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Chapter 1. Executive Summary 
1.1 Project Background 
In September 2011, BOEM received an unsolicited request from the New York Power Authority 
(NYPA) for a commercial lease that proposed an offshore wind power project south of Long 
Island, New York. Subsequently, BOEM determined that competitive interest in the area 
proposed by NYPA (hereafter referred to in this document as the New York Wind Energy Area, 
or NYWEA) exists and initiated the competitive leasing process. On June 21, 2016, BOEM and 
NOAA establish an Interagency Agreement to conduct a three-year study of NYWEA and mid-
Atlantic region titled, “Comprehensive Seafloor Substrate Mapping and Model Validation in the 
New York Bight”. The NYWEA (321 km2), located south of Long Island, was leased to Statoil 
Wind US LLC (now Equinor Wind US LLC) on December 16, 2016 for commercial wind 
energy development. The NYWEA offshore wind energy development also furthers New York 
State’s objective to provide 50% of its electricity from renewable energy by 2030, and to 
implement a comprehensive Offshore Wind Master Plan. A chronology of milestones associated 
with developing NYWEA are as follows. 

Chronology: 
2011 September 

• New York Power Authority submits unsolicited project application and lease request.
2013 January 

• BOEM issues a Request for Interest to determine competitive interest.

2014 May 
• BOEM publishes a Call for Information and Nominations seeking additional nominations

from companies interested in the area.

• BOEM issues a Notice of Intent to prepare an Environmental Assessment associated with
lease issuance and conducting site characterization surveys and site assessment activities.

2016 March 
• BOEM announces the identification of a Wind Energy Area offshore New York.

2016 June 
• BOEM publishes a Proposed Sale Notice for commercial leasing for wind power on the

Outer Continental Shelf offshore New York.

• BOEM publishes Environmental Assessment for public comments.

• BOEM and NOAA establish an Interagency Agreement to conduct a three-year study of
NYWEA and mid-Atlantic region “Comprehensive Seafloor Substrate Mapping and
Model Validation in the Atlantic”.

2016 October 
• BOEM publishes a Final Sale Notice for a lease sale offshore New York.

2016 October 
• BOEM issues revised Environmental Assessment due to environmental concerns over

sensitive habitat on Cholera Bank.
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2016 December 
• A lease sale is held by BOEM. Statoil Wind US LLC (now Equinor Wind US LLC) wins

the auction with a winning bid of $42,469,725.
2018 June 

• Equinor Wind US LLC submits a Site Assessment Plan to BOEM.

The Bureau of Ocean Energy Management issues leases, easements and rights-of-way on the 
Atlantic Outer Continental Shelf (OCS) for activities that produce or support production, 
transportation, or transmission of energy from renewable energy sources. Prior to BOEM’s 
approval of the siting of a facility, structure, or cable proposed for a renewable energy project on 
the OCS, an applicant must submit with its plan the results of its site characterization surveys, 
with supporting data. In order for BOEM to evaluate impacts to biological, social, physical and 
economic resources, sufficient baseline information on the area of potential effect from the 
proposed activity is required. BOEM uses the results of site characterization studies, which 
include data collection and mapping of geophysical features on the seafloor, to evaluate the 
potential effect of proposed activities. The study conducted by NOAA, Comprehensive Seafloor 
Substrate Mapping and Model Validation in the Atlantic, and report herein, are provided to 
BOEM to support these requirements.  

Prior to this study, NOAA National Centers for Coastal Ocean Science (NCCOS) has conducted 
previous efforts to characterize the ocean floor offshore NY. For example, as part of the NY 
Department of State’s renewable energy planning efforts and its Offshore Atlantic Ocean Study, 
released in July 2013, NOAA’s NCCOS developed a biogeographic assessment with maps and 
spatial information on bathymetry, surficial sediments, deep sea corals, oceanographic habitat 
variables, and seabirds offshore of New York (Menza et al. 2012). However, NOAA’s 
previously released predictive models of seafloor substrate and sediment composition for the 
New York region were identified as needing additional ground validation to assess the model 
predictions and ensure reliability. The New York biogeographic assessment explicitly identified 
the need for further site-specific baseline habitat and geologic information within NYWEA and 
the mid-Atlantic region so that managers are better able to evaluate the potential impacts of 
offshore wind development at this location. As such, this led to the establishment of the 
subsequent BOEM and NOAA Interagency agreement to conduct further study, data collection 
and analysis, contained in this report, for NYWEA and the NY Bight region. 

This report describes information collected and analyzed by NOAA to meet BOEM’s three 
primary objectives for the study: 

Objective 1: Collect data of the seafloor by the use of acoustic sonar survey to characterize 
the substrate composition of the seafloor in the NYWEA and vicinity. 
Objective 2: Incorporate results of the seafloor data collection into regional predictive models 
characterizing the composition of the seafloor. 
Objective 3: Describe the seafloor habitat and other important biological and geological 
observations. 
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The data collection and analysis contained within this report focus on two locations: 1) NYWEA 
and the mid-Atlantic region study area (Figure 1.1). The NYWEA site is located approximately 
11.5 nautical miles (nm) south from Jones Beach, NY and extends approximately 24 nm 
southeast along its longest portion. It is located in water depths ranging from 25 to 45 m deep. 
Extensive acoustic and sediment sampling, and ground validation studies were conducted by 
NOAA NCCOS within NYWEA. The regional study area encompasses 50,082 km2 of coastal 
and ocean waters off the coast of New York. This area includes a portion of the mid-Atlantic 
Bight and much of the area characterized as the New York Bight. Analysis for the regional study 
area included state and federal waters from the southern shores of Long Island to the edge of the 
continental shelf and from Nantucket Shoals to the shores of New Jersey. This report contains 
analysis of hard bottom predictions and sediment texture throughout the regional study area 
(Figure 1.1). 
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1.2 Highlights by Chapter 
The following contains a brief summary for each of the subsequent chapters contained in this 
report. 

Chapter 2: Acoustic Survey 
Describes ship-based multibeam and fishery acoustic surveys conducted by NOAA within the 
NYWEA project area. The purpose of these surveys was to collect detailed information in order 
to better characterize the seafloor depth, roughness, hardness, composition, habitats and 
topography; and characterize biological use of the region in terms of the fish abundance, 
distribution, and size. High resolution bathymetry and backscatter data of the seafloor were 
collected using multibeam sonar, encompassing 283.1 km2, and concurrently, 1,520 nm of 
fishery acoustic acquisition. 

Chapter 3: Ground Validation and Sediment Survey 
Describes the collection of in situ seafloor data including underwater photos, videos, and 
sediment samples. Observations were collected in September 2018 at 400 sites distributed 
throughout NYWEA, which were subsequently partitioned into 300 ground validation sites, used 
for model training, and 100 sites used for accuracy assessment. A modified Van Veen Grab 
Sampler was used to collect video, still photos, and sediment samples to support habitat mapping 
and sediment composition analysis. The analysis of these data sets is further described in 
Chapters 7, 9, and 11. 

Chapter 4: Seafloor Sonar Processing 
Describes the methods used to post-process the raw acoustic multibeam survey data in order to 
derive accurate, cleaned data sets for subsequent analysis. Industry standard hydrographic 
processing workflows were applied to the raw data to generate final bathymetry and backscatter 
surfaces for NYWEA. The application of these surfaces to characterize the morphometric and 
habitat composition of NYWEA is further described in Chapters 6 and 11. 

Chapter 5: Fishery Acoustic Processing 
Describes the methods to post-process the raw fishery acoustic sonar data collected for NYWEA. 
These techniques are employed to quantify the intensity of sound reflected from fish targets to 
support subsequent analysis of fish size distribution and abundance described in Chapter 12. 

Chapter 6: Seafloor Morphometric Analysis 
Describes the production of morphometric products from the multibeam sonar data (Chapter 2 
and 4) used to characterize the distribution, composition, roughness, shape, and texture of the 
seafloor and landforms in NYWEA. Results indicate the seafloor in the study area is generally 
flat (<0.2 degrees slope) with a maximum slope of 4.3 degrees, and 99.9% of the area having 
slope of less than 1.5 degrees. Furthermore, spatial analysis identified that NYWEA has large 
areas with consistent topographic complexity and substrate composition commensurate with flat 
sandy seafloor. 

Chapter 7: Ground Validation Video Analysis 
Describes the analysis of sediment substrate and cover types from video observations (Chapter 
3). In situ sampling indicates NYWEA is comprised primarily of sand with broken shell (71.3%), 
rippled sand waves-geoform (83%), and extensive distribution of the common sand dollar 
(Echinarachnius parma) (90%) and annelids (89%). 
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Chapter 8: Hard Bottom Predictive Modeling 
Describes spatial predictive modeling to predict the extent of hard bottom habitats in the NY 
Bight region. Environmental predictor variables considered for hard bottom occurrence model 
included measures of depth and seafloor topography, seafloor substrate, and oceanography. 
The model of hard bottom occurrence predicted relatively high likelihood of hard bottom in 
some nearshore areas (e.g., on the edge of Block Channel in the northeast of the study area), on 
the sides of the Hudson Shelf Valley, and on the slopes of the submarine canyons that incise or 
partially incise the continental slope. Within the NYWEA, the northwest portion was predicted 
to have a relatively higher likelihood of hard bottom occurrence, as suggested by the backscatter 
intensity data collected during this study. 

Chapter 9: Sediment Grab Analysis 
Describes the results of sediment classification and spatial analysis of in situ samples taken in 
NYWEA (Chapter 3). Analysis revealed that the sediment texture of NYWEA is predominantly 
well-sorted sand with a conglomeration of pebbles in western portions of the study area. 

Chapter 10: Sediment Texture Analysis 
Describes updated regional maps of surficial sediment composition (median grain size and 
percentages of mud, sand, and gravel) at 200 x 200 m resolution for the mid-Atlantic region. 
Spatial predictions were generated using multivariate (3D) inverse distance weighted 
interpolation and random forest modeling from surficial sediments point samples. These maps 
provide additional information about the distribution of surficial sediments in areas outside the 
NYWEA that may be impacted by activities within it (e.g., cabling associated with offshore wind 
installations) or that may receive future consideration for activities overseen by BOEM. 

Chapter 11: Habitat Maps 
Describes the methods, results, and performance of spatial prediction for substrate, geoform, 
biotic cover, and benthic habitat map. The spatial prediction accuracies ranged from 92.8% (bare 
sand, no cover) to 11.3% (crustaceans). The habitat map model indicted that “rippled sand with 
high occurrence of faunal beds” was the most abundant and dominant habitat type, comprising 
78.2% of the NYWEA. 

Chapter 12: Fish Acoustic Analysis 
Describes the methods, results, and patterns of fish distribution in NYWEA. Analysis of the fish 
acoustic data observed significant variation in the spatial distribution of individual fish, 
numerous schools of fish with a variety of shapes and dimensions, and plankton layers and 
patches that were particularly evident during the overnight hours. Small fish were vastly more 
abundant and broadly distributed throughout the survey area compared to medium and large size 
class fish, which were strongly associated with the northwest portion of the survey area.  
 
This report concludes with a glossary of technical and statistical terms used throughout the 
document. 

1.3 Data Delivery 
In addition to this final report, a compendium Digital Data delivery was delivered to BOEM 
provided which includes all of the raw geophysical and derived GIS data collected, analyzed, and 
processed as part of this effort. These datasets can be accessed via BOEM’s site and NOAA 
National Centers for Environmental Information (NCEI).   
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Chapter 2. Acoustic Survey 
Seafloor depth, roughness, hardness and topography are known to be useful predictors for 
identifying a variety of habitat types such, as sand, hard bottom, coral reefs, seagrass, etc. (Costa 
et al. 2009; Costa and Battista 2013). Ship-based sonar can be used to conduct acoustic surveys 
to collect depth data (i.e., bathymetry), which can be analyzed to describe the topography of the 
seafloor. Most sonars can also collect backscatter data, which can be used to describe the 
roughness and hardness of the substrate on the seafloor. Additionally, ship-based fishery acoustic 
sonars can opportunistically be employed while conducting sonar surveys to characterize fish 
abundance, distribution and size to be able to characterize biological use of a region.  

2.1 Chronology 
Monday, September 4, 2017 was the original scheduled start date for mission NF-17-09. The 
project was allotted 25 Days at Sea (DAS) on the NOAA Ship Nancy Foster through September 
30, 2017. However, due to unforeseen platform and severe weather-related circumstances, 
several adjustments to the cruise plan were made prior to the successful completion of the 
survey.  

From September 4 at 1000 hr, until September 6 at 1200 hr, the Nancy Foster was in a “No Sail” 
status due to mechanical issues. Repairs to the rescue boat davit were required in order to resume 
safe operations. Furthermore, the Nancy Foster was required to remain at its homeport in 
Charleston, South Carolina due to the risk of approaching Hurricane Irma in the Atlantic Ocean 
from September 6-14. 

On September 14 at 0800 hr, the Nancy Foster departed Charleston and began transiting to 
Atlantic Highlands Municipal Harbor, New Jersey. The crew were expected to arrive and load 
visiting scientists via a small boat transfer at roughly 1200 hr on September 16.  

The ship proceeded north up the eastern seaboard, approaching the Chesapeake Bay, but was 
diverted to Norfolk, Virginia on September 15. The NOAA Marine Center had announced a 
decision to hold all east coast ships in port, as seas from Hurricane Jose were creating conditions 
deemed unsafe for transit or operations. This status continued until September 29, extended by 
the formation and uncertain trajectory of Hurricane Maria in the Caribbean Sea. 

At 1200 hr on Friday, September 29, 2017 the Nancy Foster resumed underway transit for 
mission NF-17-09 after all scientists had loaded in Norfolk. Mapping team personnel included 
four NOAA employees and affiliates and one subcontractor with Solmar Hydro, Inc. (Table 2.1). 

Table 2.1. NF-17-09 Science Party Personnel. 

Name (Last, First) Title Date Aboard Date Disembark 
Battista, Tim Oceanographer 9/29/17 10/09/17 
Husted, Rachel* Physical Scientist 9/29/17 10/09/17 
Johnston, Brent†† Hydrographer 9/29/17 10/09/17 
Kinney, Juliet^ Physical Scientist 9/28/17 10/09/17 
Mabrouk, Ayman* Physical Scientist 9/29/17 10/09/17 
* CSS, Inc. contractor for NOAA  ^ ERT, Inc. contractor for NOAA     ††Solmar Hydro, Inc. 



8 

The ship transited north for approximately 30 hours before reaching the NYWEA. On September 
30, starting at approximately 1900 hr, the scientists conducted a patch test calibration of the 
Reson 7125 and Kongsberg EM710 multibeam echosounders (MBES). The test site was located 
on the Hudson Canyon and coincided with the site used by the NOAA Ship Ferdinand R. 
Hassler’s calibration in 2013.  

Patch tests, in which data is acquired for a series of survey lines run in specific patterns over 
features with known bathymetry, are used to calibrate multibeam systems. Planned pairs of 
survey lines allow the measurement of offsets due to any slight misalignment of the sensors 
regarding four variables: time delay, pitch, roll, and heading. The purpose of the patch test is to 
correct for systematic errors created by the positioning and mounting angles of the acoustic 
sensors. A calibrated system will provide accurate and repeatable bathymetric observations of a 
location regardless of vessel speed, direction, and motion. 

Given the project’s delayed start due to extenuating weather conditions, NOAA consulted the 
BOEM Contracting Officer Representative to consult on a strategy to maximize survey coverage 
of the NYWEA. BOEM approved a strategy to focus NF-17-09 acquisition on areas in NYWEA 
that lacked complete high-resolution bathymetry coverage. The western corner of the NYWEA 
project area had been previously surveyed by the NOAA Ship Ferdinand R. Hassler in 2013. 
Evaluation of these previously acquired acoustic data determined that they were of sufficient 
quality and coverage for further use, thereby reducing duplication of effort. As such, multibeam 
and fishery acoustic data were not acquired over the western corner of NYWEA during NF-17-
09. 

Upon arrival to the project site on September 30, 24-hr survey work began at about 2300 hr. The 
scientists surveyed the project area using a line spacing, line orientation, and survey speed plan 
optimized for the charted depths and weather conditions. When possible, survey speed increased 
from seven to approximately 10 knots in an effort to compensate for reduced project time. 

Data quality varied by day depending on the sea state conditions. Certain lines were resurveyed 
to reduce the effect of motion-induced noise detected in the survey data during periods of high 
sea state. Maritime traffic in the area was minimal, resulting in limited impact on survey 
operations.  

The NF-17-09 research cruise duration ultimately spanned 202 cumulative hours over 10 DAS. 
In the updated project area, 100% complete seafloor ensonification of the reduced NYWEA 
project area was achieved with high-resolution multibeam bathymetry and backscatter from both 
the Kongsberg EM710 and Reson 7125 MBES systems, as well as a full coverage dataset of 
EK60 fishery acoustics. The scientists disembarked via a small boat transfer to Belmar, New 
Jersey at 0800 hr on October 9, 2017. 

Mission NF-18-07 began on September 4, 2018. The project was allotted 30 DAS on the NOAA 
Ship Nancy Foster through September 29, 2018. Chief Scientist Tim Battista and engineer Ryan 
Caillouet came aboard the Nancy Foster on Thursday, September 6 from Virginia Beach, VA to 
begin testing the towed camera system while the ship made its transit toward the NYWEA. Upon 
reaching the project area on September 7, until September 9, scientists also began work to 
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resurvey a set of lines identified as having reduced data quality due to the several days of bad 
weather conditions during NF-17-09, and collected EK60 SBES fishery acoustics data. 

Additional science party personnel joined the Nancy Foster on Sunday, September 9 at the 
Intrepid Sea, Air & Space Museum pier in Manhattan, New York. The complete mapping team 
included seven NOAA employees and affiliates (Table 2.2).  

Table 2.2. NF-18-07 Science Party Personnel. 

Name (Last, First) Title Date Aboard Date Disembark 
Battista, Tim Oceanographer 09/06/18 09/18/18 
Caillouet, Ryan Engineer 09/06/18 09/18/18 
Ebert, Erik* Fishery Scientist 09/06/18 09/29/18 
Husted, Rachel* Physical Scientist 09/09/18 09/29/18 
Kraus, Jennifer Physical Scientist 09/09/18 09/29/18 
Mabrouk, Ayman* Physical Scientist 09/09/18 09/29/18 
Williams, Bethany^ Physical Scientist 09/09/18 09/18/18 
* CSS, Inc. contractor for NOAA   ^ Sea Grant Knauss Fellow 

From September 9-15, the Nancy Foster was in a “No Sail” status due to the rough weather 
conditions in the Atlantic Ocean. On Saturday, September 15 at 1000 hr, the Nancy Foster began 
the transit to the NYWEA project area. Unfortunately, roughly 4 hours into the transit critical 
mechanical issues occurred and the Nancy Foster was forced to transit to a dock in Staten Island, 
New York. From September 16 to September 19, the ship remained in port, hosted a burial at 
sea, and carried out a planned crew exchange. 

Starting on Thursday, September 20 at 1400 hr, the Nancy Foster returned to the NYWEA, 
continued to resurvey selected lines for improved data coverage, and logged the EK60 with 24-hr 
mapping operations. Data quality varied depending on the sea state. Under poor conditions, lines 
were at times run in a single direction (to combat sea swell direction) at lower than normal 
speeds (under 6 knots), which produced better results at a trade-off with survey time efficiency. 
Certain lines were re-surveyed multiple times to reduce the effect of motion-induced noise. The 
Survey Technician also recommended powering off the EK60 intermittently due to interference 
with the multibeam. Maritime traffic in the area had an impact on survey operations, causing 
some additional delays. 

On Monday, September 24, the resurveyed lines in the NYWEA were completed. The team 
transited south and began surveying in the northwest portion of an area identified by BOEM as 
the Hudson South Auxiliary Area (HSAA), located south of the Hudson Canyon. Beginning in 
the southwest corner, the team ran both EM2040 and EM710 sonars, and logged EK60 fishery 
acoustics data. The line plan followed by the ship was designed to optimize the data quality in 
terms of survey direction to follow the wave and wind conditions, as well as to maximize the 
exploration of the new area in the limited time available. 

Due to forecasted unworkable weather conditions from September 24-26, the Nancy Foster went 
to shelter in Brooklyn, New York until conditions improved. On Thursday, September 27, the 
Nancy Foster returned to the HSAA to collect as additional multibeam and EK60 coverage as 
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possible with the remaining Days at Sea for the project. 24-hour mapping operations were 
completed at approximately 0400 on September 28. 
 
The scientists disembarked via a small boat transfer to Atlantic Highlands, New Jersey at 0900 hr 
on Saturday, September 29, 2018. 

2.2 Platform 
The NOAA Ship Nancy Foster (R352) is 57 m in length, has a beam of 12 m, and draws 
approximately 3 m of water (Figure 2.1). Formerly a U.S. Department of the Navy torpedo test 
vessel, the ship was transferred to NOAA for use as a coastal research vessel in 2001. The Nancy 
Foster now supports seafloor mapping, fish habitat and population studies, physical and 
chemical oceanography studies, and maritime heritage surveys throughout the U.S. eastern 
seaboard, Caribbean, and Gulf of Mexico. Multibeam surveys are an integral component of the 
ship’s scientific research support. NOAA’s Office of Marine and Aviation Operations has 
installed a full suite of hydrographic hardware and software to enable hydrographic surveys. The 
Nancy Foster is equipped with wet and dry labs, as well as computers for data acquisition and 
analysis. 
 

 
Figure 2.1. NOAA Ship Nancy Foster underway. (Photo Credit: Connor Maginn) 

 

2.3 Multibeam Acoustic Systems 
Through 2017, the NOAA Ship Nancy Foster (R-352) was equipped with a Reson SeaBat 7125-
SV2 dual frequency (200 or 400 kHz) shallow-water (5-250 m depth) MBES. The 7125-SV2 
was mounted on the vessel hull, port of the keel and forward of the reference point. In February 
2018, a Kongsberg EM2040 (200, 300, or 400 kHz) wide band high-resolution shallow water 
multibeam (6,000 m max depth) MBES was installed, replacing the Reson SeaBat 7125-SV2 
system. During the NF-18-07 surveys, EM2040 acquisition was conducted using the 300 kHz 
frequency to reduce any potential interference with the EK60 fisheries sonar. A deep-water (40-
2,500 m depth) Kongsberg EM710 MKII MBES system, with 40-100 kHz range, is also 
permanently hull-mounted on the Nancy Foster, starboard of the keel line. During NF-18-07, 
EM710 acquisition was conducted using the 40-100 kHz frequency range in Kongsberg’s “very 
shallow” mode. The EM710 sonar was only used for acquisition in the HSAA survey starting on 
September 24. 
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For this project, multibeam survey data was collected to International Hydrographic 
Organization (IHO) Order 1 (<100 m depth) accuracy standards using workflows defined by the 
NOAA Field Procedures Manual and Hydrographic Survey Specifications and Deliverables 
Manual (IHO 2008; NOAA NOS 2018). This included maintaining acquisition and preliminary 
processing logs, real-time quality assurance, and quality control of the incoming data. All sonar 
range adjustments during acquisition were dictated by changes in water depth. Other sonar 
parameters remained constant to maximize backscatter quality and consistency throughout the 
survey. 

Hypack/Hysweep software was used for 7125-SV2 bathymetry acquisition and vessel 
navigation. The system provided precise time tagging of the sensor data and real-time data 
displays for quality control. Hypack data were output in three formats: .RAW, .HSX, and .7K. 
Kongsberg Seafloor Information System (SIS) software stored the EM2040 and the EM710 
MKII bathymetric data in .ALL format. An Applanix Position and Orientation System for 
Marine Vessels (POS/MV) was used to measure real-time attitude, heading, heave, and position 
for the Hypack and SIS systems. Fugro Marinestar Regional GNSS 9G2/VBS satellite-based 
service was used for positioning corrections. An OceanScience uCTD (underway Conductivity, 
Temperature, and Depth) measured sound speed profiles while the vessel was underway. uCTDs 
were cast off the aft deck with a tethered freefall probe and retrieved with a powered level-
winding winch. After each uCTD launch, the data were downloaded and processed with UCast 
software and concatenated using NOAA Pydro Velocipy software. 

MBES data were converted and processed with CARIS HIPS (Hydrographic Information 
Processing System) and SIPS (Sonar Information Processing System). Methodology followed 
the CARIS HIPS CUBE (Combined Uncertainty Bathymetric Estimator) workflow. These steps 
include data conversion, filtering, sound velocity correction, tide correction, Total Propagated 
Uncertainty (TPU) calculation, TrueHeave application, merging, and editing. QPS Fledermaus 
Geocoder Toolbox (FMGT) was used to process and assess the backscatter intensity data. For 
NF-18-07 QPS Qimera software was used to process the MBES bathymetry data. Methodology 
followed the Qimera Dynamic workflow, which is similar to the CARIS HIPS CUBE workflow. 

2.4 Fishery Acoustic System 
Fish acoustic surveys were also conducted using a splitbeam echosounder (SBES), coincident 
with MBES acquisition. SBESs are a tool that give researcher a look at the amount biological 
biomass within a survey area at a given time. This tool is non-invasive and non-lethal way of 
sampling the fish community compared to other traditional fish sampling methods (trawls or 
hook and line) as well as less labor intensive. Data collection was continuous and provide 
researcher with the means to detect at pelagic fish movement patterns with limited disturbance to 
the natural distribution (Mitson 1998). One drawback to fishery acoustic survey is the lack of 
individual species information but SBES could aid in follow up research mission to focus those 
efforts in areas of high biomass. SBES data collection was well-suited for this research mission 
because of the limited ship time for the scope of the project and data collected provided view of 
the biological hotspots within the large survey area. 

The NOAA Ship Nancy Foster is equipped with a Simrad EK60 SBES operated at 120 kHz 
frequency. The transducer is mounted to the hull and surveyed to a common reference point to 
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provide precise offsets relative to ship’s navigation, multibeam sonars, and other data acquisition 
systems. The transducer has a nominal beam geometry of 7° and results in a swath or footprint 
that is about 12% of range from the transducer face (or water depth), or about 3 m swath at the 
seafloor in 25 m water depth. The pulse transmission (ping) characteristics, data acquisition and 
data viewing were controlled from a workstation operating Simrad EK80 software (version 
1.10.3, Simrad Fisheries) and connected by local area network to the General Purpose 
Transceivers (GPTs). The ping timing was triggered by and synchronized with a 15 ms delay to 
the Reson 7125 MBES. Each ping is co-registered with the ship’s time server (referenced to 
Greenwich Mean Time), and the ship’s navigation and motion system, which included time, 
latitude and longitude, pitch, roll, and heave. Output power, pulse length, and other ping 
transmission properties are provided in Table 2.3. EK60 data files were logged in 100 MB 
segments. 
 
Table 2.3. Acquisition parameters for the Simrad EK60 SBES on the NOAA Ship Nancy Foster 
used to map fish density distributions in the New York Wind Energy Area (NYWEA). 
 

Parameter 120kHz Frequency 
Transducer depth (m) 1.5 
Transmit Power (dB-W) 250 
Pulse length (µs) 128 
Sound velocity (nominal, m s-1 ) 1516.24 
Calibration gain (dB) 25.67 

 
The EK60 SBES system was calibrated prior to the cruise (July 11, 2017 at 34° 09.603' N / 76° 
38.347' W) using the standard sphere method (Foote et al. 1987) with a 38.1 mm diameter 
tungsten carbide sphere hung below the transducer. The target sphere has a known theoretical 
acoustic target strength based on the composition sphere diameter and environmental conditions. 
The calibration sphere was systematically moved through the beam from forward to aft and port 
to starboard. The calibration routine calculates the system receiver gain to bring the observed 
target strength in concordance with the theoretical target strength for the sphere. 

2.5 Survey Metrics and Results 
In total, 1,520.3 nm were surveyed for 432 track lines distributed throughout the survey area, 
excluding those areas previously surveyed by NOAA Ship Ferdinand R. Hassler. There were 
283.1 km2 of seafloor ensonified with multibeam backscatter acoustic intensity and bathymetry 
data, ranging from approximately 26 to 43 m depths (Figure. 2.2). In September 2018, 106 km2 
were resurveyed in the NYWEA to enhance data quality (Figure 2.3). In the HSAA, 183 
additional nm were also explored, covering an area of 28 km2. 
 
Fishery acoustics data was logged simultaneously with MBES survey lines during cruises NF-
17-09 and NF-18-07, matching the multibeam for 1,520.3 nm of acquisition in the NYWEA and 
183 nm in HSAA (Figure 2.4).  
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Interesting incidental discoveries may arise due to this new survey in the NYWEA, such as the 
shipwreck feature clearly visible during preliminary processing of the multibeam bathymetry 
data in CARIS HIPS and SIPS software (Figure 2.5).  
 

 
Figure 2.5. Shipwreck feature detected in the NYWEA during the NF-17-09 survey. 

 

2.6 Data Management 
On the NOAA Ship Nancy Foster, data was transferred daily from the acquisition computers to 
the ship’s server. Back-ups of all of the raw multibeam, fish acoustics, and positioning data 
acquired during this mission were saved to an external hard-drive and uploaded to the NOAA 
NCCOS office network data server at NOAA headquarters in Silver Spring, Maryland. A local 
copy of the fish acoustics data was stored at the Beaufort, North Carolina NCCOS office for 
processing. An additional complete mission dataset was sent to Solmar Hydro, Inc., contracted to 
perform final cleaning, processing, and bathymetric product creation (see Chapter 4 Seafloor 
Sonar Processing) for this project. NCCOS created final multibeam acoustic backscatter mosaic 
following the receipt of the final processed multibeam bathymetry from Solmar Hydro, Inc. on 
December 29, 2017. 
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Chapter 3. Ground Validation and Sediment Survey 
 
Map making or modeling typically incorporates the use of in situ sampled data in order to better 
inform the inference between remotely sensed data and site-specific characteristics. In situ data 
provide the means of detecting the relationships between the observed substrate and cover types 
and the values in the environmental predictor datasets. A number of techniques and instrument 
types can be used to collect in situ seafloor data including the collection of underwater photos 
and/or video and sediment sampling. Instrument types include sediment grab samplers, drop 
cameras, tow sleds, or remotely operated vehicles (ROVs). Observations may be taken at discrete 
locations or along transects. 
 
In situ sampling is comprised of two categories of data that inform different stages of the map 
making process - Ground Validation (GV), also known as ground truthing, and Accuracy 
Assessment (AA) (see Section 11.1.5). For GV, the mapping analyst manually selects GV sites 
from the draft map based on locations where further information is required. GV data are 
intended to provide additional information to train and optimize the mathematical models used to 
predict habitats, and thereby improve model predictions. GV data are needed to create high 
quality benthic habitat maps because they assist in associating fine scale habitat observations 
with features detectable in the source remote sensing data or predictor variables. Both sediment 
sampling and optical data collection (video and photos) were used for in situ GV. This chapter 
describes in detail the equipment and methods used to collect sediment samples used for the GV 
analysis. 

3.1 Survey Design 
The sample sites were distributed throughout the project area (Figure 3.1) and included all of the 
substrate classes identified in the draft habitat map. Of these 400 samples, 300 were used in the 
GV analysis and 100 were used in the AA analysis. After sampling was completed, the samples 
were designated as either GV or AA using a random site selection tool in excel. 
 
Draft habitat maps were used to determine the locations of 400 sampling sites collected during 
the April 2018 cruise aboard the R/V Tiki XIV (Figure 3.2). The R/V Tiki XIV is an 80 ft steel 
trawler (23 ft beam and 10 ft draft) operated by Tiki Adventures, Inc. The vessel has a cruising 
speed of 8 knots and an operational endurance range of 6,700 nm or approximately 14 days, 
depending on speed and fuel consumption. A team of six scientists, two deck hands, and one 
captain sailed on the R/V Tiki XIV from April 2-13 within the NYWEA project area. Two days 
were used for the transit to the NYWEA, eight days for sampling, and approximately two days 
were at anchor or at the pier due to unworkable weather conditions. Typically, between 20-90 
sediment samples were collected per 24 hr period, depending on daily sea state working 
conditions. 
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Figure 3.2. The R/V Tiki XIV is an 80 ft steel trawler that was contracted by 
NOAA to conduct GV sampling in April, 2018. 

 
The AA survey planned to use additional seafloor video data collected by using an Underwater 
Towed Optical Survey System (UTOSS) (Figure 3.3) from September 6-16, 2018. However due 
to weather and mechanical issues during this period, the collection of this data was not 
achievable. Collection efforts for the remainder of the trip (September 17-29) aboard the NOAA 
Ship Nancy Foster focused on resurveying multibeam data in the NYWEA to improve data 
quality and the exploration of the HSAA (see Chapter 2 Acoustic Survey).  
 

 

Figure 3.3. Front view of the Underwater Towed Optical Survey 
System (UTOSS) tow camera system.  
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3.2 Deployment and Collection 
Sediment samples were collected using a 250 cm2 stainless steel, modified Van Veen Grab 
Sampler (MVV or ‘sampler’) with a frame (Figure 3.4). The sampler was deployed from the R/V 
Tiki XIV using the vessel’s A-frame (12,000 lb weight limit with 10 ft deck clearance) and deck 
winch (1,700 lb working load). Approximately 200 lb of removable weights were added to the 
frame to ensure the grabber contacted the seafloor with sufficient force to activate the sediment 
grabber’s closing mechanism (Apeti et al. 2012). Two GoPro Hero4 cameras (one downward 
facing and one at an oblique angle) were mounted to the sediment grabber’s frame to record high 
definition video. Time calibration of the GoPro cameras to a world GPS clock was performed 
prior to deployment to synchronize video recording between the cameras. Additionally, a real-
time Seaviewer underwater video camera was mounted to the frame to provide the scientists a 
live view of the sampler as it was lowered to the seafloor. The downward cameras provided a 
view of the seafloor before the grab sampler disturbed the sediment. The cameras were 
positioned between two lasers set 20 cm apart for scale. Three external dive lights were also 
mounted on the frame to improve bottom imaging in low light conditions. The oblique facing 
cameras allowed the analysts to observe the larger scale geoforms or animals in the water 
column, as well as record any features or biological cover of the seafloor not directly beneath the 
sampling instrument.  

Figure 3.4. The (open) modified Van Veen 
Grab Sampler (MVV) attached to the frame. 
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The Seaviewer video was viewed and recorded on a solid state drive using Blackmagic Video 
Assist Recorder and an external 14 in monitor used for viewing and classifying the habitat real 
time. The Seaviewer camera was only used for the first two days of sampling due to mechanical 
issues preventing further use. However, continued use of the Seaviewer camera was noncritical 
given that video recordings captured by the GoPro cameras were the primary observation device. 
A mapping grade Trimble Geo7X 6000 handheld GPS receiver was used to record the site 
location and sediment classifications after each sample was retrieved. The GPS data collected by 
the Trimble Geo7X 6000 units were converted into a shapefile that contained the location, time, 
and field observations from each grab sample site. The site location recorded in the GV/AA 
dataset was the calculated average centroid of the one-second epochs logged in the field during 
the deployment and retrieval of the sediment grab sampler. A handheld Garmin GPS unit with 
the site numbers and location preloaded was used to verify the site with the vessel Captain. The 
GoPro cameras were set to record HD video (1080 x 1920 pixels at 60 frames/second) directly to 
a 64 GB internal memory card. GoPro video timestamp was calibrated to GPS time using a 
Trimble unit. A whiteboard plaque was photographed for each site to record the project, date, 
time, and grab number (Figure 3.5). All videos, photos, and GPS information were backed up 
daily to two mirrored external hard drives. All underwater videos were reviewed by benthic 
experts and the presence (1) and absence (0) of each substrate, geoform and biotic cover type 
listed in the classification scheme were annotated. Multiple substrate, geoform and biotic cover 
types were present at each site (see Chapter 7 Ground Validation Video Analysis). 

Figure 3.5. Example of the plaque that is 
photographed before collection of each sample. 

3.3 Processing 
Upon recovery of the sediment grab sampler onboard the vessel, the MVV was placed on a 
wooden frame and a surface photo of the sediment grab was taken by opening the top hatch of 
the sampler and taking a photo of the top of the sample (Figure 3.6). After the photo was taken, 
the grab sampler jaws were opened and the sample was released into the sediment collection bin. 
If the sample was washed out, partially filled, or had debris caught in the sampler jaws, the 
sample would be discarded and the MVV redeployed. If the sample was deemed acceptable 
(level and intact sediment), the entire sample was then emptied into a sediment collection bin and 
homogenized using a modified power drill attachment (Figure 3.7). A brief description about the 
sediment texture and composition was recorded in the Trimble unit. Each sample was 
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characterized for: grain size, benthos (mollusk, shell, anthropogenic, algae, wood, vegetation), 
presence/absence of surface oxidation, stiffness (very soft, soft, stiff, or very stiff), color, 
stratification (coarse to fine or fine to coarse) and the presence/absence of hydrogen sulphide 
odor. The grain size (clay, silt, sand, granule, pebble, or cobble) and benthos (mollusk, shell, 
algae, wood, vegetation or anthropogenic contents) was classified as: absent, rare, common and 
abundant. In the general comments section, particular characteristics of each sample was noted. 

Figure 3.6. Surface photo of a sediment grab prior to 
releasing the sample into a sediment collection bin 
for further processing.  

Figure 3.7. NCCOS scientist opening the MVV sampler 
to release the sediment sample into the bin below. 

The scientists estimated the average grain size of the sample in the field using the Coastal and 
Marine Ecological Classification Standard (CMECS) Anthropogenic Substrate Scale (Wentworth 
1922; CMECS 2017). Upon completion of the visual description, an approximately 250 g sample 
was taken from the sediment grab, distributed into individual labelled whirl-packs, and stored in 
a large cooler. After the sampling mission was completed, the sediment samples were shipped to 
TDI-Brooks International for phi (φ) and grain size analysis (see Chapter 9 Sediment Grab 
Analysis). 
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Chapter 4. Seafloor Sonar Processing 
Raw acoustic multibeam survey data must undergo extensive post-processing to correct the data 
for all departures from true depths attributed to the method of sounding or faults in the measuring 
apparatus. Data correction and cleaning processes are necessary to ensure that the resulting 
products meet the desired horizontal and vertical accuracy requirements before these outputs are 
incorporated into subsequent benthic habitat modeling efforts. During data post-processing, all 
positions and soundings are corrected for sensor and vessel offsets, biases, dynamic attitude, 
dynamic draft, navigation, sound velocity, tidal variations, and other vessel motion artifacts.  

4.1 Processing Methods  
For NOAA acoustic survey NF-17-09, the standard CARIS HIPS and SIPS CUBE processing 
workflow was instituted to process the Kongsberg EM710 and the Reson 7125 multibeam 
bathymetry (Figure 4.1). The multibeam data were vertically referenced to a Tidal Constituents 
and Residual Interpolation (TCARI) grid network using seven different mid-Atlantic tidal 
stations, and was updated with the final observed tides. The real-time GPS navigation and vessel 
motion from the POS/MV antennas were applied to the processed CARIS multibeam files using 
custom Smooth Best Estimate of Trajectory (SBETS) for horizontal and vertical accuracy. Sound 
velocity profiles were applied to the multibeam data to correct for sound speed refraction in the 
water column. All of these corrections were merged together and TPU was calculated and 
applied to generate a CUBE surface. Finally, the remaining artifacts and sonar noise were filtered 
and manually cleaned and the final bathymetric (Figure 4.2) and uncertainty surfaces were 
exported as a GeoTIFF to IHO to resolution standards by depth.  

Figure 4.1. Diagram illustrating the general processing workflow from acquisition to delivery. 
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For the NF-18-07 survey, the Kongsberg EM2040 and EM710 data were processed using QPS 
called Qimera bathymetric processing software, which utilizes a similar workflow as CARIS 
HIPS and SIPS. SBETs were also created using the POSPac Mobile Mapping Suite (MMS) 
software and applied to all data to correct for any vertical and horizontal offsets. A Vdatum 
separation model (SEP) with GNSS Vertical Referencing Method was applied to vertically 
transform the data to the ellipsoid (NAD83). However, due to GPS system anomalies during bad 
weather, transformation of the data to the ellipsoid using this method was unsuccessful for 
several lines. This resulted in several lines with major vertical offsets from the rest of the 
ellipsoidally referenced surface. Therefore, these lines were subsequently processed in CARIS 
using the same workflow utilized in NF-17-09. Tides were applied using a TCARI grid and the 
data was vertically referenced to Mean Low Low Water (MLLW) using Vdatum. Sound Velocity 
was applied and TPU calculated to generate a CUBE surface. Sonar noise artifacts were filtered 
and the final bathymetric (Figures 4.3) and uncertainty surfaces were exported as GeoTIFFs to 
IHO to resolution standards by depth and the HSAA (Figure 4.4).  

Due to poor weather conditions during NF-17-09 (as mentioned in Chapter 2), the original 
bathymetry data was somewhat degraded for portions of the survey area, with artifacts occurring 
especially in the eastern portion of the NYWEA. During the NF-18-07 cruise, bathymetry was 
collected in the NYWEA to replace the poor quality data from NF-17-09. Unfortunately, the 
resurveyed data from NF-18-07 was not significantly better due to bad weather, as shown in a 
side-by-side comparison of the bathymetry data from the two surveys in Figure 4.5. Therefore, 
the NF-18-07 bathymetry data was not used to replace the NF-17-09 data in the morphometric 
analysis or the predictive modelling for the benthic habitat map.  

4.2 Data Corrections 
The mapping team resorted to using spatial analysis techniques instead of resurveyed data to 
improve the quality of the bathymetry surfaces, which would subsequently be used for deriving 
the morphometric surfaces (see Chapter 6). The uncertainty layer processed from the NF-17-09 
CUBE surface was used to filter and extract vessel motion remove values >1.0 standard 
deviation, effectively filtering out the artifacts generated from vessel motion. A Matlab routine 
(inpaint_nans) was then used to fill value back in by interpolation (D’Errico 2006). The final 
interpolated surface was then exported as an 8 m GeoTIFF in ArcGIS and used as the source for 
the morphometric analysis and predictor for the benthic habitat modeling. 
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4.3 Backscatter Processing 
Backscatter information, which can be used to detect seafloor sediment variation from fine to 
coarser grained sediments and hard bottom features, was recorded during NOAA’s multibeam 
sonar surveys. Backscatter measures the acoustic intensity of sound transmitted by the 
multibeam pulse and reflected from the seafloor. Backscatter intensity is measured in decibels 
(dB), with low decibels being finer grained substrate and higher decibels indicating coarser 
grained substrate or hard bottom (Fonseca and Mayer 2007). This information is extremely 
useful for detecting sediment composition in relatively flat expanses of seafloor that may be 
otherwise undetected from bathymetry alone (Fonseca and Mayer 2007). The mapping team used 
the QPS Fledermaus Geocoder Toolbox software to process the backscatter information and 
create intensity mosaics. The mosaics were cleared of acoustic noise and refraction artifacts by 
merging the final cleaned bathymetry generic sonar files (GSF) exported from CARIS (NF-17-
09) and Qimera (NF-18-07). The final Reson 7125, EM2040, and EM710 backscatter mosaics 
were exported as GeoTIFFs with the same IHO depth to resolution standards as the bathymetry 
surfaces for the NYWEA (Figures 4.6 and 4.7) and the HSAA (Figure 4.8). 
 
The backscatter data from the NF-18-07 survey had improved quality, sharper definition, and 
finer details than the NF-17-09 survey. The vertical offsets and GPS anomalies did not have the 
same effect on the intensity measurements as with the previously described bathymetry 
measurements. However, the NF-18-07 data was collected using a more contemporary 
multibeam system with different acoustic frequencies, and therefore the dB intensity 
measurements from the 2018 cruise did not sufficiently align with measurements from the 2017 
acquisition. As such, the NF-18-07 backscatter data was also not used to replace the NF-17-09 
survey for the morphometric analysis or the predictive modeling.  
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Chapter 5. Fishery Acoustic Processing 
 
Fishery acoustic sonars or scientific SBES are used to collect data throughout the water column, 
from the seafloor to the water surface. The SBES emits rapid pulses of high-frequency sound that 
reflects or echoes off objects (or the seafloor) having differing density than the surrounding 
water. The fish swim bladder, a gas-filled organ that many fish use to regulate buoyancy, reflects 
the majority of the sound transmitted by the SBES transducer. The intensity of the reflected 
sound (target strength, TS, dB ref 1m) is proportional to the size of the swim bladder resulting in 
an echo positively correlated to fish size. When fish are in close proximity, such as in schools or 
aggregations, it is not possible to discern individual fish or to characterize the target strength. In 
this case, the volumetric or area integration of the reflected sound from the school provides an 
index of its density. 

5.1 Processing Methods 
The 120 kHz SBES data was processed using Echoview software (version 8.0, Echoview Pty 
Ltd, Hobart, Tasmania). The data were heave corrected to remove vertical motion caused by 
swell and waves. The seafloor was delineated and data cleaned (Figure 5.1) to remove 
interference from other ship systems and air bubbles prior to processing the water column data 
for fishes. Backscatter returns from plankton and other non-fish targets were excluded using a 
volume backscattering strength, Sv, threshold of -60 dB. Two different methods, acoustic signal 
of individual fish versus fish schools, were used for deriving the biological density within the 
NYWEA survey area.  
 

 
Figure 5.1. Example of raw data (left) with noise from surface bubbles, seafloor reflection and non-
fish targets present compared to clean data (right) ready for processing. 
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5.2 Individual Fish Processing 
Using the cleaned SBES data, individual fish were identified using a single target detection and 
tracking algorithm. The speed of the vessel and rate of ping transmissions resulted in multiple 
and sequential returns from individual fish. The sequential returns from the fish are referred to as 
single targets. The split-beam transducer detects the range and horizontal position of the target 
within the beam at each ping using a phase-differential array. The technique for identifying 
single targets in SBES data relied upon the data processor’s ability to characterize the shape of 
the return pulse and to specify an acceptable setting that resulted in quality single targets. A 2D 
single target-tracking algorithm was used to detect sequential echoes generated from individual 
fish greater than 6 cm total length (Figure 5.2). The 2D algorithm used range and time patterns 
from the single targets to search for systematic movements of a fish moving through space. The 
resulting fish identified by the tracking algorithm were stored in a database with a geographic 
position determined by the ship’s GPS, and corrected for relative position of fish within the 
acoustic beam, depth below the sea surface, and a mean target strength (TS, in dB).  
 
Individual fish and schools data were exported from Echoview in a CSV format. Open-source 
statistical programming language R (version 3.4.0, R Core Team 2017) was used to summarize 
and perform all calculations. The acoustic target strength of all single targets within a detected 
fish was used to calculate fish size (total length, TL) in centimeters using a generalized acoustic 
size to fish length relationship derived from the:  
 

TL = 10(TS+64.0035)/19.2 
 
where TS is target strength measured in dB, TL is calculated length in cm (Love 1977). The 
equation above fits closely with observation of broad classes of fish (Love 1977; Johnston et al. 
2006). Individual fish targets were counted and binned into 100 m intervals along survey 
transects. The density calculation accounted for the increased detection of individual fish as the 
acoustic beam footprint increases by depth, standardizing the beam width to a 1m swath using 
the following equation: 
 

Cw = 2 x range x tan (0.5BA) 
 
where Cw is the weighted count of an individual fish accounting for detection in an increasing 
beam swath with increasing range, and the tangent of the half beam angle (BA = 7°). Weighted 
counts were summed for each 100 m interval producing a density with the units fish 100 m2. 
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Figure 5.2. Single target detection algorithm processing steps. A) Raw backscatter data (Sv) of an 
individual fish; B) four sequential echo returns of the same individual fish; C) sequential echo 
returns identified as an individual fish track with a mean decibel measurement. 
 

5.3 Fish School Processing 
When fish are aggregated in acoustic schools (e.g., less than 20 cm vertical spacing between 
individuals) (Figure 5.3), individual targets cannot be discerned or enumerated. Echo integration 
was used to provide a measure of volume backscatter as an indicator of fish density. Fish schools 
were delineated using a visual edge detection algorithm that identified the acoustic backscatter 
reflected from a single aggregation versus a background signal. The school detection algorithm 
identified points on the edge of a school that the processor had determined meets the relevant 
criteria and linked all points together to create a school candidate. The backscatter of the schools 
was integrated by a distance interval (100 m2) and expressed as Area Backscattering Coefficient 
(ABC), which is the area acoustic density of a standardized area to 1 m length and the water 
column depth as height. To calculate the school fish density, the school acoustic backscatter was 
scaled to the size of the average fish in the school. When there were no identifiable individual 
fish within the school for the density calculation, the mean TS of single targets in the outer 
margins of the school was used as a proxy for the average size of the individual fish inside the 
school. 
 
Acoustic backscatter (ABC, m2/m2) from fish schools were divided by the average backscatter of 
an individual fish (TS, dB) in order to obtain a density that has units of fish m2. Density values 
were then multiplied by 100 to achieve similar magnitude of values as in the density estimates of 
area swept for individual fish (number of fish per 100 m-2). 
 
All binned data were summed to achieve combined fish densities for all fish and fish schools and 
converted to ArcGIS point shapefiles (version 10.5, ESRI 2016). The resulting 100 m2 point 
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shapefile used a centroid for each interval (100 m2) surveyed as the positional location for 
combined individual fish and fish school densities. Spatial Analyst tools in ESRI ArcGIS 
(version 10.5) were used to interpolate the point shapefile into a raster, using the point to raster 
function with a 150 m cell size to encompass the complete survey area.  
 

 
Figure 5.3. A) Example of a large fish aggregation. B) Same Large fish aggregation detected with 
tracking algorithm with a backscattering measurement. 
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Chapter 6. Seafloor Morphometric Analysis 
 
Seafloor geomorphology is an important attribute of marine habitats that is inextricably linked 
with biogeography, biodiversity, and the distribution of marine life (Harris and Baker 2011). 
Acoustic sonar data can provide a highly resolved, accurate measurement of water depth (i.e., 
bathymetry). In addition to information on depth, high-resolution bathymetric data can be used to 
model changes in the shape of the seafloor (i.e., topography) and to highlight variation in 
seascape (terrain) at a range of spatial scales. In turn, detailed topography, terrain, and other 
highly resolved seafloor characteristics often correlate with spatial variation in physical, 
geological, and ecological processes, as well as biological habitats (Zevenbergen and Thorne 
1987; Moore et al. 1991). As such, characterizing the shape and identifying unique features of 
the seafloor can help identify habitat or biodiversity patches that could be affected by human 
activities that disturb the seafloor. Furthermore, backscatter, the sound intensity reflected off the 
seafloor and detected by acoustic sonar can be interpreted to describe the sediment composition 
of the seafloor.  
 
Morphometric products derived from acoustic sonar bathymetry provide a valuable means of 
synoptically characterizing the composition, roughness, shape, and texture of the seafloor to map 
and identify the distribution of benthic habitats. In this chapter, 22 morphometrics are evaluated 
that describe the composition, roughness, shape, and texture of the seafloor and are useful for 
mapping and characterizing the spatial distribution of distinct benthic features in the NYWEA 
study area that could be affected by wind-energy development. Similar to previous studies, high-
resolution bathymetry data is used to analyze changes in the seafloor topography at varying 
spatial scales (Costa et al. 2009; Costa and Battista 2013; Costa et al. 2013; Costa et al. 2014). 
Previous research has shown the utility of these metrics for characterizing benthic and essential 
fish habitats (Pittman et al. 2009; Pittman and Brown 2011; Costa et al. 2009; Costa et al. 2013; 
Costa et al. 2014; Diesing et al. 2014; Hasan et al. 2014).  
 
Bathymetry, backscatter, and the derived morphometric data were employed as predictors in the 
Boosted Regression Trees (BRT) model to create a detailed habitat map within the NYWEA (see 
Chapter 11). 

6.1 Methods 
Two approaches were used to generate a suite of 22 data layers depicting various measures of 
seafloor geomorphology from the 8 x 8 m resolution bathymetry and backscatter data collected 
by acoustic sonar for the NYWEA (see Chapter 4 for description of acoustic sonar data). First, 
focal statistics were applied to the final 8 m resolution bathymetry data (described in Chapter 4, 
Section 4.1) to produce 13 morphometric surfaces (Table 6.1). Focal analyses were performed 
within a neighborhood operation that computed an output raster in which the value for each 
output cell was derived from the closest eight adjacent cells. Second, nine additional 
morphometric surfaces were calculated with Bathymetry and Reflectivity-based Estimator for 
Seafloor Segmentation (BRESS) software (Masetti et al. 2018). The BRESS methodology 
applied a “field of view” with varying extents based on polygon size to calculate each metric of 
seafloor geomorphology.  
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6.1.1 Seafloor Morphometrics Derived Using Focal Statistics  
Data layers depicting thirteen unique measures of seafloor geomorphology were calculated from 
the bathymetry data layer using focal statistics (Table 6.1). In this approach, values for each grid 
cell were calculated from the values of the eight surrounding cells in a 3 x 3 grid cell (576 m2) 
focal neighborhood. Calculations were performed using the ‘raster’ package in R (Hijmans 2016; 
R Core Team 2016).  
 
Table 6.1. Descriptions of the 13 measures of seafloor geomorphology derived from focal statistics. 
All calculations were performed using the ‘raster’ package in R (Hijmans 2016; R Core Team 2016). 
 
Morphometric Surface Unit Description Reference 
Depth 
Standard 
Deviation   

Meters Measure of variation in depth  Costa et al. (2013, 
2018) 

Slope 

 

Degrees Gradient in the direction of maximum slope Horn (1981); 
Jenness (2013) 

Slope of the 
slope 

 

Degrees of 
degrees 

Gradient in the direction of maximum slope 
of slope 

Horn (1981); 
Jenness (2013) 

Aspect (East-
West) 

 
Unitless The sine of the direction of maximum slope  Horn (1981); 

Jenness (2013) 

Aspect 
(North-South) 

 
Unitless The cosine of the direction of maximum 

slope  
Horn (1981); 
Jenness (2013) 

Rugosity 
 

Unitless Ratio of surface area to horizontal planar 
area  

Horn (1981); 
Jenness (2013) 

Rugosity 
(Arc-chord 
Method)  

Unitless Ratio of surface area to planar area of best-
fitted slope  

Du Preez (2015); 
Jenness (2013) 

Total 
Curvature 

 

Radians/100m2 
 

Measure of the roughness or ruggedness of 
the seafloor, with higher values indicating that 
an area is more rugged; values always ≥0 

Evans (1979); 
Jenness (2013) 

General 
Curvature 

 

Radians/100m 
– = concave 
+ = convex 

Measure of the extent to which the seafloor 
is convex (e.g., ridges) or concave (e.g., 
depressions) 

Zevenbergen and 
Thorne (1987); 
Jenness (2013) 

Plan 
Curvature 

 

Radians/100m 
– = concave 
+ = convex 

Curvature of the surface perpendicular to 
the slope direction 

Evans (1979); 
Zevenbergen and 
Thorne (1987); 
Jenness (2013) 

Profile 
Curvature 

 

Radians/100m 
– = convex 

+ = concave 

The curvature along the line of maximum 
slope, where the surface is intersected with 
the plane formed by the aspect and Z-axis 

Zevenbergen and 
Thorne (1987); 
Jenness (2013) 

 
Note, two methods of plan and profile curvature metrics were analyzed: (1) methods described 
by Evans (1979), hereafter Evans method, and (2) methods described by Zevenbergen and 
Thorne (1987), hereafter Zevenbergen and Thorne method. They are discussed with the other 
metrics in the next section.  
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6.1.2 Seafloor morphometrics derived from Bathymetry and Reflectivity-based Estimator 
for Seafloor Segmentation (BRESS) 
Data layers depicting nine additional measures of seafloor geomorphology were created using 
the (BRESS) software (Masetti et al. 2018).The software used the bathymetry and the acoustic 
backscatter data to identify seafloor segments, measure areas with consistent characteristics, and 
provide statistical layers that characterized the segments. The algorithms used in BRESS 
included an initial segmentation of the bathymetric surface into landforms (geomorphologic 
phonotype), that served as an archetype for a particular terrain morphology (Jasiewicz and 
Stepinski 2013). BRESS software was designed by Masetti et al. (2018) to mimic the positive 
aspects of the segmentation process as performed by a skilled analyst, while avoiding the 
inherent deficiencies of human subjectivity, processing time, and lack of reproducibility. 
 
Initial segmentation of the study area in BRESS was based on characterizing landforms or 
patterns within the bathymetry values that were based on slope and depth and then grouping 
areas with consistent values into segments. Landforms types were assigned to groups of grid 
cells or kernels with similar values for depth and slope. Landform types were: pit, valley, foot 
slope, concave slope, slope, convex slope, shoulder, ridge, peak, or flat. The landforms employed 
in BRESS are defined in Jasiewicz and Stepinski (2013), and based on bathymetry within a cell 
and its surrounding neighbors. Adjacent kernels with similar landforms were aggregated further 
to create larger polygons of varying sizes that represented areas of consistent topography. 
 
The geomorphon approach used by BRESS employs a variable-scale solution (10-50 m search 
radius). In this case, each grid cell is considered in relation to its neighbors using several 
different search radii. The resulting surface is a contiguous set of segments of varying sizes, 
where morphology is consistent within each segment. The parameters used in the computation of 
the geomorphon were: search inner radius = 10 m, search outer radius = 50 m, and flatness angle 
= 0.2 degree.  
 
Table 6.2. Descriptions of the measures of seafloor geomorphology derived using the Bathymetry 
and Reflectivity-based Estimator for Seafloor Segmentation (BRESS) software (Jasiewicz and 
Stepinski 2013; Masetti et al. 2018). 
 
Topographic 
Surface Description Unit 

Landforms Classified bathymetry based on landform type, calculates pattern-based statistics, 
and creates area kernels (connected grid nodes with the same landform type). 

Number of 
landform types 

Area Ratio The ratio between the area of the segment and its maximum possible extension 
(based on the outer search radius). None 

Average Azimuth The average orientation of the segment. Degrees 

Average Height The average height of the visible neighborhood. Meters 

Elongation Ratio The ratio between the maximum and the minimum dimensions of the segment. None 

Height Range The height range of the visible neighborhood. Meters 

Height Variance The height variance (calculated using the Average Height as mean value) of the 
visible neighborhood. Meters 

Maximum Delta The maximum elevation delta (that is, the absolute value of the height) of the 
visible neighborhood. Meters 

Maximum Width The maximum dimension (x- vs. y-direction) of the segment. Meters 
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6.2 Results 
6.2.1 Seafloor Morphometrics Derived From Focal Statistics 
Results from the focal statistics indicated minimal spatial variation in depth and topographic 
complexity within the study area (Table 6.3). While the thirteen focal statistics can each be 
valuable in the analysis of seafloor topography, there is a great deal of redundant information 
when considering the dataset as a whole. In our analysis, described in detail in Chapter 11, we 
found nine of these metrics to be valuable in delineating benthic habitat types. Those nine 
metrics are reported here. 
 
Table 6.3. Summary descriptive univariate statistics for topographic surfaces derived from focal 
window analyses.  
 

Topographic Surface Unit Min Max CV 
Depth (Mean) Meters 19.09 42.11 0.14 
Depth (Standard Deviation) Meters 0 0.79 0.65 
Slope Degrees 0 4.3 0.75 
Slope of the slope Degrees of degrees 0 11.5 0.87 
Aspect (Eastness) Unitless 0 1  
Aspect (Northness) Unitless 0 1  

Total Curvature Radians/100m2 0 0.121 2.39 

General Curvature 
Radians/100m 
– = concave 
+ = convex 

-5.29 14.26 -4.45 

Plan Curvature 
(Zevenbergen and Thorne) 

Radians/100m 
 – = concave 
+ = convex 

-2.87 7.04 -96.33 

Profile Curvature 
(Evans) 

Radians/100m  
– = convex 

+ = concave 
-2.59 2.29 -41.86 

 

Depth 
Bathymetric depth (Mean) ranged from 26-43 m. The study area generally was flat and relatively 
smooth, indicating minimal variance in physical attributes of the seafloor (Table 6.3). 

Standard Deviation 
Standard deviation (SD) of depth for the study area ranged from 0 to 0.79 m, indicating a very 
low variation in seafloor depth (Table 6.3, Figure 6.1). Additionally, 99.9% of the study area had 
a SD of less than 0.1 m. In general, SD of depth may reveal important patterns in certain areas or 
habitat types. Results indicated that large areas in the eastern portion of the study had minimal 
topographic variation. 

Slope 
Variation in seafloor slope is another important indicator of topographic complexity. The study 
area featured particularly low values for slope and could be generally regarded as a gently 
sloping to flat-planed landscape. The maximum slope for any focal area was 4.3 degrees (Table 
6.3, Figure 6.2). However, less than one percent (0.13%) of the study area had a slope greater 
than 1.5 degrees (Figure 6.3). The overall mean slope was 0.283 degrees (SD = 0.212 degrees) 
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and there was little variation in depth (CV = 0.75, where CV is the coefficient of variation). 
These derived values suggest that minimal topographic complexity existed within the study area.  

Slope of the Slope 
Slope of slope often is used as an index of seafloor complexity, with higher values indicating 
increased structural complexity of the seafloor. Overall, the study area generally had low 
seafloor rugosity and low structural complexity (Figure 6.4). Slope of slope values ranged from 0 
to 11.5 degrees with a mean value of 0.628 degrees and a coefficient of variance of 87% (Table 
6.3). Focal cells with slope of slope >1 degrees either identified areas where seafloor complexity 
occurred or were artifacts of the bathymetry. Grid cells with slope of slope values <1 degree 
were particularly horizontal. Approximately 85% of the study area had slope of slope <1 degree. 

Aspect 
Aspect can influence physical variables such as strength and direction of currents. In some cases, 
aspect can also affect the distribution and composition of biological communities (Lecours et al. 
2016). Within the study area, aspect might not be an important local factor affecting currents or 
community composition because slope was predominantly <1.5 degrees, and the seafloor 
geomorphology was predominantly supine (Table 6.3, Figure 6.5). The spatial patterns exhibited 
by observed north-south and east-west gradients seemed random and might not reflect broader-
scale patterns of north-facing or east-facing slopes that would correspond with physical or 
ecological variations observed within the study area. 
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Total Curvature 
Total curvature measured the “surface roughness” to identify places with structural surface 
complexity or ruggedness within the study area. Although certain areas exhibited surface 
roughness, total curvature values generally were low within the study area and did not exceed 
0.12 radians/100m2 (Table 6.3, Figure 6.5). 

General Curvature 
General curvature also measured surface roughness as well as the concavity and convexity of the 
seafloor to depict ridges and depressions. General curvature ranged in value from -5.29 to 14.26 
(Table 6.3) and did not visualize any discernible spatial patterns in concavity or convexity within 
the study area (Figure 6.6).  

Plan Curvature 
Plan curvature measured concavity and convexity perpendicular to the horizontal seafloor. 
Additionally, plan curvature could be used to indicate convergence (- values) or divergence (+ 
values) of hydrologic flows over a surface. Zevenbergen and Thorne plan curvature measured 
concavity and convexity to indicate the direction of hydrologic flows over a surface. According 
to Jenness (2013), the Zevenbergen and Thorne method computes concavity and convexity as 
well as hydrologic convergence and divergence more accurately than the Evans method, 
especially for highly accurate and resolved bathymetry data. Zevenbergen and Thorne plan 
curvature values ranged from -2.8 to 7.0 radians/m2 (Table 6.3), and similar to Evans plan 
curvature values, they did not reveal any discernible spatial patterns in the convergence or 
divergence of currents within the study area (Figure 6.7). Approximately 3% or 10 km2 of the 
study area fall outside the range of two SD from the mean (<-0.2 and >0.16). 

Profile Curvature 
Profile curvature surface roughness measured concavity and convexity perpendicular to the plane 
of maximum slope, and could be used to depict acceleration (− values) or deceleration (+ values) 
of hydrologic flows over a surface (Figure 6.8). Evans profile curvature method values ranged 
from -2.59 to 2.29 (Table 6.3). Similar to the plan curvature metrics, visualization of these 
profile curvature values did not reveal any discernible spatial patterns in the acceleration or 
deceleration of currents within the study area. 
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6.2.2 Seafloor morphometrics derived from BRESS 
The BRESS approach was particularly appropriate for the study area because the landscape 
featured relatively large areas of grid cells with similar bathymetric and backscatter intensity 
characteristics. The BRESS segmentation grouped and combined grid cells with similar values 
for depth and slope and created 175 polygons or landforms with boundaries defined by 
discontinuities in depth and slope. Since the segments contained kernels with similar values, this 
approach reduced the number of analysis units from roughly 5 million kernels down to 175 
segments that were classified into landform types (Table 6.4).  
 
The BRESS approach includes the calculation of nine metrics. However, our analysis of the 
information indicated significant information in the landform and average height metrics and not 
in the metrics of area ratio, average azimuth, elongation ratio, height range, height variance, 
maximum delta, or maximum width. 
 
Table 6.4 Area and relative proportion of study area occupied by landform types derived from 
BRESS software (Jasiewicz and Stepinski 2013; Masetti et al. 2018). 
 
Landform Area (km2) Percent of 

study area 
Flat 248.06 75.7 

Shoulder 26.08 8.0 

Slope 19.70 6.0 

Footslope 18.88 5.8 

Valley 6.88 2.1 

Ridge 4.01 1.2 

Convex Slope 1.91 0.6 

Concave Slope 1.86 0.6 

Pit 0.21 0.0 

Peak 0.08 0.0 

 

Landforms 
Analysis of the landforms indicated a predominantly flat surface with a slope less than 0.2 
degrees for most of the study region. Generally, the eastern areas of the study region was 
particularly flat whereas some topographic complexity occurred in the western portion of the 
study area (Figure 6.9). Based on the simplified classification of Masetti et al. (2018), the 
distribution of landforms were group to produce a more easily interpretable graphic (Figure 
6.10). 

Average Height 
Visualization of average height identified areas where there was depth variability and 
discriminated them from areas of low depth variability. Average height ranged from -2.13 to 
2.25 m, with a mean of 0.216 m (SD = 0.221 m, CV= 1.023). These statistics suggest that 
localized variation in depth was very small within the study region. Here, the smaller values 
indicated the flat areas whereas the maximum and minimum values highlighted areas of 
topographic complexity as well as artifacts within the bathymetry data (Figure 6.11).  
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6.3 Conclusion 
Twenty-two different analyses were used to characterize the geomorphology of the NYWEA 
study area from the bathymetry and backscatter surfaces. Several metrics were particularly 
informative from this analysis. The maximum slope within the study area was 4.3 degrees, with 
99.9% of the area having slope less than 1.5 degrees. The BRESS analysis identified large 
swaths of the study area with consistent topographic complexity and substrate composition. 
Large areas of consistent flat sandy bottom led to large segments particularly in the eastern 
portion of the study region. Through several rugosity metrics, areas of relatively higher structural 
complexity along with a few artifacts were identified. 
 
A great deal of the variation of values in seafloor morphometries is due to sea-state induced 
noise artifacts inherent in the source bathymetric surface. Removing artifacts from the 
bathymetry could improve results and enable more effective analysis of individual seafloor 
metrics. Geomorphological metrics along with the bathymetry and backscatter surfaces were 
used as inputs into boosted regression classification trees to predict habitat types and create a 
benthic habitat map from bathymetric raster data (see Chapter 11). Metrics with the most 
discriminatory power appear to be depth, backscatter, SD of depth, slope, slope of slope, north-
south and east-west gradients of aspect, total curvature, profile curvature, plan curvature general 
curvature, and average height. 
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Chapter 7. Ground Validation Video Analysis 
 
Ground validation (GV) uses direct in situ observations to interpret remotely sensed data. In this 
study, GV data are the basis for correlating observed substrate and cover types with their 
associated values in the predictor datasets. To make direct observations, underwater videos of the 
seafloor were collected and analyzed from sites dedicated to GV. Results from the video analysis 
of the presence and absence of different substrate and geoform types and the percent biotic cover 
were then used to BRT and enhance the spatial accuracy of habitat maps in Chapter 11. A total 
of 300 sites were allocated for GV analysis (Figure 7.1). Of these 300 sites, 296 GV sites were 
analyzed and used for the BRT models, however there were 12 sites that were located at Cholera 
Bank outside the NYWEA.  

7.1 Methods 
7.1.1 GPS Processing Method 
The planned GV sites were uploaded into the Furuno navigation system of the R/V Tiki XIV to 
guide the Captain to the sampling locations. The GV site planning and the MVV data collection 
methods and analysis are described in detail in Chapter 3. The Trimble Geo 7X 6000 handheld 
GPS (global positioning system) receiver was used to record the following data at each GV site: 
site location, sample time, and in situ observations of the grab sample. The CMECS 
classification schema was uploaded into the Trimble so that the in situ presence/absence of 
substrate types based on the grain size and benthic invertebrate observations could be recorded at 
each site. The Trimble logged one point each second (epoch) as the grab sampler was lowered 
into the water and retrieved. Upon completion of the cruise, the Trimble GPS data were post-
processed to provide improved, corrected positioning (sub-meter accuracy) using GPS Pathfinder 
Office (software version 5.81). Through post-processing, an average location (or centroid) from 
the epochs at each GV site was calculated, and the initial GPS logging time was used as 
sampling time in the final deliverable. The post-processed Trimble positions and the recorded in 
situ observations were exported as point shapefile using ArcCatalog. A GIS analyst conducted 
quality control of the data to detect entry mistakes and reviewed the comments in the field for 
any discrepancies. At sites where multiple grab samples were collected, the final sample was 
selected to best represent the site location. 
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7.1.2 Video Annotation Method 
Videos recorded during MVV sampling were reviewed after the cruise to determine the substrate 
type, geoform and biological cover of the seafloor at each GV site. Three cameras were used to 
collect video footage: 1) The oblique view GoPro camera with the mounted laser scale, 2) the 
downward facing GoPro camera, and 3) the HD Seaviewer camera (see Chapter 3 for video 
specifications). The oblique view GoPro camera provided a larger field of view to interpret the 
seafloor features and so it was the primary video platform used to analyze the habitat of the 
seafloor for each GV site. The downward facing GoPro camera was used as a backup to assist in 
the analysis as the field of view was small especially after sunset and did not provide the analyst 
with enough data to interpret features of the seafloor. The downward facing camera footage was 
used at ten sites where the oblique view camera footage was unavailable.  
 
Each GV video was clipped to the first and last frame of useable footage. Videos were then 
annotated, a process where footage was evaluated to quantify presence and percent cover for 
substrate, geoform and biota, by a single analyst to prevent variability in results. Underwater 
video and image annotation is a common method for assessing benthic habitats across 
ecosystems (Jaffe et al. 2001), and has been used in previous habitat mapping efforts in the mid-
Atlantic for offshore wind farm suitability (Guida et al. 2017). While automated annotation is an 
increasingly popular tool in coral ecosystems (Beijbom et al. 2015), it is less effective in regimes 
that are dominated by varying combinations of unconsolidated sediment. Thus, annotations in 
this study were made manually by a single analyst.  
 
Substrates and biota present in each video were recorded using the CMECS habitat classification 
scheme to characterize benthic assemblages and functional groups. The analyst recorded the 
presence (1) and absence (0) of substrates and geoforms and visually estimated percentage cover 
for the biotic component. Additionally modifiers such as anthropogenic features and large 
megafauna (greater than 3 cm in length or height) not anchored to the bottom were noted during 
video review (e.g., skates, soles, flounder, dogfish, anglerfish, and jellyfish). Presence/absence 
annotations from the video analysis were merged with the point shapefile that contained the in 
situ observations of substrates and biota from the MVV sediment grab samples and was used as 
an input for the BRT models to predict the probability of occurrence for each habitat type and 
provide a more accurate representation of the seafloor habitat.  

7.1.3 CMECS Classifications Scheme 
The CMECS system developed by NOAA and the Federal Geographic Data Committee (FGDC) 
was adopted to record in situ and video observations of substrates, geoforms, and biota at GV 
sites from the MVV survey on the R/V Tiki XIV. CMECS is self-described as “a catalog of terms 
that provides a means for classifying ecological classes using a simple, standard format and 
common terminology. CMECS offers a way to organize and interpret data about the marine 
environment, and it provides a common platform for inter-relating data. It builds upon 
approaches from published national, regional, and local habitat classification procedures, and it 
offers an umbrella under which a national coastal and marine ecological classification can grow 
and evolve.” (FGDC 2012).  
 
The CMECS classification scheme implemented for this study contains four major components 
(substrate, geoform, biotic and modifier) used to describe the benthic environment of the 
NYWEA. Five substrate categories were included: cobbles, pebbles, sand/granules, mud, and 
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shell. Additionally, to characterize the bedforms of each site, four geoform classes were 
included: ripples, megaripples, outcrops, and plain. Coverage of the seafloor was estimated for 
biotic components, and lastly, a modifier component was added to capture other important 
information from the videos (e.g., mobile fauna, anthropogenic structures). Table 7.1 describes 
the classification for the components developed for this study. 
 
Table 7.1. Benthic habitat classification scheme used to describe observations for this study.  
 

CMECS Component Categories/Classes Definition 

Substrate 
Unconsolidated 
Sediments 
(Presence/Absence) 

Cobbles 64 mm to <256 mm median grain size  

Pebbles 4 mm to <64 mm median grain 

Sand and Granules 0.0625 mm to 4 mm median grain 

Mud (Silt and Clay) <0.0625 mm grain size  

Shell broken shell fragments of any size (shell rubble, hash, etc.) 

Geoform 
Sediment Wave Fields 
and Outcrops 
(Presence/Absence) 

Ripples linear structures of sediment formed by movement of water <1 m 
wavelength 

Megaripples structures of sediment formed by movement of water >1 m 
wavelength 

Outcrops areas of exposed bedrock 

Plain relatively flat area of unconsolidated sediment 

Biotic Cover 
Attached or  
Bedded Fauna 
(Presence/Absence 
and % Cover) 
 

Molluscs individual or faunal beds of mussels, clams, oysters, marine 
snails, or sea slugs 

Echinoderms individual or beds of sea urchins, sand dollars, and sea stars 

Annelid Worms sessile or mobile segmented marine worms, including tube, 
feather, and blood worms (polychaetes) 

Crustaceans mobile hermit crabs, lobster, shrimp, and amphipods 

Algae living vegetation attached to the seafloor 

Other traces of marine fauna, such as egg cases, burrows, track marks 

None (No Cover) areas with no biotic cover 

Less than 5% cover Areas with < 5% of biotic cover, or >95% no cover 

Modifier 
Anthropogenic manmade debris or structures from sunken ships or cargo 

Megafauna demersal or pelagic organisms >3 cm in any dimension 

Other/Comments Observations from 
Sediment Grabs 

Any descriptions or notes from the annotator from the grab 
sample or video analysis (e.g., color, stiffness, stratification, 
hydrogen sulfide smell) 

Italics denotes categories not included in CMECS 
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7.1.4 Spatial Analysis 
Geostatistical modeling was conducted to map the spatial distribution of the biotic component by 
analyzing the percent cover estimates from the GV videos. Interpolations of the different Biotic 
Cover types across the NYWEA were tested using the Bayesian Kriging method from 
Geostatistical Analyst tool in ArcGIS (version 10.6). This method was also used for the analysis 
of grain size distribution for different phi (φ) types and described more in detail in Chapter 9. 
The sample neighborhood size, shape, and angle for the kriging were tested and the covariations 
were automatically analyzed with the best fit for each regression to produce the lowest Root 
Mean Square Error (RMSE) deviations. Locations where Bayesian Kriging predicted a negative 
percent cover were converted to zero because it is not possible for a negative cover to exist. 
Upon interpolation, a 32-bit GeoTIFF was created using the NYWEA boundary as a mask and 
the data were then classified using natural breaks in the data to group cover into percentage 
categories.  

7.2 Results 
High definition videos were collected and annotated from 296 GV sites, covering the NYWEA 
and Cholera Bank. The results from the videos annotations and in situ observations were used to 
train the BRT models in order to predict the habitats throughout the study area (see Chapter 11 
for more details). A spatial distribution of the biotic cover components was also generated to 
compare with the predictive modeling. 

7.2.1 Substrate Types 
Substrate data presented here was based on in situ presence/absence observations from the 
sediment grab samples rather than estimating cover or composition from video analysis. It was 
not possible to accurately classify full phi sizes and percent distribution while on the R/V Tiki 
XIV or by observing in the HD underwater video due to inability to confidently measure grain 
sizes visually. For this reason, an independent grain size analysis was conducted from the 
sediment grab samples using a sieve test at the TDI-Brooks International laboratories to 
confidently measure the percent distribution of phi grain size using the Wentworth scale 
(Wentworth 1922). However, due to time constraints the phi analysis from TDI-Brooks was not 
used as GV for the BRT models. For the analysis and results of the TDI-Brooks grain size sieve 
tests, see Chapter 9.  
 
Based on presence/absence observations recorded from the grab samples, substrate types 
occurred in eight unique combinations (Figures 7.2-7.4). Sands (fine to very coarse) and broken 
shells (all sizes) were the dominant substrates throughout the NYWEA, present in 100% and 
99% of GV sites, respectively. Substrates of 71.3% GV sites were composed exclusively of 
sandy and broken shell (Figure 7.3; Figure 7.4b). 
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The second most dominant substrate category was the conglomeration of gravelly sediments 
(granules, pebbles, and cobbles) (Figure 7.4a). Pebbles (small to large) were present in 15.9% of 
GV sites (Figure 7.3) and distributed irregularly throughout the NYWEA, but commonly occur 
on Cholera Bank (Figure 7.2). Mud substrates (silts and clays) were detected at only 15.1% of 
the GV sites (Figure 7.3). Cobbles were rarely observed in the NYWEA and only present at three 
sample sites, or <1% of GV sites (Figure 7.3). The presences of cobbles appeared erratically and 
were detected from individual grains collected in the grab samples. No cobbles were sent to the 
TDI-Laboratory after the homogenization of the sub samples for full phi analysis. The three sites 
with cobbles do not appear to conform to a spatial pattern and would have greatly skewed the 
results of the phi distribution analysis, thus they were treated as outliers. Observations were 
annotated from Predictions of occurrence of each substrate can be found in Chapter 11.  
 
GV methods indicate the NYWEA is dominated by sandy substrate. Previous work by Guida et 
al. (2017) also found that sand comprised the majority of substrate in this area. More broadly, 
proposed wind energy areas throughout the northwest Atlantic from Virginia to Massachusetts 
are also sand dominated (Guida et al. 2017). Thus, the dominance of sand observed throughout 
the NYWEA in the current study is consistent with previous work within the study area and 
regionally.  
 

 
Figure 7.3. Percentage of sites with substrate types present at GV sites 
in NYWEA. 
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Figure 7.4. (a) Pebble, sand and shells, and (b) sand and shell substrates at GV sites. 

 

7.2.2 Geoform Types 
Three distinct geoform types (ripples, megaripples, and plain) were observed at GV sites 
(Figures 7.5-7.7). No rocky outcrops were observed at any sites. Ripples (Figure 7.5b) were the 
dominant geoform in the study area, representing 83% of the sites (Figure 7. 7).  
 
Additionally, we observed megaripples at 12% of the GV sites (Figure 7.7). Megaripples are 
“large, sand waves or ripple-like features having wavelengths greater than 1 meter or a ripple 
height greater than 10 cm; Megaripples are formed in a subaqueous environment, and they are 
also known as subaqueous dunes” (Bates and Jackson 1984; Figure 7.5a). Previous work in this 
area has also noted the presence of megaripples (Guida et al. 2017). In this study, megaripples 
occurred mainly in the deep southeast zone of the study area (Figure 7.6). Plain (flat) sites were 
the least common geoform type within the study area and were present at only 5% of GV sites 
(Figure 7.7, Figure 7.5c). More detailed discussion of spatially predicted distributions of 
geoforms can be found in Chapter 11. 
 

 
Figure 7.5. Geoforms: (a) megaripples, (b) ripples, and (c) plain at GV sites within NYWEA. 
 

b a 

a b c 
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Figure 7.7. Percentage of geoforms present at GV sites within NYWEA. 
 

7.2.3 Biotic Cover and Modifier 
A variety of biota were observed at GV sites throughout the NYWEA. Benthic-dwelling 
epifauna were the primary group observed, with mobile fauna rarely observed. Echinoderms, 
specifically the common sand dollar (Echinarachnius parma), were the dominant biotic 
component and the only species to represent significant cover of the seafloor at GV sites (Figures 
7.8-7.10). They were present at 90% of the GV sites and cover ranged from 1-90% (Figure 7.9).  
 

 
Figure 7.8. High density of Echinoderms Echinarachnius parma 
(sand dollar) at a GV site within NYWEA. 

 
Other groups observed throughout GV sites were various species of worms, mollusks, 
crustaceans, algae, and megafauna common to the North Atlantic (Figures 7.11-7.13). While 
individual organisms in the groups were observed in grab samples and the video analysis, their 
quantity and distribution throughout NYWEA was not uniform. Annelids, generally polychaetes 
and oligochaetes, were present at 30% of the GV sites (Figure 7.12). Mollusks, specifically 
bivalves and gastropods were present at 11.5% of GV sites, with moon snails (species unknown) 
a primary gastropod observed (Figures 7.12 and 7.13a).  
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Figure 7.12. Frequency of occurrence of benthic biota at GV sites within 
NYWEA. 

 

 
Figure 7.13. (a) Moon snail (species unknown) at a GV site within NYWEA, and (b) a skate 
(Leucoraja spp.) and a hermit crab (species unknown; circled) at another GV site within NYWEA. 

 
Crustaceans, specifically hermit crabs and amphipods, were observed at 10.8% of GV sites 
(Figure 7.12). Algae was only present at one site (Figure 7.12). Megafauna (consisting entirely of 
skates, Leucoraja spp.) and algae were rarely observed; with megafauna seen at only 2.4% of 
GV sites and algae present at only one site (Figures 7.11 and 7.12). No anthropogenic structures 
were found at GV sites, however shipwrecks have been detected in this area including several 
during the NF17-09 cruise (see Chapter 2). The grab sampler was not used at this location due to 
the risk of entanglement and harm to the structures of the shipwreck. 

b 

 

a 



70 
 

 
Distribution models were only created for sand dollars, as they were the only significantly 
present biotic component. The distribution of all of the other biotic components modeled very 
poorly or were sufficiently rare to model. Results from the Bayesian Kriging interpolations 
showed high uncertainty (RMSE = 14.93), but did conform with the presence/absence 
distribution (Figure 7.9) and the BRT modeling in Chapter 11. The Bayesian Kriging models 
illustrate that the sand dollars are highly concentrated at the eastern edge of the NYWEA and 
spread northwest to the 30 m depth contour (Figure 7.10).  
 
The high abundance of echinoderms (sand dollars) observed in this study was consistent with 
previous work conducted in the NYWEA and throughout the northwest Atlantic, where surveys 
revealed dominance of the benthic epifaunal community by sand dollars (Malek et al. 2014; 
Guida et al. 2017). Sand dollars prefer flat fine sediment habitats (Wigley and Theroux 1981; 
Malek et al. 2014), which dominate the eastern portion of the NYWEA (Figure 7.2). Therefore 
as expected, sand dollar cover in areas with homogeneous fine sediment habitats had a high 
cover compared to the very low cover of the more heterogeneous habitats (e.g., pebbles and 
cobbles) (Figure 7.9). In this study, sand dollars were also often observed in high densities at 
sites where megaripples were present (Figure 7.6). The relationship between substrate, geoform, 
and sand dollar presence is further described in Chapter 11. 
 
As noted, skates were the only megafauna species to be observed at GV sites. Previous trawl 
surveys throughout the northwest Atlantic, including the NYWEA, have noted skates as the 
dominant catch year round (Guida et al. 2017). Other biota (e.g., annelids, crustaceans, mollusks) 
were distributed evenly throughout the area, and therefore were not spatial correlated with the 
distribution of a particular substrate or geoform type. 
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Chapter 8. Hard Bottom Predictive Modeling 
 
Maps depicting the distribution of hard bottom habitats can provide important information to 
guide coastal and marine spatial planning, including the siting of offshore wind installations. In 
addition to practical considerations about where to conduct offshore construction activities, 
information about the distribution of hard bottom habitats is critical for making environmentally 
sound decisions about offshore activities that may impact sensitive biota. Hard bottom substrate 
can provide a stable point of attachment for sessile invertebrates, such as corals and sponges that 
are slow growing and particularly vulnerable to disturbance (Freiwald 2002). Hard bottom 
substrate and associated invertebrate communities can also provide refuge and settlement habitat 
for various fishes (Guida et al. 2017). More generally, areas of hard bottom substrate that are 
structurally complex have been associated with higher levels of biodiversity (Steimle and Zetlin 
2000). 
 
In this study, the seafloor within the NYWEA was characterized using multibeam acoustic sonar, 
towed video camera images, and sediment grab samples (see Chapters 9 and 11). This analysis 
suggested that the NYWEA consists primarily of soft bottom substrate. This chapter describes a 
regional map of the distribution of hard bottom habitats that was developed for the entire New 
York Bight to provide additional context about the seafloor in areas outside of the NYWEA that 
may be impacted by activities within the NYWEA (e.g., cabling associated with offshore wind 
installations) or that may receive future consideration for activities overseen by BOEM. 
However, the types of high-resolution information collected in the characterization of the 
NYWEA are not available for much of the New York Bight. Dunn and Halpin (2009) 
demonstrated that spatial predictive modeling could be used to predict the extent of hard bottom 
habitats at a regional scale from a regional bathymetry dataset. Poti et al. (2012) developed a 
model predicting the occurrence of hard bottom habitats in the New York Bight using point 
locations of known hard bottom habitats and regional bathymetry data from the NOAA Coastal 
Relief Model (NGDC 1999). For this report, an updated model predicting the occurrence of hard 
bottom habitats at 200 x 200 m grid resolution in the New York Bight was created to incorporate 
the considerable amount of bathymetry data collected in the region over the past decade using 
multibeam sonar. 

8.1 Methods 
8.1.1 Hard bottom Occurrence Records  
Point locations of hard bottom occurrence were extracted from dbSEABED (Jenkins 2018; see 
Chapter 10 for description of dbSEABED). Records included in the analysis by Poti et al. (2012) 
from the U.S. Geological Survey (USGS) usSEABED database (Reid et al. 2005), and from 
hydrographic survey annotations in NOAA’s National Ocean Service (NOS) and U.S. Coast and 
Geodetic Survey Bottom Type Descriptions database (NOAA NOS 2013) are included in the 
holdings of dbSEABED.  

8.1.2 Environmental Predictor Variables 
Environmental predictor variables considered for the model of hard bottom occurrence included 
measures of depth and seafloor topography, seafloor substrate, and oceanography. 
Environmental predictor variables depicting depth and seafloor topography were derived from a 
synthesis of recent bathymetry data collected using multibeam sonar and older bathymetry data 
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collected using single beam echosounders. These data were acquired from NOAA NCEI’s 
Bathymetry Data Viewer (NOAA NCEI 2019). To create the bathymetry synthesis, first a 
gridded data layer at 25 x 25 m resolution was interpolated from the point data collected by 
single beam echo sounders using the Empirical Bayesian Kriging tool in ArcGIS (Krivoruchko 
2012). Kriging is a stochastic interpolation method that uses the assumption that measured values 
are more similar for neighboring samples than for samples farther away (Tobler 1970) to 
estimate values at locations that have not been sampled (Cressie 1993). A final gridded 
bathymetry layer at 25 x 25 m resolution was then created by mosaicking the kriged bathymetry 
layer with the bathymetry data layers collected by multibeam sonar, with priority given to more 
recent and higher-resolution multibeam bathymetry data in areas where multiple datasets 
overlapped. Several environmental predictor variables depicting measures of seafloor topography 
were calculated from the final bathymetry synthesis (see Table 6.1 in Chapter 6 for detailed 
descriptions of these variables). The bathymetry (depth) and seafloor topography data layers 
were each aggregated to the 200 x 200 m resolution of the model grid by calculating the mean of 
all 25 x 25 m grid cells within each 200 x 200 m grid cell using the Aggregate tool in ArcGIS. 
By first creating the initial bathymetry synthesis layer and derived seafloor topography layers at 
25 x 25 m resolution and then aggregating to the 200 x 200 m resolution of the model grid rather 
than just creating the bathymetry synthesis at 200 x 200 m resolution, the intent was to capture as 
much of the fine-scale variability in seafloor topography from the multibeam bathymetry data as 
possible. Many of the multibeam bathymetry datasets had a native resolution close to 25 x 25 m.    
 
Environmental predictor variables depicting seafloor substrate (see Chapter 10 for a description 
of these data layers) were initially considered in preliminary models, but were later excluded 
because model performance declined when these variables were included. This effect on model 
performance is likely because the data layers depicting surficial sediment composition were 
interpolated from relatively sparse data, and the scale at which they resolve properties such as 
sediment grain size was too coarse relative to the locations of hard bottom occurrence. Similarly, 
environmental predictor variables depicting oceanography (i.e., bottom ocean currents) were 
initially considered, but later excluded due to the coarse spatial resolution of available ocean 
circulation models for the New York Bight. A pairwise correlation analysis was used to identify 
and exclude highly correlated (Spearman rank correlation, |ρ| > 0.7) environmental predictor 
variables. The final set of environmental predictor variables used in the model of hard bottom 
occurrence included depth, slope, aspect (eastness), aspect (northness), general curvature, plan 
curvature, and profile curvature.   

8.1.3 Maximum Entropy Modeling 
Because datasets used to compile point records of hard bottom occurrence did not provide 
reliable information on the absence of hard bottom (i.e., a sediment grab sample containing 
unconsolidated sediment does not preclude the presence of adjacent hard substrate), modeling 
approaches considered were restricted to presence-only methods. Underwater visual surveys 
(e.g., using ROVs) or data collected using acoustic sonar could provide more reliable absence 
data for hard bottom, but these data do not exist across much of the New York Bight.    
 
A maximum entropy (MaxEnt) model was used to predict the likelihood of hard bottom 
occurrence across the New York Bight. MaxEnt is a machine learning approach that estimates 
functional relationships between occurrence and the environmental predictor variables, with 
these relationships constrained by the mean value of the environmental predictor variables at the 
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locations of known occurrences (Phillips et al. 2004, 2006). MaxEnt uses these relationships to 
predict the relative likelihood of occurrence at all locations in a specified domain. MaxEnt is 
commonly used in species distribution modeling to create maps of habitat suitability (Elith et al. 
2011), and the approach used in this study can be thought of similarly as producing a map 
depicting the “suitability” of the seafloor for patches of hard bottom substrate. The map of the 
predicted likelihood of hard bottom occurrence depicts the complementary log-log transform of 
the raw MaxEnt output (Phillips et al. 2017). It is important to note that it should be considered a 
measure of relative likelihood rather than a strict measure of the probability of finding hard 
bottom at a given location. 
 
Model performance was assessed using 10-fold cross validation. Hard bottom occurrence data 
were divided into 10 subsets, and each subset was used to evaluate a model fit using the data in 
the other nine subsets. The statistic used to evaluate model performance was the area under the 
receiver operating characteristic curve (AUC). In addition to calculating the mean prediction of 
hard bottom occurrence across the 10 cross-validation folds, the coefficient of variation in 
predictions was also calculated as a measure of variability in predictions.   

8.2 Results and Discussion 
8.2.1 Hard bottom Occurrence Records 
The compilation of point locations of hard bottom occurrence from dbSEABED included 57 
records in the New York Bight (Figure 8.1). The relatively low number and the distribution of 
these records reflect the fact that most of the continental shelf of the New York Bight is covered 
by sand, with only scattered hard bottom habitats (Poppe et al. 1994; Steimle and Zetlin 2000), 
but also that there are still many areas in the New York Bight where the seafloor has not been 
extensively surveyed. While many of the records were located on the continental slope, this does 
not necessarily suggest that sampling was biased toward the slope. For example, dbSEABED 
contains numerous survey records on the continental shelf (see Figure 10.1), where few records 
of hard bottom occurrence existed. 
 
A dataset developed by The Nature Conservancy as part of the Northwest Atlantic Marine 
Ecoregional Assessment (Greene et al. 2010) was also considered for inclusion in the 
compilation of hard bottom occurrences. However, based on preliminary model runs, these 
records were not included. Many of these records were from fisheries trawl surveys, and their 
recorded spatial locations may represent a >1 km trawl, which is less precise than the spatial 
resolution of the model. A number of these records are located near the heads of submarine 
canyons, but the locations of the hard bottom habitats that these records represent may actually 
be within the submarine canyons. 
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Figure 8.1. Locations of hard bottom occurrences in the New York Bight from dbSEABED. 
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8.2.2 Predicted Hard Bottom Occurrence 
The MaxEnt model of hard bottom occurrence predicted relatively high likelihood of hard 
bottom in some nearshore areas (e.g., on the edge of Block Channel in the northeast of the study 
area), on the sides of the Hudson Shelf Valley, and on the slopes of the submarine canyons that 
incise or partially incise the continental slope (Figure 8.2). Within the NYWEA, the northwest 
portion was predicted to have a relatively higher likelihood of hard bottom occurrence, as 
suggested by the backscatter intensity data collected during this study (see Chapter 9). The mean 
test AUC from cross-validation was 0.84, which indicated that the model performed reasonably 
well. 
 
It is important to recognize that the model predictions do not provide any estimate or information 
about the area of predicted hard bottom features or the proportion of hard bottom habitat that 
may be found in a specific location. Rather, they simply provide a relative measure of how likely 
hard bottom is to occur in a given grid cell. A grid cell predicted as highly likely to contain hard 
bottom could conceivably contain mostly sand or other soft bottom, since the patches of hard 
bottom are likely smaller than the 200 x 200 m resolution of the model. The map of variability in 
the prediction of hard bottom occurrence suggests that there is relatively higher variability in 
predictions on the continental shelf as opposed to the continental slope (Figure 8.3), perhaps 
because hard bottom habitats on the continental shelf are so scattered. The areas with lower 
prediction variability also correspond to the areas where higher-resolution bathymetry data have 
been collected with multibeam acoustic surveys.  

8.3 Conclusions 
With the incorporation of recently collected multibeam bathymetry data, updated maps of 
predicted hard bottom occurrence were generated at 200 x 200 m resolution, an increase in 
resolution of approximately16x from the previous maps created by Poti et al. (2012). This 
improvement, along with the addition of records of hard bottom occurrence in the submarine 
canyons on the continental slope, allowed for better delineation of features likely to contain hard 
bottom habitats (e.g., the steep walls of a submarine canyon). However, there are still many areas 
on the continental shelf that have not been mapped to obtain high-resolution data. It is therefore 
important to collect additional bathymetry and backscatter intensity data with multibeam sonar, 
in conjunction with direct sampling of the seafloor, for specific sites where management 
decisions require information about the distribution of hard bottom habitats. These collections 
will allow continued improvement in regional models of hard bottom occurrence.  
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Figure 8.2 Mean predicted likelihood of hard bottom occurrence from a MaxEnt model relating 
locations of hard bottom habitats to environmental predictor variables derived from a regional 
synthesis of bathymetry. 
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Figure 8.3 Coefficient of variation (CV) of predicted likelihood of hard bottom occurrence from a 
MaxEnt model relating locations of hard bottom habitats to environmental predictor variables 
derived from a regional synthesis of bathymetry. 
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Chapter 9. Sediment Grab Analysis 
 
The substrate of the seafloor is an important component for classifying benthic habitats, which in 
turn can reveal information about an area’s geological and biological origins. For example, the 
substrate type can influence the shape of geoforms, and the distribution of flora and fauna based 
on their suitability to substrate types. The compilation of biological and geological components 
are used to create a unique benthic habitat.  
 
Substrates are typically divided into hard or soft bottom categories. The NYWEA was completely 
devoid of hard bottom except for the presence of several shipwrecks (see Chapter 2) that are 
considered anthropogenic substrates (CMECS 2017). The shipwrecks were therefore excluded 
from the habitat assessment. The backscatter intensity mosaic created from the multibeam sonar 
surveys (see Chapter 2) was used to map changes and patterns in the soft bottom substrate. 
Similarly, Goff et al. (2004) used backscatter to classify seafloor substrate types on the continental 
shelf of New Jersey. However, the intensity of acoustic returns from the seafloor can vary 
significantly depending on the sensor or platforms used to conduct the surveys, as well as many 
other physical oceanographic variables (Hughes Clarke et al. 2008). In order to overcome these 
influences on intensity returns, in situ data from sediment grab samples were used to calibrate the 
intensity values in order to be able to produce a normalized backscatter mosaics.  
 
Comprehensive sediment analysis of NYWEA was conducted through independent, laboratory 
analysis of sediment grab samples in order to map the grain size distribution (φ, phi) and assess 
the local and regional substrate components. However, due to the length of time needed to 
conduct the full laboratory sediment analysis, these results were not available to calibrate the 
backscatter data or as a predictor dataset for the BRT modeling.  
 
In order to merge backscatter intensity data from different surveys conducted in the NYWEA 
(i.e., NOAA Ship Nancy Foster 2017 and Ferdinand R. Hassler 2013), acoustic intensities from 
the respective surveys were adjusted to provide a normalized backscatter mosaic across the entire 
study area. The BRT modeling only relied on the presence and absence data and the underwater 
video analysis from the observations in the field during the R/V Tiki XIV survey (see Chapter 7). 
The results of the comprehensive sediment analysis are the focus of this chapter. 

9.1 Methods 
9.1.1 Sediment Grab Collection 
Sediment analysis was conducted at sample locations spatially coincident with the sites used to 
provide GV predictors and AA data for the benthic habitat map (see Chapter 3). The sediment 
grabs conducted on the R/V Tiki XIV survey utilized modified methods from the NOAA National 
Status and Trends Program for the National Benthic Surveillance and Mussel Watch Projects 
(Lauenstein and Cantillo 1993). Prior to homogenizing the sediment samples, sample stiffness 
and sorting was observed and recorded as the sample was released from the MVV. Sample 
“stiffness” was visually assessed and classified by gauging the level of sediment cohesion they 
retained after being released from the MVV. Sample sediment stiffness was annotated as either 
“Very Stiff”, “Stiff”, or “Soft”. Sediment stratification (from the surface of the grab sample to 
the bottom) was also noted for each site and annotated as either “Fine to coarse”, “Coarse to 
Fine”, or “None” for a well sorted sample.  



79 
 

Approximately 250 g homogenized sample was taken from each MVV sediment grab site and 
sent to TDI-Brooks to be sieved for phi analysis. Large shell fragments (>64 mm) and living 
organisms were carefully removed from the sample prior to placement into a Whirl-pack. The 
samples were stored in insulated coolers with ice packs to maintain the temperature around 17ºC. 
The samples were never frozen or dried prior to the analysis as a freeze-thaw cycle of the sample 
could potentially cause irreversible change in the particle-size distribution due to oxidation and/or 
agglomeration (Plumb 1981). Once the sediment samples arrived at the TDI-Brooks International 
laboratory, they were cataloged and refrigerated until they were ready to be analyzed. 

9.1.2 Grain Size Analysis 
TDI-Brooks International laboratory conducted grain size analysis using sieve and hydrometer 
methods, per the American Society for Testing and Materials International standards (ASTM 
2007). Samples were prepared for analysis by drying overnight in a 105ºC oven, and then 
disaggregated using a rubber-tipped mortar and pestle to prevent wear down of the sediment. 
Biogenic substrates present within the sediment, such as broken shell hash and carbonates, were 
retained in the samples and included in the phi analysis. Each sample was then placed in a stack 
of gradually tighter sieves, each sieve corresponding to a specific phi size range (Table 9.1). A 
mechanical sieve shaker was used to shake the stack of sieves. After five minutes of sieve 
shaking, the sediment retained in each sieve was weighed and compared to the total mass of the 
sample. The percent distribution of the samples were then calculated from the retained weight for 
each phi size range. 
 
Table 9.1. Sieve sizes used from TDI-Brooks International Laboratories for grain size analysis. 
  

Sieve Number Mesh Diameter (mm) phi Size 
NA 64 -6.0 
1 1/4 in. 31.5 -5.0 
5/8 in.  16 -4.0 
5/16 in.  8 -3.0 
No. 5 4 -2.0 
No. 10 2 -1.0 
No. 18 1 0.0 
No. 35 0.5 1.0 
No. 60 0.25 2.0 
No. 120 0.125 3.0 
No. 230 0.063 4.0 

 
Grains finer than the No. 230 sieve (0.0625 mm) were collected and transferred to a hydrometer 
to measure phi sizes 4 to 9.5. A test group of 16 samples was randomly selected to analyze for 
full phi analysis using the sieve and hydrometer methods to evaluate the overall distribution of 
coarse and fine grains. Less than 5% of each sample from the pilot group passed through the No. 
230 sieve, with most of the pilot samples having less than 2% of the grains analyzed with the 
hydrometer (Figure 9.1). TDI-Brooks International typically uses the hydrometer test to calculate 
phi for silt and clays when more than 15% of the sample passes through the No. 230 sieve. 
However, the content of the silt and clay grains from the pilot test samples did not support the 
need for further hydrometer testing on the remainder of the samples. The results from the full phi 
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analysis of the pilot group indicated that the samples were predominantly sand, therefore it was 
unnecessary to conduct hydrometer tests for all 400 samples. Silts and clays that passed through 
the dry sieve for each sample were then grouped together and were recorded as “mud” with <4 phi.  
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9.1.3 Sediment Classification and Spatial Analysis 
A simple classification method of the substrate type was conducted using the Sedplot software 
developed by the USGS (Poppe and Eliason 2008). Sedplot classifies sediment samples using the 
percentages of each phi class to generate ternary diagrams that graphically depict the ratios of 
muds, sands, and gravels. The program permits the user to select either the Shepard 
Classification System (Shepard 1954) for fine-grained sediments, or the Folk Classification 
Scheme (Folk 1954) for more coarsely textured sediments. Since the hydrometer test was not 
used to get the full percent distribution of silts and clays (>4 phi) for each sample, the Folk 
Classification System was used to classify the substrate component. 
 
The results from the grain size sieve analysis were then compiled into an ESRI shapefile with the 
site locations and annotations from the Trimble Geo 7x data during R/V Tiki XIV survey and 
projected into NAD 83 UTM Zone 18N using ArcGIS (version 10.5). The stratification and 
stiffness of the sediment textures from the observations of the MVV grab samples were also 
joined to the shapefile (see Section 9.2). The MVV data could then be used to classify the 
sediment textures, statistically model the grain size distribution, and be visually compared to the 
backscatter mosaic of the entire NYWEA. 
 
The Geostatistical Analyst toolbox in ArcGIS (version 10.5) was used to produce interpolated 
surfaces of the phi class distributions from the sediment grab samples using several different 
methods. These methods were developed to model spatial dependency of continuous data 
through discrete sample points using semivariogram models (Krivoruchko 2005). The 
performance of the interpolations can be optimized for the spatial distribution of the data by 
controlling the size of the search neighborhood and therefore the number of points considered. 
One interpolation method available is Inverse Distance Weighted (IDW). IDW conducts a direct 
interpolation of the data while assuming that points closer to each other are more alike than 
points farther away.  
 
However, IDW is limited in that it does not generate an uncertainty layer for cross validation of 
model performance. Simple, Ordinary, and Bayesian kriging methods were tested to calculate the 
statistical models of the point distribution by factoring in the uncertainty and probability of 
occurrence to create a continuous surface from the sample points. These interpolation techniques 
also allow the modeler to apply trends in the data, such as the changes in slope and bathymetry 
as a weighting factor. The summary statistics of each model were analyzed using the Subset 
Features Tool to choose the kriging method with the lowest RMSE predictions and the lowest 
standard error. The Bayesian method had the highest correlation of RMSE to standard error 
curves that validated the uncertainty variability. Bayesian Kriging computes hundreds of 
semivariograms and automatically chooses the best fit. An IDW and Bayesian Kriging model 
were compared for each phi class and classified using natural breaks in the data histograms 
(jenks) to group the grain size distributions into percentage categories. The output from the IDW 
and Bayesian kriging interpolation methods were compared to the backscatter surface to see if 
the results made sense and will be discussed in detail in the next section. 

9.2 Results 
It is generally recognized that sediment grain size distribution is inversely related to distance 
from shore, wherein gradually finer sediment clasts are transported further away from land and 
river inputs. However the unconsolidated substrates of the New York bight are relict of past sea 
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level transgressions and do not conform to modern marine depositional environments (Schlee 
1973). Qualitative analysis of the backscatter data collected by the NOAA Ship Nancy Foster, 
the observations from the MVV samples and the quantitative analysis from TDI-Brooks sieve 
tests provide a better understanding of the distribution, sorting, stratification, and stiffness of 
these ancient sediments. Once the sediment grab data was projected onto the maps, localized 
patterns of fine and coarse-grained substrates emerged that correlate with the geoforms detected 
by the backscatter and morphometrics. The results from these classifications and models are 
described below. 

9.2.1 Substrate classifications from Sieve Test  
Sediment sieve results were divided into distinct grain size classes. Folk plots were used to 
describe the benthic sediment grain-size nomenclature by classifying each sample into one of 
fifteen major textural groups that were defined by the ratio of gravel, sand, and mud from the 
sieve test results. This classification scheme provides usable information for determining the 
final classes for the Habitat Mapping interpretations in Chapter 11. Folk plots of the fine and 
coarse sediment categories revealed that the sediment texture of the NYWEA is predominantly 
well-sorted sand with conglomerations of larger clasts in a smaller portion of the sample sites 
(Figure 9.2a). The Folk Gravel plot (Figure 9.2b) revealed more heterogeneity of sites falling 
into the “slightly gravelly sand”, and six sites in the “sandy gravel” category. Only one site in the 
northeastern most portion of the NYWEA was determined to be “silty sand” on the Fine 
Sediment Folk plot (Figure 9.2a).  
 

 
Figure 9.2 Sedplot Folk Diagrams for (a) Sand-Silt-Clay and (b) Gravels. 
 
The Folk Classification system can be useful for categorizing major trends in the data, but it 
cannot provide any spatial distribution assessment of the distinct sediment categories. Simple 
classifications based on in situ data can mask the real correlation of the substrate to the biotic and 
geoform components. A more comprehensive approach was implemented to model the 
percentage of muds, sands, or gravels by the phi class over the study area using geostatistical 
interpolations as shown in Section 9.2.2. 

a b 
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9.2.2 Grain Size distribution models  
Initial spatial distribution of the study area was mapped by creating a pie chart for each sediment 
sieve result from the grab sample sites in the NYWEA (Figure 9.3). However, geostatistical 
modeling is a more effective way to illustrate the grain size distribution and reveal spatial trends 
by interpolating the results of each phi class. It is important to note that these models were 
chosen to best represent the data spatially, but do not represent actual distinct boundaries for 
changes in sediment textures. However, due to the sampling strategy used in identifying sample 
sites within the NYWEA, sampling stations were unequally distributed. This distribution of sites 
led to under-performance of the IDW model interpolations in areas where sampling was sparse. 
All of the values that occurred in the sieve test results were displayed in the IDW surface exactly 
as they were without any uncertainty, which creates “bull’s eye” patterns in the models around 
sites with relatively higher concentrations of a given class. This was especially comparing the 
model results with the backscatter base layer imagery showed higher intensity values such as the 
IDW pebble model (Figure 9.4). The Bayesian Kriging method had better performance with 
lower RMSE values (Table 9.2) and provided results that coincided with the seafloor signatures 
from the backscatter. However, the values of the percentage categories for each phi class are 
relative to the dimensions of the sampling neighborhood, the sample site density, and the 
uncertainty of the models. 
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Table 9.2 Root Mean Square Error (RMSE) comparisons from IDW and Bayesian Kriging (BayKrig 
in table) models. 
 
phi Sediment Class Max 

Hood 
Min 

Hood Sector Type Angle 
offset Radius IDW RMSE BayKrig 

RMSE 
4 Mud 15 5 Circle with 4 Sectors 65 5000 1.126854 1.078212 

3 Very Fine Sand 15 5 Circle with 4 Sectors 65 5000 10.25833 8.898667 

2 Fine Sand 15 5 Circle with 4 Sectors 65 5000 11.71093 14.28582 

1 Med Sand 15 5 Circle with 4 Sectors 65 5000 9.528682 9.168033 

0 Coarse Sand 15 5 Circle with 4 Sectors 65 5000 3.415909 3.295805 

-1 Very Coarse Sand 15 5 Circle with 4 Sectors 65 5000 2.840838 2.700166 

-2 Granules 15 5 Circle with 4 Sectors 65 5000 3.689347 3.508178 

-3 Small Pebbles 15 5 Circle with 4 Sectors 65 5000 2.708654 2.558305 

-4 Pebbles 15 5 Circle with 4 Sectors 65 5000 1.933676 1.893849 

-5 Large Pebbles 15 5 Circle with 4 Sectors 65 5000 0.327571 0.3028181 
 
 
The largest clasts that were analyzed by TDI-Brooks from the R/V Tiki XIV survey were Large 
pebbles (-5 phi), however there were insufficient number of samples to generate an interpolated 
model. There were also three sites where cobbles (-6 phi) were identified from the MVV 
samples, however these were not sent to the lab for analysis (see Chapter 7). The Pebble class (-6 
phi) was collected in a sufficient number of GV leading to strong model performance. Pebbles 
were predominantly concentrated in the western-most region of the study area near Cholera 
Bank, but also were present in a broad belt across the middle of the NYWEA along the 40 m 
contour (Figure 9.5). The blue area around 40º 20’N was filled in with smaller pebbles (-3 phi) 
and granules (-2 phi), as seen in Figures 9.6 and 9.7, respectively. Cobbles, pebbles, and granules 
were grouped together as “gravels” (Folk 1954) and were spatially correlated with the wedge 
shaped, high intensity areas in the backscatter. These areas had high concentrations of ripple 
geoforms as were seen in the underwater video in Chapter 7. Gravels and larger pieces of broken 
shell typically settle in the troughs of ripple formations as finer grain sediments are transported 
on the ridges (Reineck and Singh 1980). Most gravels were well rounded due to weathering from 
sediment transport of ancient fluvial channel ways and sorted by shifting currents and major 
storm events common in the New York Bight (Schlee 1973). The pebbles and other gravelly 
clasts were dominant in these rippled areas and coincided with high backscatter intensity, but 
very few samples were collected over these areas due to the unstratified sampling design.  
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Prior to geostatistical or predictive modeling, the results from sediment sample (i.e., phi analysis, 
Figure 9.1, and the Folk Plot of the entire dataset, Figure 9.2) indicated that the NYWEA was 
predominately composed of sandy substrates. The coarse (0 phi) and very coarse (-1 phi) sands 
were generally concentrated around the wedge-shaped gravel zones at the 40º 20’N latitude 
(Figure 9.8 and 9.9). However, there were large areas in the eastern portion of the NYWEA 
where the models indicated strong presence of coarse sand and medium sand (1 phi) (Figure 
9.10). These areas were about 10 km away from the gravel zones in the study area, but did show 
stronger backscatter intensities in the backscatter mosaic than the surrounding fine sands (2 phi) 
(Figure 9.11). These differences in the intensities were largely due to the interplay of changes in 
the substrate texture, the shift from highly rippled sands to larger megaripple geoforms, and the 
reworking of sediments from faunal beds of sand dollars (Echinarachnius parma) and other 
benthic invertebrates. The interpretation of these substrates concur with the GV observations 
described in Chapter 7.  
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The sediment models for very fine sands (3 phi) showed no apparent spatial relationship with 
distance from shore, geoform patterns, or backscatter intensities (Figure 9.12). It is also 
important to note that very fine sands grain size class had the second highest RMSE value from 
the Bayesian Kriging. Very fine sand was concentrated on the western side of the study area near 
the gravel beds. However, there were insufficient number of sample sites directly on the gravel 
deposits in this area, so the interpolations may misrepresent the sediment distribution in this 
particular area. Very fine sand was also prominent on the eastern side of the NYWEA where the 
geoform is mainly mega ripples. Typically, very fine sediment particles are deposited at slower 
rates than coarser grain material, but are easily suspended and transported by currents through 
the saltation process (Reineck and Singh 1980). Thus, the grain size distribution of very fine 
sediment particles can change in dynamic flow regimes from storm events or shifts in currents. 
Muds (>4 phi) had similar distributions as the very fine sand across the study area, however it 
was less abundant in the sample collections.  
 
The darker shaded regions of the backscatter intensity mosaic coincided with the very fine sands 
and mud distribution on the eastern side of the study area, as well as surrounding the gravelly 
areas. This likely resulted from the sonar waveforms being absorbed or scattered by surficial fine 
sands (Figures 9.12 and 9.13) and muds instead of reflection from coarser grains, giving the 
imagery lower decibel values and darker shades in the mosaic (Fonseca and Mayer 2007). On 
average, mud (>4 phi) had the lowest percent distribution of each sample throughout the 
sediment sampling survey, but it actually had the highest RMSE of any grain size category. This 
may be due to the very low percentages of mud in the samples. The highest concentration of 
samples containing mud were located in the northwestern most corner of the NYWEA, 
surrounding the gravelly zones (Figure 9.13). The mud deposits around the gravel beds may be a 
result from the weathering of larger clasts and broken shells in these higher energy areas. 
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9.2.2 Sediment Stiffness and Stratification 
Substrate stiffness and stratification can have a direct influence on the absorption or scattering of 
sound waves from multibeam sonar systems, resulting in different angular responses to the 
returning echoes (Fonseca and Mayer 2007). Seafloor sediment stiffness and stratification may 
also have relevance for the engineering, design, and siting of offshore wind turbine platforms and 
anchoring. The stiffness, or stability of the sediment, is controlled by the cohesive forces 
between the grains and the pressure of the fluids in the pores (Strout and Tjelta 2005). These 
properties can have a fundamental influence on the engineering behavior of the substrate. 
Sediment stiffness was qualitatively measured in the field during the R/V Tiki XIV survey by 
observing the cohesion of the sediment samples as they were released from the MVV. The 
results from the stiffness test were overlaid on to the backscatter mosaic in Figure 9.14. The 
sediment stiffness did not appear to have a direct spatial correlation with patterns in the 
backscatter mosaic or the distribution of different grain sizes. The majority of the samples were 
characterized as being “stiff”. The lack of geo-physical instruments that could properly measure 
the stiffness of the sediment samples during the R/V Tiki XIV survey may have skewed the 
stiffness results. Quantitative results of Sediment stiffness can be quantitatively measured using a 
Free Falling-Cone Penetrometers (FFCP) that can detect in situ sleeve resistance, pore pressure, 
tilt, and even temperature (Stegmann et al. 2006). However, implementation of the FFCP method 
was beyond the scope of this report. 
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Most of the surficial sediments of the New York Bight are restricted in their sorting range, and 
typically have very little stratification (Schlee 1973). Sediment samples collected within the 
NYWEA confirmed that the sediments were very well sorted (Figure 9.15). The findings showed 
that only 44 of the 390 total sites had any sediment stratification present in the profile 
(approximately 10 cm) taken by the MVV (11% of total number of samples). A “fine to coarse” 
profile was only observed at four sites. These samples distinctly occurred at sites on the wedge-
shaped gravely deposits identified in the backscatter mosaic. This correlation agrees with the 
principle that these highly rippled areas have sorted finer clasts on top of coarser grains. Forty 
sites contained a “Coarse to Fine” sediment profile. These sample sites were mainly located in 
the eastern half of the NYWEA where there was mostly fine and medium sands. The deposits of 
coarser sediments on top of the finer materials may be due to reworking of sediments and 
migrations of megaripples from currents and strong storm systems (Reineck and Singh 1980). 
 
The sedimentary processes and the depositional environment of the NYWEA are generally 
representative of the New York Bight continental shelf, at large. 
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Chapter 10. Sediment Texture Analysis 
 
In addition to maps of hard bottom habitats (Chapter 8) and detailed maps of benthic habitats 
(Chapter 11), maps of the distribution and characteristics of surficial sediments are also critical 
for informing the management of marine resources, particularly activities that may affect benthic 
habitats. Soft bottom substrates can provide habitat for invertebrate communities and demersal 
fishes, and information on the composition of sediments on the seafloor can be used along with 
information from fisheries surveys to identify and describe Essential Fish Habitat (Lathrop et al. 
2006). Maps of seafloor features are also needed for decisions about offshore engineering 
activities, such as where to site offshore wind installations. 
 
Similar to other continental shelf regions, the seafloor features of the New York Bight reflect 
both its geologic history and the influence of dynamic oceanographic and sedimentological 
processes. Specifically, the actions of those processes on deposits during the >100 m rise in sea 
level following the end of the last glaciation resulted in the present distribution of surficial 
sediments (Williams et al. 2006; Goff et al. 2008). While the surficial sediments on the 
continental shelf of the New York Bight are predominantly sand, transitioning to silt and clay in 
deeper areas, there are scattered areas of exposed rock, cobble and gravel habitats, and 
anthropogenic features like dredge disposal sites and artificial reefs (Poppe et al. 1994; Steimle 
and Zetlin 2000). A prominent seafloor feature in the New York Bight is the Hudson Shelf 
Valley, extending from the mouth of the Hudson River across the entire continental shelf. It is 
the only valley on the Atlantic continental shelf not completely filled with sediment following 
the last glaciation (Freeland et al. 1981; Butman et al. 2003). The Hudson Shelf Valley connects 
to Hudson Canyon, the largest of a number of submarine canyons that incise or partially incise 
the continental slope (Butman et al. 2006). 
 
Although some areas of the New York Bight have been surveyed extensively (e.g., Hudson Shelf 
Valley, Hudson Canyon), for most areas the spatial coverage of sediment sampling data is 
limited and not sufficient to capture the many spatial scales of variability in surficial sediment 
characteristics (Goff et al. 2008). To overcome this limitation, seafloor substrate has been 
mapped and characterized using sidescan sonar (Lathrop et al. 2006) and backscatter intensity 
from multibeam sonar (Butman et al. 2006; De Falco et al. 2010; Brown et al. 2011). However, 
Goff et al. (2008) stress that considerable sediment sampling is still needed to calibrate the 
relationship between acoustic sonar data and sediment properties as this relationship will vary by 
region.  
 
Several studies have demonstrated that statistical models can be used to create continuous maps 
of surficial sediment composition from sediment sample data in large, often heterogeneous, 
legacy databases. For example, Goff et al. (2008) used ordinary kriging to map mean grain size 
on the Long Island shelf from sediment data in the USGS usSEABED database (Reid et al. 
2005). Similarly, Acharya and Panigrahi (2016) used Bayesian kriging to map the distributions 
of sediment organic carbon and phosphorous on the Eastern Arabian Shelf, and Bockelmann et 
al. (2018) used kriging to map mud content and grain size in the North Sea. Stephens and 
Diesing (2015) and Diesing et al. (2017) mapped sediment composition for a large area of 
continental shelf across parts of the North Sea, English Channel and Celtic Sea, but did so using 
random forest modeling, a machine learning method.  In the New York Bight, Poti et al. (2012) 
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used geostatistical methods similar to Goff et al. (2008) to develop maps of surficial sediment 
mean grain size and composition (percentages of mud, sand, and gravel) from sediment data in 
the USGS Atlantic Coast usSEABED database (Reid et al. 2005).  
 
This chapter presents updated maps of surficial sediment grain size and composition for the New 
York Bight. The new maps are at higher spatial resolution and extend slightly farther offshore 
than those created by Poti et al. (2012), and were generated using the data and interpolation 
methods of dbSEABED, a processing system that integrates seabed datasets to map and analyze 
seabed properties (Reid et al. 2015; Jenkins 2018). The characterization of surficial sediments for 
the entire New York Bight provides context for how the seabed within the NYWEA conforms 
with the broader region. For example, the regional maps provide additional information about the 
distribution of surficial sediments in areas outside the NYWEA that may be impacted by 
activities within it (e.g., cabling associated with offshore wind installations) or that may receive 
future consideration for activities overseen by BOEM. A more detailed characterization of the 
seabed within the NYWEA is provided in Chapter 9. 

10.1 Methods 
10.1.1 Surficial Sediment Data 
The dbSEABED processing system integrates a multitude of individual datasets, both legacy and 
modern collections, into a unified database that can be used to map properties of the seafloor 
(Reid et al. 2005, 2006). The data holdings in the dbSEABED system for the Atlantic continental 
margin are considerable due to its role in the USGS usSEABED project and include all the 
records in the Atlantic Coast usSEABED database (Reid et al. 2005). Other notable large 
collections in the dbSEABED system are the USGS East Coast Sediment Texture Database 
(Poppe et al. 2014), NOAA’s NOS and U.S. Coast and Geodetic Survey (now the National 
Geodetic Survey) Hydrographic Surveys database (NOAA NOS 2013), and datasets in the 
Marine Geology archive at NOAA NCEI (NOAA NCEI 2018). As part of this study, new data 
collections were added to dbSEABED through data mining from published papers, reports and 
theses, mappings, released datasets, and expedition reports. Because previous data holdings were 
relatively sparse, finding additional datasets from the continental slope was emphasized. In 
addition, data from sediment grab samples collected during this study (Chapter 9) were 
incorporated into dbSEABED. Prior to predicting continuous, gridded data layers for percentages 
of mud, sand, and gravel from the samples in dbSEABED, values for these variables were 
transformed using a standard log-ratio approach for compositional data (Aitchison 1986). 

10.1.2 Gridded Predictions of Surficial Sediment Composition 
Many statistical approaches have been used to generate gridded, spatially continuous data from 
point samples of environmental data. These include deterministic methods, such as inverse 
distance weighted interpolation, and stochastic methods, like kriging and machine learning 
algorithms (Li and Heap 2014; Stephens and Diesing 2015). Li and Heap (2014) reviewed 25 
commonly applied methods and noted several important considerations for choosing an 
appropriate method, including the distribution and quality of sample data and spatial correlation 
in the data, which may be reduced in areas with higher topographic complexity. For surficial 
sediment data, these specific considerations are reflected in that many methods do not accurately 
predict sharp boundaries in sediment distributions, particularly across environmental zonations 
(e.g., the transition from continental shelf to continental slope). 
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In this study, continuous gridded maps of sediment composition (median grain size and 
percentages of mud, sand, and gravel) were created for the New York Bight from the point 
samples of surficial sediments in dbSEABED using multivariate (3D) IDW interpolation. The 
3D IDW approach assumes spatial autocorrelation, that samples closer together are more similar 
than those farther apart (Tobler 1970), and calculates values at unsampled locations using a 
weighted combination of the values of neighboring sample locations. The distance between 
sample points from dbSEABED was measured in 3-dimensional space so that distance weights 
reflected easting, northing, and depth distances. Maps were generated at 200 x 200 m resolution, 
the highest resolution supported by the spacing of the sample data. Grid cells containing sample 
data were assigned the mean value of the sample points within the grid cell. All other grid cells 
were assigned interpolated values.   
 
To assess the performance of these methods, output maps were examined to determine if the 
gridded estimates sensibly followed terrain features such as the submarine canyons on the 
continental slope.  

10.2 Results and Discussion 
10.2.1 Surficial Sediment Data 
Within the dbSEABED holding in the New York Bight, there were 14,755 samples with 
measurements of median grain size (Figure 10.1). Most of the samples on the continental shelf 
were comprised of coarse to medium grained sand, with few scattered areas of pebbles and 
cobbles. Farther offshore, samples transitioned to finer grain size material consisting of silt and 
clay. The dbSEABED system contained 17,621 samples with measurements of percentage mud 
(Figure 10.2), percentage sand (Figure 10.3) and percentage gravel (Figure 10.4) in the New 
York Bight. The highest percentages of mud were found in samples farther offshore, on the 
continental slope, as well as in the eastern portion of the study area. Conversely, most of the 
samples on the continental shelf had very high percentages of sand. Few samples had high 
percentages of gravel. 

10.2.2 Gridded Predictions of Surficial Sediment Composition 
The interpolated map of median grain size indicated that the majority of the continental shelf in 
the New York Bight, including the NYWEA, is covered by sand (Figure 10.5). Areas of finer 
sediments (silt and clay) were predicted in the Hudson Shelf Valley, farther offshore on the 
continental slope, and in an area to the east. The areas predicted to have finer sediments 
corresponded to the areas predicted to have the highest percentages of mud, although there were 
also scattered areas with high-predicted percentages of mud across the continental shelf (Figure 
10.6). Very high percentages of sand were predicted across much of the continental shelf, 
including the NYWEA (Figure 10.7). Areas predicted to have higher percentages of gravel were 
patchy and scattered across the continental shelf (Figure 10.8). Interestingly, although the 
NYWEA was predicted as being comprised primarily of sand, there were areas predicted as 
having relatively a high percentage of gravel just outside the NYWEA. 
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Figure 10.1. Distribution of samples in dbSEABED with measurements of median grain size. 
Median grain size values are categorized into grain size classes according to the Wentworth scale 
(Wentworth 1922). 
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Figure 10.2. Distribution of samples in dbSEABED with measurements of percentage mud. 
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Figure 10.3. Distribution of samples in dbSEABED with measurements of percentage sand. 
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Figure 10.4. Distribution of samples in dbSEABED with measurements of percentage gravel. 
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Figure 10.5. Continuous gridded map of median grain size generated using 3D inverse distance 
weighted interpolation. Median grain size values are categorized into grain size classes according 
to the Wentworth scale (Wentworth 1922). 
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Figure 10.6. Continuous gridded map of percentage mud generated using 3D inverse distance 
weighted interpolation. 
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Figure 10.7. Continuous gridded map of percentage sand generated using 3D inverse distance 
weighted interpolation. 
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Figure 10.8. Continuous gridded map of percentage gravel generated using 3D inverse distance 
weighted interpolation. 
 

10.3 Conclusions 
Although overall spatial patterns of surficial sediment composition depicted in the updated maps 
are similar to the maps developed by Poti et al. (2012), the addition of new surficial sediment 
samples from dbSEABED and the application of the 3D IDW interpolation provided updated 
maps of surficial sediment composition at 200 x 200 m resolution, an approximately 16x 
increase in spatial resolution. As a result, the maps delineate the zonation of surficial sediment 
regimes with greater detail in areas with sufficient sample density. For example, the updated 
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maps depict more patches of gravelly sediments, which may be too small to have been captured 
in the previous maps (Poti et al. 2012).  
 
However, it is important to note that there are still many areas in the New York Bight where 
surficial sediment samples have not been collected. In these areas, interpolations of sediment 
composition will not be able to capture finer-scale spatial variability and may appear to be overly 
generalized. One limitation of the 3D IDW interpolation is that it does not provide an estimate of 
prediction uncertainty. Other methods of spatial interpolation that are stochastic (i.e., they use a 
statistical model fit to the sample data to make predictions at unsampled locations rather than 
directly using the values at the sampled locations) do allow for the calculation of a measure of 
uncertainty at each grid cell location (Li and Heap 2014). Maps of the estimated uncertainty 
would certainly be useful for identifying where the interpolated maps are most and least reliable.  
 
In this study, random forest models were evaluated as an alternative to the 3D IDW 
interpolation. Random forest modeling is a machine learning approach in which a statistical 
model is fit to the sample data using a set of environmental predictor variables (Breiman 2001). 
Initial maps of sediment composition from the random forest models did not sensibly delineate 
terrain features such as the submarine canyons on the continental slope. One possible explanation 
for the poor performance of the random forest models is that data layers representing important 
environmental predictor variables more directly connected with sedimentation processes (e.g., 
bottom orbital velocity, median bottom ocean current velocity) were not available at sufficient 
spatial resolution. In addition, unlike the 3D IDW interpolation, in which neighboring samples 
had a greater influence on estimates of sediment composition, the random forest models used all 
the data to estimate the statistical relationships between sediment composition and the 
environmental predictor variables. The random forest models likely performed poorly because 
these statistical relationships were not stationary across the New York Bight (e.g., they would 
not be the same for the continental shelf and continental slope), which spans different terrigenous 
and biogenic provinces across the continental shelf, slope, and rise.  
 
Since it is unlikely that the entirety of the New York Bight will be sampled or mapped with 
multibeam sonar, spatial interpolation methods such as the 3D IDW interpolation approach used 
in this study can be used to provide reasonable estimates of surficial sediment composition. The 
updated maps presented in this chapter can be used to visualize the spatial patterns in sediment 
composition in the New York Bight with greater detail than available in previous maps. 
However, interpolated values should be used with caution in areas where sediment samples are 
sparser. For specific sites where management decisions require information on sediment 
composition, it will be important to collect additional sediment samples. These samples, in 
conjunction with backscatter intensity data from multibeam sonar, would enable a better 
characterization of the seabed. 
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Chapter 11. Habitat Maps 
 
NCCOS’s benthic habitat maps have provided important baseline spatial information that has 
been used by resource managers to help design and implement a variety of monitoring and 
conservation measures. These measures include: (1) constructing sampling designs for 
ecosystem monitoring and assessment programs (Menza et al. 2006), (2) evaluating the efficacy 
of existing marine protected areas (MPAs) (Pittman et al. 2014), (3) planning for and designing 
new MPAs (Pittman et al. 2013), (4) assessing the impact of offshore energy facilities on 
essential fish habitat (BOEM 2016) and (5) targeting research to better understand the 
socioeconomic, oceanographic and ecological processes affecting ecosystem function and 
condition (Pittman et al. 2017). Similarly, the benthic habitat maps and products developed under 
this project provide valuable information to support the evaluation and management of the 
NYWEA and document baseline conditions of the New York Bight region. 
 
In all, five product types developed in this project are useful in evaluating seafloor characteristics 
of the NYWEA: 
 

1. Maps of bathymetry and backscatter, along with derived seafloor metrics and a Principle 
Component Analysis (PCA) based on multibeam surveys across the study area (see 
Chapters 4 and 6). 

2. Delineation of landforms using Bathymetry and Reflectivity-based Estimator for Seafloor 
Segmentation, or BRESS (Masetti et al. 2018) (see Chapter 6). 

3. Sediment grain size and substrate type analysis from the MVV grab samples (see Chapter 
9) 

4. Predictive surfaces showing the probability of occurrence (and associated error) of 
substrate, geoform and biotic cover types across the study area (see Section 11.2.3 and 
11.2.4). 

5. A habitat classification map depicting the co-occurring substrate, geoform and biotic 
cover types that comprise the final benthic habitat classes (see Section 11.2.5).  

11.1 Methods 
The approach used here to develop habitat classification maps incorporated predictive models to 
depict the probability of occurrence of benthic habitats within the NYWEA. The predictive 
modeling process closely follows that of other recent mapping activities (Kendall et al. 2017; 
Costa et al. 2018) and included: (1) creating a benthic habitat classification scheme based on 
CMECS system (CMECS 2017)(refer to Chapter 7, Table 7.1); (2) preparing topographic and 
geomorphometric datasets to be used as predictors in the habitat models (Chapter 6); (3) 
collecting underwater videos and sediment grab samples to train the habitat models and evaluate 
their performance (Chapter 3); and (4) using the habitat models to create spatial predictions of 
habitat types and a composite habitat classification map of co-occurring habitat types (see 
Section 11.2). Additionally, output from the BRESS software package delineated benthic 
landforms (Masetti et al. 2018) in the NYWEA that identifies larger scale geomorphologies that 
could not be predicted or validated using the underwater video data or grab samples (Chapter 6). 
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11.1.1 Benthic Habitat Classification Scheme 
The classification scheme closely aligns with the CMECS system from the FGDC. The CMECS 
system is described as “a catalog of terms that provides a means for classifying ecological 
classes using a simple, standard format and common terminology. CMECS offers a way to 
organize and interpret data about the marine environment, and it provides a common platform for 
inter-relating data (CMECS 2017). The CMECS classification system contains three major 
components that we use to describe the benthic environment of the NYWEA: Substrate Type 
(e.g., pebbles), Geoform (e.g., sand ripples), and Biotic Cover (e.g., echinoderm beds).  
 
Substrate, geoform and biotic components can be further refined to describe class, subclass and 
groups, which can be quantified from sediment grabs and underwater video. Given that 
multibeam data and video constituted the primary source of data used to develop the maps, the 
classification scheme was constrained to those habitats that were likely to be detected and 
differentiated by their acoustic properties and could be validated with optical methods.  
The initial classification scheme used in NYWEA included five substrate types (cobbles, 
pebbles, sand, mud, and broken shell), four geoform types (ripples, megaripples, outcrops, and 
plain), and seven biotic cover types (molluscs, echinoderms, polychaete worms, crustaceans, 
algae, no cover, less than 5% cover, and other). These were modeled (Table 7.1) to describe 
benthic habitats and biotic cover. Using this classification scheme, GV and AA sites were 
annotated to provide a basis for the modeling effort and to validate maps of predicted surfaces 
across the NYWEA. Final models and predictions were not created for all substrate and cover 
types documented. In cases where habitat types were very rare (e.g., cobbles had a prevalence = 
1.0%), the model failed as these categories were insufficiently present to find a clear 
mathematical relationship between the habitat type and predictors. Where habitat types were 
very common (e.g., broken shell had a prevalence = 99%), the model also failed because there 
were no distinct set of predictors that explained the spatial distribution of the respective habitat 
types. 
 
The spatial distributions of the remaining substrate, geoform, and biotic cover types were 
predicted across the NYWEA using mathematical models, namely BRTs. The predicted habitat 
types included: ‘Pebbles’, ‘Ripples’, Megaripples’, ‘Echinoderms’, Crustaceans’, ‘No 
Cover’(100% bare), and ‘Less Than 5% cover’. The two most prevalent CMECS biotic groups 
include ‘sand dollar beds’ and ‘mobile crustaceans on soft sediments’, at a rate of 90% and 11%, 
respectively. These two groups were the only biotic components that were considered for the 
development of the predictive models for the NYWEA.  

11.1.2 Predictive Model Inputs 
Seafloor depth, backscatter intensity, and morphometric surfaces are known to be excellent 
predictors for characterizing many different habitat types in tropical environments such as sand, 
pavement, and coral reefs (Costa et al. 2009; Costa and Battista 2013), but these surfaces can 
also be very useful in temperate marine environments where benthic habitats are more 
homogenous. The depth and backscatter data was collected in the field using the multibeam echo 
sounder by the NOAA Ships Ferdinand R. Hassler and the Nancy Foster (see Chapter 2). These 
two surveys were merged to create 8 x 8 m unified bathymetry and backscatter surfaces that 
covered 100% of the NYWEA. Once the merged multibeam datasets were cleaned of noise and 
smoothed, they were used as base layers to create the secondary morphometrics using an R script 
and the BRESS software (see Chapter 6).  

https://www.cmecscatalog.org/cmecs/classification/unit/526.html
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In all, 24 different predictors were used as inputs for the BRT to create predictive models for the 
NYWEA, but only 12 of the predictors were the most influential variables across predictive 
models (Table 11.1). These surfaces were derived from bathymetry and backscatter using local 
complexity metrics and statistics from BRESS output. After cross validation, the spatial 
predictions were then classified into the different substrate, geoform, and biotic cover types 
using the underwater video and sediment grabs for GV. 
 
Table 11.1. List of the 12 most influential seafloor metrics that were used in the BRT models to 
create surfaces depicting the probability of occurrence of habitat types.  
 

Source Predictor Model label Reference 
MBES survey Depth NYB_dtm8m9 this document 
MBES survey Backscatter intensity nyb_mos_8m this document 
Local complexity metric Standard deviation of depth Std_DeDept Jenness 2013 
Local complexity metric Slope Slope Jenness 2013 
Local complexity metric Slope of slope SlofSl Jenness 2013 
Local complexity metric Sine of aspect (eastness) SinAsp Jenness 2013 
Local complexity metric Cosine of aspect (northness) Cos_Aspect Jenness 2013 
Local complexity metric Total curvature TotCurvEva Jenness 2013 
Local complexity metric Profile Curvature ProfCuEvan Jenness 2013 
Local complexity metric Plan Curvature PlanCurvZe Jenness 2013 
Local complexity metric General Curvature GenCurvZev Jenness 2013 
BRESS software output Average height avg_height Masetti et al. 2018 

 
11.1.3 Predicting and Classifying Benthic Habitats  
BRTs and boosted classification trees (BCTs) model complex ecological relationships by 
developing many (hundreds to thousands) simple classification or regression (tree) models. 
Classification and regression trees (Breiman et al. 1984) relate a response (i.e., habitat type) to 
environmental predictors by iteratively splitting the data into two homogenous groups. These 
models are built in a stage-wise fashion, where existing trees are left unchanged and the variance 
remaining from the last tree is used to fit the next one. A random subset of data is used to fit a 
model at each stage. This randomization helps improve model performance (Friedman 2002; 
Elith et al. 2008). These simple models are then combined linearly to produce one final 
combined model (Elith et al. 2008). The fitted values in this combined model are more stable 
than values from an individual model, improving its overall predictive performance (Friedman 
2002; Elith et al. 2006; Elith et al. 2008).  
 
Separate spatial predictions were developed using BRTs for each geoform, substrate, and cover 
type. BCTs were used to combine these individual predictions into a single composite habitat 
map. Four main steps were used to create habitat predictions and a composite habitat map for the 
NYWEA (Figure 11.1): (1) preparing the model input data, (2) creating and evaluating substrate, 
geoform and cover models and spatial predictions, and (3) creating and evaluating a composite 
habitat map. This work was conducted primarily in ArcGIS (version 10.5, ESRI 2016) and R 
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software (version 3.3.0, R Core Team 2016) using the dismo (Hijmans et al. 2017), caret (Kuhn 
2016), and raster (Hijmans 2016) packages. 
 

 
Figure 11.1. Diagram depicting steps in modeling process to predict substrate, geoform, and 
biotic cover distributions and develop a composite habitat map.  
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Preparing Input Data (Step 1) 
Underwater videos and sediment grab samples from the 293 successful GV sites collected by the 
R/V Tiki XIV (see Chapter 3) were reviewed to determine the presence and absence of five 
substrate types, four geoform types, and seven biotic cover types at each site (Table 11.2). The 
video analysis of the GV data were used as a response variable in the BRT modeling process. 
Response variables were annotated by assigning a presence (1) or absence (0) value for each 
response variable for every video obtained at each GV site. In addition, presence and absence for 
each substrate and biotic cover type was observed and recorded for each sediment sample while 
in the field and attributed as such in the GV table. It was not possible to determine the presence 
of geoforms (ripples, megaripples, outcrops, plain) from the sediment grab data due to the large 
scale of those components. The presence of each type of substrate, geoform, and biotic cover 
were non-exclusive of each other, meaning the co-occurrence of more than one substrate, 
geoform, or cover type was permitted. 
 
Table 11.2. Prevalence of substrate, geoform, and biotic cover types from sample sites. 
 

Component Habitat Type % Prevalence 

Substrate 

Cobbles 0.7 

Pebbles 16.0 

Sand 100.0 

Mud (Silt and Clay) 15.7 

Shell 99.0 

Geoform 

Ripples  82.9 

Megaripples 12.3 

Outcrops 0.0 

Plain 4.8 

Biotic Cover 

Molluscs 11.6 

Echinoderm 90.1 

Polychaete Worms 30.4 

Crustaceans 10.9 

Algae 0.0 

No Cover (bare) 8.9 

Less than 5% Cover 32.8 

 
After reviewing the prevalence of each habitat type or response variable, some of the types were 
eliminated from subsequent steps of the modeling process. In cases where the prevalence of a 
substrate, geoform, or cover type was too low (e.g., <0.7% for ‘Cobbles’) or too high (e.g., 100% 
for ‘Sand’) to be successfully modeled using BRTs, these models were dropped. Cobbles were 
eliminated due to a very low occurrence (n=3) in grab samples. Both the video annotation and 
grab samples had high occurrences of sand. There was a 98.6% overlap of sand sites across the 
two data sources (GV video and grab samples) and 100% occurrence of sand when combined. 
Therefore, the presence of sand ripples and megaripples was used to differentiate sand substrate 
and subsequently dropped sand as a substrate type in spite of the fact that is occurs throughout 
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the NYWEA. Outcrop was eliminated due to zero occurrences. Plain was eliminated due to very 
low occurrences (n=14). While molluscs and polychaete worms were prevalent, the models 
failed, likely due to lack of association between the environmental predictors and the biotic 
response. Only one occurrence of algae was observed in a sediment grab and therefore 
eliminated from the modeling process. All sites had some proportion of no biotic cover. 
Locations with 100% no cover (bare), as well as <5% cover, were modeled. All remaining 
response variables were modeled using a binomial (two groups) distribution. No transformations 
were applied. All of the predictor variables were numeric. The GV sites were intersected with the 
25 predictors to extract their value at each location. This spatial intersection combined the GV 
(response variables) and predictor datasets into a single table. 

Creating and Evaluating Models and Spatial Predictions (Step 2) 
The BRT models were fit and optimized in R (version 3.3.0, R Core Team 2016) using the dismo 
package (Hijmans et al. 2014). Several model parameters were tested during this process 
including the learning rate (lr), tree complexity (tc), and bag fraction (bf) (Table 11.3). Learning 
rate (lr) controls how much each tree contributes to the model. The faster the learning rate, the 
more each tree contributes to the model. Tree complexity (tc) dictates how many nodes (splits) 
there are in a tree. The greater the number of splits, the more complex the model. Bag fraction 
(bf) specifies the proportion of data randomly chosen at each step. The larger the bag fraction, 
the more data available to train the model at each step.  
 
Table 11.3. Suite of BRT model parameters that were tested. 
 
Regularization 
Parameters 

Parameters 
Tested Definition Impact Example 

Learning Rate 
(lr) 

0.001,  
0.002 

Determines contribution 
of each tree to the 
growing model 

Decreasing (slowing) lr 
increases the number of trees 
required for optimal prediction 

lr = 0.005 will grow more 
trees than lr = 0.01 

Tree Complexity 
(tc) 

2, 3,  
5, 10 

Controls how many 
predictor interactions 
are fitted in a tree 

Decreasing tc will shrink the 
size (number of nodes) in a 
tree 

tc = 20 will grow larger 
trees (with more nodes) 
than tc = 2 

Bag Fraction 
(bf) 

0.1, 0.2,  
0.5 

Controls proportion of 
data randomly selected 
to build each tree 

Decreasing bf will reduce the 
number of points randomly 
used to build a tree 

bf = 0.5 will randomly 
sample 25% fewer data 
points than bf = 0.75 

 
For each of the remaining habitat types (one substrate, two geoforms, and four cover types), 24 
combinations were tested for lr, tc, and bf. K-fold cross validation (kCV) was used to identify the 
combinations of lr, tc, and bf that created the model with the smallest amount of error. Here, the 
kCV process divided the input table into 10 folds (i.e., 10 data subsets). Nine of these folds were 
used to create models, while the remaining one was used to evaluate the model’s performance. 
This process was repeated 10 times (i.e., one time for each fold) x 24 model parameter 
combinations x 7 substrate, geoform and cover types (n=1,680 models total). Model performance 
was measured using the percent deviance explained (PDE) averaged across the 10 folds. PDE is 
the amount (%) of variation explained in the response data. PDE values normally range between 
0 and 100% with higher values indicating better model performance and lower error.  
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The model with the highest kCV PDE was selected for each substrate, geoform, and cover type. 
The relative importance (Elith et al. 2008) of the top five predictors across all seven models was 
quantified and presented in a bubble plot (Figure 11.2). Circle size is proportional to a 
predictor’s relative importance averaged across 100 model iterations. The larger the circle, the 
more important the predictor. The top five most influential predictors across all models are 
shown here and include depth, backscatter intensity, standard deviation of depth, slope, slope of 
slope, sine of aspect, cosine of aspect, total curvature, profile curvature, plan curvature, general 
curvature, and average height 
 

 
Figure 11.2. Relative importance of the environmental predictors used to develop the six habitat 
models and spatial predictions.  
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The best models for the remaining substrate, geoform, and biotic cover types were used to 
predict their spatial distribution across the NYWEA, performed by using the raster package in R 
(Hijmans 2014, R Core Team 2016). These predictions describe the probability-of-occurrence 
for each habitat, i.e., the likelihood (%) that a particular substrate, geoform or cover type is 
present. Larger probabilities indicate that a habitat is more likely to be present. The precision 
associated with each probability of occurrence prediction was also quantified and reported as the 
CV. CV is a measure of model precision and represents the standard error as a proportion of the 
mean (Leathwick et al. 2006). Larger CVs indicate greater uncertainty associated with the spatial 
prediction. For each substrate, geoform and cover type, these probabilities and precisions 
represent the average of, and variation in, 100 model iterations created using bootstrapping (see 
Technical Glossary).  
 
The performance of each prediction was evaluated using four different metrics: (1) kCV PDE, 
(2) test PDE, (3) RMSE, and (4) Receiver Operating Characteristic (ROC) Area Under the Curve 
(AUC). These metrics were calculated because they describe model performance in different 
ways, and when viewed together, provide a more thorough understanding of the model 
limitations. For example, models with higher kCV PDE, test PDE, and AUC values, but lower 
RMSE, can be used with greater confidence because they correctly explain more variation in the 
response data with lower amounts of error. Conversely, models with higher kCV PDE and low 
test PDE may be fit too closely to the response data, and may not generalize well enough to 
accurately predict distributions across the entire study area. 
 
kCV PDE was calculated during k-fold cross validation by comparing the observed values (in 
one randomly chosen validation fold) to the predicted values (from the models developed using 
the remaining nine training folds). Test PDE, AUC and RMSE were independently calculated 
using the independent AA dataset (Section 11.1.5). Test PDE, like kCV PDE, is the amount (%) 
of variation explained in the response data. PDE values normally range between 0 and 100% 
with higher values indicating better model performance. Conversely, RMSE measures the error 
associated with a model by calculating the square root of the average squared difference between 
the predicted values (extracted from the model) and the observed values (extracted from the 
underwater videos). Lower RMSE denotes less error. 
 
ROC curves measure a model’s predictive performance differently compared to PDE and RMSE. 
Specifically, ROC curves compare a model’s sensitivity (i.e., true positive prediction rate) to its 
specificity (i.e., true negative prediction rate). This rate depends on the choice of a particular 
probability of occurrence threshold above which substrate or cover types are classified as 
“present” and below which they are classified as “absent.” AUC does not require selecting a 
threshold, and can be used to measure the overall predictive performance of a model (compared 
to a random guess). AUC values ranging from 0.7 to 0.8 denote “good” model performance; 
values from 0.8 to 0.9 denote “excellent” model performance, and values greater than 0.9 denote 
“outstanding” model performance (Hosmer and Lemeshow 2000). AUC values at or below 0.5 
indicate that the model’s prediction was no better than one created by chance alone.  

Creating and Evaluating Composite Habitat Map (Step 3) 
BCTs were used to develop a single composite habitat map. The GV data were grouped into 
three commonly co-occurring geoform, substrate, and cover types using hierarchical cluster 
analysis. The GV sites with similar substrate, geoform and cover types were grouped into 
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progressively larger and larger clusters. The resulting geoform, substrate, and cover clusters that 
best discriminated habitat types into classes were chosen. While there was a fair amount of 
overlap in characteristics that defined each class (echinoderms and rippled sand were common 
throughout), aspects that were unique to each class (i.e., pebbles and megaripples) were noted o 
aid in defining the composite habitat classes.  
 
The primary characteristics of the seafloor that were identified in this analysis include (1) vast 
expanses of rippled sand with high concentrations of sand dollar beds and scattered molluscs, 
crustaceans, and polychaete worms, (2) offshore megaripples with similar faunal distributions 
that, and (3) large wedge shaped congregations of sand ripples with low biological cover on the 
ridges and mixed substrates of pebbles and broken shell in the troughs. The characteristics that 
most strongly defined each class were rippled sand and echinoderms, while characteristics that 
were generally unique to one class included megaripples, pebbles, and no cover; albeit, with a 
weaker relationship to that class (Table 11.4). An analysis including the occurrence of 
echinoderms in each class (not shown) was the basis for the class modifiers. Sand dollar beds 
were a common feature and were used as a modifier to denote classes where echinoderm 
abundance was high. Sand dollar beds (Echinarachnius) have been detected previously 
throughout other proposed wind energy areas in the Mid-Atlantic region (Guida et al. 2017) 
using 100 kHz side-scan (Fenstermacher et al. 2001). During the review of GV video, there was 
evidence of variations in sand dollar bed density with regards to changes in the substrate types. 
While crustaceans were fairly prevalent (10.9%), they did not occur in great enough densities to 
be considered to be functioning as habitat and were not included in the composite habitat map. 
 
The BCT model predictors used to create a composite habitat map were: ‘Pebbles, ‘Rippled 
Sand’, ‘Megaripples’, and ‘No Cover’ probability of occurrence prediction surfaces, with class 
membership from a cluster analysis used as the response variable. Cluster means of four habitat 
types into three classes produced with hierarchical clustering (JMP -Ward method) indicates the 
strength of the association of each habitat type to a given habitat class (Table 11.4). In addition, 
the composite map was evaluated with and without ‘Echinoderms’ to better understand the role 
of this primary biotic cover in defining the habitat classes. Next, the 293 GV sites (each of which 
were assigned one of the three habitat types) were intersected with the probability of occurrence 
prediction surfaces to extract their value at each location. This spatial intersection combined the 
GV and probability of occurrence values into a single table. 
 
Table 11.4. Cluster means of four habitat types into three classes produced with hierarchical 
clustering (JMP-Ward method) indicating the strength of the association of each habitat type to a 
given habitat class.  
 

 Habitat Type  

Classes Pebbles Rippled Sand Megaripples No Cover Class Name (modifier) 

1 0.1234 0.8968 0.0620 0.0321 Rippled sand 
(high occurrence of faunal beds) 

2 0.4412 0.8702 0.0690 0.4102 Rippled sand and pebbles 
(low occurrence of faunal beds) 

3 0.1068 0.5917 0.3492 0.0172 Megaripple sand 
(high occurrence of faunal beds) 
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Next, model parameters for BCTs were fitted and optimized in R (version 3.3.0, R Core Team 
2016) using the caret package (Kuhn 2016). Thirty-six combinations of lr, tc, number of trees 
(n.trees) were tested and minimum terminal node size (n.minobsinnode) (Table 11.5). Learning 
rate (lr) controls how much each tree contributes to the model. The faster the learning rate, the 
more each tree contributes to the model. Tree complexity (tc) dictates how many nodes (splits) 
there are in a tree. The greater the number of splits, the more complex the model. Number of 
trees denotes the number of classification trees that are fitted to the response data. The minimum 
terminal node size tells the modelling process when to stop splitting the response data and 
denotes the number of observations for each end point in a classification. kCV was used to 
identify the combinations of lr, tc, n.trees and n.minobsinnode that created the model with the 
smallest amount of error. kCV PDE were calculated to identify the parameter combination that 
created the highest performing model. This highest performing model was then spatially applied 
to create the composite habitat map throughout the region. The original bathymetry and 
backscatter data, which underlies these models, contained some artifacts that were evident 
offshore in both the predicted surfaces and the final map product. 
 
Table 11.5. Suite of boosted classification tree (BCT) model parameters and values that were 
tested.  
 
Regularization 
Parameters 

Parameters 
Tested Definition Impact Example 

Learning Rate (lr) 0.01, 0.001, 
0.005 

Determines contribution 
of each tree to the 
growing model 

Decreasing (slowing) lr 
increases the number of 
trees required for optimal 
prediction 

lr = 0.005 will grow 
more trees than lr = 
0.01 

Tree Complexity 
(tc) 2, 5, 10 

Controls how many 
predictor interactions 
are fitted in a tree 

Decreasing tc will shrink 
the size (number of 
nodes) in a tree 

tc = 20 will grow larger 
trees (with more 
nodes) than tc = 2 

Number of Trees 
(n.trees) 

500, 750, 
1000, 1500 

Describes the number of 
classification trees that 
are fitted to the 
response data 

More classification trees 
will create more complex 
models (at the risk of 
overfitting the data) 

n.trees = 500 will grow 
500 classification trees 

Minimum Terminal 
Node Size 
(n.minobsinnode) 

10 

Describes the number of 
observations at each 
endpoint in a 
classification tree 

A lower number of 
observations will increase 
the risk of overfitting the 
model 

n.minobsinnode = 3 
will stop fitting when a 
classification tree has 
3 observations  

 
While stratification helps ensure all habitat classes are adequately evaluated, it has the undesired 
effect of introducing bias into the confusion matrix. This bias is due to the different amounts of 
area (km2) occupied by each habitat class (Card 1982), causing rarer habitats to be sampled at a 
greater density than common habitats. This sampling bias was removed using the method of 
Card (1982), which uses the proportion (%) of the map occupied by each habitat to correct the 
thematic accuracies. These proportions were also used to compute confidence intervals for the 
overall accuracy (Card 1982; Congalton and Green 1999). For more information about these 
calculations and the equations, see Kågesten et al. 2015.  
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11.1.4 Accuracy Assessment of the Predictive Model Outputs 

Analysis of Thematic Accuracy 
The thematic accuracy of the final habitat map was quantitatively assessed by NOAA NCCOS 
using seafloor samples collected during the R/V Tiki XIV GV mission (see Chapter 3). The sites 
were not selected independently of the GV sites because the grab sampling component of the 
NF18-07 mission was constrained due to severe weather conditions. Thus, 100 AA sites were 
randomly selected from among the planned 400 sampling locations to evaluate the performance 
of the predictive models and the accuracy of the composite habitat map. A visual inspection of 
the AA site locations overlaid with the backscatter indicates the potential seafloor features were 
fairly well represented by the distribution of site locations (Figure 11.3). The AA grab sample 
observations, video analysis, and sediment analysis were all conducted using the same methods 
as the GV datasets by an independent analyst to avoid a sampling bias. Of the 100 AA sites that 
were collected, the underwater video from 97 sites were successful, and could then be used test 
the results of the model performance. The three unsuccessful sites were due to the lack of GPS 
data and poor lighting of the underwater videos. 
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The AA sites were grouped into the same three habitats identified by the cluster analysis. Sites 
were considered correct if the same habitat was present within 8 m (one pixel or raster cell) of 
the AA site. Analysis for this assessment was conducted by an independent scientist and did not 
include any interaction with the habitat modelers. A confusion matrix was developed from the 97 
AA points describing the composite maps’ overall accuracy (OA), producer’s accuracy (PA), and 
user’s accuracy (UA) (Table 11.6). This matrix was constructed as a square array of numbers 
arranged in rows (map classification) and columns (AA classification). AA of the composite 
habitat map also factored in the proportional area of each class to correct for thematic accuracy. 
 
Table 11.6. Confusion matrix for the composite habitat map predicted by the boosted regression 
tree (BRT) model to calculate the overall accuracy (OA).  
 

M
ap

 ( 
j )

 

AA ( i ) 

 
Rippled Sand 

with High 
Occurrence of 
Faunal Beds 

Rippled Sand and 
Pebbles with Low 

Occurrence of 
Faunal Beds 

Mega-Rippled 
Sand with High 
Occurrence of 
Faunal Beds 

n-j User's 
Accuracy 

Rippled Sand with High 
Occurrence of Faunal 

Beds 
57 2 15 74 77% 

Rippled Sand and 
Pebbles with Low 

Occurrence of Faunal 
Beds 

4 3 1 8 38% 

Mega-Rippled Sand with 
High Occurrence of 

Faunal Beds 
13 0 2 15 13% 

ni- 74 5 18 97  

Producer's Accuracy 
(%) 77% 60% 11% OA = 63.9% 

     Te = 0.46 

 Pr Taue V(Tau) CL(Tau)       

 0.33 0.46 0.01 0.14       

 Pr = 1/M where M is number of classes (i.e., 7)     
                
Edited Map        

Habitat Area (sq m) Proportion      
1.00 254,510,848.00 0.782      
2.00 23,180,480.00 0.071      
3.00 47,874,368.00 0.147      
Total 325,565,696.00       

 
 
The OA was calculated as the sum of the major diagonal (i.e., correct classifications), divided by 
the total number of AA samples. The PA and UA were calculated to describe the thematic 
accuracy of individual map categories. PA describes errors due to omission and is a measure of 
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how often habitats were incorrectly excluded from their correct habitat class. UA describes 
commission errors, and is a measure of how often certain habitats were incorrectly included in 
another (often similar looking) habitat class (Story and Congalton 1986). Each diagonal element 
was divided by the column total (ni) to yield a producer’s accuracy and by the row total (nj) to 
yield a user’s accuracy. The Tau coefficient was also calculated to account for the random, 
chance agreement between the AA data and composite habitat map (Ma and Redmond 1995). 
The probability of random agreement decreases as the number of habitat classes increases.  

Accuracy Assessment Results and Discussion 
In conducting the AA of the habitat map products, it must be duly noted that the presence of 
‘Sand” substrate was too high to be successfully modeled (see Preparing Input Data (Step 1)). In 
essence, the entire NYWEA area was considered uniformly sand of varying coarseness. As such, 
an AA could not be conducted on this overarching substrate category. The remaining sub-habitat 
types that could be modeled, whose prevalence was neither too high nor too low to be included, 
were assessed for accuracy. The AA results of the sub-habitat types follows. 
 
The three clusters of commonly co-occurring sub-habitat geoform, substrate, and cover types 
used to create the composite habitat map, not including sand, proved to be difficult to classify 
and produced a low OA of 63.9% (Table 11.6). Although the predominantly sandy substrate 
component was easy to analyze in the video and grab samples, and strongly reflected in the 
models, the geoform and biotic cover components may have underperformed due to several 
issues. These issues included (1) high uncertainty in distinguishing the geoform components due 
to scale from the optics of the video analysis, (2) subjectivity in estimating percent cover 
between the GV and AA video analysts, (3) the influence of smoothing algorithms applied to the 
sonar data, and (4) the AA sites were a random subset of the original 400 GV sites and not 
independently selected. It was understood that the models would perform much better with 
integration of the NF18-07 data to overlay the multibeam data affected by heavy swells from 
NF17, however time constraints on reprocessing the morphometrics and BRT models precluded 
the use of this data for this analysis. Thus, the OA of the composite map was lower than 
expected, but further AAs of the probability of occurrence for individual cover components 
(Echinoderms, No Cover, and Less than 5% Cover) showed higher model prediction accuracies. 
 
Confusion matrices were helpful in understanding the accuracy of the BRT at predicting the 
probability of occurrence (or chance) of various biotic cover components. Presence/absence 
results from the video analysis and grab samples were used to assess the accuracy of the 
probability of occurrence for different cover types based on percent thresholds that were 
determined by natural breaks in the statistical outputs. The BRT models were very accurate at 
predicting areas where there is a high chance of 100% no biotic cover, or bare sand. Only 8.2% 
percent of the GV sites (24 of 293) and 3% of the AA sites (3 of 97) contained 100% No Cover. 
The probability of occurrence had to be >21% to be considered present based on the natural 
breaks in the probability statistics. The predictions of bare sand from the BRT had the highest 
OA of all the models that were assessed with 92.8% (Table 11.7). The relatively high OA may be 
due to strong user confidence in determining if a site is desolate of any kind of benthic fauna 
cover from the underwater video analysis or the relatively low threshold requirement to be 
considered present or absent.  
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Table 11.7. Confusion matrix for presence of ‘No Cover’ by the BRT biotic cover predictions. 
M

ap
 ( 

j )
 

100% No Cover AA (i) 

Presence 100% 
NoCov on Video 

Absence 100% 
NoCov on Video n-j

User's 
Accuracy 

High Probability of Occurrence for 
100% No Cover (>21%) 2 6 8 25% 

Low Probability of Occurrence for 
100% No Cover (<21%) 1 88 89 99% 

ni- 3 94 97 

Producer's Accuracy (%) 67% 94% OA = 92.8% 

Te = 0.89 

The benthic habitats with Less Than 5% biotic cover were observed in 33% of the GV sites and 
produced moderately strong predictions in the BRT. This type of habitat is mostly comprised of 
bare sand with a random scattering of individual worms, molluscs, crustaceans, or echinoderms 
such as sea stars. A probability of occurrence greater than 39% was considered a ‘presence’ in 
the model due to the natural breaks in the data. However, the probability of occurrence for less 
than 5% biotic cover class had a poor OA of 64.9% (Table 11.8). This may be due to the 
difficulty in estimating the actual percent cover of a few scattered benthic invertebrates on the 
seafloor from the video analysis. 

Table 11.8. Confusion matrix for presence of ‘Less Than 5% Cover’ by the BRT biotic cover 
predictions.  

M
ap

 ( 
j )

 

Less Than 5% Cover AA (i) 

Presence <5% 
Cover on Video 

 Absence <5% 
Cover on Video n-j

User's 
Accuracy 

High Probability of Occurrence for 
Less than 5% Cover (>39%) 11 14 25 44% 

Low Probability of Occurrence for 
Less than 5% Cover (<39%) 20 52 72 72% 

ni- 31 66 97 

Producer's Accuracy (%) 35% 79% OA = 64.9% 

Te = 0.89 

Areas that were predicted to have a high probability of occurrence of echinoderms had the best 
biotic cover of any of the faunal classes. A threshold of >79% chance of echinoderms at each AA 
site equates to a ‘presence’ of echinoderms (as determined by natural breaks in the coverage 
statistics). The BRT model for the probability of occurrence for echinoderms resulted with an 
OA of 87.6% (Figure 11.9). This accuracy of the probability models for echinoderms was most 
likely driven by the high correlations of dense sand dollar beds to regions with greater than 95% 
sand. Habitats that had conglomerations of sand ripples with pebbles and shells were observed to 
be less suitable for sand dollar beds. 
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Table 11.9. Confusion matrix for presence of high occurrence of ‘Echinoderms’ by the BRT biotic 
cover predictions.  
 

M
ap

 ( 
j )

 

Echinoderm AA (i) 

  
Presence of 

Echinoderms 
Absence of 

Echinoderms n-j User's 
Accuracy 

High Probability of 
Occurrence (>79% ) 81 4 85 95% 

Low Probability of 
Occurrence (<79%) 8 4 12 33% 

ni- 89 8 97   

Producer's Accuracy (%) 91% 50% OA =  87.6% 

       Te =  0.81 

 
 
The distributions of the crustaceans, molluscs, polychaete worms, and other faunal classes were 
very poorly modeled in the NYWEA. This is possibly due to low correlations of each biotic 
cover type to the different substrate or geoforms. Crustaceans had the highest model accuracy of 
the remaining biotic cover types, however the OA was only 11.3% (Table 11.10). Only one 
instance of crustacean presence was detected and identified accurately and only 10 instances of 
crustacean absence were predicted correctly. Polychaete worms, molluscs, algae, and other biotic 
covers were too sparsely distributed throughout the NYWEA to get an OA greater than 10%, and 
are not featured as final predictors in this report.  
 
Table 11.10. Confusion matrix for presence of high occurrence of ‘Crustaceans’ by the BRT biotic 
cover predictions.  
 

M
ap

 ( 
j )

 

Crustaceans AA (i) 

  
Presence of 
Crustaceans 

Absence of 
Crustaceans n-j User's 

Accuracy 

High Probability of 
Occurrence (>14% ) 1 78 79 1% 

Low Probability of 
Occurrence (<14%) 8 10 18 56% 

ni- 9 88 97   

Producer's Accuracy (%) 11% 11% OA = 11.3% 

       Te = -0.33 
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11.2 Habitat Mapping Results and Discussion  
BRTs were used to predict the presence of individual substrate, geoform and cover types. BCTs 
were used to generate a composite habitat map. The results from these models and maps are 
described below, including the main features of the habitat predictions along with performance 
and accuracy results. 

11.2.1 Model Performance 
Six BRT models and resulting spatial predictions describe the probability-of-occurrence for one 
substrate (Pebbles), two geoform (Rippled Sand, Megaripples) and four biotic cover types 
(Crustacean, Echinoderm, Less Than 5% Cover, and No Cover (Bare)). 
 
For all models, kCV PDE ranged from 7.1% to 38.2% (𝑥𝑥 =19.6% ±10.5 SE). Model results with 
higher kCV PDE, test PDE, and AUC values, but lower RMSE, can be used with greater 
confidence because they correctly explain more variation in the response data with low amounts 
of error. In all cases, except Echinoderms and Pebbles, test PDE was negative or low and 
difficult to interrupt. Low test PDE was most likely a result of some habitat classes being 
undersampled in the AA data collection.  
 
The best model (100% No Cover) had the highest kCV (38.2%) and AUC (0.94). It also had low 
bias (-0.028) and RMSE (0.18). Based on AUC criteria alone, the Pebbles, Echinoderms, and 
Less than 5% Cover models produced good to outstanding performance. For Ripples, 
Megaripples and Crustaceans, these models did not meet optimum model performance. 
 
The Crustacean model had the lowest kCV PDE (7.13%), and the Megaripple model had the 
lowest test PDE (-26.9%). Bias was small to moderate for all models, ranging between -0.14 to 
+0.16 (𝑥𝑥 =-0.001 ±0.1 SE). Bias indicates whether the model under predicted (-) or over 
predicted (+) the probability-of-occurrence. Lastly, RMSE values ranged from 0.18 to 0.49 
(𝑥𝑥 =0.35 ±0.12 SE). The Megaripple model had the largest amount of error (0.49), while the No 
Cover model had the lowest error (0.18). 

11.2.2 Predictor Importance  
The relative contribution of each predictor differed among the substrate, geoform, and cover 
models (Figure 11.10). Relative contribution (also known as relative importance) describes how 
often a predictor is used for tree splitting (Elith et al. 2008), and can provide insight into 
potential physical drivers that influence the distribution of habitats. Backscatter and/or depth 
were the primary drivers for all types except Crustaceans. The main contributor to the Substrate 
(Pebbles) model was backscatter (32.3%) followed by cosine of aspect (8.1%). The geoform 
models were largely influenced by depth (Ripples = 55.6%; Megaripples = 52.7%), followed by 
cosine of aspect (Ripples = 8.14%) and slope of slope (Megaripples = 5.15%). Three biotic cover 
models were largely influenced by backscatter and then depth; specifically Echinoderms = 
29.3% backscatter and 14.9% depth; Less than 5% Cover = 27.7% backscatter and 17.2% depth; 
and No Cover = 54.1% backscatter and 9.0% depth. Slope of slope (12.1%) and sine of aspect 
(9.7%) were the strongest contributors to the Crustacean model. 
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11.2.3 Geographic Patterns of Substrate 

Substrate: Pebbles 
Pebbles (Figure 11.4) were distributed throughout the NYWEA, with a concentration of 
observations in the northwest section of the NYWEA. Pebbles were observed at 16% of the GV 
sites (47 of 293) (Figure 11.4b). There were few observations in the southeastern portion of the 
NYWEA. The predicted surface produced from the ‘Pebbles’ model reflected this same spatial 
distribution (Figure 11.4e). There was high probability of pebbles in the western half of the 
NYWEA which coincided with high CV values in these same locations (Figure 11.4f), indicating 
higher uncertainty for places where pebbles are more likely to be present. 
 

 
Figure 11.4. Predicted probability of occurrence for ‘Pebbles’. Figure panels depict: a) reference 
photo; b) presences and absences in the GV data; c) the input parameters used to create the final 
model; d) the performance of the final model; e) the predicted average probability-of-occurrence 
and f) coefficient of variation. 
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Geoform: Rippled Sand 
Rippled Sand (Figure 11.5) was distributed throughout the NYWEA, decreasing slightly toward 
the offshore. Rippled sand was observed at 83% of the GV sites (243 of 293) (Figure 11.5b). The 
predicted surface produced from the ‘Rippled Sand’ model reflected this same spatial 
distribution with high probability of rippled sand in the western half and lower probability of 
occurrence moving offshore (Figure 11.5e). CV values were low across the NYWEA (Figure 
11.5f), indicating low uncertainty across the entire NYWEA. 

Figure 11.5. Predicted probability of occurrence for ‘Rippled Sand’. Figure panels depict: a) 
reference photo; b) presences and absences in the GV data; c) the input parameters used to 
create the final model; d) the performance of the final model; e) the predicted average probability-
of-occurrence and f) coefficient of variation. 
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Geoform: Megaripples 
Megaripples (Figure 11.6) were primarily distributed on the eastern end of the NYWEA and 
observed at 12.2% of the GV sites (36 of 293) (Figure 11.6b). The predicted surface produced 
from the ‘Megaripples’ model reflected this same spatial distribution with high probability of 
occurrence in the east and lower probability of occurrence closer to shore (Figure 11.6e). CV 
values were high where the probability of occurrence was high (Figure 11.6f), indicating high 
uncertainty where the likelihood of occurrence is high. 
 

 
Figure 11.6. Predicted probability of occurrence for ‘Megaripples’. Figure panels depict: a) 
reference photo; b) presences and absences in the GV data; c) the input parameters used to 
create the final model; d) the performance of the final model; e) the predicted average probability-
of-occurrence and f) coefficient of variation. 
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11.2.4 Geographic Patterns of Cover 

Cover: Crustacean 
Crustaceans (Figure 11.7) were distributed primarily in the central and eastern part of the 
NYWEA, observed at 10.9% of the GV sites (32 of 293) (Figure 11.7b). The predicted surface 
produced from the ‘Crustacean’ model reflected this same spatial distribution of high probability 
of occurrence, as well as higher uncertainty in the central and eastern section of the NYWEA 
(Figure 11.7e and 11.7f). 
 

 
Figure 11.7. Predicted probability of occurrence for ‘Crustaceans’. Figure panels depict: a) 
reference photo; b) presences and absences in the GV data; c) the input parameters used to 
create the final model; d) the performance of the final model; e) the predicted average probability-
of-occurrence and f) coefficient of variation. 
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Cover: Echinoderms 
Echinoderms (Figure 11.8) were observed throughout the NYWEA, occurring in 90% of the GV 
sites (264 of 293) (Figure 11.8b). The predicted surface produced from the ‘Echinoderm’ model 
indicated that the probability of occurrence of echinoderms was highest in the eastern half of the 
NYWEA (Figure 11.8e). CV values were low across the NYWEA (Figure 11.8f), indicating low 
uncertainty in the model results. 

Figure 11.8. Echinoderms. Predicted probability of occurrence for ‘Echinoderms’. Figure panels 
depict: a) reference photo; b) presences and absences in the GV data; c) the input parameters 
used to create the final model; d) the performance of the final model; e) the predicted average 
probability-of-occurrence and f) coefficient of variation. 
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Cover: Less than 5% Cover 
Less than 5% Cover (Figure 11.9) was distributed throughout the NYWEA, observed in clusters 
in the western and central/eastern portions of the NYWEA. Less than 5% cover was observed at 
33% of the GV sites (96 of 293) (Figure 11.9b). The predicted surface produced from the ‘Less 
than 5% Cover’ model reflected a similar spatial distribution with high probability of less than 
5% cover in the western half with lower probability of occurrence moving offshore (Figure 
11.9e). CV values were low across the NYWEA, especially in the eastern region (Figure 11.9f), 
indicating low uncertainty in the model. 
 

 
Figure 11.9. Predicted probability of occurrence for ‘Less than 5% cover’. Figure panels depict: a) 
reference photo; b) presences and absences in the GV data; c) the input parameters used to 
create the final model; d) the performance of the final model; e) the predicted average probability-
of-occurrence and f) coefficient of variation. 
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Cover: No Cover 
Sites where there was 100% No Cover (Figure 11.10) were scattered, occurring mostly in the 
northwest portion of the NYWEA. No Cover was observed at 8.9% of the GV sites (25 of 293) 
(Figure 11.10b). The predicted surface produced from the ‘No Cover’ model reflected this same 
spatial distribution of high probability of rippled sand in the western half and lower probability 
of occurrence moving offshore except for some distinct features in the southern end (Figure 
11.10e). CV values were low across the NYWEA (Figure 11.10f), indicating low uncertainty in 
the model. 
 

 
Figure 11.10. Predicted probability of occurrence for ‘No Cover’. Figure panels depict: a) reference 
photo; b) presences and absences in the GV data; c) the input parameters used to create the final 
model; d) the performance of the final model; e) the predicted average probability-of-occurrence 
and f) coefficient of variation. 
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11.2.5 Composite Habitat Map 
A total of 325.5 km2 of the NYWEA was characterized in this project. The composite habitat 
map displays the predicted spatial distribution of three commonly co-occurring combinations of 
substrate, geoform and biotic cover types (Figure 11.11). ‘Rippled sand with high occurrence of 
faunal beds’ was the most abundant habitat type, comprising 78.2% (254.5 km2) of the area and 
was dominant throughout much of the NYWEA. ‘Megaripple sand with high occurrence of 
faunal beds’ was the next most abundant habitat mapped, comprising 14.7% (47.9 km2) of the 
area. This class dominated the southeast edge of the NYWEA. ‘Rippled sand and pebbles with 
low occurrence of faunal beds’ habitats occurs throughout the NYWEA, but especially in the 
northwest portions of the NYWEA, seemingly distinctive disc-shaped features. This class 
comprised 7.1% (7.1 km2) of the NYWEA. 

The map products described here take advantage of recent advancements in computing power 
and model-based mapping techniques to create highly resolved raster maps. A composite habitat 
map was created describing commonly co-occurring substrate, geoform and cover types. 
Likewise, the underlying habitat predictions provide a view of the probability of occurrence of 
several habitat types. Both types of products are pixel based, preserving fine-scale heterogeneity, 
associated habitat gradients, and smaller benthic features present across the seascape. Compared 
to a polygon mapping approach, this method diverges from absolute classifications, and instead 
predicts the likelihood that a specific substrate, geoform or cover type is present at any given 
location. These predictions also quantified the uncertainty associated with each pixel in the map, 
helping users understand the precision of these predictions and prioritize where to collect 
additional information moving forward.  
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Chapter 12. Fish Acoustic Analysis 
 
Data acquired using fisheries acoustics surveys provides valuable information used to understand 
the inhabitants of marine ecosystems, including predator-prey interaction, diel migration, and 
broad scale density distribution over a variety of geoforms. Inferring species from the acoustic 
signatures is not yet possible, but the high spatial resolution and precise estimations of size 
coupled with seafloor geoform information can inform resource managers regarding physical and 
biological relationships within that study area (Kracker et al. 2011). The repeatability of large-
scale fishery acoustics surveys are ideal for monitoring or assessing the efficacy of marine 
resources prior to and following implementation of NYWEA. (Foster et al. 2013). Fisheries 
acoustic products developed under this project document baseline conditions within the NYWEA 
during the month of September. 

12.1 Spatial Distribution 
Throughout the survey area, significant variation in the spatial distribution of individual fish, 
numerous schools of fish with a variety of shapes and dimensions, and plankton layers and 
patches that were particularly evident during a range of hours (Figure 12.1). The colors within 
each panel are represented as: the seafloor (dark red), a dense layer of individual fish high in the 
water column (green-yellow-orange) (Figure 12.1A); plankton throughout the water column 
(light blue) (Figure 12.1B); a tightly aggregated fish school close to the seafloor (yellow-red) 
(Figure 12.1C); and loosely aggregated fish schools high in the water column (green-yellow-
orange) (Figure 12.1D).  
 

 
Figure 12.1. Example of splitbeam echosounder (SBES) echograms with depth represented on the 
y-axis with tick marks on the x-axis representing distance every 100 m. Panels A and B during 
overnight hours, and panels B and C daylight hours. 
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The largest concentration of fish were found in the northwest portion of the survey area (Figure 
12.2). Spatial distribution of fishes in the survey area varied by size class (total length as 
estimated from acoustic target strength). Densities were divide into three size classes, small (<11 
cm), medium (11-29 cm), and large (>29 cm). Small fish (Figure 12.3) were vastly more 
abundant and broadly distributed throughout the survey area compared to medium (Figure 12.4) 
and large (Figure 12.5) size class fish, which were strongly associated with the northwest portion 
of the survey area. The spatial distribution of fish density in the water column, especially at 
night, was likely related to fish feeding behavior. In the absence of discernable structured habitat 
on the seafloor within the study area, the fish density that was observed may be related to 
seasonal transient use or migration of demersal and pelagic fish. 
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12.2 Diel Patterns 
Acoustic data collection was conducted over a 24 hour time period. As a result, the data showed 
a distinct “diel striping” pattern that can be attributed to day-night fish behavior and increased 
acoustic detection in the water column of certain size classes and feeding guilds from day to 
night. During the daytime, fish are typically associated with the seafloor or in densely packed 
schools. At dusk, fish leave the seafloor in more loosely packed schools (Axenrot et al. 2004; 
Campanella et al. 2019) (Figure 12.6). During daytime hours, acoustic density is typically lower 
compared to nighttime hours due to the fishes’ association with the seafloor or “deadzone”, as 
well as underestimating fish within tightly packed schools. The “deadzone” is a region close to 
the seafloor where fish cannot be acoustically detected due to the spherical nature of the 
acoustics beam and the strong seafloor echo that masks the weaker fish echoes. The diel striping 
pattern was evident in all size class maps and coincided with the plankton vertical movement 
patterns (Figure 12.7). The pattern exhibited clear evidence of diel migration that occurred close 
to nautical twilight (sun is between 6 degrees and 12 degrees below the horizon), with the 
vertical migration starting about 2 hours prior to sunset and the descending migration starting 
about 1 hour prior to sunrise. Most fish were associated with the seafloor during the daytime, but 
at night, small and medium size fish were seen utilizing the full water column.  

Large fish were either associated with the seafloor or in the mid/upper portions of the water 
column (Figure 12.8). Large, densely packed schools of small to medium size fish were observed 
throughout the water column during the daytime hours and transitioned to loosely aggregated 
schools during nighttime hours (Figure 12.9). The daytime schooling behavior of the small to 
medium size are mechanisms for minimizing predation and did not appear to be associated with 
features on the seafloor. At dusk, the small to medium size fish transitioned to loosely 
aggregated schools, which is likely related to feeding behavior. This behavior is coupled with 
plankton rising into the water column and reduced predation risk from visual predators during 
the nighttime (Axenrot et. al. 2004; Campanella et al. 2019). 
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Figure 12.9. SBES echogram demonstrating the difference between a tightly packed school (left) 
versus a loosely packed school (right). 

12.3 Geoform-Density Relationship 
Fish density (per 100 m2) and the composite habitat map (see Chapter 11) were used to analyze 
the association of fish densities with habitat types within the survey area. In ArcGIS, the three 
habitat types (i.e., rippled sand, rippled sand/pebbles, and megaripples) were spatially joined 
with the fish acoustic density points. Densities were averaged to account for the different spatial 
size of each habitat (Figure 12.10). Fish densities in the rippled sand/pebbles were greater than 
densities over rippled sand. Fish densities for both rippled sand and rippled sand/pebbles were 
significantly greater than megaripples. Higher overall density in rippled sand and pebbles was 
attributed to large pelagic schools of fish that were observed in the water column. The overall 
uniformity of the habitat types and the lack of hard bottom or structure suggested that fish were 
not associated with the habitat, but rather with the water column. 
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Figure 12.10. Mean acoustic densities (#/100m2) for fish size classes and over all densities 
grouped by habitat type.  

12.4 Fishery Independent Surveys 
SBES data provides a snapshot of the spatial and vertical distribution of fishes during the 
mapping survey and provides indicators for potential hotspots of biomass associated with 
seafloor habitats. The acoustic survey methods and results presented here are repeatable and 
could document changes in the spatial distribution over longer time periods, in response to 
seasonal or environmental changes, or in response to changes in the seascape, such as the 
installation of marine energy infrastructure. Without coincident visual or extractive samples, 
species identification of acoustic fish biomass is not possible. Instead, evidence from fishery-
independent surveys from the project area can provide information on what species may have 
been in the area during the mapping missions. Schooling and feeding behavior patterns paired 
with fishery trawl surveys provide a family level understanding of the fish within the survey 
area. Fishery-independent trawl surveys data were acquired from the NOAA Northeast Fisheries 
Science Center (NEFSC) for survey years 2003-2016 and contain compiled species information 
(Guida et al. 2017; NOAA NMFS NEFSC 2018). Eight trawl tows were conducted during the 
cold season (winter/spring) within the restricted spatial footprint of this project area (Figure 
12.11). The trawl data showed that Atlantic herring (Clupea harengus), sliver hake (Merluccius 
bilinearis), alewife (Alosa pseudoharengus) and scup (Stenotomus chrysops) were the dominant 
species present (Figure 12.12). These species schooling behavior and transient migration patterns 
may comprise the fishes that are seen in acoustics surveys. 
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Figure 12.12. Percentage of catch by number from the NEFSC Trawl Survey between 2003 and 
2016 cold (winter/spring) season (Guida et al. 2017). Locations of trawls appear in Figure 12.11. 
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Technical Glossary 
 
Accuracy assessment (AA) – In the context of seafloor mapping, a technique that uses a 
randomly sampled set of ground truthing videos or sediment grabs to measure thematic accuracy 
of the habitat map. The score is evaluated by analyzing the User’s Accuracy, Producer’s 
Accuracy, and the Overall Accuracy. Proportional Area of each habitat class may also be 
factored into this assessment to reduce bias from habitats that are more common. 
 
 Area backscattering coefficient (ABC) – A measurement of acoustic signature strength over a 
specified area represented in m2 /m-2.   

 
 
Area under the receiver operating characteristic curve (AUC) – A receiver operating 
characteristic (ROC) curve is a graphical representation of how well a model can discriminate 
between (or predict) two categories of data (e.g., presence and absence). ROC curves can be used 
to identify the “optimal” thresholds in predictions (e.g., to classify a map of predicted probability 
of occurrence into presence and absence) for specific management applications. The AUC is the 
integral of a ROC curve. AUC values range between 0 and 1, with higher AUC values indicating 
better model performance. 
 
Bag fraction (bf) – In a boosting context, a parameter that defines the proportion of the data 
drawn at random, without replacement, from the full training dataset at each iteration. 
 
Bayesian Kriging – A geostatistical interpolation method that uses data subsetting and 
simulation to improve the estimation of semivariogram model parameters by accounting for 
uncertainty in the estimated semivariogram. Other kriging methods calculate a single variogram 
model without accounting for the uncertainty in semivariogram estimation. Consequently, 
Bayesian Kriging provides more accurate values for prediction standard error than other kriging 
methods, which underestimate prediction standard error.   
 
Boosted classification tree (BCT) model – A modeling approach that combines a machine 
learning technique, boosting, with traditional tree-based statistical modeling. In this approach, a 
large number of classification trees are fit stagewise (i.e., after each tree is fit, the remaining 
variation in the data is used to fit the next tree) and then combined to generate a final, combined 
(i.e., “ensemble”) model.  
 
Boosted regression tree (BRT) model – A modeling approach that combines a machine learning 
technique, boosting, with traditional tree-based statistical modeling. In this approach, a large 
number of regression trees are fit stagewise (i.e., after each tree is fit, the remaining variation in 
the data is used to fit the next tree) and then combined to generate a final, combined (i.e., 
“ensemble”) model.  
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Boosting – An iterative technique for fitting predictive models. Models are built in a stagewise 
fashion, where existing trees are left unchanged and the variance remaining from the last tree is 
used to fit the next one.  
Bootstrapping – A data resampling technique used to estimate the statistical precision associated 
with model predictions. Bootstrapping is a technique in which the data are randomly re‐sampled 
with replacement into some number of new datasets. The model is fit to each of these new 
datasets and used to make a prediction. The precision of these model predictions can then be 
assessed from the variability across the predictions.  
 
Coefficient of variation (CV) – Measure of dispersion for a distribution, representing the 
standard deviation as a proportion of the mean. In the context of a model prediction, a larger CV 
indicates more variation or uncertainty in the prediction relative to the mean prediction.  
 
Combined uncertainty bathymetric estimator (CUBE) – An error-model based generator that 
estimates the depth plus a confidence interval directly to each node point of a bathymetric grid. 
When the algorithm fails to make a statistically conclusive decision, it will generate multiple 
hypotheses, attempt to quantify the relative merit of each hypothesis and present them to the 
operator for a subjective decision.  
 
Cross-validation – A technique for evaluating the performance of a fitted model in which data 
are divided into subsets of training and test data, the model is fit to the training data, and model 
performance is assessed based on how well it predicts the values of the test data. 
 
Focal statistics – Calculations in which the value for each grid cell in an output raster is assigned 
using some function of the values of the input grid cells in a specified neighborhood (e.g., a 3 x 3 
grid cell rectangle) around that location.  
 
Ground validation (GV) – In the context of seafloor mapping, a method used to relate image 
data to real features and materials on the seafloor by manually selecting sites from a draft map 
based on locations where further information is required. Sampling can be in the form of in situ 
samples or photographs, which ultimately provide additional information to optimize the 
mathematical models used to predict habitats.  
 
Hydrometer – A device that measures the density of liquids, which could be used to determine 
the phi and grain size of very fine particles.  
 
Inverse distance weighting (IDW) – An interpolation method that predicts values at unknown 
locations using a weighted average of the values at known locations, with greater weights given 
to locations closest to the prediction location. This follows the assumption that locations that are 
closer to each other are more alike than locations farther apart. IDW is a deterministic method 
(i.e., it creates predictions directly from the values at known locations), and therefore does not 
provide an estimate of prediction uncertainty.  
 
k-fold cross-validation (kCV) – A cross-validation technique in which the data are divided into k 
data subsets (i.e., folds). Each fold is used once as the test data to evaluate a model fit using the 
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data in all the other folds as training data. An advantage of this approach is that all data are used 
for both training and testing the model. 

Kriging – A geostatistical interpolation method that predicts values at unknown locations using a 
statistical model estimated from the values at known locations through semivariogram analysis. 
The semivariogram is a plot that is used to assess and quantify spatial autocorrelation in the 
known locations, with the assumption that locations that are closer to each other are more similar 
than locations farther apart. A statistical model is fit to the semivariogram and then used to 
predict values at unknown locations. Since kriging uses a statistical model to create predictions 
rather than the actual values at known locations, it is a stochastic method in that there is some 
inherent randomness in the estimation of the semivariogram model parameters. As a result, 
kriging provides not only predictions but also measures of prediction uncertainty. 

Learning rate (lr) – In a boosting context, the degree to which each tree contributes to the final 
model. The optimal learning rate is one that minimizes prediction error in the fewest number of 
boosting iterations.  

Maximum entropy (MaxEnt) model – A modeling algorithm that estimates the functional 
relationships between occurrence and a set of environmental predictor variables, with the 
relationships constrained by the mean value of the predictors at known locations of occurrence. 
These relationships are then used to predict the relative likelihood of occurrence at unknown 
locations. 

Multibeam echosounders (MBES) – A type of sonar used to map the seabed by emitting sound 
waves in a fan shape beneath the ship’s hull. The amount of time it takes for the sound waves to 
bounce off the seabed and return to the sonar’s receiver is used to determine water depth.  

Overall accuracy (OA) – In the context of seafloor mapping, the overall score of the accuracy 
assessment for a benthic habitat map that is calculated by the sum of the major classifications 
divided by the total number of AA samples.  

Percent deviance explained (PDE) – A measure of the variation in the data explained by a 
model (beyond that explained by a model without predictor variables). Values normally range 
between 0 and 100%, although negative values are possible. Higher PDE values indicate better 
model performance.  

Phi (φ) Scale – A modification of the Wentworth scale that factors the diameter of a grain (in 
millimeters) to a logarithmic function, which assigns each grain size class a phi number -6 to 4 
(in the NYWEA project).   

Producer's accuracy (PA) – In the context of seafloor mapping, a metric to describe the thematic 
accuracy of the benthic habitat map by measuring how often habitats were incorrectly excluded 
from their correct habitat class.  

Random forest model – A modeling approach that combines a machine learning method, 
bagging, and random selection of features with traditional tree-based statistical modeling. In this 
approach, data are randomly sampled with replacement into a large number of subsets. A 
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regression tree model is fit to each data subset, with a random subset of the features used at each 
candidate split during training of the decision tree. Models are averaged to generate a final, 
combined (i.e., “ensemble”) model.  
 
Resampling – A method of using randomly drawn subsets of data to estimate statistical precision 
(e.g., variation in model predictions), to perform a significance test (e.g., permutation test of 
predictor importance), or to perform model validation (e.g., cross-validation). ArcGIS uses the 
term resampling to describe the interpolation methods used to change the resolution of a raster 
dataset.  
 
Root Mean Square Error (RMSE) – RMSE measures the error associated with a model by 
calculating the difference between the predicted data (extracted from the model) and the 
response data (extracted from the underwater videos).  
 
Separation (SEP) model – Modeling technique used to translate Global Navigation Satellite 
System (GNSS) derived vertical positions to chart datum.  
 
Smooth Best Estimate of Trajectory (SBET) – The Smoother is a module that computes the 
estimates of the inertial navigator by processing data backwards in time and then combining it 
with estimates from the forward in time filter. This is combined with a Feed-forward Error 
Control (a POSPac software module) to apply the integrated inertial navigation solution to 
generate an SBET. This is then applied to multibeam data to enhance the horizontal and vertical 
accuracy.  
 
Splitbeam echosounder (SBES) – A sonar that is comprised of a transducer that is split into four 
quadrants allowing the location of targets in three dimensions.  
 
Spatial predictive modeling – Modeling technique whereby relationships between environmental 
predictors and a response (e.g., benthic habitat type) are estimated for areas with survey data. 
These relationships are then used to predict the response in areas without survey data.  
 
Sensitivity – A measure of model performance for binary classification models (e.g., 
presence/absence) that measures the proportion of positives that are correctly predicted as 
positives. This measure can be used to identify optimal thresholds for specific management 
applications. For example, if the goal is to design a new marine protected area that includes 95% 
of a species’ distribution, than managers could identify the probability of occurrence threshold 
where sensitivity equals 0.95.  
 
Specificity – A measure of model performance for binary classification models (e.g., 
presence/absence) that measures the proportion of negatives that are correctly predicted as 
negatives. Like for sensitivity, this measure can be used to identify optimal thresholds for 
specific management applications. For example, if the goal is identify anchoring areas that 
exclude 95% of a species’ distribution, than managers could identify the probability of 
occurrence threshold where specificity equals 0.95.  
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Test data – Data that are excluded during model fitting and used to test the predictive 
performance of the fitted model.  

Tidal Constituents and Residual Interpolation (TCARI) – A method of computing water level 
correctors to reference hydrographic sounding to a tidal datum (e.g. Mean Lower Low Water) 
using observed water level data.  

Total propagated uncertainty (TPU) – A measure for the accuracy to be expected for a point, 
when all relevant error and uncertainty sources are taken into account.  

Training data – Data to which a model is fit in order to estimate model parameter values. 

Tree complexity (tc) – In boosted regression and classification tree models, a parameter that 
controls the number of allowable nodes in a tree. This limits the number of possible interactions 
between predictor variables. In general, greater tree complexity results in fewer iterations needed 
for model convergence. 

TrueHeave – Applanix technology built into the Positioning and Orientation System for Marine 
Vessels (POS/MV) that accurately predicts the heave (up/down motion) of the vessel and thus 
filters out heave artifacts from the survey data.  

User's accuracy (UA) – In the context of seafloor mapping, a metric to describe the thematic 
accuracy of the benthic habitat map using the total number of AA sites that the model correctly 
predicted for each habitat. The user is the analyst reviewing the AA data conducting the accuracy 
assessment.  

underway Conductivity, Temperature, and Depth (uCTD) – A probe made up of electronic 
instruments that, when deployed into the water, measures the salinity, temperature, and depth of 
the water column. An underway CTD can be deployed while the vessel is in motion.  

Vdatum – Software designed to vertically transform geospatial data among a variety of tidal, 
orthometric and ellipsoidal vertical datums.  
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