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The purpose of this Atlas is to facilitate improved environmental manage-
ment of the Outer Continental Shelf (OCS) by developing one depository 
of maps and information on major submarine canyons of the OCS. 
This Atlas provides the Bureau of Ocean Energy Management (BOEM) 
with geospatial and resource information to assist in the preparation of 
environmental documents. To accomplish this, submarine canyons were 
inventoried and delineated using a methodology consistent with terres-
trial watershed mapping. A criteria-based algorithm generated spatial 
polygons used to calculate canyon slope, length, and depth. A concurrent 
literature review was conducted, which provided the notable facts seen in 
the Atlas. In addition, the literature citations were cataloged in an EndNote 
library and a synopsis there of was embedded in the geodatabase files. 

Canyon polygons developed by Harris et al. (2014) (hereinafter, Harris) 
was the starting point for defining canyon boundaries and guiding 
the initial canyon inventory and selection process. Harris utilized both 
geographic information system (GIS) tools (Topographic Position Index, 
calculated by comparing each cell slope value to the mean slope of the 
cell’s neighbors) and the judgement of subject matter experts (SMEs). 
For this project, CSA Ocean Sciences Inc. (CSA) developed an objective, 
numerically repeatable delineation process using the Harris data as a 
starting point. As with Harris, canyon bathymetry, and subsequently, 
their boundaries were derived using Shuttle Radar Topography Mission 
(SRTM30) data because of its consistent geographic coverage. 

The first step in this process was to extract the approximate Harris canyon 
thalweg, which represents the deepest continuous path down the canyon. 
The bathymetric data were clipped at the Harris polygon border for 
thalweg extraction using the Strahler method in the Esri Toolbox (Strahler 
1957). The Strahler method assigns stream order values to tributaries 
as they intersect one another. Typically, the first three stream orders 
were adequate to create a continuous polyline through the Harris canyon 
extent; in less linear and more dendritic canyon systems, a fourth largest 
stream order was utilized to ensure an continuous polyline. To simplify the 
stream order network, log10 was applied to the result of the flow accumu-
lation tool before calculating stream order.

Around each canyon thalweg, bathymetric data from a series of 
boundary extents were evaluated to determine the effect of spatial 
extent on computing potential canyon boundaries. CSA examined five 
boundary extents (1, 3, 5, 10, and 20 km) by buffering around the thalweg 
to define a preliminary canyon boundary. For each of those boundary 
extents, data extraction was performed by applying a slope analysis tool 
to compute slopes.

Sequential elimination of flatter slopes from the boundary extents 
progressively decreased the boundary extent toward the canyon thalweg. 
The Harris boundary for some canyons was most closely approximated 
by the 50th percentile of the data within the boundary extent, making 
the Harris boundary a very conservative boundary extent estimate 
(i.e., contained mostly the steepest slopes). From this evaluation, it was 
decided that slope data smaller (flatter) than the 4.6th percentile (i.e.,  
2 standard deviations [2SDs]) should be eliminated to ensure inclusion of 
larger (steeper) canyon features and because data outside of 2SDs are 
traditionally considered to be outliers to a distribution.

The effect of boundary extent on the 2SD percentile was also examined 
for three visually distinct canyon geometry scenarios. The three geometry 
scenarios were: 1) isolated and narrow relative to length, 2) isolated and 
wide relative to length, and 3) canyon systems (many canyons occurring 
conterminously). For each of these canyon scenarios, the 2SD percentile 
was plotted as a function of the five boundary extents and visually exam-
ined for sensitivity of the 2SD percentile to these extent by canyon geom-
etry scenario combinations. By evaluating how seafloor slope percentiles 
stabilized as a function of boundary extents, it was concluded that use of 
the 2SD percentile within a 10-km boundary would be used to eliminate 
surrounding seafloor from the definition of canyon boundaries.

DISCLAIMER

Study concept, oversight, and funding were provided by the US Department of the Interior, Bureau of Ocean Energy Management 
(BOEM), Environmental Studies Program, Washington, DC, under Contract Number 140M0119F0009. This report has been technically 
reviewed by BOEM, and it has been approved for publication. The views and conclusions contained in this document are those of 
the authors and should not be interpreted as representing the opinions or policies of the US Government, nor does mention of trade 
names or commercial products constitute endorsement or recommendation for use.

NOTES

This study includes both the continental US and Alaska. Different projections were used to account for differen-
ces in location relative to the North pole to present a less visually distorted map view. However, this results in a 
trade-off because one or the other (map view or associated coordinates) will be distorted due to the convergence 
of parallels and meridians with proximity to the geographic north pole. More specifically, a map projection uses 
mathematical formulas to relate spherical coordinates on the globe to flat, planar coordinates. In all projected 
coordinate systems, intervals of latitude and longitude decrease as they get closer to the poles. Although the 
coordinate system selected here for Alaska, has a less visually distorted map view, its graticules (the network of 
lines representing meridians and parallels on which a map is represented) and associated coordinates necessarily 

appear distorted on the map and do not align at perfect 90-degree angles due to the projection of the map relative to the curvature of 
the earth and proximity to the poles.

The oblique 3D views were included to show the canyons and perceive the difference in height between the canyon floor and rim. The 
oblique 3D views shown here are vertically exaggerated, are not to scale, and do not necessarily show the complete length of each 
canyon. The views were oriented to optimize 3D visualization and from a position and angle that displays the most dynamic relief within 
each canyon.

REPORT AVAILABILITY

To download a PDF file of this report, go to the US Department of the Interior, Bureau of Ocean Energy Management Data and Infor-
mation Systems webpage (http://www.boem.gov/Environmental-Studies-EnvData/), click on the link for the Environmental Studies 
Program Information System (ESPIS), and search on 2019-066. The report is also available at the National Technical Reports Library at 
https://ntrl.ntis.gov/NTRL/.
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CHAPTER 1 - ATLANTIC SUBMARINE CANYONS

ATLANTIC CANYONS OVERVIEW
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CHAPTER 1 - ATLANTIC SUBMARINE CANYONS

HEEZEN AND NYGREN CANYONS

Nygren Heezen

3D Oblique View

NOTABLE FACTS
Heezen Canyon walls are steep and mud covered, with complex 
terrain of mud ridges, steep gullies, and some exposed bedrock 
outcrops with occasional glacial erratics (NEFMC and NMFS 2017).

The NOAA Okeanos Explorer documented 18 species of corals 
inhabiting a depth range of 703 to 1,723 m in Heezen Canyon 
(Quattrini et al. 2015).

The walls in Nygren Canyon are suggested to be highly stable due 
to the presence of Iron-Manganese oxide coating and heavy 
colonization of attached fauna (Quattrini et al. 2015).

Nygren Canyon was shown to have the highest species richness 
compared to other canyons surveyed (Quattrini et al. 2015).

A possible shipwreck has been identified south of Nygren Canyon 
in water depths of approximately 3,500 m (CSA et al. 2017).
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CHAPTER 1 - ATLANTIC SUBMARINE CANYONS

OCEANOGRAPHER CANYON SYSTEM

Oceanographer

Filebottom

Chebbaco Gilbert Lydonia
Heel Tapper

3D Oblique View

NOTABLE FACTS
Oceanographer Canyon is deeper than the Grand Canyon 
(more than 2,000 m deep). The maximum water depth within 
the entire Oceanographer Canyon system is more than 
3,800 m.

Canyons within the Oceanographer System are known to have 
a high abundance of fauna, including numerous deep-water 
corals. A 2013 survey observed a high abundance of fauna 
living on the underside of ledges, including bivalves, cup corals, 
squat lobsters, and sponges (Quattrini et al. 2015). In Gilbert 
Canyon, black corals were discovered for the first time in this 
area (NEFMC and NMFS 2017).

Lydonia, Oceanographer, and Gilbert Canyons are included in 
the first and only National Marine Monument to be designated 
in the Atlantic Ocean (81 FR 65161).
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CHAPTER 1 - ATLANTIC SUBMARINE CANYONS

HYDROGRAPHER CANYON
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NOTABLE FACTS
Siliciclastic and carbonate-rich lithologic sequences are  
prevalent in this canyon (Quattrini et al. 2015).

Outcrops in this canyon are most likely of Late Cretaceous   
to Eocene age (Quattrini et al. 2015).

A  variety of biota have been characterized within the canyon, 
including eels, cod, dogfish, flounder, crab, corals, sponges, 
mollusks, shrimps, and cephalopods (Quattrini et al. 2015).

This canyon is designated as a Habitat Area of Particular 
Concern (HAPC) based on its unique geomorphology and the 
presence of deep sea corals (NEFMC and NMFS 2017).
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CHAPTER 1 - ATLANTIC SUBMARINE CANYONS

VEATCH CANYON
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3D Oblique ViewNOTABLE FACTS
Veatch canyon’s formation has been linked to glacial outwash 
from the George’s Bank area (Forde 1981).

Cold seeps and associated biota such as deep sea mussels 
have been identified in this canyon. Corals and sponges have 
also been observed living on the canyon walls (NEFMC and 
NMFS 2017).

This canyon has been designated as a “Tilefish Gear Restricted 
Area” and is closed to vessels with bottom-tending mobile gear, 
such as trawls, seines, and dredges (50 CFR 648.297).
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HUDSON AND ATLANTIC 2 CANYONS
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NOTABLE FACTS

Atlantic 2 Canyon runs almost 
parallel to the southern portion of 
Hudson Canyon and is approxi-
mately 15 km east.

Hudson Canyon is the largest 
canyon on the U.S. Atlantic shelf 
and slope (Covault et al. 2011) 
and is a deep trough that con-
nects the canyon to the mouth 
of the Hudson River (Lentz et al. 
2014).

Hardbottom areas have been 
identified along the floor of 
Hudson Canyon, as well as 
pock-mark fields associated with 
methane release from sediments 
(NEFMC and NMFS 2017).

Along the canyon walls near 
the head of Hudson Canyon, 
the strata are believed to be of 
Cretaceous, Paleogene, and 
Neogene age (Butman et al. 
2006).

Sediment transport in Hudson 
Canyon is primarily driven by 
tidal currents, internal waves, 
and storms (Pierdomenico et al. 
2017).

Hudson Canyon, especially 
its upper reaches, represents 
an area of enhanced primary 
productivity and organically rich 
sediments, which enhances fish 
and invertebrate communities 
around the canyon. It is also 
home to soft coral species in 
deeper portions of the canyon 
(Pierdomenico et al. 2017).

Hudson Canyon is recognized 
as a hotspot for commercial and 
recreational fishing (Pierdomeni-
co et al. 2017).

The area adjacent to the head 
of Hudson Canyon includes a 
group of shipwrecks, both named 
and unnamed (NOAA 2019). 
The morphology of the Hudson 
Canyon, particularly the north-
south orientation of the canyon 
head and a braided channel near 
its southeastern outlet, supports 
archaeological site preservation 
(Garrison et al. 2012). 

Hudson Canyon has been 
designated as an HAPC based 
on its unique geomorphology and 
the presence of deep sea corals 
(NEFMC and NMFS 2017).

Observations of large seaso- 
nal aggregations of krill within 
Hudson Canyon may also  
attract marine mammals  
(Pierdomenico et al. 2017).
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ATLANTIC 3 CANYON

42
00

4000

40
00

38
00

36
00

34
00

32
00

30
00

Atlantic 2

Atlantic 3
Hudson

Norfolk

Lindenkohl

Atlantic 6

70°30'0"W

71°0'0"W

71°0'0"W

71°30'0"W

71°30'0"W

72°0'0"W

72°0'0"W

72°30'0"W73°0'0"W

38
°0

'0
"N

37
°3

0'
0"

N

37
°3

0'
0"

N

37
°0

'0
"N

37
°0

'0
"N

36
°3

0'
0"

N

36
°3

0'
0"

N
36

°0
'0

"N

0 10 205 Kilometers

0 10 205 Miles

±
Map Scale: 1:860,000

Bathymetric Contour (m)

BOEM Planning Area Boundary

Canyon Boundary

CSA Ocean Sciences Inc. et al. 2019
Delineation Method

Harris et al. 2014 Delineation Method

Coordinate System: 
USA Contiguous Lambert Conformal Conic

2940 4380
Submarine Canyon Bathymetry

3660

Depth in meters

 A t l a n t i c  
O c e a n

NY

NC

PA

SC

VA

3D Oblique View

Bathymetric Contour (m)

BOEM Planning Area Boundary

Canyon Boundary

CSA Ocean Sciences Inc. et al. 2019
Delineation Method

Harris et al. 2014 Delineation Method

Coordinate System: 
USA Contiguous Lambert Conformal Conic

2940 4380
Submarine Canyon Bathymetry

3660

Depth in meters

 A t l a n t i c  
O c e a n

NY

NC

PA

SC

VA

NOTABLE FACTS
Atlantic 3 Canyon is approximately 240 km long, is located 
about 333 km east of the Chesapeake Channel in Virginia, and 
is possibly an extension of the Baltimore Canyon system to the 
west-northwest.

There have been four shipwrecks identified adjacent to the 
Atlantic 3 Canyon edges (NOAA 2019).
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WILMINGTON CANYON
AND BALTIMORE CANYON SYSTEM
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NOTABLE FACTS
Canyon walls in the upper part of Baltimore Canyon 
support abundant sessile communities of sponges, 
anemones, octocorals, and hard corals (Brooke 
et al. 2017; CSA et al. 2017). Motile fauna, such 
as crabs, squat lobsters, shrimps, and fishes, are 
abundant and diverse (Ross et al. 2015; CSA et 
al. 2017). An active methane seep with associated 
communities occurs near the southern edge of the 
canyon (Prouty et al. 2016; CSA et al. 2017).

It was suggested that Wilmington Canyon is older 
than both South Wilmington and North Heyes Can-
yons (Kuenzel 2011). A seismic reflection survey 
suggests that the ancestral Delaware River valley 
was the most recent of a series of valleys to enter 
the canyon from the west (McGregor 1981).
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NORFOLK CANYON SYSTEM
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NOTABLE FACTS

The Norfolk Canyon system com-
prises Norfolk Canyon, Washington 
Canyon, and the smaller Hull 
Canyon. The heads of Washington 
and Norfolk Canyons are approx-
imately 45 km apart and are cut 
11.7 km and 19.3 km onto the shelf, 
respectively (Forde 1981, Obelcz  
et al. 2014). 

Offshore of Washington and Norfolk 
Canyons’ bends, the canyons 
contain higher densities of steep 
tributary canyons and gullies, espe-
cially along their north walls, which 
have a greater roughness and local 
steepness when compared to their 
southern walls (Obelcz et al. 2014). 
A series of terraces is characteristic 
of many places along the walls of 
Norfolk Canyon (Obelcz et al. 2014).

Canyons within the Norfolk Canyon 
system likely originated from non-riv-
erine erosional processes (Tucholke 
1987). Seismic profiles of Washing-
ton and Norfolk Canyons indicate an 
erosional origin of these canyons; 
however, profiles of the continental 
slopes reveal a history of alternating 
episodes of deposition and erosion 
(Forde 1981).

Currents within the area are largely 
driven by the shelf-slope front, with 
current speeds controlled by semid-
iurnal tides. Current velocities are 
highest in the heads of the canyon 
(CSA et al. 2017).

Norfolk Canyon contains known 
habitats for deep sea, habitat-form-
ing coral species (Lophelia pertusa) 
as well as sessile fauna, such as oc-
tocorals, sponges, pink anemones, 
and soft tube worms (Brooke et al. 
2017; CSA et al. 2017). Motile fauna 
are diverse and abundant and in-
clude crabs, squat lobsters, shrimps, 
and fishes (Ross et al. 2015; 
CSA et al. 2017). Various investi-
gations of seep sites within, and at 
the mouth of, Norfolk Canyon have 
showed active methane seepage.

Several shipwrecks have been iden-
tified along the shelf edges, near 
the canyon heads, and along the 
walls of canyons within the Norfolk 
Canyon system. Most famous of 
these are the recently explored “Billy 
Mitchell” fleet, most of which are 
located just north of Norfolk Canyon 
(CSA et al. 2017).

Washington and Norfolk Canyons 
have been designated as HAPCs 
based on their unique geomorphol-
ogy and the presence of deep sea 
corals (NEFMC and NMFS 2017). 
Norfolk Canyon has been designat-
ed as a “Tilefish Gear Restricted 
Area” (50 CFR 648.297). It is part of 
the Frank R. Lautenberg Deep Sea 
Coral Protection Area.
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THE POINT (HATTERAS MIDDLE SLOPE)
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NOTABLE FACTS
The Point, also referred to as Hatteras Middle 
Slope (HMS), is a region of numerous, mostly 
parallel, small canyon or gully features on the 
continental slope just north of Cape Hatteras.

Investigations documented various unusual 
conditions on the HMS, including 1) the highest 
densities of benthic infauna on the U.S. East Coast 
continental slope; 2) unusual concentrations of 
benthic fishes and megafaunal invertebrates; 3) 
reduced species richness, motility, and sizes in fish 
community, perhaps related to environmental con-
ditions; and 4) an exceptionally high flux of organic 
carbon to the bottom (Schaff et al. 1992; Hecker 
1993; Sulak and Ross 1996).

Atlantic Ocean waters along the North Caroli-
na coast have been the scene of an unusually 
large number of shipwrecks, and this area often 
is referred to as the “Graveyard of the Atlantic.”3D Oblique View
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CHAPTER 1 - ATLANTIC SUBMARINE CANYONS

KELLER, HATTERAS, ATLANTIC 4,
AND PAMLICO CANYONS
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NOTABLE FACTS
The San Delfino, believed to have sunk in 1942, was identified near the head of 
Keller Canyon in a water depth of approximately 50 to 70 m (Hoyt et al. 2014).

Hatteras Canyon has deep valleys that cut across the upper continental rise, 
which terminates on the lower rise in fans characterized by transverse sediment 
waves (Gardner et al. 2005).

Many organisms have been observed in Hatteras Canyon, indicating a highly 
productive area. Bacterial mats were present, but higher order chemosynthetic 
organisms were not observed (Raineault et al. 2018).

The rock faces within Pamlico Canyon host a number of organisms, including 
sea spiders, cup coral, skates, cusk eels, octopus, red crabs, spider crabs, and 
brittle stars (Raineault et al. 2018).
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MISSISSIPPI AND DE SOTO CANYONS
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NOTABLE FACTS

The origin of Mississippi Canyon 
is generally thought to have been 
attributed to channel entrench-
ment of the Mississippi River 
during low stands of sea level 
and erosion (Coleman et al. 
1982).

Currents in the upper Mississippi 
Canyon generally oscillate up/
down canyon in twelve-hour time 
intervals and are bottom-intensi-
fied (Ross et al. 2009).

Mississippi Canyon is an 
important avenue for sediment 
transport and organic carbon 
input from the Mississippi River 
to the deep sea in the Gulf of 
Mexico (Wei et al. 2010).

Organic matter transport through 
Mississippi Canyon supports an 
abundant biological community 
that includes numerous poly-
chaete and fish species (Wei   
et al. 2010, 2012).

The Mica Wreck, dated to the 
first half of the 19th century, is 
located in Mississippi Canyon in 
808 m of water. The 20-m long 
vessel is well preserved with low 
sedimentation, allowing for iden-
tification of its wooden hull and 
metal sheathing, and recovery  
of a variety of artifacts (Krivor   
et al. 2011).

De Soto Canyon is thought 
to have formed in the Late 
Cretaceous period, and although 
its exact formation is uncertain, 
recent studies indicate the topo-
graphically induced eddies shed 
off of the Loop Current may have 
contributed to the modern-day 
shape (Dunn 2016).

Considerable nutrient enrich-
ment and enhanced primary 
production occurs at the head of 
De Soto Canyon during periods 
of high regional river discharge 
(Jochens et al. 2002).

Approximately 52 species of 
fishes have been observed in De 
Soto Canyon, based on pooled 
trawl data from 1964 to 2002 
(Wei et al 2012). De Soto Can-
yon is near the Pinnacle Trend, 
a high-relief area of carbonate 
mounds with unique biological 
communities.

The head of De Soto Canyon is 
within the year-round Biologically 
Important Area for the endan-
gered Gulf of Mexico Bryde’s 
whale (Balaenoptera edeni) 
(LaBrecque et al. 2015).
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CHAPTER 2 - GULF OF MEXICO SUBMARINE CANYONS

PERDIDO, ALAMINOS,
AND KEATHLEY CANYONS
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NOTABLE FACTS
A deep cyclonic boundary current along the Sigsbee and 
Perdido escarpments has been observed, showing that 
the flows below the escarpments are more vigorous than 
above it (Donohue et al. 2008).

The area around Perdido and Alaminos Canyons has 
been recognized for decades as having a high potential for 
petroleum and is considered an important ultra deep water 
source for both U.S. and Mexico (Fiduk et al. 1999).

Chemosynthetic organisms, including species of gastro-
pods, crustaceans, echinoderms, gorgonians, fishes, and 
their related carbonate deposits have been identified within 
the Alaminos Canyon area (Roberts et al. 2007).

The origin of Keathley Canyon began with underlying 
lateral salt movement beneath the upper canyon, uplifting 
the continental slope and raising and coalescing the 
sediments, resulting in a valley-like feature with walls of 
uplifted and deformed strata (Lee et al. 1992).
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CHAPTER 3 - PACIFIC SUBMARINE CANYONS

PACIFIC CANYONS OVERVIEW
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CHAPTER 3 - PACIFIC SUBMARINE CANYONS

JUAN DE FUCA CANYON SYSTEM
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NOTABLE FACTS
Juan de Fuca Canyon has been identified as 
the most important source for the net upwelling 
of nitrate onto the Washington shelf (Hickey 
and Banas 2008). The canyon is also known to 
have high krill biomass concentration (Santora 
et al. 2018).

Large deep-sea communities were discovered 
in Juan De Fuca Canyon in 2017, including 
long-lived species of coral and sponges  
(Raineault et al. 2018).

The trawling fleet in Washington focuses their 
efforts around the Juan de Fuca Canyon to 
catch rockfish, Pacific hake, arrowtooth floun-
der, and Dover sole (Tagart 1997).

The Coast Trader was sunk in 1942 by a Japa-
nese submarine, and the shipwreck lies at the 
head of Juan de Fuca Canyon (NOAA 2019).3D Oblique View
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CHAPTER 3 - PACIFIC SUBMARINE CANYONS

GRAY’S CANYON SYSTEM
AND ASTORIA CANYON
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NOTABLE FACTS
The Gray’s Canyon system’s influence over regional flow may facilitate trans-
port of zooplankton species from the canyon onto the continental shelf, which 
benefits fish species by providing prey (Peterson et al. 2010).

Astoria Canyon, the largest canyon offshore Oregon, has been shaped by 
periodic major earthquakes and sea level changes (Embley 2010).

Benthic and pelagic communities of Astoria Canyon have been described in 
Bosley et al. (2004), with overall productivity linked with the canyon’s physical 
circulation.

Astoria Canyon is a popular fishing spot because its unique underwater 
geography upwells nutrients near the mouth of the Colombia river, providing 
a food source for fish (Whittaker 2019).
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EEL CANYON
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NOTABLE FACTS
Eel Slump, a feature within the canyon, 
is a landslide scar located 2.5 km south-
west of the sharp bend in the canyon 
between 1,230 and 1,800 m water depth 
(Gwiazda et al. 2016). Most of the sedi-
ment feeding into Eel Canyon originates 
from storm-induced resuspension events 
on the adjacent shelf (Puig et al. 2003).

The Eel River is thought to have run 
directly into Eel Canyon until the end of 
the Pleistocene, when sea levels were 
lower; the two features are now sepa-
rated by about 20 km of shallow marine 
shelf (Paull et al. 2014). 

Patches of chemosynthetic clams were 
observed in this canyon, suggesting 
the presence of hydrogen sulfide in the 
sediment (von Thun 2013).3D Oblique View
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DELGADA CANYON SYSTEM
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NOTABLE FACTS
Analysis of bathymetric surveys suggests that the Delgada 
Canyon mainstem is actively carved into bedrock by turbidity 
currents generated at the Delgada Canyon head wall (Smith   
et al. 2018).

Delgada Canyon is one of the tributary canyons to the Delgada 
Fan complex (Atwater 1970). It is possible that the coalescing 
canyon systems on the continental slope have remained with 
the fan and adjacent sea floor during the Neogene transform 
offset. Another possibility is that the two main lobes of the fan, 
which include the bulk of the upper-fan deposits, are relatively 
recent features. (Normark and Gutmacher 1985).

Sediment transport and accumulation at the Delgada Canyon 
head is controlled primarily by wave-induced shear stress influ-
enced by the regional longshore current (Smith et al. 2018).
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PACIFIC 2 AND PIONEER CANYON
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NOTABLE FACTS
The head regions of the Pacific 2 Canyon 
begin within three different National Marine 
Sanctuaries (NMSs): Greater Farallones NMS, 
Cordell Bank NMS, and Monterey Bay NMS.

Pioneer Canyon originally developed as the 
seaward channel of Monterey Canyon and 
was displaced northward to its present loca-
tions by right lateral faulting (Howell et 
al. 1980).

Black-footed albatross have been reported to 
concentrate in great numbers at the head of 
Pioneer Canyon (Santora et al. 2012). In 2016, 
an expedition of Pioneer Canyon discovered 
many bamboo coral forests and rocky features 
with multiple coral species, sponges, inverte-
brates, and fish (Roletto et al. 2016).
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CHAPTER 3 - PACIFIC SUBMARINE CANYONS

SUR AND LUCIA CANYON SYSTEMS
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NOTABLE FACTS
Partington Canyon is a major tributary 
branch of Sur Canyon (Harris et al. 
2014). The Sur Canyon system is inter-
sected on the upper slope by a segment 
of the San Gregorio Fault Zone (part of 
the San Andreas Fault System), which 
has rates of lateral motion of around 6 to 
9 mm/yr (Harris et al. 2014).

In a 2003 survey, the Sanctuary 
Integrated Monitoring Network reported 
that 48 species of fish were observed in 
Partington Canyon, including 27 species 
of rockfish (SIMoN n.d.).

The head of the Lucia Canyon system 
acts as a funnel for the rapid transport 
of detritus eroded from the Santa Lucia 
Mountains to the deep abyssal plain 
(SIMoN n.d.).
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MONTEREY CANYON SYSTEM
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NOTABLE FACTS
Monterey Canyon is the largest 
submarine canyon on the U.S. Pa-
cific continental shelf (Covault et al. 
2011). Soquel and Carmel Canyons 
are two tributaries of Monterey 
Canyon. The system is composed of 
two parts, which contain a total of six 
canyons: 1) Ascension, Ano Nuevo, 
and Cabrillo Canyons to the north 
and 2) Monterey, Soquel, and Carmel 
Canyons to the south. 

Monterey Canyon sits on an active 
tectonic margin, and its shape is 
greatly influenced by fault zones in 
the region (Covault et al. 2011).

Recent studies indicate that Monte-
rey Canyon started forming between 
10 and 6.8 million years ago and was 
likely carved by rivers carrying mate-
rial from shore (Conrad et al. 2017).

The last turbidity current to occur in 
waters > 2,000 m within Monterey 
Canyon occurred about 150 years 
ago (Symons 2017).

Monterey Canyon is within a major 
upwelling system that enhances 
productivity in the canyon, with the 
highest intensity between March and 
November (Ryan et al. 2010).

Monterey Canyon is a productive 
ecosystem hosting an abundant bio-
logical community, including various 
species of fish, squid, nematode, 
jellyfish, and plankton (Goffredi et al. 
2012). It is also home to numerous 
chemosynthetic communities in 
deeper waters below 2.5 km depth 
(Paull et al. 2010). Soquel Canyon 
hosts numerous species, including 
polychaetes, crustaceans, mollusks, 
and rockfish (McClain and Barry 
2010).

Marine debris and pollutants may 
pose a risk to communities in Ascen-
sion and Monterey Canyons. Debris 
transported from terrestrial sources 
is carried through the canyon to 
where it accumulates in the deep 
sea (Schlining et al. 2013). Levels 
of pollutants like DDT in sediments 
and fish are significantly higher from 
deep in Monterey Canyon compared 
to nearby continental shelf sediments 
and fish (Hartwell 2008). 

Within the Monterey Canyon System, 
two possible shipwrecks have been 
identified. One lies within Monterey 
Bay near the head of the canyon 
system. The other is believed to be 
the UMPQUA 11, a barge that sank 
in 1982 (NOAA 2019).

Monterey Canyon is a prominent 
feature of Monterey Bay National 
Marine Sanctuary.
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ARGUELLO AND PACIFIC 1 CANYONS
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NOTABLE FACTS
Seasonal north and south current movement deposits sedi-
ment that is then carried seaward via the Arguello Canyon to 
the Arguello fan (Wilde 1965).

On a Nautilus expedition in 2016, researchers found deep 
sea corals, octopus, and a potentially new species of sea 
slug in Arguello Canyon (NOAA 2016).

Pacific 1 Canyon is west of San Miguel and Santa Rosa 
Islands.

Pacific 1 Canyon reaches into Channel Islands National 
Marine Sanctuary.
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HUENEME CANYON
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NOTABLE FACTS
This canyon was formed by turbidity 
currents beginning approximately 15,000 
years ago (Romans 2011). In modern 
day, the canyon rim morphology coupled 
with storm-induced sediment resuspen-
sion on the shelf are the major controls 
of sediment fluxes into the canyon (Xu 
et al. 2010). The canyon is still active 
today, receiving huge volumes of sand 
from the northwest-to-southeast long-
shore transport of beach sand.

Because the head of this canyon is 
accessible from the shoreline, it is a 
popular spot for recreational diving.

In 2003, a 24-m wood hull fishing vessel 
sank in this canyon (NOAA 2019).
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NEWPORT CANYON
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NOTABLE FACTS
Newport Canyon was formed at a point where the shelf is 
narrow, and the sand was moved by waves in longshore drift 
and concentrated at a convergence zone near the canyon 
head (Felix and Gorsline 1971).

The benthic biodiversity in this canyon has been reported 
to be higher than in other Southern California canyons. This 
has been attributed to calmer conditions in terms of bottom 
current dynamics (i.e., less physical disturbance affecting 
the surface sediments at the axis of the canyon [Maurer  
et al. 1995]).

Similar to Hueneme Canyon, the head of this canyon is 
accessible from the shoreline and is a popular spot for 
recreational diving.
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LA JOLLA / SCRIPPS CANYON SYSTEM
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NOTABLE FACTS
Data from the La Jolla Canyon walls indicate 
that it is less than 1.2 million years old. There is 
evidence that a lagoon once existed at the head 
of the canyon, based on photographs in the early 
1900s and a 10-m thick deposit of estuarine mate-
rial throughout the head (Paull et al. 2013).

The heads of the La Jolla Canyon system extend 
into shallow water, which modifies nearshore 
circulation, surface wave patterns, and sediment 
transport (Le Dantec et al. 2010).

Abundance and diversity of benthic macrofauna 
and megafauna are higher in the Scripps Canyon 
compared to the adjacent slope (Vetter and Dayton 
1998, 1999).

Ecological reserves have been designated around 
the head of the canyon, as it is a known spawning 
ground for market squid, potential nursery habitat 
for juvenile giant sea bass, and prime location for 
aggregations of leopard sharks (Nosal et al. 2013).
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ALASKA CANYONS OVERVIEW
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HANNA, CHUKCHI SEA 1, 
AND CHUKCHI SEA 2 CANYONS
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NOTABLE FACTS
Hanna Canyon may be an abandoned late 
Pleistocene course of the Hope-Herald Sea 
Valley system (Grantz and Eittreim 1979).

Circulation through the Chukchi Sea canyons 
may include subsurface Atlantic water, which 
flows from the northeast as upwelling to the 
continental shelf, and possibly circulation from 
the Central Channel, which flows from the 
Bering Sea (Day et al. 2013).

Hanna Canyon is positioned on the shelf edge 
north of Hanna Shoal, which is a shallow fea-
ture on the continental shelf and recognized as 
one of the Chukchi Sea’s most productive areas 
(Day et al. 2013).
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BARROW AND BEAUFORT SEA
CANYONS 1-6
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NOTABLE FACTS
The flow of nutrient-rich waters along the west 
wall enhances the abundance of burrowing 
benthic organisms, which in turn promote high 
bioerosion of the canyon wall (Eittreim et al. 
1982).

The confluence of different water masses 
near Barrow Canyon promote high biological 
productivity in the area (Shroyer 2012). At 
high latitudes, Barrow Canyon and all Beaufort 
and Chukchi Sea canyons are connected to 
shelf systems that are highly productive during 
seasonal ice melting and open-water periods 
(Grebmeier et al. 2006). Seasonal changes in 
water temperature and salinity enable Barrow 
Canyon to be a hotspot for biological communi-
ties (Shroyer 2012).
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MACKENZIE AND BEAUFORT SEA
CANYONS 7, 8, AND 10
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NOTABLE FACTS
The Canadian Beaufort Sea continental shelf is characterized by three major bathy-
metric depressions, including the MacKenzie cross-shelf trough, which is the former 
location of ice streams that drained the northwest margin of the Laurentide Ice 
Sheet during Quaternary full-glacial periods (Geological Survey of Canada 1972).

In the deeper waters of the Beaufort Sea (Canada Basin) and over the continen-
tal margin and slope, large-scale circulation features include the Beaufort Gyre, 
the Beaufort Undercurrent, and the intrusion of Atlantic waters. These features, 
combined with the effects of regional winds and the MacKenzie River plume, create 
a complex of regional surface currents (Fissel et al. 2013).

Bowhead and beluga whale occur within waters near these canyons on a seasonal 
basis (Moors-Murphy 2014). 3D Oblique View
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ALEUTIAN ARC 2 AND BOWERS BASIN 
CANYONS 1 AND 2
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NOTABLE FACTS
Younger strata in the Aleutian Basin seem to be draped over basement relief 
and composed of oceanic crust, probably of Cretaceous age. Volcanism 
occurred on the basin margins throughout most of the Cretaceous Period 
and Cenozoic Era (Wiley 1986).

The deep waters of the southern Bering Sea contain biological communities 
distinct from the adjacent Aleutian Island shelf (Batten et al. 2006).

Prior to management actions in the area of these canyons, it was 
estimated that, from 1997 to 1999, Alaska groundfish fisheries (bottom 
trawling) removed an extrapolated average of approximately 40 metric tons 
of coral yearly in the Bering Sea and Aleutian Islands (Hourigan 2009).

3D Oblique View
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NAVARIN AND PERVENETS CANYONS 
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NOTABLE FACTS
Navarin Canyon has two main branches and does not lead 
to any distinct submarine fan morphology, suggesting that it 
has not been effective as a major conduit for sediment trans-
port from the continent (Normark and Carlson 2003).

Skates (Rajidae) have been reported to deposit their large 
leathery egg cases in specific canyon areas, with 10 of 14 
identified nursery sites reported at the heads of 5 large can-
yons in the Bering Sea, including Navarin Canyon (VanPelt 
2015). 

Canyons (such as Navarin and Pervenets) that indent the 
shelf break can interrupt along-slope currents and may cre-
ate unique physical environments compared to the adjacent 
slope (Sigler et al. 2015).
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ST. MATTHEW, MIDDLE, AND
ZHEMCHUG CANYONS
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NOTABLE FACTS
Canyons of the eastern Bering Sea slope support a rich 
fauna, comprising marine birds, mammals, fish, and 
benthic invertebrates on hard substrates (Miller et al. 
2012; Sigler et al. 2015). Populations of the rare and en-
dangered short-tailed albatross (Phoebastria albatrus) 
are known to concentrate at the head of St. Matthew 
Canyon due to availability of prey (Piatt et al 2006).

The area has been called the “Bering Sea Green Belt” 
to describe its productivity, due to the abundance of 
phytoplankton, zooplankton, squids, fishes, birds, and 
mammals along this shelf edge (Zimmermann and 
Prescott 2018).

Zhemchug Canyon was likely excavated in the Pleis-
tocene by mass wasting, slumping, and creeping of 
sediment accumulated at the heads of the Yukon and 
Kuskokwim Rivers during periods of glacially lowered 
sea level (Miller et al. 2012).
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ALEUTIAN ARC 1 CANYON 
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NOTABLE FACTS
Corals in the Gulf of Alaska, including red tree coral, black coral, and 
hydrocorals, are known to occur along the continental shelf edge in hard 
bottom habitat. ROV cruises and habitat suitability studies indicate
various coral and sponge species may be found at the head of this 
canyon (Rooper et al. 2017). In some places, such as the central and 
western Aleutian Islands, deep sea coral and sponge resources can be 
extremely diverse and may rank among the most abundant deep sea 
coral and sponge communities in the world (Rooper et al. 2017).

To protect the Steller sea lion, NMFS closed all Alaska Atka Mackerel 
fisheries in this region in 1990 (50 CFR 679).
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BERING CANYON SYSTEM
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BERING CANYON SYSTEM
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NOTABLE FACTS

Pribilof, Bristol, Bering, Bogoslof, 
Inanudak, and Pribilof Canyons 
comprise a system of features 
that share a common mouth 
within the Aleutian Basin (Miller  
et al. 2012).

Pribilof Canyon was likely exca-
vated in the Pleistocene by mass 
wasting, slumping, and creeping 
of sediment accumulated at the 
heads of the Yukon and Kus-
kokwim rivers during periods of 
glacially lowered sea level (Miller 
et al. 2012). Bering Canyon is 
characterized by a wide slope 
valley (Duffy-Anderson et al. 
2013). A fan channel extending 
basinward from Bering Canyon 
extends several hundred kilome-
ters into the Aleutian Basin as a 
low-relief (10 to 20 m), very broad 
(20 km), and flat-floored turbidite 
channel. The Bering Fan lacks 
the distinctive fan morphologic ex-
pression that is generally present 
on other fans; instead, it forms a 
relatively thin veneer of sediment 
in the Aleutian Basin.

The eastern Bering Sea slope 
and outer shelf is a region of 
enhanced primary and secondary 
productivity (the “Bering Sea 
Green Belt”) and attracts large 
numbers of fish, seabirds, and 
marine mammals. Productivity is 
enhanced in this region because 
of physical processes at the shelf 
break, which include intensive 
tidal mixing, and transverse 
circulation and eddies in the 
Bering Slope Current; collectively, 
these bring nutrients into the local 
photic zone (Sigler et al. 2015).

Pribilof canyon and adjacent con-
tinental shelf slope form important 
spawning grounds for several 
fish species including skates, 
rockfishes, smooth tongues, and 
flatfishes. Other fish species 
that have been observed in the 
canyon include Greenland halibut, 
Pacific Ocean perch, cottids, 
zoarcids, agonids, and the giant 
grenadier (Miller et al. 2012). 

Commercial fishing activities pose 
a risk to benthic communities 
in Bering Sea Canyons through 
seafloor disturbance from trawling 
and marine debris from loss of 
gear (Miller et al. 2012; MacLean 
et al. 2017).

The following shipwrecks are 
believed to be located within 
Bering Canyon, in addition to four 
unnamed wrecks: F/V America 
Star, F/V Desperado, Maren 1, 
T&T, KP21, Qanirtuuq Princess, 
F/V Genie Maru No.7, Cecilia 
barge, Akutan (NOAA 2019).
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UMNAK CANYON SYSTEM
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NOTABLE FACTS

The Umnak Canyon system in-
cludes Uliaga, Umnak, Carlisle, 
Herbert, Yunaska, Chagulak, 
and Amukta Canyons, which 
run roughly parallel to the Aleu-
tian Islands.

The eastern Bering Sea shelf 
consists of inner, middle, and 
outer shelf ecological zones 
separated by oceanographic 
fronts associated with the 50-, 
100-, and 200-m isobaths, 
respectively, each of which 
possesses fundamentally 
different physical processes 
and species compositions 
(Aydin et al. 2002).

The eastern Bering Sea slope 
and outer shelf is a region of 
enhanced primary and second-
ary productivity and attracts 
large numbers of fish, seabirds, 
and marine mammals.  
 
Productivity is enhanced in this 
region because of physical pro-
cesses at the shelf break, which 
include intensive tidal mixing, 
and transverse circulation and 
eddies in the Bering Slope 
Current; collectively, these bring 
nutrients into the local photic 
zone (Sigler et al. 2015).
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SHUMAGIN 1 CANYON
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NOTABLE FACTS
Dredge samples taken from the outer wall of this canyon 
indicate limestone and sedimentary rock with carbonate 
cement (Horowitz et al. 1989).

Flow in this basin, primarily driven by the Alaska Coastal 
Current (ACC), is affected by the canyons in this region, 
which funnel energy from the ACC and contribute to 
strong tidal mixing (Bailey et al. 2008).

The canyon’s influence over regional circulation patterns 
facilitates the distribution of fish eggs and larvae from 
deeper slope waters up onto the continental shelf (Bailey 
et al. 2008).
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KODIAK 1 AND WILDCAT CANYONS 
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NOTABLE FACTS
Submarine canyons play a key role 
in cross-shelf transport of heat, salt, 
and nutrients, and flow in this basin is 
primarily driven by the Alaska Coastal 
Current (Mordy et al. 2019).

Waters around Kodiak Island and the 
Kenai Peninsula are valuable nursery 
habitat for fish in the area due to sub-
marine canyons facilitating the transport 
of fish larvae from deeper slope waters 
onto the continental shelf (Doyle et al. 
2019; Mordy et al. 2019).
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GULF OF ALASKA 6 CANYON
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NOTABLE FACTS
Flow in this basin is primarily driven by the Alaska Coastal 
Current, a prominent feature in this region, and is often 
affected by submarine canyons, which can disrupt coastal 
flow and may facilitate the flow of nutrient rich water onto 
the shelf (Mordy et al. 2019).

Corals in the Gulf of Alaska, including red tree coral, black 
coral, hydrocorals, and sponges, are known to occur 
along the continental shelf edge in hard bottom habitat. 
ROV cruises and habitat suitability studies indicate these 
species may be found in this canyon (Rooper et al. 2017).
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GULF OF ALASKA CANYONS 1 to 5
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NOTABLE FACTS
Gulf of Alaska 5 Canyon sits on the Queen 
Charlotte Fault line in southeastern Alaska 
(Brothers et al. 2018).

Bottom trawling has been banned in this 
region since 1998 to protect deep sea coral 
species.

The floors of these canyons contain 
well-defined bedforms or sediment waves 
located down-canyon of small scarps. This 
area is susceptible to frequent landslides, 
which transform into debris flows that are 
funneled through the canyons (Brothers   
et al. 2018).

Bathymetric Contour (m)

BOEM Planning Area Boundary

Canyon Boundary

CSA Ocean Sciences Inc. et al. 2019
Delineation Method

Coordinate System: 
Alaska Albers Equal Area Conic

180 3570
Submarine Canyon Bathymetry

1880

Depth in meters

 A r c t i c  
O c e a n

P a c i f i c  O c e a n

AK
Canada

Russia

!

200

200

2500

2000
1500

1000
500

3500

2500

3000

3000

2000

1000

500

Gulf of
Alaska 1

Gulf of
Alaska 2

Gulf of
Alaska 3

Gulf of
Alaska 4

Gulf of
Alaska 5

Sitka

AK

135°0'0"W

136°30'0"W

136°30'0"W

138°0'0"W

138°0'0"W

139°30'0"W

139°30'0"W

57
°4

5'
0"

N
57

°0
'0

"N

57
°0

'0
"N

56
°1

5'
0"

N

56
°1

5'
0"

N
55

°3
0'

0"
N0 10 205 Kilometers

0 10 205 Miles

±
Map Scale: 1:1,300,000

3D Oblique View

49
Bureau of 
Ocean Energy ManagementW W W. B O E M . G OV



CHAPTER 4 - ALASKA SUBMARINE CANYONS

NOYES CANYON
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NOTABLE FACTS

This canyon sits on the Queen Charlotte 
Fault Line, an active fault line that contri-
butes to changes in geologic features in 
the region (Brothers et al. 2018).

Dickins Seamount is located ap-
proximately 16 km southwest of the 
lower part of the canyon, around which 
numerous species of gorgonian corals 
and glass sponges have been observed 
during deep sea research cruises con-
ducted by NOAA. Gorgonian coral within 
the canyon itself have been observed 
on the shelf slope closer to the head of 
the canyon.

A possible shipwreck was identified 
approximately 3 km north of this canyon 
in water depths between 2,000 and  
3,000 m (NOAA 2019).3D Oblique View
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