGoM. Broad spatial patterns typical of oceanographic predictors as well as habitat 
associations with grain size and distance to shoal will help guide impact assessments at a local level, such 
as at individual dredge sites. 
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2 Predicting the Marine Distribution of Snappers and Sharks in the 
Northern Gulf of Mexico 

2.1 Introduction 
SDMs and similar methods of spatial modeling have proliferated in the last two decades as GIS 
technologies, remote sensing, availability of spatial data, and computation capacity have rapidly 
improved. Recent distribution models within marine ecosystems have been applied to ecosystem-based 
management (Gruss et al. 2018), marine spatial planning (Hattab et al. 2013), scenario assessments 
(Delevaux et al. 2018), stock assessments (Saul et al. 2013), and climate change (Morley et al. 2018; Su et 
al. 2013). SDMs can illuminate habitat relationships as well as map the spatial patterns of species' 
distributions. In turn, mapping is critical for the identification of EFH (Moore et al. 2016; Pennino et al. 
2016), defined as those waters and substrates required for a species to spawn, breed, feed, or grow to 
maturity (US Sustainable Fisheries Act, 1996, Public Law 104-297). EFH is inclusive of prey species, 
although we are not aware of EFH mapping that explicitly includes the distribution of prey species. 

A decade after Robinson et al. (2011) declared that marine ecosystems provide a prime opportunity to test 
the influence of prey on species' distributions, few studies have explored this possibility (see Volume 2). 
The nGoM presented an opportunity to test predator-prey relationships with data on a variety of trophic 
levels. Food webs in the nGoM have been summarized by Tarnecki et al. (2016), including common 
linkages among Penaeid shrimp, menhaden, squid, and other small demersal and pelagic fish. In 
particular, the abundance of Gulf menhaden has been shown to have major effects on fisheries (Geers et 
al. 2016; Robinson et al. 2015). Estuaries, subaquatic vegetation, oyster reefs, and coastal wetlands in the 
nGoM also contribute towards offshore marine productivity by providing habitat for estuarine-dependent 
life stages and producing common prey species of the marine environment (e.g., menhaden, shrimp, 
crabs) (Spies et al. 2016). Much like the effect of prey distribution, the effect of such nearby ecosystems 
has rarely been considered in SDMs. 

In addition to these knowledge gaps, we previously have documented biases towards testing particular 
habitat variables for particular fish guilds (Volume 1). More specifically, there has been a trend to test 
numerous substrate predictor variables—but few oceanographic variables—with reef fish, such as 
snapper. Conversely, the trend for sharks is to test more oceanographic variables, but few substrate 
variables. Therefore, testing a comprehensive suite of habitat variables has the potential to test these 
biases and lead to an improved understanding of EFH. 

We selected snapper and shark species to study based on their breadth of designated EFH, overlap of a 
species' EFH with our study area (Federal waters, ≤ 50 m), socio-economic importance, data availability, 
and potential vulnerability to sand dredging (i.e., demersal species with an affinity to soft sediments). 
Below, we outline characteristics of each of the selected species: 

Sharks: 

• Blacktip shark is a large coastal shark that prey on teleost fishes (Cortés 1999) and is listed as 
globally “vulnerable” by the International Union for Conservation of Nature (IUCN) (Burgess 
and Branstetter 2000). In the nGoM, juvenile blacktip shark diet is dominated by Gulf menhaden 
(Bethea et al. 2004). Blacktip shark is the second most valuable shark to commercial fisheries of 
the southeastern US (Castro 1996). 

• Spinner shark is listed as globally “near threatened” by the IUCN (Burgess 2009) and is a 
common target by commercial fisheries. Spinner shark primarily prey on teleost fishes (Cortés 
1999), particularly Gulf menhaden (Bethea et al. 2004). 
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• Atlantic sharpnose shark is a relatively small, demersal shark that feeds on crustaceans and teleost 
fishes (Cortés 1999). In the nGoM, Atlantic sharpnose are regularly caught in recreational and 
commercial fisheries. 

Snappers: 

• Red snapper juveniles are demersal before inhabiting natural and artificial reefs as adults 
(Gallaway et al. 2009). In 2016, commercial landings totaled $26.5 million in the nGoM (NOAA 
NMFS Office of Science and Technology 2019); the species is also important for recreational 
fisheries. 

• Lane snapper is a subtropical, reef-associated species that has a demersal juvenile life stage that 
inhabits shallow waters with sand/mud bottoms, including shoal habitats (Mikulas and Rooker 
2008; Wells et al. 2009). Commercial landings of lane snapper are modest, primarily in Florida, 
where landings totaled $86,219 in 2016 (NOAA NMFS Office of Science and Technology 2019). 
They are a regular recreational catch offshore of Florida as well. 

The objectives of our study were the following: 

1) Test for habitat relationships of snapper and coastal shark species with a broad suite of 
environmental factors, including prey, nearby ecosystems, geomorphology, and oceanographic 
characteristics. 

2) Model the spatial distribution of snapper and shark species. 

2.2 Methods 
2.2.1 Study Area 

The study area is described in Section 1.2.1.  

2.2.2 Biological Data 

Fish data were derived from fishery-independent surveys of SEAMAP and the National Marine Fisheries 
Service (NMFS) Mississippi Laboratories, which included regular surveys as well as a 1-year survey from 
the Congressional Supplemental Sampling Program (CSSP) (Table 2-1). From these data, we only used 
data from 2003 and later because we wanted to depict current conditions as best as possible, and this 
timeframe still provided us with an adequate sample size. 

Trawl surveys from the SEAMAP program span the entire nGoM and are conducted in the summer 
(June–August) and fall (October–December). With the exception of minor changes in sample selection 
procedures in 2010 and thereafter, surveys have consistently used similar gear and protocols, and a 
random stratified sampling design based on depth and shrimp statistical area (Craig et al. 2005; Gulf 
States Marine Fisheries Commission 2017). Trawl surveys targeted shrimp and groundfish using a 12.8-m 
net in the central and eastern nGoM and a 6.1-m net near Texas. Trawls were conducted consistently 
during day and night hours. For processing, complete counts were conducted for samples < 22.7 kg, and a 
sample was taken and the count extrapolated for most species if the sample was larger. Snapper in 
summer surveys were counted in their entirety. In the fall, only a portion of the biological catch was 
measured for large samples (> 22.7 kg). For those surveys, the full trawl catch was projected based on a 
measured sample (e.g., when only half catch was sampled, the number of individuals for each species was 
doubled). We assumed that this proportionate extrapolation applied to each age group.  
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Table 2-1. Sources of fisheries-independent survey data spanning 2003–2015.  
Sample sizes are provided for waters within our study area. 

Data source 

Acronym 
for 

dataset Dates 

Gear used for 
survey (n = 

sample size) Species modeled 

Southeast Fisheries 
Science Center, NMFS, 
Mississippi Laboratory 

(MSLABS) 

MSLABS-
BL 

2003-2017; 
8 April–16 Nov 

Bottom longline; 
n = 1,014 

Atlantic sharpnose 
shark, blacktip shark, 

and spinner shark 

Congressional 
Supplemental Sampling 

Program (CSSP) 
CSSP-BL 2011; 

7 April–25 Oct 

Bottom longline; 
n = 498 

 

Atlantic sharpnose 
shark, blacktip shark, 

and spinner shark 

SEAMAP-trawl SEAMAP 
trawl 

2003-2017; 
30 May–19 Dec 

Trawl; 
n = 5,620 

Red snapper (age 0 & 
age 1), lane snapper 

(age 0) 

We removed extremely long or short trawl survey lengths, and subsequently, trawls ranged from 11–52 
min and 1.0–5.2 km. We transformed trawl survey counts to CPUE, calculated as fish km-1 of survey. 
Prior to analyses, we used GAMs (knots=3) to explore the effects of trawl length and duration on the 
presence/absence or CPUE of species. All tests showed <2% of the deviance was explained by these 
effects except for a negative association with red snapper age-0 (2.7%) and a positive association with 
lane snapper age-1 (4.5%). Given these mixed effects, we proceeded with using CPUE and 
presence/absence data. We used summer (June–August) and fall (October–December) trawl surveys. 

Surveys from the CSSP-Bottom Longline (CSSP-BL) and MSLABS-BL programs used the same 
sampling methodology. The methods are described in detail by Driggers III et al. (2012) and are outlined 
here. All bottom longline surveys used a 15/0 circle hook baited with Atlantic mackerel. The MSLABS-
BL and CSSP-BL surveys were randomly placed throughout the nGoM. For BL surveys, gear soak times 
were targeted to be 1 hour, as defined by the time elapsed between completion of deployment and 
initiation of retrieval. We used the centroid of trawl tows and bottom longline surveys to depict fish 
survey locations. For bottom longline surveys, we removed extreme survey efforts of ≥134 min, and 
survey effort ranged from 37–107 min. We also removed surveys with low hook counts (<80 hooks); the 
remaining surveys had 86–104 hooks per survey. Fish from bottom longline surveys were measured as 
count 100 hooks-1 hr-1. We used GAMs (knots=3) to explore the effects of survey length (km) and 
duration (min) on each species. All tests showed < 2% of the deviance were explained by these factors. 

2.2.3 Fish Age Classification 

The age of red and lane snapper were distinguished for the analysis because these species undergo 
ontogenetic shifts between early juvenile stages and the adult stage, when they inhabit reefs. The vast 
majority of sharks were juveniles and adults, both of which occur in similar habitats. Therefore, we did 
not distinguish age for sharks, but simply had the goal to estimate the proportion of each life stage 
present. During trawl surveys, fish lengths were measured as total length (TL), fork length (FL), or 
standard length (SL). We converted all lengths to TL for age classification. For lane snapper, we used the 
conversion equations from the species’ stock assessment (SEDAR 2016). We categorized age classes 
based on a Bermuda study of lane snapper because the study measured numerous juveniles (Luckhurst et 
al. 2000), which were not well described elsewhere. Luckhurst et al. (2000) found a minimum length of 
185 mm FL (199 mm TL) for age-1 individuals. Based on this finding, we defined lane snapper age-0 
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(< 199 mm TL) and age-1 or greater (≥ 199 mm TL). Given the dramatic reduction in growth after age 
one (Luckhurst et al. 2000), we did not distinguish further age groups. 

For red snapper length conversions, we used equations from the Gulf of Mexico red snapper stock 
assessment report (SEDAR 2018). Red snapper of 19–50 mm TL are distinguished as post-settlement 
juveniles (Gallaway et al. 2009), and their prey items differ from older age classes that begin to prey on 
fish (Szedlmayer and Lee 2004). Because only 0.01% of red snapper captured by trawl were <50 mm TL, 
we discarded this age class from the analysis. Red snapper < 172 mm TL have mostly been found in open 
habitats, whereas the majority of those ≥ 172 mm inhabit reef habitats (Szedlmayer and Lee 2004). This 
threshold is further supported by Powers et al. (2018), who aged red snapper captured in trawl surveys 
and found age-0 red snapper = 30–170 mm, age-1 = 175–297 mm, and age-2 = 320–360 mm TL. 
Therefore, we categorized red snapper into the following juvenile age classes (range of catch 18–893 mm 
TL): 

Age-0 = 51–172 mm TL (n = 25,528) 
Age-1 = 173–300 mm TL (n = 5,670) 

The majority of sharks were measured by natural total length (nat TL). When only FL was measured, we 
converted it to nat TL using equations dervived from available MSLABS-BL data. For Atlantic 
sharpnose, the conversion equation was: nat TL mm = 57.308 + 1.118 (FL mm); r2= 0.952. For blacktip 
shark, the equation was nat TL mm = 44.129 + 1.162 (FL mm); r2= 0.954. For spinner shark, the equation 
was TL mm = 25.811 + 1.170 (FL mm); r2 = 0.972). To further classify the age classes of sharks 
surveyed, we investigated the literature on length-age class associations. For Atlantic sharpnose shark, we 
followed the classifications used by Drymon et al. (2012) and Hoffmayer and Parsons (2003), who used 
the following age classes: Young-of-year = 330–590 mm nat TL, Juvenile = 600–840 mm nat TL, Adults 
≥ 850 mm nat TL. Castro (1996) reported blacktip shark neonates ranged from 530–660 mm nat TL 
offshore of Florida, and we used 660 mm nat TL as the maximum length to classify young-of-year 
blacktip shark. To distinguish juveniles from adults, we classified adults as those ≥ 1,407 mm nat TL. 
This is the median length reported for female blacktip sharks at maturity (Carlson et al. 2006). Carlson et 
al. (2006) showed male median length at maturity was slightly lower (1,246 mm TL); therefore, our 
estimate is likely to be slightly biased towards juveniles rather than adults. However, not all sharks were 
sexed, so detailed evaluation could not be conducted. With an approximation based on Carlson's study 
(Carlson and Baremore 2005), we defined those spinner shark < 70 cm as young-of-year, 70–116 cm as 
juvenile, and those > 116 cm as adults.  

Of the sexed blacktip sharks, 54% were females and 46% were males. Blacktip shark lengths ranged 656–
2,466 mm nat TL with a median of 1,350 mm nat TL in MSLABS-BL data and 1,252 mm nat TL in 
CSSP surveys. Of blacktip sharks with an age classification, 0.002% (3 individuals) were classified as 
young-of-year, 65% were juvenile, and 35% were adults. Of the sexed Atlantic sharpnose sharks, 49% 
were males and 51% were females. Atlantic sharpnose shark length ranged 340–1,223 mm nat TL with a 
median of 920 mm nat TL in MSLABS-BL surveys and 895 mm nat TL in CSSP surveys. Of Atlantic 
sharpnose sharks with an age classification, 2% were young-of-year, 27% were juvenile, and 71% were 
adults. Of sexed spinner shark, 49% were female and 51% were male. Spinner shark age classification 
showed 3% as young-of-year, 43% as juvenile, and 54% as adults. 

2.2.4 GIS Methods and Environmental Data 

All GIS analysis procedures and data collection methods were followed as described in Section 1.2.3 with 
the exceptions described below. Overall, we developed predictor variables to depict oceanographic 
conditions, geomorphology, nearby ecosystems, geography, and prey species (Tables 2-2, 2-3). Natural 
reef locations were mapped during SEAMAP reef fish video surveys and were acquired through several 
mechanisms, including available charting, historical knowledge from fishermen, and bathymetric 
mapping (i.e., side-scan sonar and multi-beam sonar) (pers. communication, Matthew Campbell and 
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Brandi Noble, NOAA National Marine Fisheries). The point density of and distance to artificial 
structures, including artificial reefs as well as oil and gas platforms, were calculated for the study area. 
Sea surface temperature (SST) variables were obtained as predictors using the same methods as used for 
other oceanographic data (Section 1.2.3). We used SST data processed from GHRSST (Group for High 
Resolution Sea Surface Temperature) version 4.1 of the Multiscale Ultrahigh Resolution Level 4 analysis, 
which obtains high resolution data via a blend of satellite measures (JPL MUR MEaSUREs Project 
2015). 

Prey species were first identified from the literature. Then, we developed predictor variables for prey that 
were either readily sampled by the SEAMAP trawl surveys or were available from models developed 
during our project (Table 2-3). We derived data on menhaden (primarily Gulf menhaden), croaker, spot 
croaker, mantis shrimp, and squid from SEAMAP trawl data. The SEAMAP survey locations were 
interpolated to create a continuous surface. We synthesized data on prey species from 2003–2017 and 
conducted ordinary kriging with a spherical semivariogram model. Eight points were used for analysis 
within a maximum distance of 10 km. The ArcGIS expand tool was used to further extrapolate prey 
distributions when trawl surveys were > 10 km from a location in the study area.  
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Table 2-2. Environmental variables developed to predict snappers and sharks in the nGoM.  
Oceanographic predictors were obtained from aggregations of monthly means spanning 2003–2017. 

Variable type Variable (units) 
Radius of 
analyses 

(km) 
Resolution of 

data Data source 

Substrate CV of depth 3 90 m CRM + modifications 

Substrate 
Density of oil platforms & 
artificial reefs (structures 

km-2) 
5 

 
90 m 

 
BOEM, Marine Cadastre 

Substrate Distance to oil platforms & 
artificial reefs (km) NA  

90 m BOEM, Marine Cadastre 

Substrate Distance to natural reef 
(km) NA  

90 m 
Matthew Campbell, NOAA National 

Marine Fisheries 

Substrate Distance to shoal (km) NA  
90 m 

Pickens and Taylor, NOAA 
Biogeography Branch, identification 

of shoals 

Substrate Proportion of area with 
shoal 3  

90 m 

Pickens and Taylor, NOAA 
Biogeography Branch, identification 

of shoals 

Substrate Mean sediment grain size 
(mm) 3 370 m 

Chris Jenkins, University of 
Colorado, interpolation of 

usSEABED data 

Substrate Proportion of area with BPI 
≥ 1 3  

90 m CRM + modifications 

Substrate Slope (degrees) 3 90 m CRM + modifications 
Oceanographic Mean depth (m) 3 90 m CRM + modifications 

Oceanographic Sea surface temperature 
(℃) NA 1.2 km 

GHRSST blend of satellite 
measures, MUR-JPL_L4-GLOB-

v4.0, NASA Jet Propulsion Lab 

Oceanographic Bottom temperature (℃) NA 4.4 km HYCOM + NCODA 
Oceanographic Chlorophyll-a (mg m-3) NA 5.5 km Aqua MODIS satellite, 8-day 

it  Oceanographic Bottom salinity (psu) NA 4.4 km HYCOM + NCODA 

Oceanographic 

Mixed layer thickness (m) 
(depth where temperature 

change from surface is 
0.2℃) 

NA 4.4 km HYCOM + NCODA 

Oceanographic Bottom current velocity—U 
& V directions(m s-1) NA 9.3 km HYCOM + NCODA 

Oceanographic Hypoxia (mean probability 
of hypoxia) NA 90 m North Carolina State University 

Geography East or west of longitude 
W 88º NA  

90 m - 

Geography Distance to shoreline (km) NA 90 m - 
Nearby 

ecosystems Nearby wetlands NA 90 m NWI 

Nearby 
ecosystems Nearby estuaries NA 90 m NWI 

* HYCOM + NCODA = HYbrid Coordinate Ocean Model + Navy Coupled Ocean Data Assimilation; GHRSST = 
Group for High Resolution SST Level 4 analysis, Multiscale Ultrahigh Resolution (MUR) based on nighttime; MODIS 
= Moderate Resolution Imaging Spectroradiometer; CRM = Coastal Relief Model; NWI = National Wetlands Inventory
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Table 2-3. Biological predictor variables developed to predict the distribution of snappers and 
sharks. 

2.2.5 Statistical Analysis 

We examined predictor variables for multicollinearity, and we removed highly correlated variables (r > 
0.80) prior to analyses. In addition to environmental predictors, we used season (summer or fall) for trawl 
surveys of snappers, day-of-year for shark species, and start time of surveys as predictors. The time at 
which surveys are conducted can affect the detectability of species and has previously been documented 
as affecting shark catch (Driggers III et al. 2012). Seasonality of trawls represented changes in summer 
and fall distributions because of species’ natural history. We did not use year as an explanatory factor 
because the primary objective of our research was to determine long-term value of waters and substrates 
of the nGoM. Therefore, we assume years of high or low abundance are representative of long-term fish 
distribution.  

Because improving our understanding of species-habitat relationships was one of our objectives, the 
variables in shark and snapper models differed by a few variables. We excluded variables with no 
hypothesized relationship to particular fish species to help in minimizing issues with moderately 
correlated variables. Chlorophyll-a, nearby wetlands, and nearby estuaries were tested only for sharks. 
SST variables were only tested for blacktip shark and spinner shark, as the other species have demersal 
habits. We only used density of artificial structures, distance to artificial structures, and distance to natural 
reefs to test with snappers. To summarize predictor variable results, we calculated the frequency of each 
variable type as depicted in Table 2-2. 

Training (70%) and validation (30%) data were selected by the same process as used with the statistical 
analyses of Penaeid shrimp (Section 1.2.4). The BRT analysis procedures outlined in Section 1.2.4. were 
used to quantify species-habitat relationships, relative importance of predictors, and interaction effects for 
snappers and sharks. We also assessed the accuracy of models using the same procedures. We assumed 
the effect of survey time represented a detectability effect for blacktip shark and applied the model at the 

Species 
Prey species predictor 

variables 
Justification for prey 

inclusion 

Red snapper 
age-0 

Brown shrimp (fall), pink shrimp, 
mantis shrimp (Squilla spp.), squid 

(Loligo spp.) 

(Bradley and Bryan 1975; 
Szedlmayer and Lee 2004; 

Wells et al. 2008a) 

Red snapper 
age-1 

Searobin (Prionotus spp.), 
lizardfish (Synodus spp.), squid 

 

(Szedlmayer and Lee 2004; 
Wells et al. 2008a) 

Lane snapper 
age-0 

Brown shrimp (fall) & pink shrimp 
 

(Franks and VanderKooy 
2000) 

Lane snapper 
age-1 None identified NA 

Atlantic 
sharpnose shark 

Menhaden (Brevoortia spp.), 
croaker (Micropogonias undulatus), 

pink shrimp, brown shrimp 
(summer) 

 

(Bethea et al. 2004; 
Drymon et al. 2012; 

Harrington et al. 2016) 

Blacktip shark Menhaden, croaker 
 

(Barry et al. 2008; Bethea 
et al. 2004) 

Spinner shark 
Menhaden 

 
 
 

(Bethea et al. 2004; Cortés 
1999) 
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peak time of 02:00. For Atlantic sharpnose shark, day-of-year was a factor in the model, and we predicted 
at the peak time of year in the model (9 April).  

2.3 Results 
The frequency of species ranged from red snapper age-1 on 18.7% of trawl surveys to Atlantic sharpnose 
shark on 58.6% of bottom longline surveys (Table 2-4). The relative abundance models for red snapper 
age-0 and Atlantic sharpnose shark explained 41–43% of the deviance in the validation data with an Rs of 
0.59–0.60 in their respective models (Table 2-5). All species modeled with presence/absence data had an 
AUC value of ≥ 0.80 in the validation data, indicating the models were very good at discriminating 
presence and absence (Table 2-4). The confusion matrices showed that absence was consistently 
predicted more accurately than presence (Table 2-6 to Table 2-10). 

Across all snapper and shark models, 45 variables were selected across the following variable types: 
oceanographic (22 variables selected), prey (6), substrate (6), geographic (4), temporal variables (4), and 
nearby ecosystems (3). Of the 22 oceanographic predictors, the most common variables were MLD (6), 
bottom temperature (5), and salinity (5). Of the substrate variables, three were related to artificial or 
natural reefs; sediment grain size, BPI, and distance to shoal were each selected one time. Variable 
importance varied considerably among variables, though sediment grain size, BPI, and distance to shoal 
were of relatively minor importance (Figures 2-1, 2-2).  

Table 2-4. Frequency of select snapper and shark species in the trawl and bottom longline 
surveys from 2003–2017. 

Common name Number of fishery-
indepedent surveys (n) Type of modeling 

Percent of 
surveys with 

presence 

Total 
count of 
species 

Red snapper 
(age 0) 5,620 Count 36 23,076 

Red snapper 
(age 1) 5,620 Presence/absence 18.7 4,753 

Lane snapper 
(age 0) 5,620 Presence/absence 25.7 9,784 

Lane snapper 
(age 1) 5,620 Presence/absence 20.3 1,143 

Atlantic 
sharpnose shark 1,506 Count 58.6 8,765 

Blacktip shark 1,506 Presence/absence 28.2 1,831 

Spinner shark 1,506 Presence/absence 12.6 872 
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Table 2-5. BRT specifications and percent deviance explained for marine SDMs of snappers and 
sharks. 

 
Species 

Tree 
complexity 

Learning 
rate 

# of 
trees Cross-validation Validation 

Validation 
Spearman 
correlation 

Red 
snapper 
(age 0) 

5 0.01 1,400 Deviance 
explained = 50% 

Deviance 
explained = 41% 0.59 

Red 
snapper 
(age 1) 

2 0.01 1,550 AUC = 0.83 AUC = 0.80 NA 

Lane 
snapper 
(age 0) 

3 0.01 1,950 AUC = 0.84 AUC = 0.83 NA 

Lane 
snapper 
(age 1) 

2 0.02 2,550 AUC = 0.91 AUC = 0.89 NA 

Atlantic 
sharpnose 

shark 
5 0.005 1,900 Deviance 

explained = 45% 
Deviance 

explained = 43% 0.60 

Blacktip 
shark 1 0.02 1,250 AUC = 0.84 AUC = 0.80 NA 

Spinner 
shark 2 0.005 1,400 AUC = 0.90 AUC = 0.87 NA 
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Table 2-6. Confusion matrix from the validation data of the red snapper age-1 model at the optimal 
threshold to distinguish presence/absence, which was with a probability of 0.31. 

 
Observed 
absence 

Observed 
presence 

User's accuracy 
(% correct) 

Predicted 
absence 1,323 174 88% 

Predicted 
presence 172 207 55% 

Table 2-7. Confusion matrix from the validation data of the lane snapper age-0 model at the 
optimal threshold to distinguish presence/absence, which was with a probability of 0.37. 

 
Observed 
absence 

Observed 
presence 

User's accuracy 
(% correct) 

Predicted 
absence 1,185 200 86% 

Predicted 
presence 201 290 59% 

Table 2-8. Confusion matrix from the validation data of the lane snapper age-1 model at the 
optimal threshold to distinguish presence/absence, which was with a probability of 0.44. 

 
Observed 
absence 

Observed 
presence 

User's accuracy 
(% correct) 

Predicted 
absence 1,379 154 90% 

Predicted 
presence 104 238 70% 

Table 2-9. Confusion matrix from the validation data of the blacktip shark model at the optimal 
threshold to distinguish presence/absence, which was with a probability of 0.47. 

 
Observed 
absence 

Observed 
presence 

User's accuracy 
(% correct) 

Predicted 
absence 323 61 84% 

Predicted 
presence 34 67 66% 

Table 2-10. Confusion matrix from the validation data of the spinner shark model at the optimal 
threshold to distinguish presence/absence, which was with a probability of 0.33. 

 
Observed 
absence 

Observed 
presence 

User's accuracy 
(% correct) 

Predicted 
absence 333 76 81% 

Predicted 
presence 24 52 68% 
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Figure 2.1. Relative importance of variables in models of a) red snapper age-0, b) red snapper 
age-1, c) lane snapper age-0, d) lane snapper age-1.
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Figure 2.2. Relative importance of variables in models of a) Atlantic sharpnose shark, b) blacktip 
shark, c) spinner shark. 
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2.3.1.1 Red Snapper Age-0 

As expected, red snapper age-0 (Figure 2.3) were more abundant in the fall as individuals become large 
enough to be captured by trawl sampling. MLD in the spring and fall had strong, positive relationships 
with red snapper. These young juveniles were positively associated with prey species of brown shrimp, 
mantis shrimp, and squid. In regard to geomorphology, red snapper age-0 had a higher CPUE within the 
first few km of shoals and with a high proportion of area with a positive BPI. An interaction between BPI 
and distance to shoal (IE = 49) showed red snapper had a high CPUE within a few km of a shoal 
regardless of BPI. At greater distances from shoals, the BPI had a linear, positive effect when the BPI had 
a positive value positive for > 40% of the surrounding area. MLD in summer primarily affected red 
snapper during the fall season (IE = 31), and CPUE was highest when a deeper MLD in spring was 
coincided with a higher brown shrimp CPUE (IE = 19). 

2.3.1.2 Red Snapper Age-1 
Red snapper age-1 (Figure 2.4) shifted farther offshore compared to age-0, but still had a positive 
association with spring MLD. Individuals moved closer to artificial structures (often within 25 km) and 
natural reefs (often within 75 km). In regard to interactions, red snapper age-1 moved farther offshore 
when artificial structures were within 20–40 km (IE = 44). Interpreting these distance from mapped 
variables, we observed that this meant red snapper age-1 moved farther offshore near Alabama, 
Mississippi, Louisiana, and Texas (where oil platforms and other artificial reefs were common), but 
individuals did not move farther offshore in Florida shelf waters. Distance to shoreline interacted with 
MLD spring (IE = 32) and showed MLD spring had the strongest effect farther from the shoreline. Red 
snapper age-1 had the highest probability of presence at greater depths up to a 50 m depth. 

2.3.1.3 Lane Snapper Age-0 

As expected, lane snapper age-0 (Figure 2.5) were more abundant in the fall as individuals become large 
enough to be captured by trawl sampling. Lane snapper age-0 had a higher probability of presence with 
higher fall and spring bottom temperatures. They had a higher probability of presence farther from the 
shoreline, with more shallow MLD, and with salinities in the range of 20-34 psu compared to salinities 
> 34 psu. An interaction between salinity and spring bottom temperature (IE = 61) showed low 
probability of occurrence at higher salinities (> 32 psu) except where spring bottom temperatures were 
> 22℃. Probability of occurrence was highest where a shallow MLD in summer coincided with high fall 
bottom temperatures (IE = 61).  

2.3.1.4 Lane Snapper Age-1 

Lane snapper age-1 (Figure 2.6) had a greater probability of presence in waters < 40 m in depth and with 
cooler spring bottom temperatures. They were less common with mud and silt substrates (particularly, 
< 0.03 mm grain size) and when grain sizes became larger than granule gravel (see Wentworth 1922). No 
interactions were observed. 

2.3.1.5 Blacktip Shark 

Blacktip shark (Figure 2.7) were positively related to chlorophyll and nearby wetlands; they had the 
highest probability of occurrence with low salinity waters spanning 27–34 psu. Blacktip shark were 
positively related to croaker prey, but did not directly select for their primary prey of menhaden. The 
species had a higher probability of occurrence where MLD in summer was relatively deep, and they were 
more likely to be caught from 00:00–03:00. Interactions were minimal.  
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2.3.1.6 Spinner Shark 

Spinner shark (Figure 2.8) had the highest probability of occurrence with salinities of ≤ 30 psu, and they 
were positively related to chlorophyll and nearby estuaries. Spinner shark had a positive relationship with 
hypoxia, as probability of occurrence was highest in waters with 20–40% probability of hypoxia. We 
examined the hypoxia map, and the 20-40% range corresponded well with the edge of highest probability 
hypoxic zone. Spinner shark had a moderate interaction between hypoxia and nearby estuaries (IE = 38), 
showing that spinner shark selected waters with 20–40% hypoxia probability that coincide with a 
relatively high amount of nearby estuaries.  

2.3.1.7 Atlantic Sharpnose Shark 

Atlantic sharpnose shark CPUE (Figure 2.9) was positively related to the prey species of brown shrimp 
and croaker as well as the amount of nearby wetlands. Atlantic sharpnose shark CPUE was highest in the 
spring, farther from the shoreline, and at greater depths up to our 50-m maximum in the study area.  

Bottom salinity showed a dichotomy where salinities of 27.5–30 psu and 33.5–36 psu had the highest 
CPUE, but intermediate salinities had fewer Atlantic sharpnose shark. Interaction effects were minimal. 



 

29 

 

 

Figure 2.3. Predicted red snapper age-0 CPUE in the a) summer and b) fall seasons.  
The study area is indicated by the dashed line, and CPUE represents the predicted number of red snapper per km of trawl survey.  
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Figure 2.4. Predicted red snapper age-1 probability of presence in the summer and fall seasons combined. 
The study area is indicated by the dashed line, and CPUE represents the predicted number of red snapper per km of trawl survey.  
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Figure 2.5. Predicted lane snapper age-0 probability of presence in the a) summer and b) fall seasons. 
The study area is indicated by the dashed line, and CPUE represents the predicted number of lane snapper per km of trawl survey.  
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Figure 2.6. Predicted lane snapper age-1 probability of presence in the summer and fall seasons combined. 
The study area is indicated by the dashed line, and probability of presence represents the probability of capture given a trawl survey.  
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Figure 2.7. Predicted blacktip shark probability of presence in the spring–fall seasons. 
The study area is indicated by the dashed line, and probability of presence represents the probability of capture given a bottom longline survey.  
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Figure 2.8. Predicted spinner shark probability of presence in the spring–fall seasons. 
The study area is indicated by the dashed line, and probability of presence represents the probability of capture given a bottom longline survey.  
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Figure 2.9. Predicted Atlantic sharpnose shark CPUE in the spring–fall seasons. 
The study area is indicated by the dashed line, and CPUE represents the predicted number of sharks hooks-100 hr-1 of bottom longlne survey. 
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2.4 Discussion 
By testing a comprehensive set of predictors, we discovered new species-habitat relationships with MLD, 
the area of nearby wetlands and estuaries, prey species, and substrate characteristics. Across all species 
considered, oceanographic variables were the most commonly selected predictors, and they often scored 
high in variable importance. Although distance to artificial or natural reefs were important predictors in 
the red snapper age-1 model, the other geomorphology predictors had low variable importance. 
Geomorphology predictors only appeared to refine fish distributions where oceanographic characteristics 
were already suitable for fish. For example, red snapper age-0 had a higher CPUE in close proximity to 
shoals and where the BPI predominately showed a hill topography. Yet, their spatial distribution was 
highly skewed towards the western GoM, where MLD was deeper and brown shrimp prey were most 
common. This inference of variable influence across spatial scales is supported by Mannocci et al. (2017), 
who shows that oceanographic features operate at intermediate scales of 1–100 km and factors such as 
prey operate at a scale of 10 m–1 km. We further suggest that geomorphology also affects species at this 
local scale. We acknowledge that prey species may be also be correlated with geomorphology, 
oceanography, and nearby ecosystems characteristics. SDMs are correlative models, but the species-
habitat relationships we quantified here provide for refined distributions of species, reveal patterns of 
important habitat factors, and provide a basis for future hypothesis testing concerning EFH. As with the 
shrimp results (above), no species analyzed here was associated with benthic characteristics of bottom 
current velocity, slope, or depth heterogeneity. 

We discovered MLD was an influential predictor of red snapper age-0 and age-1, lane snapper age-0, 
blacktip shark, and Atlantic sharpnose shark. MLD was also a predictor of brown shrimp CPUE (Section 
1.3.), which were related to red snapper age-0 and Atlantic sharpnose shark. Measures of MLD have 
rarely been included as predictor of marine fish SDMs (Volume 1). In the nGoM, MLD appears to be 
influenced by the Loop Current, eddies, and wind stress. The Loop Current enters the Gulf of Mexico 
through the Yucatan Channel, goes northward in the basin, and then exits via the Straits of Florida. 
Importantly, the Loop Current produces large spin-off eddies that often take a westward path originating 
near the Mississippi Delta (Johnson et al. 2017). To a lesser extent, wind influences water vertical 
structure and contributes to the vorticity of eddies (Ohlmann et al. 2001). The end result is an exchange of 
shelf waters and deeper waters (Johnson et al. 2017; Ohlmann et al. 2001), and upwelling or downwelling 
can contribute towards biological productivity (Spies et al. 2016). Therefore, the relationships with MLD 
and shrimp, snapper, and sharks may be the result of enhanced productivity in these waters. 

We found prey species and nearby ecosystems were common predictors of species. In our review of 
spatial distribution models, prey were only considered in 4% of studies (Volume 1). Of these, none were 
studies of sharks or reef fish. Because SDMs are correlative models, we do not have direct evidence of 
drivers of species' distributions. However, the statistical models suggest that prey species can be better 
predictors than other environmental attributes. There are two probable reasons for these results: 1) fish-
prey relationships represent a causal relationship, or 2) prey species represent a combination of 
environmental conditions, which are better correlated to species compared to single predictor variables. 
Future studies could further test predator-prey relationships to determine their applicability to EFH and 
ecosystem-based management. The productivity of nearby ecosystems, such as wetlands and estuaries, 
are usually ignored in marine fish research. Only a few studies have linked offshore marine fish or shrimp 
distribution to the proximity of mangroves (Barbier and Strand 1998) or estuaries (Beger and Possingham 
2008). Nonetheless, interactions among coastal and marine ecosystems have been cited as important areas 
for conservation (Pickens et al. 2017), and trophic energy exchanges are thought to be important among 
these ecosystems (Zuercher and Galloway 2019). 
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As with pink shrimp (Section 1.3), the confusion matrices showed predictions of absences were 
consistently more accurate than predicted presences. Given that detectability is imperfect during surveys 
(MacKenzie et al. 2002), the SDMs presented here should be considered as relative rather than absolute 
numbers. Waters with a greater probability of occurrence or relative abundance (CPUE) should be 
interpreted in comparison to waters with lower probability of occurrence or relative abundance.   

2.4.1 Red Snapper 

Research on juvenile red snapper in the nGoM has focused on geomorphology, including the 
chronological selection of sand, shell, low-relief shell, and high-relief shell (Lingo and Szedlmayer 2006; 
Szedlmayer and Howe 1997; Wells et al. 2008b). Our study adds to these known associations with 
substrate complexity by quantifying topography at a landscape scale in the form of high relief (i.e., a 
positive BPI) and the proximity of sand shoals. Observational evidence has suggested a role between 
juvenile red snapper and sediment grain size (Powers et al. 2018; Szedlmayer and Mudrak 2014); 
however, we did not find evidence of such an association at the scale of our study area. Spatial patterns of 
red snapper age-0 were primarily determined by MLD and the predicted CPUE of brown shrimp, with 
minor contributions from other prey species and substrate complexity. A distinct ontogenetic shift 
occurred from age-0 to age-1 red snapper. Age-1 red snapper were still associated with spring MLD, but 
they moved to greater depths, farther offshore, and closer to natural and artificial structures. Our spatial 
models have similar patterns as Dance and Rooker's (2019) results, though we validated our model and 
took a more mechanistic approach, rather than testing variables like latitude and longitude.  

Switzer et al. (2015) found the abundance of juvenile red snapper near Louisiana were reduced during 
years with severe hypoxia, and juveniles moved to deeper, cooler waters during those years. Although 
hypoxia was not selected as a variable for red snapper age-0 in our study, the model showed a low 
predicted CPUE in waters with a high frequency of hypoxia. The brown shrimp prey species is well 
known to avoid hypoxic waters (Craig 2012; Craig et al. 2005), and the correlation between brown shrimp 
and red snapper age-0 may have indirectly resulted in the low predicted CPUE in waters prone to 
hypoxia. Furthermore, the correlations between brown shrimp and predatory species provides evidence 
that hypoxia could affect fish farther up the food chain. We caution that trawl surveys were near shoals, 
but shoals themselves are usually too shallow to survey. Therefore, our habitat models do not account for 
fine-scale variation directly at the shoal. Dubois et al. (2009) does present evidence that Ship Shoal 
offshore of Louisiana is a hypoxia refuge for benthic invertebrates. 

2.4.2 Lane Snapper 

We found both age groups of lane snapper were strongly associated with oceanographic variables, 
particularly bottom temperature and salinity. They shifted from using salinities of ≤ 34 psu at age-0 to 
waters with > 34 psu at age-1. Given their subtropical / tropical range, the relationship with bottom 
temperature was not surprising. However, we expected more relationships with geomorphology. Juvenile 
lane snapper had been associated with sand shoals offshore of Louisiana (Brooks et al. 2005) and Texas 
(Mikulas and Rooker 2008; Wells et al. 2009). Our findings of juvenile lane snapper age-1 did show an 
association sandy sediments, but an association with shoals was lacking.  

2.4.3 Blacktip, Spinner, and Atlantic Sharpnose Shark 

Spinner and blacktip shark were not correlated with their main prey, menhaden, but bottom trawl surveys 
may not sample menhaden very well. Both shark species were associated with factors that indirectly 
describe menhaden habitat. Gulf menhaden utilize estuary and nearshore waters of moderate salinity, 
where they prey directly on phytoplankton and zooplankton (Olsen et al. 2014). These prey are likely 
correlated with chlorophyll-a measures. Gulf menhaden use estuaries and open water-marsh edges 
(Costanza et al. 1989; Rozas and Minello 2015; Rozas et al. 2007); therefore, a shark association with 
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these habitats is expected. Drymon et al. (2013) found the distribution of blacktip shark was best 
explained by crustacean biomass, but noted these sharks eat small fish. Here, we infer that wetland 
productivity likely leads to greater blacktip shark CPUE. Spinner shark have previously been found in 
waters with relatively low dissolved oxygen (Drymon et al. 2013). We found a positive relationship 
between spinner shark and hypoxia with a peak probability of occurrence with a 25-40% chance of 
hypoxia. These results suggest that spinner shark may feed on prey that either aggregate at the edge of 
hypoxic zones (e.g., Craig 2012) or aggregate towards the surface (e.g., Hazen et al. 2009). In lab 
experiments, Atlantic menhaden (B. tyrannus) have been shown to avoid waters with low dissolved 
oxygen (Wannamaker and Rice 2000), but the specific behavior of menhaden due to hypoxia in the 
nGoM needs further study. 

For Atlantic sharpnose shark, we found habitat relationships that differed from studies that found positive 
correlations with chlorophyll concentration (Drymon et al. 2013) and depths < 30 m (Drymon et al. 
2010). Similar to red snapper, the association with brown shrimp and greater depths meant that low 
CPUEs of Atlantic sharpnose shark were predicted for frequently hypoxic waters. Harrington et al. (2016) 
found juvenile Atlantic sharpnose shark fed heavily on Penaeid shrimp offshore of Texas, and other 
studies in the nGoM have shown they feed on a wide range of species (Bethea et al. 2006; Drymon et al. 
2012). The lack of a relationship with chlorophyll in our results may be because salinity, croaker, and 
nearby wetlands better explained Atlantic sharpnose shark distribution in nearshore waters where 
chlorophyll is high.  

2.4.4 Conclusions and Implications for Dredging 

In our wide-ranging study, we can conclude that not all shoals have equal value to fish. This is supported 
by the fact that Rutecki et al. (2014) reported lane snapper and red snapper in the GoM were either 
frequent, common, or rare, depending on the shoal. Oceanographic factors, prey species, and nearby 
wetlands and estuaries all play key roles in determining species' distributions. Evidence shows 
geomorphology only plays a minor or localized role in determining fish species' distributions. We caution 
that our analyses were based on fish surveys that typically span 3 km in length and microhabitat selection 
within this range may have been missed. Yet, our models showed a high predictive ability and were able 
to quantify suspected relationships between red snapper and substrate complexity. SDMs can illuminate 
habitat relationships as well as map the spatial patterns of species' distributions. We have demonstrated 
that modeling the distribution of species can be accomplished at a relatively fine scale. These spatial 
patterns can be applied to make management decisions and apply a strategic, regional perspective on 
natural resource use in the nGoM. 
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3 Predicting the Marine Distribution of Red Snapper, Black Seabass, 
and Shark Species in the South Atlantic 

3.1 Introduction 
The US Southeast Atlantic OCS (hereby South Atlantic) supports a diverse assemblage of fishes that 
provide high economic value to commercial and recreational fisheries. Fisheries economic impact in 
recent years has exceeded $4.4 billion annually and supports more than 77,000 jobs (National Marine 
Fisheries Service 2017). Geographically identified along the coastlines of the states of North Carolina, 
South Carolina, Georgia, and Florida, the region is bounded by prominent geographic features of Cape 
Hatteras and Cape Canaveral and oceanographically by the Gulf Stream current to the east. The region is 
home to species that use an array of seafloor and oceanographic habitats dominated by unconsolidated 
sediments forming sheets, ridges, and shoals, with interspersed emergent rocky reefs and other hard 
structures like artificial reefs and shipwrecks. Managed fish species are grouped into complexes based 
upon their general habitat preference (e.g., “snapper-grouper complex” that use reef and rocky habitats), 
migratory behaviors (“coastal pelagics” transient predators that seasonally migrate along the coastline), 
and migratory top predators (sharks). 

Fishery-independent surveys have assessed managed species to derive indices of abundance that 
contribute to stock assessments for managing the populations. However, details on habitat selection and 
drivers of the broader distribution patterns remain poorly understood for the vast majority of species, 
including members of the snapper-grouper complex that are surveyed around rocky reefs throughout the 
region. For the snapper-grouper complex, there is evidence that some species are likely to be observed 
over soft sediments, though those sediment habitats may be adjacent to structured habitats (Bacheler et al. 
2014). Studies of shark distributions are rare in the South Atlantic and mostly focus on seasonality, size 
and ages in coastal waters and estuaries (Thorpe et al. 2004; Ulrich et al. 2007). 

Improvements in species distribution information and a greater understanding of relationships of fish to 
seafloor characteristics are needed to guide planning and permitting for ocean activities that may impact 
fish and their habitats. The demand for offshore marine sands is increasing in the United States (Drucker 
et al. 2004), and sand is commonly used for beach renourishment, barrier island restoration, and wetland 
restoration. Sand shoals are often preferred sand resources because of the quantity of sand per unit area, 
and the dredging of OCS sand shoals is likely to increase in the future as demand increases due to 
renourishment cycles for beaches, emergency repairs of beaches after storms, and the projected effects of 
sea-level rise (Nairn et al. 2004). BOEM is part of the US Department of the Interior and is responsible 
for the management and development of mineral resources on the OCS, including sediment resources. As 
demand for OCS sand increases, BOEM faces complex multi-user interactions, including issues of 
resource allocation, cumulative impacts from repeated use, fisheries use and potential conflicts, protection 
of archaeological sites, oil and gas infrastructure, potential renewable energy infrastructure, and impacts 
on EFH (Michel et al. 2013). 

For this paper, we focus on two primary objectives: 

1) Test for habitat relationships of red snapper, black seabass, and selected shark species with a 
broad suite of environmental factors, including geomorphology, oceanographic characteristics, 
and nearby ecosystems 

2) Model and predict the spatial distribution of five species of hard bottom fish and sharks to 
identify overlap with sand shoals that may be targeted for dredging activities 
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3.2 Methods 
3.2.1 Study Area 

The study area depicted the South Atlantic region of the United States spanning from Cape Hatteras, 
North Carolina through the South Atlantic Bight. The landward boundary of the study area was defined 
by OCSLA, which distinguishes Federal- and state-managed waters. The oceanic boundary of the study 
area was defined by a 50-m contour line from NOAA’s CRM (NOAA National Centers for 
Environmental Information). This particular area was the focus because sand dredging operations 
authorized by the BOEM for beach and barrier island restoration does not exceed 50 m. The study area 
had a total surface area of 84,924 km2. The benthic substrate of the area consists of fine to coarse sand 
sediments with patchy areas of hard bottom reefs. The most prominent feature of the South Atlantic is the 
Gulf Stream current, which creates a cross-shelf mixing of waters and strong water stratification (Castelao 
2011). Surface and bottom water intrusions from the Gulf Stream are most frequent in the summer 
months, are influenced by wind stress, interact with salinity, and are more frequent at the extreme 
northern and southern waters of the South Atlantic Bight (Castelao 2011). 

3.2.2 Biological Data 

Fish data were derived from fishery-independent surveys of SEAMAP, the Southeast Reef Fish Survey 
(SERFS) and the NOAA Southeast Fisheries Science Center, Mississippi Laboratories (Table 3-1). From 
these data, we only used data from 2004 and later because we wanted to depict current conditions as best 
as possible, and this timeframe still provided us with an adequate sample size. The vast majority of 
surveys were conducted from spring through fall, and, therefore, our SDMs do not represent snapper or 
shark distributions in the winter. 

Surveys from the MSLABS-BL program used the methodology outlined in detail by Driggers III et al. 
(2012), with details briefly outlined here. All bottom longline surveys used a 15/0 circle hook baited with 
Atlantic mackerel. Surveys were randomly placed throughout the study area. Gear soak times were 
targeted to be 1 hr, as defined by the time elapsed between completion of deployment and initiation of 
retrieval. We used the centroid of bottom longline surveys to depict fish survey locations. For MSLABS-
BL data, we removed extreme survey lengths. More specifically, we removed one survey that was 25 km 
in length and one that was 0.08 km. The remaining surveys ranged from 0.50–3.7 km. Additional bottom 
longline data were obtained from the SEAMAP program; however, the survey methodology differed, so 
these data were only used as presence data for validation purposes. Of the SEAMAP data, we only used 
surveys offshore of Florida, Georgia, and South Carolina for analysis because waters in our study area 
were not sampled offshore of North Carolina. The SEAMAP bottom longline methods offshore of Florida 
and Georgia included using either a 15/0 or a 12/0 circle hook baited with squid. For South Carolina, 
SEAMAP used a 15/0 circle hook and had a soak time target of 30 min, but they used Atlantic mackerel 
and striped mullet as bait. 

The SERFS program surveys hard bottom locations in the South Atlantic with Chevron traps, and, since 
2010, video attached to Chevron traps (Bacheler et al. 2014). The determination of sampling locations and 
details of both methods are provided by Bacheler et al. (2014), with a brief outline given here. Chevron 
traps were baited with 24 menhaden, and traps were deployed in groups of six, with each > 200 m from 
each other. The soak time for traps was targeted for 90 min. Since 2010, video cameras have been 
mounted over the mouth of traps with a view of approximately 60º from the trap. Video frames were read 
to identify fish at 30 second intervals over 20 min, which resulted in 41 frames read per sampling effort. 
For SERFS video surveys, we removed any video surveys that had < 41 frames read. For SERFS trap 
surveys, we removed traps with a duration of < 10 min and those > 150 min, because they had a much 
lower catch rate in preliminary models. 
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Table 3-1. Sources of fisheries-independent survey data. Sample sizes are provided for waters 
within our study area. 

Data source 
Acronym 

for dataset Dates 

Gear used for 
survey (n = # of 

surveys) Species modeled 

Southeast Fishery-
Independent Survey SEFIS video 

 
2010–2017; 

21 Apr–27 Oct 

Video; 
n = 6,264 

Red snapper 
Validation only for 

sandbar shark, tiger 
shark 

Southeast Area 
Monitoring and 

Assessment: reef fish 
traps 

SEAMAP 
traps 

 
2010–2017; 

23 Apr–26 Oct 

Chevron traps; 
n = 5,210 Black sea bass 

Southeast Fisheries 
Science Center, NMFS, 
Mississippi Laboratory 

MSLABS-BL 
 

2004–2017; 
21 Apr–25 Sep 

Bottom longline; 
n = 386 

Blacknose shark, 
sandbar shark, tiger 

shark 

Southeast Area 
Monitoring and 

Assessment: bottom 
longline 

SEAMAP 
longline 

2006–2016; 
22 Apr–29 Dec Bottom longline 

Validation only for 
blacknose shark, 

tiger shark 

3.2.3 GIS and Environmental Data Sources 

All GIS analysis procedures and data collection methods were followed as described in Section 1.2.3, 
with the following modifications and additions. We developed predictor variables to depict oceanographic 
conditions, geomorphology, nearby ecosystems, and geography (Table 3-2). We used a bathymetry 
dataset derived as part of the South Atlantic Marine Bight Assessment (Conley et al. 2017). Despite these 
data being the best available for the South Atlantic, a few notable errors persisted. We updated a 1,600 
km2 and a 400 km2 region offshore of northeastern North Carolina with sounding points acquired in 2016 
(NOAA National Centers for Environmental Information 2016). To be consistent, we used the same 
kriging methods as the South Atlantic Marine Bight Assessment (Conley et al. 2017). To describe aspect, 
we calculated the aspect cosine and sine. We calculated depth, CV depth, slope, sediment grain size, 
proportion of area with shoal, slope, aspect, and the BPI within a 3-km radius using ArcGIS focal 
statistics. 

Hard bottom habitats were depicted by three datasets that were combined. A predictive model (developed 
by Matthew Poti, NOAA Biogeography Branch) depicting probability of hard bottom occurrence was 
converted into a presence/absence model by representing areas with ≥ 36.3% probability of occurrence as 
hard bottom presence locations. This threshold was derived as the maximum AUC value, which is the 
threshold that corresponds with the model’s optimal discrimination ability. We then added polygon data 
from South Atlantic Marine Bight Assessment mapping of hard bottom features. With this dataset, we 
removed the classifications of “possible” and “potential” hard bottom or hard bottom slope; these low 
confidence areas depicted seabed features > 2 km from known hard bottom locations and had substantial 
uncertainty. All “probable” hard bottom locations (≤ 2 km from known hard bottom), “high confidence” 
(≤ 1 km from known hard bottom), and very confident (mapped) locations were added to the spatial 
model. The probable and high confidence locations often depicted polygons where hard bottoms were 
known to be present along the periphery. The third dataset was the original synthesis of hard bottom point 
locations that were used as input into NOAA’s predictive model. We removed point locations already 
classified as hard bottom (from above) and those within 90 m of hard bottom. These adjacent points often 
surrounded areas depicted as hard bottom. These restrictions resulted in 687 additional points. Because 
these were often isolated points, we calculated a 1 km buffer around these locations to add to the hard 
bottom model. 
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Table 3-2. Environmental variables developed to predict fish species in the South Atlantic.  
Oceanographic predictors were from aggregations of monthly means spanning 2003-2017. 

Variable type Variable Resolution 
of data Source data 

Substrate Mean depth (m) 90 m CRM plus modifications 

Substrate CV of depth  
90 m CRM plus modifications 

Substrate Density of artificial reefs 
(reefs km-1) 90 m BOEM, Marine Cadastre 

Substrate Distance to artificial reef (km) 90 m  

Substrate Distance to shoal (km) 90 m 
Pickens and Taylor, NOAA 

Biogeography Branch, 
identification of shoals 

Substrate Proportion of area with shoal 90 m 
Pickens and Taylor, NOAA 

Biogeography Branch, 
identification of shoals 

Substrate Mean sediment grain size 
(mm) 90 m 

The Nature Conservancy, 
South Atlantic Marine Bight 
Assessment, substrate data 

Substrate Proportion hills (with BPI ≥1) 90 m CRM plus modifications 
Substrate Slope (º) 90m CRM plus modifications 

Substrate Proportion hard bottom 90 m 
Matt Poti, NOAA Biogeography 

Branch + The Nature 
Conservancy- SAMBA 

Substrate Distance from hard bottom 
(km) 90 m 

Matt Poti, NOAA Biogeography 
Branch + The Nature 

Conservancy- SAMBA 
Substrate Aspect (cosine) 90 m CRM plus modifications 
Substrate Aspect (sine) 90 m CRM plus modifications 

Oceanographic Bottom temperature (℃) 9.8 km HYCOM + NCODA 

Oceanographic Chlorophyll-a (mg m-3) 5.1 km Aqua MODIS satellite, 8-day 
composites 

Oceanographic 
Surface current direction- U 

(eastward water velocity,  
m s-1) 

8.9 km HYCOM + NCODA 

Oceanographic 
Surface current direction- V 
(northward water velocity,  

m s-1) 
8.9 km HYCOM + NCODA 

 

Geography Distance to shoreline 90 m - 
Nearby 

ecosystems Nearby wetlands (km2)  
90 m NWI 

Nearby 
ecosystems Nearby estuaries (km2)  

90 m NWI 

* HYCOM + NCODA = HYbrid Coordinate Ocean Model + Navy Coupled Ocean Data Assimilation; MODIS = 
Moderate Resolution Imaging Spectroradiometer. CRM = Coastal Relief Model; NWI = National Wetlands Inventory 

Salinity data were initially explored, but were excluded because there was minimal variation in our study 
area. To define the Gulf Stream, and subsequently the distance to the Gulf Stream, we examined summer 
U- and V- current velocity (m s-1) for the summer season. The mean current velocity was highest during 
this season. We visually examined the data in 0.5 m s-1 increments and classified waters averaging 
≥ 0.5 m s-1 for either the U or V direction as part of the Gulf Stream. This classification created a unified 
Gulf Stream current in our study area. We used Euclidean distance to calculate distance to the Gulf 
Stream. 

To determine if coastal wetlands contributed to the distribution of fish in the marine environment, we 
used the classification of “estuarine and marine wetland” to depict estuarine wetlands and “estuarine and 
marine deepwater” to depict estuaries from the NWI dataset (U. S. Fish and Wildlife Service 2018). First, 
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we calculated the maximum distance to wetlands within our study area, which was approximately 130 km 
in the South Atlantic. Then, we summed the number of 90-m cells depicting wetlands, and estuaries, 
within a radius of 130 km of each cell. The metric was converted to wetland km-2 and estuaries km-2 
within each 130-km cell. Distance to shoreline was calculated by back-transforming boundaries of the 
Submerged Lands Act (SLA). The boundaries of the SLA represent a distance of 3 nm from the shoreline 
of South Atlantic states. We used the buffer tool to re-create the approximate shoreline boundaries (3–
9 nm from SLA), and then calculated the Euclidean distance from the shoreline to the entirety of the study 
area. 

3.2.4 Statistical Analysis 

We investigated predictor variables for multicollinearity and removed highly correlated variables (r > 
0.80) prior to analyses. Of note, we removed summer bottom temperature because of a strong correlation 
with depth (r = -0.83). In regard to temporal predictors, we used day-of-year and start time as variables in 
all models. The time at which surveys are conducted can affect the detectability of species and has 
previously been documented affecting shark catch (Driggers III et al. 2012). We did not use year as an 
explanatory factor because our primary objective was to determine long-term use of waters and substrates 
of the South Atlantic. Therefore, we assume years of high or low abundance are representative of long-
term fish distribution. 

Because improving our understanding of species-habitat relationships was one of our objectives, the 
variables in species models differed by a few variables. We excluded variables with no hypothesized 
relationship to species to help minimize issues with moderately correlated variables. We used chlorophyll 
as predictor of species except for red snapper. Red snapper are usually farther offshore than a relationship 
with chlorophyll would suggest. In the Gulf of Mexico (section 2), red snapper were found to be related to 
shrimp distribution, so we did include nearby wetlands in the South Atlantic models of red snapper. In 
models of demersal species (red snapper, black sea bass, blacknose shark), we did not test SST. Given the 
nGoM results (Sections 1 and 2), we did not test bottom current velocity. Instead, we tested surface 
current velocities because of the observed association between surface currents and MLD in the Gulf of 
Mexico. Data on MLD was not available for the South Atlantic. 

For reasons described in Section 1.2.4, we aggregated training (70%) and validation (30%) data with 
alternating bands along a latitudinal gradient (Error! Reference source not found.). The use of a latitudinal 
gradient maintained a depth gradient in each block. More specifically, we reclassified latitude into 70 
equal interval divisions, which resulted in 15-km bands across the study area. We then alternated the 
delineation of training (two bands) and validation (one band) datasets to achieve the desired ratio of 
training and validation data. The BRT analysis procedures outlined in Section 1.2.4 were used to quantify 
species-habitat relationships, the relative importance of predictors, and interaction effects for snappers 
and sharks. We also assessed the accuracy of models using the same procedures as described from 
presence/absence modeling. For blacknose shark, the threshold obtained from the maximum Kappa 
statistic provided an extremely small sample size of predicted presences. Therefore, we used the 
presence/absence threshold obtained from minimum distance on the receiver operating characteristic plot. 
We assumed the effect of time of survey represented a detectability effect of tiger shark. Therefore, we 
applied the model at their peak time of detectability, which was 23:00. 
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Figure 3.1. The study area with training and validation zones depicted with surveys overlaid. 
SERFS trap surveys were often at video survey locations. 
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3.3 Results 
The validation results showed AUC statistics ranged from 0.73–0.89, which indicated a good or very 
good ability of models to discriminate present and absent locations of species (Table 3-3). The confusion 
matrices (Table 3-4 to Table 3-8) showed absences were better predicated than presences for blacknose 
shark and red snapper. Tiger and sandbar shark models had similar abilities to discriminate presence and 
absence. For the most common species, black sea bass, presence was predicted better than absences. No 
geomorphology variables were selected by species, and variable importance measures showed a mixed of 
oceanographic condition, nearby estuaries and wetlands, and depth all contributed to the SDMs (Figure 
3.2). 

3.3.1 Red Snapper 

Red snapper (Figure 3.3) were present on 24% of reef video surveys. Red snapper were positively related 
the amount of nearby wetlands and had the highest probability of occurrence with a depth range of 25–
38 m. Red snapper were more likely to occur within approximately 45 km of the Gulf Stream and with 
westward surface currents. Interaction effects were particularly strong. Red snapper were more likely to 
occur with a combination of a high amount of nearby wetlands and a greater depth (IE = 212). A 
combination of westward currents and a depth range of approximately 25–35 m also had a strong positive 
effect on red snapper occurrence (IE = 82). 

3.3.2 Black Sea Bass 

Black sea bass (Figure 3.4) were present on 66% of reef trap surveys. Black sea bass had a strong, 
positive relationship with chlorophyll and primarily a positive relationship with nearby estuaries. 
However, they had a negative relationship with very high amounts of nearby estuaries (> 7,000 km2), 
which only occurred offshore of North Carolina. Black sea bass had a particularly low probability of 
occurrence > 75 km from the shoreline (Figure 3.4). They had a greater likelihood of occurrence either 
near the Gulf Stream (< 25 km) or much farther away from the Gulf Stream (> 85 km). Strong 
interactions occurred among variables. Distance to shoreline had a minimal effect where nearby estuaries 
were > 7,000 km2 (near North Carolina) (IE = 126). For waters with > 7,000 km2 of nearby estuaries, the 
Gulf Stream had a greater effect on black sea bass probability of occurrence (IE = 116). 

3.3.3 Blacknose Shark 

Blacknose shark (Figure 3.5) were present on 10% of MSLABS-BL bottom longline surveys. An 
additional 56 blacknose shark presence locations from SEAMAP bottom longline surveys were used for 
validation. The blacknose shark had positive relationships with chlorophyll and the amount of nearby 
estuaries. They had a higher probability of occurrence with a higher velocity of U-direction surface 
currents, particularly westward currents; however, eastward currents also had a positive effect. 
Interactions were not present. 

3.3.4 Sandbar Shark 

Sandbar shark (Figure 3.6) were present on 25% of MSLABS-BL surveys. An additional 50 sandbar 
shark presence locations from SERFS video were used for validation. For sandbar shark, probability of 
presence was highest with water depths of 42–50 m and probability declined steadily at more shallow 
depths. Sandbar shark were related to higher fall bottom temperatures with a sharp increase in their 
predicted occurrence with temperatures > 24.5℃. Interactions were not present. 
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3.3.5 Tiger Shark 

Tiger shark (Figure 3.7) were present on 42% of MSLABS-BL surveys. An additional 37 tiger shark 
presence locations from SERFS video surveys and 16 SEAMAP bottom longline survey presence 
locations were used for validation. Tiger shark presence was associated with a greater amount of nearby 
wetlands and with greater water depths. Peak tiger shark occurrence was predicted with depths of 25–
50 m. Survey time also affected the presence of tiger sharks in surveys, as 11:00–23:00 was predicted to 
have the highest probability of occurrence. There was an interaction with nearby wetlands and survey 
time (IE = 10). This interaction showed that depth did not have as much of an effect during low 
probability survey times.  

Table 3-3. BRT specifications and AUC statistics for marine species distribution models of 
snappers and sharks. 

Species 
Tree 

complexity 
Learning 

rate 
# of 

trees 

Cross-
validatio
n AUC 

Validation 
AUC 

Red snapper 5 0.02 1,850 0.86 0.79 

Black sea bass 4 0.03 1,150 0.86 0.81 

Blacknose shark 5 0.001 4,300 0.85 0.88 

Sandbar shark 1 0.03 4,950 0.83 0.73 

Tiger shark 2 0.002 1,700 0.73 0.73 
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Table 3-4. Confusion matrix from the validation data of the red snapper model at the optimal 
threshold to distinguish presence/absence, which was with a probability of 0.41. 

 
Observed 
absence 

Observed 
presence 

User's accuracy 
(% correct) 

Predicted 
absence 1,501 331 82% 

Predicted 
presence 135 168 55% 

Table 3-5. Confusion matrix from the validation data of the black sea bass model at the optimal 
threshold to distinguish presence/absence, which was with a probability of 0.58. 

 Observed 
absence 

Observed 
presence 

User's accuracy 
(% correct) 

Predicted 
absence 274 153 64% 

Predicted 
presence 239 1,157 83% 

Table 3-6. Confusion matrix from the validation data of the blacknose shark model at the optimal 
threshold to distinguish presence/absence, which was with a probability of 0.15. 

 Observed 
absence 

Observed 
presence 

User's accuracy 
(% correct) 

Predicted 
absence 101 7 94% 

Predicted 
presence 24 61 72% 

Table 3-7. Confusion matrix from the validation data of the sandbar shark model at the optimal 
threshold to distinguish presence/absence, which was with a probability of 0.33. 

 Observed 
absence 

Observed 
presence 

User's accuracy 
(% correct) 

Predicted 
absence 73 34 68% 

Predicted 
presence 21 59 74% 

Table 3-8. Confusion matrix from the validation data of the tiger shark model at the optimal 
threshold to distinguish presence/absence, which was with a probability of 0.42. 

 Observed 
absence 

Observed 
presence 

User's accuracy 
(% correct) 

Predicted 
absence 52 25 68% 

Predicted 
presence 34 79 70% 
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Figure 3.2. Relative importance of variables in models of a) blacknose shark, b) sandbar shark, c) 
tiger shark, d) red snapper, and e) black sea bass. 
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Figure 3.3. Predicted red snapper probability of presence in spring–fall seasons. 
The study area is indicated by the dashed line, and probability of presence represents the probability of capture given 
a video survey at a hard bottom location. 
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Figure 3.4. Predicted black sea bass probability of presence in spring–fall seasons. 
The study area is indicated by the dashed line, and probability of presence represents the probability of capture given 
a trap survey at a hard bottom location.  
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Figure 3.5. Predicted blacknose shark probability of presence in spring–fall seasons. 
The study area is indicated by the dashed line, and probability of presence represents the probability of capture given 
a bottom longline survey.  



 

52 

 

 

Figure 3.6. Predicted sandbar shark probability of presence in spring–fall seasons. 
The study area is indicated by the dashed line, and probability of presence represents the probability of capture given 
a bottom longline survey.  
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Figure 3.7. Predicted tiger shark probability of presence in spring–fall seasons. 
The study area is indicated by the dashed line, and probability of presence represents the probability of capture given 
a bottom longline survey.  
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3.4 Discussion 
Overall, we discovered new species-habitat relationships that incorporated the nearby ecosystems of 
wetlands and estuaries along with the most prominent oceanographic feature, the Gulf Stream. 
Concerning geomorphology, our results with the five South Atlantic fish species analyzed here are 
consistent with the results from analyses of nGoM shrimp, snapper, and sharks (Sections 1 and 2). 
Oceanographic conditions and nearby ecosystems are the dominant correlates with fish distribution, and 
the value of shoals as fish habitat is highly variable based on those factors (rather than geomorphology 
characteristics). In the South Atlantic, none of the five species were associated with the benthic 
characteristics of slope, aspect, BPI, depth heterogeneity, distance to shoal, or proportion of area as shoal. 

3.4.1 Red Snapper and Black Sea Bass 

We discovered the proximity to the Gulf Stream was an influential predictor of red snapper and black sea 
bass. The Gulf Stream is a prominent feature of the South Atlantic, and it creates a cross-shelf mixing of 
waters as well as strong water stratification (Castelao 2011). Surface and bottom water intrusions are most 
frequent in the summer months, are influenced by wind stress, interact with salinity, and are more 
frequent at the extreme northern and southern waters of the South Atlantic Bight (Castelao 2011). These 
characteristics of Gulf Stream water intermixing with shelf waters is consistent with the red snapper 
habitat relationships we observed here. Red snapper presence was most likely within approximately 40 
km of the Gulf Stream and with a relatively strong western surface current. In the nGoM, we observed a 
positive relationship with red snapper and a deeper MLD. In the Gulf of Mexico, surface currents and the 
Loop Current were correlated with deeper MLD (unpublished data). Data sources for MLD were lacking 
in the South Atlantic, but the surrogates of distance to Gulf Stream and surface current velocity 
demonstrate the importance of this process. Black sea bass had a greater probability of presence both 
within 20 km of the Gulf Stream and much farther from the Gulf Stream (> 80 km). The association with 
the latter probably characterizes their affinity towards high chlorophyll concentrations and being closer to 
the shoreline. Red snapper were associated with more nearby wetlands, which is consistent with their 
association with shrimp prey species in the nGoM, whereas the association black sea bass and estuaries 
may be a result of their use of estuaries as juveniles (Mercer and Moran 1989). 

3.4.2 Blacknose, Sandbar, and Tiger Shark 

Studies conducted in the shallow waters offshore of North Carolina (Thorpe et al. 2004) and South 
Carolina (Ulrich et al. 2007) found blacknose shark were common in waters of 3-15 m depths. Our results 
support these observations, however, we identified more refined habitat characteristics that contributed to 
their presence within shallow waters. In the nGoM, Drymon et al. (2013) quantified habitat associations 
of blacknose shark and found depth (or temperature as a correlate) supported a depth preference of 10–
30 m. Here, a positive association with chlorophyll meant that blacknose shark were in a close proximity 
to the shoreline. The positive association with the amount of nearby estuaries and a relatively high 
velocity of U-direction surface currents resulted in a predicted distribution near many inlets and sounds in 
the South Atlantic. This finding builds on a previous study that observed blacknose shark near inlets in 
South Carolina waters (Ulrich et al. 2007). These inlets may be particularly important habitats for 
blacknose shark. 

Our model of sandbar shark showed they primarily used waters ≥ 35 m in depth. In support of this result, 
observations of sandbar shark in the Gulf of Mexico showed they are rarely encountered at shallow depths 
but have been recorded in depths of > 30 m (Drymon et al. 2010). We emphasize that we did not analyze 
data from nearshore, state-managed waters where juveniles may be found (e.g., Ulrich et al. 2007). 
Seasonal differences in sandbar shark depth use also appear to exist. Conrath and Musick (2008) reported 
that 80% of summer sandbar shark locations were in depths of < 12 m (range of 0–24 m) in the water 
column, but winter observations ranged 0–172 m. Total depth of the water column itself was not reported 
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in this study. In our study, depth was negatively related to bottom temperature. Therefore, the selection 
for depths up to 50 m is also indicative of sharks using relatively cooler water temperatures in the spring 
and summer. Additionally, we found an association between sandbar shark and fall bottom temperature, 
which were the lowest temperatures of the year. Sandbar shark are known to leave waters that get too 
cold. For example, Conrath and Musick (2008) tracked sharks offshore of eastern Virginia during the 
summer, and all seven individuals wintered offshore of North Carolina. The authors suggest that this is 
because of North Carolina's proximity to the warm Gulf Stream. 

For tiger shark, we found a greater probability of presence with higher amounts of nearby wetlands. 
Worldwide, tiger sharks are known to use nearshore habitats (e.g., seagrasses) and to prefer shallow 
waters; presumably, these preferences characterize waters with a high prey density (Heithaus et al. 2006). 
Similarly, coastal wetlands of the South Atlantic likely are productive waters for tiger shark prey species. 

3.4.3 Conclusions and Implications for Dredging 

In our wide-ranging study, we can conclude that not all shoals have equal value to fish in the US 
Southeast Atlantic. Oceanographic factors, such as distance to Gulf Stream, and surface currents play a 
substantial role, as well as the amount of nearby wetlands and estuaries. Evidence shows geomorphology 
only plays a minor role in the distribution of hard bottom fish and sharks. We caution that our analyses 
were based on fish surveys that typically span 3 km in length, and microhabitat selection within this range 
may have been missed. Yet, our models showed a high predictive ability. For example, three of five of 
our models had an AUC of ≥ 0.79. We have demonstrated that modeling the distribution of species can be 
accomplished at a relatively fine scale. These predicted spatial patterns can be used in decision support 
tools to identify potentially sensitive habitats, and relative hotspots for species, and allow for a strategic, 
regional perspective on natural resource use in the South Atlantic. 
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4 Predicting the Marine Distribution of Demersal Species in the 
Greater Atlantic 

4.1 Introduction 
SDMs are state-of-the-art statistical models that predict the distribution of species based on species-
habitat relationships (Guisan and Zimmermann 2000; Robinson et al. 2011). Extending survey samples 
across the complex habitat mosaics allow for determination of relative hotspots for species and can 
identify particularly sensitive areas to avoid when planning offshore uses that potentially impact benthic 
habitats. The Northeast Fisheries Science Center (NEFSC) has recently developed SDMs for the Greater 
Atlantic (personal communication and unpublished data, Kevin Friedland, NEFSC). They had the 
objective of modeling the spatial distribution of North Atlantic species for the spring and fall seasons. 
Their work also examined the broad importance of predictor variables categorized as the following: 
physical (e.g., depth, temperature), primary production, secondary production (i.e., zooplankton), and 
benthic habitat complexity (i.e., substrate measures). The NEFSC provided us with a subset of species 
models derived from the last decade of fishery-independent trawl data, while their broader work covers 
over 30 years of fishery and oceanographic survey data. 

The multispecies spatial modeling effort led by Kevin Friedland (NEFSC) is in the preparation phase for a 
peer-reviewed manuscript; therefore, we only provide a brief overview here. Currently, there is a 
manuscript concerning American lobster that is in review, and this manuscript will describe more detailed 
methodology for the species described here and included in the ShoalMATE tool (see Volume 4). Here, 
we provide a brief overview of the modeling data sources, methodology, and results. 

4.2 Methods 
The NEFSC used the following components to build SDMs for the Greater Atlantic: 

• Fishery-independent trawl survey data from 2009–2018 were used for statistical modeling. The 
NEFSC has a longstanding trawl survey program, and the latest decade of data were used for 
modeling. All species with an adequate sample size from trawl surveys were modeled. 

• Predictor variables sampled during trawl surveys included remote sensing data on oceanographic 
conditions, substrate descriptors, zooplankton abundance, and in situ measures of depth, water 
temperature, and salinity. Oceanographic predictor variables, such as chlorophyll concentration, 
were summarized on a monthly basis, and each month was tested as a predictor. 

• The NEFSC used Random Forest (Cutler et al. 2007) for statistical models. Similar to BRT 
(Sections 1, 2, and 3), Random Forest is a machine-learning method that uses an ensemble of 
regression trees to make predictions. Random Forest has been demonstrated as an effective 
predictive modeling method (Rooper et al. 2017). Model variables were reduced using the model 
selection criteria of Murphy et al. (2010). Individual models often had > 20 predictor variables. 
Further details on the modeling methodology will be provided by Friedland et al. (2020). 

• The predictive models quantify the probability of occurrence for each species by season (spring 
and fall), and the accuracy of models were tested with a cross-validation procedure. With this 
method, species were assessed with a receiver operating characteristic, AUC. The AUC has been 
commonly used to test the predictive ability of SDMs (Guisan and Zimmermann 2000), and the 
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analysis is independent of thresholds. Measures of the AUC range from 0.0 to 1.0 and were 
interpreted as suggested by Manel et al. (2001) and Swets (1988) as follows: < 0.50 = no 
discriminatory power; 0.50–0.69 = poor power; 0.70–0.89 = good power; and 0.90–1.0 = 
excellent discriminatory power. 

4.3  Summary of Model Outputs 
Thirty-four federally managed species were modeled for the spring and fall seasons, and these 68 models 
all had > 70% accuracy based on the AUC statistics for each season (Table 4-1). Overall, the models 
showed inshore-offshore movements of species were common, so distributions were often strikingly 
different between seasons. Importantly, these models do not depict summer and winter seasonal 
distributions of species. 

A few inferences can be drawn from all the species modeled by the NEFSC (EFH species and other 
species) with the longer timeframe of modeling results. Among the categories of predictors, benthic 
substrate variables were selected least often, and measures of variable importance showed these substrate 
variables had less importance in models compared to other categories of predictor variables. Secondary 
production, primary production, and physical variables had varying importance depending on season and 
type of species (e.g., benthivore vs. planktivore). 

Table 4-1. Federally managed species and the accuracy of models provided by the NEFSC. 

Common name 
Fall 
AUC 

Spring 
AUC Common name 

Fall 
AUC 

Spring 
AUC 

Acadian redfish 0.94 0.92 Scup 0.91 0.9 
American plaice 0.94 0.91 Sea scallop 0.84 0.84 
Atlantic cod 0.89 0.84 Silver hake 0.82 0.81 
Atlantic herring 0.9 0.76 Smooth skate 0.88 0.89 
Black sea bass 0.86 0.86 Spiny dogfish 0.8 0.79 
Bluefish 0.86 0.88 Summer flounder 0.9 0.84 
Butterfish 0.77 0.86 White hake 0.88 0.87 
Clearnose skate 0.92 0.92 Windowpane 0.85 0.83 
Goosefish 0.77 0.76 Winter flounder 0.87 0.88 
Haddock 0.84 0.85 Winter skate 0.88 0.81 
Little skate 0.86 0.83 Witch flounder 0.9 0.84 
Longfin squid 0.85 0.89 Yellowtail flounder 0.88 0.87 
Northern shortfin squid 0.81 0.88 Atlantic mackerel 0.77 0.77 
Offshore hake 0.93 0.91 Barndoor skate 0.88 0.86 
Red hake 0.82 0.8 Ocean pout 0.82 0.79 
Rosette skate 0.93 0.93 Pollock 0.86 0.82 
Scup 0.91 0.9 Atlantic angel shark 0.91 0.92 

  



 

58 

 

5 Literature Cited 
Bacheler NM, Berrane DJ, Mitchell WA, Schobernd CM, Schobernd ZH, Teer BZ, Ballenger JC. 2014. 

Environmental conditions and habitat characteristics influence trap and video detection 
probabilities for reef fish species. Marine Ecology Progress Series. 517:1-14. 

Barbier EB, Strand I. 1998. Valuing mangrove-fishery linkages–a case study of Campeche, Mexico. 
Environmental and Resource Economics. 12(2):151-166. 

Barry K, Condrey R, Driggers III W, Jones C. 2008. Feeding ecology and growth of neonate and juvenile 
blacktip sharks Carcharhinus limbatus in the Timbalier–Terrebone Bay complex, LA, USA. 
Journal of Fish Biology. 73(3):650-662. 

Beger M, Grantham HS, Pressey RL, Wilson KA, Peterson EL, Dorfman D, Mumby PJ, Lourival R, 
Brumbaugh DR, Possingham HP. 2010. Conservation planning for connectivity across marine, 
freshwater, and terrestrial realms. Biological Conservation. 143(3):565-575. 

Beger M, Possingham HP. 2008. Environmental factors that influence the distribution of coral reef fishes: 
modeling occurrence data for broad-scale conservation and management. Marine Ecology 
Progress Series. 361:1-13. 

Bethea DM, Buckel JA, Carlson JK. 2004. Foraging ecology of the early life stages of four sympatric 
shark species. Marine Ecology Progress Series. 268:245-264. 

Bethea DM, Carlson JK, Buckel JA, Satterwhite M. 2006. Ontogenetic and site-related trends in the diet 
of the Atlantic sharpnose shark Rhizoprionodon terraenovae from the northeast Gulf of Mexico. 
Bulletin of Marine Science. 78(2):287-307. 

Bivand R, Keitt T, Rowlingson B. 2019. rgdal: Bindings for the 'Geospatial' data abstraction library. R 
package version 1.4-4. https://CRAN.R-project.org/package=rgdal. 

Bradley E, Bryan C. 1975. Life history and fishery of the Red Snapper (Lutjanus campechanus) in the 
northwestern Gulf of Mexico 1970-1974. 

Brooks RA, Keitzer SC, Sulak KJ. 2005. Taxonomic composition and relative frequency of the benthic 
fish community found on natural sand banks and shoals in the northwestern Gulf of Mexico. (A 
synthesis of the Southeast Area Monitoring and Assessment Program’s groundfish survey 
database, 1982-2000). USGS Outer Continental Shelf Studies Ecosystem Program Report 
(unpublished report) 

Burgess GH, Branstetter S. 2000. Carcharhinus limbatus (Northwest Atlantic subpopulation). The IUCN 
red list of threatened species: e.T39373A10218026 [accessed 2018 October 7].  
https://dx.doi.org/10.2305/IUCN.UK.2000.RLTS.T39373A10218026.en. 

Burgess GH. 2009. Carcharhinus brevipinna. The IUCN red list of threatened species: 
e.T39368A10182758; [accessed 2018 October 7]. http://dx.doi.org/10.2305/IUCN.UK.2009-
2.RLTS.T39368A10182758.en. 

Carlson JK, Baremore IE. 2005. Growth dynamics of the spinner shark (Carcharhinus brevipinna) off the 
United States southeast and Gulf of Mexico coasts: a comparison of methods. Fishery Bulletin. 
103(2):280-291. 

https://cran.r-project.org/package=rgdal


 

59 

 

Carlson JK, Sulikowski JR, Baremore IE. 2006. Do differences in life history exist for blacktip sharks, 
Carcharhinus limbatus, from the United States South Atlantic Bight and Eastern Gulf of Mexico? 
Environmental Biology of Fishes. 77:279-292. 

Castelao R. 2011. Intrusions of Gulf Stream waters onto the South Atlantic Bight shelf. Journal of 
Geophysical Research: Oceans. 116(10011). 

Castro JI. 1996. Biology of the blacktip shark, Carcharhinus limbatus, off the southeastern United States. 
Bulletin of Marine Science. 59(3):508-522. 

Chassignet EP, Hurlburt HE, Metzger EJ, Smedstad OM, Cummings JA, Halliwell GR, Bleck R, Baraille 
R, Wallcraft AJ, Lozano C. 2009. US GODAE: global ocean prediction with the HYbrid 
Coordinate Ocean Model (HYCOM). Oceanography. 22(2):64-75. 

Conley MF, Anderson MG, Steinberg N, Barnett A. 2017. The South Atlantic Bight marine assessment: 
species, habitats and ecosystems. The Nature Conservancy, Eastern Conservation Science. 

Conrath CL, Musick JA. 2008. Investigations into depth and temperature habitat utilization and 
overwintering grounds of juvenile sandbar sharks, Carcharhinus plumbeus: the importance of 
near shore North Carolina waters. Environmental Biology of Fishes. 82(2):123-131. 

Cortés E. 1999. Standardized diet compositions and trophic levels of sharks. ICES Journal of Marine 
Science. 56(5):707-717. 

Costanza R, Farber SC, Maxwell J. 1989. Valuation and management of wetland ecosystems. Ecological 
Economics. 1(4):335-361. 

Couce E, Ridgwell A, Hendy EJ. 2012. Environmental controls on the global distribution of shallow-
water coral reefs. Journal of Biogeography. 39(8):1508-1523. 

Craig JK. 2012. Aggregation on the edge: effects of hypoxia avoidance on the spatial distribution of 
brown shrimp and demersal fishes in the northern Gulf of Mexico. Marine Ecology Progress 
Series. 445:75-95. 

Craig JK, Crowder LB. 2005. Hypoxia-induced habitat shifts and energetic consequences in Atlantic 
croaker and brown shrimp on the Gulf of Mexico shelf. Marine Ecology Progress Series. 294:79-
94. 

Craig JK, Crowder LB, Henwood TA. 2005. Spatial distribution of brown shrimp (Farfantepenaeus 
aztecus) on the northwestern Gulf of Mexico shelf: effects of abundance and hypoxia. Canadian 
Journal of Fisheries and Aquatic Sciences. 62(6):1295-1308. 

Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT. 2007. Random forests for classification in 
ecology. Ecology. 88(11):2783-2792. 

Dance MA, Rooker JR. 2019. Cross-shelf habitat shifts by red snapper (Lutjanus campechanus) in the 
Gulf of Mexico. PloS one. 14(3):e0213506. 

De'Ath G. 2007. Boosted trees for ecological modeling and prediction. Ecology. 88(1):243-251. 

De'ath G, Fabricius KE. 2000. Classification and regression trees: a powerful yet simple technique for 
ecological data analysis. Ecology. 81(11):3178-3192. 



 

60 

 

Delevaux JMS, Jupiter SD, Stamoulis KA, Bremer LL, Wenger AS, Dacks R, Garrod P, Falinski KA, 
Ticktin T. 2018. Scenario planning with linked land-sea models inform where forest conservation 
actions will promote coral reef resilience. Scientific Reports. 8. 

Diop H, Keithly Jr WR, Kazmierczak Jr RF, Shaw RF. 2007. Predicting the abundance of white shrimp 
(Litopenaeus setiferus) from environmental parameters and previous life stages. Fisheries 
Research. 86(1):31-41. 

Drexler M, Ainsworth CH. 2013. Generalized additive models used to predict species abundance in the 
Gulf of Mexico: an ecosystem modeling tool. PLoS ONE. 8(5):e64458. 

Driggers III WB, Campbell MD, Hoffmayer ER, Ingram Jr GW. 2012. Feeding chronology of six species 
of carcharhinid sharks in the western North Atlantic Ocean as inferred from longline capture data. 
Marine Ecology Progress Series. 465:185-192. 

Drucker BS, Waskes W, Byrnes MR. 2004. The US Minerals Management Service outer continental shelf 
sand and gravel program: environmental studies to assess the potential effects of offshore 
dredging operations in federal waters. Journal of Coastal Research. 20(1)1-5. 

Drymon JM, Carassou L, Powers SP, Grace M, Dindo J, Dzwonkowski B. 2013. Multiscale analysis of 
factors that affect the distribution of sharks throughout the northern Gulf of Mexico. Fishery 
Bulletin. 111(4):370-380. 

Drymon JM, Powers SP, Carmichael RH. 2012. Trophic plasticity in the Atlantic sharpnose shark 
(Rhizoprionodon terraenovae) from the north central Gulf of Mexico. Environmental Biology of 
Fishes. 95(1):21-35. 

Drymon JM, Powers SP, Dindo J, Dzwonkowski B, Henwood TA. 2010. Distributions of sharks across a 
continental shelf in the northern Gulf of Mexico. Marine and Coastal Fisheries. 2(1):440-450. 

Dubois S, Gelpi CG, Condrey RE, Grippo MA, Fleeger JW. 2009. Diversity and composition of 
macrobenthic community associated with sandy shoals of the Louisiana continental shelf. 
Biodiversity and Conservation. 18(14):3759-3784. 

Elith J, Leathwick JR, Hastie T. 2008. A working guide to boosted regression trees. Journal of Animal 
Ecology. 77(4):802-813. 

Fourcade Y, Besnard AG, Secondi J. 2018. Paintings predict the distribution of species, or the challenge 
of selecting environmental predictors and evaluation statistics. Global Ecology and 
Biogeography. 27(2):245-256. 

Franks JS, VanderKooy KE. 2000. Feeding habits of juvenile lane snapper Lutjanus synagris from 
Mississippi coastal waters, with comments on the diet of gray snapper Lutjanus griseus. Gulf and 
Caribbean Research. 12(1):11-17. 

Friedland K, Bachman M, Davies A, Frelat R, McManus C, Morse R, Pickens B, Smoliński S, Tanaka K. 
2020. Machine learning highlights the importance of primary and secondary production in 
determining habitat for marine fish and macroinvertebrates. Manuscript submitted for publication. 

Gallaway BJ, Szedlmayer ST, Gazey WJ. 2009. A life history review for red snapper in the Gulf of 
Mexico with an evaluation of the importance of offshore petroleum platforms and other artificial 
reefs. Reviews in Fisheries Science. 17(1):48-67. 



 

61 

 

Geers T, Pikitch E, Frisk M. 2016. An original model of the northern Gulf of Mexico using Ecopath with 
Ecosim and its implications for the effects of fishing on ecosystem structure and maturity. Deep 
Sea Research Part II: Topical Studies in Oceanography. 129:319-331. 

Gruss A, Thorson JT, Babcock EA, Tarnecki JH. 2018. Producing distribution maps for informing 
ecosystem-based fisheries management using a comprehensive survey database and spatio-
temporal models. ICES Journal of Marine Science. 75(1):158-177. 

Grzegorzewski AS, Cialone MA, Wamsley TV. 2011. Interaction of Barrier Islands and Storms: 
Implications for Flood Risk Reduction in Louisiana and Mississippi. Journal of Coastal Research. 
10059:156-164. 

Guisan A, Zimmermann NE. 2000. Predictive habitat distribution models in ecology. Ecological 
modelling. 135(2-3):147-186. 

Gulf of Mexico Fishery Management Council. 1981. Fishery management plan for the shrimp fishery of 
the Gulf of Mexico, United States waters. Tampa Bay (Florida): Gulf of Mexico Fishery 
Management Council. 246 pp. 

Gulf States Marine Fisheries Commission. 2017. SEAMAP environmental and biological atlas of the Gulf 
of Mexico, 2015. Gulf States Marine Fisheries Commission. No. 263. 

Harrington T, Plumlee J, Drymon JM, Wells D. 2016. Diets of Atlantic sharpnose shark (Rhizoprionodon 
terraenovae) and bonnethead (Sphyrna tiburo) in the northern Gulf of Mexico. Gulf and 
Caribbean Research. 27(1):42-51. 

Hattab T, Lasram FB, Albouy C, Sammari C, Romdhane MS, Cury P, Leprieur F, Le Loc'h F. 2013. The 
use of a predictive habitat model and a fuzzy logic approach for marine management and 
planning. Plos One. 8(10):e76430. 

Hazen EL, Craig JK, Good CP, Crowder LB. 2009. Vertical distribution of fish biomass in hypoxic 
waters on the Gulf of Mexico shelf. Marine Ecology Progress Series. 375:195-207. 

Heithaus MR, Hamilton IM, Wirsing AJ, Dill LM. 2006. Validation of a randomization procedure to 
assess animal habitat preferences: microhabitat use of tiger sharks in a seagrass ecosystem. 
Journal of Animal Ecology. 75(3):666-676. 

Hijmans RJ. 2019. raster: Geographic data analysis and modeling. R package version 2.9-5. 
https://CRAN.R-project.org/package=raster. 

Hijmans RJ, Phillips S, Leathwick J, Elith J. 2017. dismo: pecies istribution odeling. R package version 
1.1-4. https://CRAN.R-project.org/package=dismo. 

Hoffmayer ER, Parsons GR. 2003. Food habits of three shark species from the Mississippi Sound in the 
northern Gulf of Mexico. Southeastern Naturalist. 2(2):271-280. 

Hughes D. 1968. Factors controlling emergence of pink shrimp (Penaeus duorarum) from the substrate. 
The Biological Bulletin. 134(1):48-59. 

Johnson DR, Perry H, Sanchez-Rubio G, Grace MA. 2017. Loop current spin-off eddies, slope currents 
and dispersal of reef fish larvae from the flower gardens National Marine Sanctuary and the 
Florida middle grounds. Gulf and Caribbean Research 28:29-39. 

https://cran.r-project.org/package=raster
https://cran.r-project.org/package=dismo


 

62 

 

JPL MUR MEaSUREs Project. 2015. GHRSST Level 4 MUR Global Foundation Sea Surface 
Temperature Analysis (v4.1). Ver. 4.1. PO.DAAC. CA, USA; [accessed 02/04/2019]. 
http://dx.doi.org/10.5067/GHGMR-4FJ04. 

Kinlan B, Poti M, Etnoyer P, Siceloff L, Jenkins C, Dorfman D, Caldow C. 2013. Digital data: Predictive 
models of deep-sea coral habitat suitability in the U.S. Gulf of Mexico. Downloadable digital data 
package. Department of Commerce, National Oceanic and Atmospheric Administration, National 
Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Monitoring and 
Assessment, Biogeography Branch [accessed 2018 October 8]. 
https://coastalscience.noaa.gov/project/deep-coral-habitat-modeling-atlantic-gulf-mexico/   

Lingo ME, Szedlmayer ST. 2006. The influence of habitat complexity on reef fish communities in the 
northeastern Gulf of Mexico. Environmental Biology of Fishes. 76(1):71-80. 

Luckhurst BE, Dean JM, Reichert M. 2000. Age, growth and reproduction of the lane snapper Lutjanus 
synagris (Pisces: Lutjanidae) at Bermuda. Marine Ecology Progress Series. 203:255-261. 

MacKenzie DI, Nichols JD, Lachman GB, Droege S, Andrew Royle J, Langtimm CA. 2002. Estimating 
site occupancy rates when detection probabilities are less than one. Ecology. 83(8):2248-2255. 

Manel S, Williams HC, Ormerod SJ. 2001. Evaluating presence–absence models in ecology: the need to 
account for prevalence. Journal of Applied Ecology. 38(5):921-931. 

Mannocci L, Boustany AM, Roberts JJ, Palacios DM, Dunn DC, Halpin PN, Viehman S, Moxley J, 
Cleary J, Bailey H, et al. 2017. Temporal resolutions in species distribution models of highly 
mobile marine animals: recommendations for ecologists and managers. Diversity and 
Distributions. 23(10):1098-1109. 

Matli VRR, Fang SQ, Guinness J, Rabalais NN, Craig JK, Obenour DR. 2018. Space-time geostatistical 
assessment of hypoxia in the northern Gulf of Mexico. Environmental Science & Technology. 
52(21):12484-12493. 

Melo-Merino SM, Reyes-Bonilla H, Lira-Noriega A. 2020. Ecological niche models and species 
distribution models in marine environments: a literature review and spatial analysis of evidence. 
Ecological Modelling. 415:108837. 

Mercer LP, Moran D. 1989. Species profiles: life histories and environmental requirements of coastal 
fishes and invertebrates (South Atlantic). Black sea bass. Morehead City (NC): North Carolina 
Division of Marine Fisheries. 

Michel J, Bejarano AC, Peterson CH, Voss C. 2013. Review of biological and biophysical impacts from 
dredging and handling of offshore sand. Herndon (VA).: U.S. Department of the Interior, Bureau 
of Ocean Energy Management, OCS Study BOEM 2013- 0119. 258 pp. 

Mikulas JJ, Rooker JR. 2008. Habitat use, growth, and mortality of post-settlement lane snapper 
(Lutjanus synagris) on natural banks in the northwestern Gulf of Mexico. Fisheries Research. 
93(1-2):77-84. 

Minello TJ, Rozas LP. 2002. Nekton in Gulf Coast wetlands: fine-scale distributions, landscape patterns, 
and restoration implications. Ecological Applications. 12(2):441-455. 

http://dx.doi.org/10.5067/GHGMR-4FJ04
https://coastalscience.noaa.gov/project/deep-coral-habitat-modeling-atlantic-gulf-mexico/


 

63 

 

Montero JT, Chesney TA, Bauer JR, Froeschke JT, Graham J. 2016. Brown shrimp (Farfantepenaeus 
aztecus) density distribution in the Northern Gulf of Mexico: an approach using boosted 
regression trees. Fisheries Oceanography. 25(3):337-348. 

Moore C, Drazen JC, Radford BT, Kelley C, Newman SJ. 2016. Improving essential fish habitat 
designation to support sustainable ecosystem-based fisheries management. Marine Policy. 69:32-
41. 

Morley JW, Selden RL, Latour RJ, Frölicher TL, Seagraves RJ, Pinsky ML. 2018. Projecting shifts in 
thermal habitat for 686 species on the North American continental shelf. PloS one. 
13(5):e0196127. 

Mulholland R. 1984. Habitat suitability index models: pink shrimp. Gainesville (FL): US Fish and 
Wildlife Service. 29 pp.  

Murphy MA, Evans JS, Storfer A. 2010. Quantifying Bufo boreas connectivity in Yellowstone National 
Park with landscape genetics. Ecology. 91(1):252-261. 

Nairn R, Johnson JA, Hardin D, Michel J. 2004. A biological and physical monitoring program to 
evaluate long-term impacts from sand dredging operations in the United States Outer Continental 
Shelf. Journal of Coastal Research. 201:126-137. 

National Marine Fisheries Service. 2017. Fisheries economics of the United States, 2015. U.S. Dept. of 
Commerce, NOAA Technical Memorandum. NMFS-F/SPO-170. 247 p. 

NOAA NMFS. (n.d.) Essential Fish Habitat Mapper. [accessed 8 April 2018]. 
https://www.habitat.noaa.gov/protection/efh/efhmapper/. 

NOAA National Centers for Environmental Information. 2010. U.S. Coastal Relief Model. [accessed 2 
March 2018]. NOAA National Centers for Environmental Information. 2016. Bathymetric data 
viewer. [accessed 15 May 2018]. https://maps.ngdc.noaa.gov/viewers/bathymetry/. 

NOAA NMFS Office of Science and Technology. 2019. Annual commercial landing statistics. NOAA 
NMFS Office of Science and Technology [accessed 15 May 2018].  
https://www.st.nmfs.noaa.gov/commercial-fisheries/commercial-landings/annual-landings/index. 

Ohlmann JC, Niiler PP, Fox CA, Leben RR. 2001. Eddy energy and shelf interactions in the Gulf of 
Mexico. Journal of Geophysical Research: Oceans. 106(C2):2605-2620. 

Olsen Z, Fulford R, Dillon K, Graham W. 2014. Trophic role of gulf menhaden Brevoortia patronus 
examined with carbon and nitrogen stable isotope analysis. Marine Ecology Progress Series. 
497:215-227. 

Pennino MG, Conesa D, Lopez-Quilez A, Munoz F, Fernandez A, Bellido JM. 2016. Fishery-dependent 
and -independent data lead to consistent estimations of essential habitats. ICES Journal of Marine 
Science. 73(9):2302-2310. 

Pickens BA, Mordecai RS, Drew CA, Alexander-Vaughn LB, Keister AS, Morris HL, Collazo JA. 2017. 
Indicator-driven conservation planning across terrestrial, freshwater aquatic, and marine 
ecosystems of the South Atlantic, USA. Journal of Fish and Wildlife Management. 8(1):219-233. 

Powers SP, Drymon JM, Hightower CL, Spearman T, Bosarge GS, Jefferson A. 2018. Distribution and 
age composition of red snapper across the inner continental shelf of the North-Central Gulf of 
Mexico. Transactions of the American Fisheries Society. 147(5):791-805. 

https://www.habitat.noaa.gov/protection/efh/efhmapper/
https://maps.ngdc.noaa.gov/viewers/bathymetry/
https://www.st.nmfs.noaa.gov/commercial-fisheries/commercial-landings/annual-landings/index


 

64 

 

R Core Team. 2018. R: A language and environment for statistical computing. Vienna, Austria: R 
Foundation for Statistical Computing, https://www.R-project.org. 

Robbins LL, Hansen ME, Raabe EA, Knorr PO, Browne J. 2007. Cartographic production for the Florida 
Shelf Habitat (FLaSH) map study: generation of surface grids, contours, and KMZ files. St 
Petersburg (FL): U.S. Geological Survey, Open-File Report 2007-1397. 11 pp. 

Roberts JJ, Best BD, Dunn DC, Treml EA, Halpin PN. 2010. Marine Geospatial Ecology Tools: An 
integrated framework for ecological geoprocessing with ArcGIS, Python, R, MATLAB, and C++. 
Environmental Modelling & Software. 25(10):1197-1207. 

Robinson KL, Ruzicka JJ, Hernandez FJ, Graham WM, Decker MB, Brodeur RD, Sutor M. 2015. 
Evaluating energy flows through jellyfish and gulf menhaden (Brevoortia patronus) and the 
effects of fishing on the northern Gulf of Mexico ecosystem. ICES Journal of Marine Science. 
72(8):2301-2312. 

Robinson LM, Elith J, Hobday AJ, Pearson RG, Kendall BE, Possingham HP, Richardson AJ. 2011. 
Pushing the limits in marine species distribution modelling: lessons from the land present 
challenges and opportunities. Global Ecology and Biogeography. 20(6):789-802. 

Rooper CN, Zimmermann M, Prescott MM. 2017. Comparison of modeling methods to predict the spatial 
distribution of deep-sea coral and sponge in the Gulf of Alaska. Deep-Sea Res Pt I. 126:148-161. 

Rozas LP, Minello TJ. 2015. Small-scale nekton density and growth patterns across a saltmarsh landscape 
in Barataria Bay, Louisiana. Estuaries and Coasts. 38(6):2000-2018. 

Rozas LP, Minello TJ, Zimmerman RJ, Caldwell P. 2007. Nekton populations, long-term wetland loss, 
and the effect of recent habitat restoration in Galveston Bay, Texas, USA. Marine Ecology 
Progress Series. 344:119-130. 

Rutecki D, Dellapenna T, Nestler E, Scharf F, Rooker J, Glass C, Pembroke A. 2014. Understanding the 
habitat value and function of shoals and shoal complexes to fish and fisheries on the Atlantic and 
Gulf of Mexico outer continental shelf. Literature synthesis and gap analysis. Herndon (VA): 
U.S. Department of the Interior, Bureau of Ocean Energy Management. Contract # M12PS00009. 
BOEM 2015-012. 176 pp. 

Saul SE, Walter JF, Die DJ, Naarc DF, Donahue BT. 2013. Modeling the spatial distribution of 
commercially important reef fishes on the West Florida Shelf. Fisheries Research. 143:12-20. 

SEDAR. 2016. SEDAR 49: Gulf of Mexico data-limited species: red drum, lane snapper, wenchmen, 
yellowmouth grouper, speckled hind, snowy grouper, almaco jack, lesser amberjack. North 
Charleston (South Carolina): Southeast Data, Assessment, and Review (SEDAR). 618 pp. 

SEDAR. 2018. SEDAR 52: Stock assessment report. Gulf of Mexico red snapper assessment report – 
Revision 1. North Charleston (South Carolina): Southeast Data, Assessment, and Review 
(SEDAR). 434 pp. 

Smolinski S, Radtke K. 2017. Spatial prediction of demersal fish diversity in the Baltic Sea: comparison 
of machine learning and regression-based techniques. ICES Journal of Marine Science. 
74(1):102-111. 

Spies RB, Senner SE, Robbins CS. 2016. An overview of the northern Gulf of Mexico ecosystem. Gulf of 
Mexico Science. 1:98-121. 

https://www.r-project.org/


 

65 

 

Su NJ, Sun CL, Punt AE, Yeh SZ, DiNardo G, Chang YJ. 2013. An ensemble analysis to predict future 
habitats of striped marlin (Kajikia audax) in the North Pacific Ocean. ICES Journal of Marine 
Science. 70(5):1013-1022. 

Swets JA. 1988. Measuring the accuracy of diagnostic systems. Science. 240(4857):1285-1293. 

Switzer TS, Chesney EJ, Baltz DM. 2015. Habitat use by juvenile red snapper in the northern Gulf of 
Mexico: ontogeny, seasonality, and the effects of hypoxia. Transactions of the American 
Fisheries Society. 144(2):300-314. 

Szedlmayer ST, Howe JC. 1997. Substrate preference in age-0 red snapper, Lutjanus campechanus. 
Environmental Biology of Fishes. 50(2):203-207. 

Szedlmayer ST, Lee JD. 2004. Diet shifts of juvenile red snapper (Lutjanus campechanus) with changes 
in habitat and fish size. Fishery Bulletin. 102(2):366-375. 

Szedlmayer ST, Mudrak PA. 2014. Influence of age-1 conspecifics, sediment type, dissolved oxygen, and 
the Deepwater Horizon Oil Spill on recruitment of age-0 red snapper in the northeast Gulf of 
Mexico during 2010 and 2011. North American Journal of Fisheries Management. 34(2):443-452. 

Tarnecki JH, Wallace AA, Simons JD, Ainsworth CH. 2016. Progression of a Gulf of Mexico food web 
supporting Atlantis ecosystem model development. Fisheries Research. 179:237-250. 

Thorpe T, Jensen CF, Moser ML. 2004. Relative abundance and reproductive characteristics of sharks in 
southeastern North Carolina coastal waters. Bulletin of Marine Science. 74(1):3-20. 

Turner RE. 1977. Intertidal vegetation and commercial yields of penaeid shrimp. Transactions of the 
American Fisheries Society. 106(5):411-416. 

U. S. Fish and Wildlife Service. 2018. (year of data collection found in individual file metadata). National 
Wetlands Inventory website. U.S. Department of the Interior, US Fish and Wildlife Service, 
Washington, D.C.; [accessed 11 Dec 2018]. http://www.fws.gov/wetlands/. 

Ulrich GF, Jones CM, Driggers W, Drymon JM, Oakley D, Riley C. 2007. Habitat utilization, relative 
abundance, and seasonality of sharks in the estuarine and nearshore waters of South Carolina. In: 
American Fisheries Society Symposium 50. American Fisheries Society. 125 pp. 

Wannamaker CM, Rice JA. 2000. Effects of hypoxia on movements and behavior of selected estuarine 
organisms from the southeastern United States. Journal of Experimental Marine Biology and 
Ecology. 249(2):145-163. 

Wassenberg T, Hill B. 1994. Laboratory study of the effect of light on the emergence behaviour of eight 
species of commercially important adult penaeid prawns. Marine and Freshwater Research. 
45(1):43-50. 

Wells RD, Cowan Jr JH, Fry B. 2008a. Feeding ecology of red snapper Lutjanus campechanus in the 
northern Gulf of Mexico. Marine Ecology Progress Series. 361:213-225. 

Wells RJD, Cowan JH, Patterson WF, Walters CJ. 2008b. Effect of trawling on juvenile red snapper 
(Lutjanus campechanus) habitat selection and life history parameters. Canadian Journal of 
Fisheries and Aquatic Sciences. 65(11):2399-2411. 

Wells RJD, Harper JO, Rooker JR, Landry AM, Dellapenna TM. 2009. Fish assemblage structure on a 
drowned barrier island in the northwestern Gulf of Mexico. Hydrobiologia. 625(1):207-221. 

http://www.fws.gov/wetlands/


 

66 

 

Wentworth CK. 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology. 
30(5):377-392. 

 

Wright D, Pendleton M, Boulware J, Walbridge S, Gerlt B, Eslinger D, Sampson D, Huntley E. 2012. 
ArcGIS Benthic Terrain Modeler (BTM), v. 3.0, Environmental Systems Research Institute, 
NOAA Coastal Services Center, Massachusetts Office of Coastal Zone Management.  
http://esriurl com/5754. 

Zuercher R, Galloway AWE. 2019. Coastal marine ecosystem connectivity: pelagic ocean to kelp forest 
subsidies. Ecosphere. 10(2):35. 

  

http://esriurl/


 

67 

 

Appendix A: Common and Scientific Names Cited in the Text 
Common Name  Scientific Name  Common Name  Scientific Name  

Acadian redfish Sebastes fasciatus Lizardfish Synodus spp. 

American plaice Hippoglossoides 
platessoides Longfin squid Loligo pealeii 

Atlantic cod Gadus morhua Mantis shrimp Squilla spp. 

Atlantic herring Clupea harengus Menhaden Brevoortia spp. 

Atlantic mackerel Scomber scombrus Northern shortfin 
squid Illex illecebrosus 

Black sea bass Centropristis striata Ocean pout Macrozoarces americanus 

Bluefish Pomatomus saltatrix Offshore hake Merluccius albidus 

Butterfish Peprilus triacanthus Pollock Pollachius virens 

Croaker Micropogonias undulatus Red drum Sciaenops ocellatus 

Flounder, summer Paralichthys dentatus Searobin Prionotus spp. 

Flounder, windowpane Scophthalmus aquosus Sea scallop Placopecten magellanicus 

Flounder, winter Pseudopleuronectes 
americanus Scup Stenotomus chrysops 

Flounder, witch Glyptocephalus 
cynoglossus Shark, Atlantic angel Squatina dumeril 

Flounder, yellowtail Limanda ferruginea Shark, Atlantic 
sharpnose Rhizoprionodon terraenovae 

Goosefish Lophius americanus Shark, blacknose Carcharhinus acronotus 

Haddock Melanogrammus 
aeglefinus Shark, blacktip Carcharhinus limbatus 

Hake, red Urophycis chuss Shark, sandbar Carcharhinus plumbeus 

Hake, silver Merluccius bilinearis Shark, spinner Carcharhinus brevipinna 

Hake, white Urophycis tenuis Shark, spiny dogfish Squalus acanthias 

Shark, tiger Galeocerdo cuvier Skate, little Leucoraja erinacea 

Shrimp, brown Farfantepenaeus aztecus Skate, clearnose Raja eglanteria 

Shrimp, pink Farfantepenaeus 
duorarum Skate, smooth Malacoraja senta 

Shrimp, white Litopenaeus setiferus Snapper, lane Lutjanus synagris 

Skate, barndoor Dipturus laevis Snapper, red Lutjanus campechanus 

 

http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=357
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=15557
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