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1 Introduction 

1.1 Background and Objectives 
The mission of the U.S. Geological Survey (USGS) is to provide reliable scientific information to 
describe and understand the Earth, minimize loss of life and property from natural disasters, manage 
water, biological, energy, and mineral resources, and enhance and protect the quality of life. To this end, 
the USGS collects, monitors, analyzes, and provides scientific understanding about natural resource 
conditions, issues, and problems. The USGS Western Ecological Research Center (WERC) provides its 
clients and partners with the research, scientific understanding, and technology needed to support sound 
management of Pacific ecosystems. 

The mission of the Bureau of Ocean Energy Management (BOEM) is to manage development of energy 
and mineral resources found on the outer continental shelf in an environmentally and economically 
responsible way. To this end, BOEM seeks to assess and understand how the bureau’s decision-making 
impacts the environment, and how those impacts can be avoided or minimized. 

Because ocean renewable energy projects are new to the west coast of the US, there is considerable 
uncertainty about the types of impacts that they might have. Others have considered impacts to 
viewsheds, or navigation risks, barriers to animal migrations, seafloor disturbances at moorings, or 
disturbance from transmission cables and servicing (Nelson et al. 2008). Less well understood is how 
wave energy extraction devices, by removing energy from waves, might affect nearshore marine 
communities (Shields et al. 2011), and this has been identified as a topic of concern in the Pacific Region 
(Boehlert et al. 2013). Theoretical models predict that wave energy conversion (WEC) devices will 
suppress wave height in their wake, with the magnitude varying according to a range of site-specific 
factors including water depth and configuration of the WEC array (EPRI 2004, Nelson et al. 2008). A 
reasonable maximum estimate of wave height reduction at the shoreline appears to be 15% (Nelson et al. 
2008), and it is this value we use in our analysis to assist BOEM in predicting potential impacts from 
leasing activities associated with marine renewable energy. Most studies have considered the extent that 
wave height reduction would have on currents and sediment transport, but few have asked specifically 
how organisms might respond. 

There is considerable evidence that wave energy can affect intertidal marine communities where the bulk 
of wave energy is expended (Jensen and Denny 2015). For instance, in their classic text on intertidal 
biology, Between Pacific Tides, Ricketts and Calvin (1939) divide rocky-associated species according to 
the wave environment (Bays and Estuaries, Protected Outer Coast, Open Coast). Far less is known about 
subtidal species which, by virtue of living at depth, might be relatively unaffected by wave energy. One 
exception to this is the giant kelp, Macrocystis pyrifera. Giant kelp is an important habitat-forming 
species and food source. Individuals attach to rocks with a holdfast, and are sufficiently adapted to 
exposed coasts that waves pass through thick kelp beds with little energy loss (Elwany et al. 1995). Kelp 
does better in moderate wave energy than in still water, perhaps due to the delivery of nutrients, or 
reduced competition from species less adapted to higher energy environments (Hepburn et al. 2007; Bell 
et al. 2015). Regardless, under extreme conditions, kelp can be ripped from the bottom by large waves 
(Reed et al. 2011). Other algae (England et al. 2008), and fishes (Munks et al. 2015) also respond to wave 
energy in different parts of the world. Because so many marine species are associated with giant kelp in 
the study region, there is potential for indirect effects of wave energy extraction on species that 
themselves are not directly affected by wave energy. Regardless, with little actual information, the effects 
of wave energy extraction are hard to predict. 
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Some of the classic work on how waves affect marine species has been mechanistic and experimental. 
Such experiments show that many marine species have adaptations like firm attachment structures or 
flexible bodies to help deal with the strong forces that wave energy can impose (Gaylord et al. 2001). 

The ultimate purpose of this study was to develop a statistical model that predicts the potential effects of 
wave energy absorption from marine renewable energy facilities on nearshore ecosystems such as kelp 
forests or shallow (< 30 m) rocky reefs. The need for this information is to predict which siting 
alternatives of proposed wave energy facilities may generate detectable changes in nearshore ecosystems, 
especially kelp forests. BOEM will use results from this study for impact assessments contained within 
documents required by the National Environmental Policy Act, and also in essential fish habitat 
coordination and consultation requirements established by the 1996 reauthorization of the Magnuson-
Stevens Fishery Conservation and Management Act. 

1.2 Description 
The report has 10 sections that describe the various steps needed to reach the final goal. The first section 
evaluates the spatial and temporal variation in wave height for the study system in the broader context of 
the Southern California Bight. This helps identify two wave seasons as well as the distribution of exposed 
and protected sites in the region. We then describe the design of a new, low-cost pressure sensor that 
measures height and period. Most of the project was spent deploying, retrieving and processing sensors at 
32 sites around the Channel Islands where long-term kelp forest monitoring occurs. We then compared 
hourly data from the sensors with hourly hindcasts from the Coastal Data Information Program (CDIP). 
This made it possible to generate simple statistical corrections to CDIP hindcasts to help improve their 
accuracy. With this correction, we generated hourly hindcasts for all of our sites back to the year 2000. 
Then, to understand how wave energy might drive species dynamics, we created another data set, this 
time with annual wave energy measures, for 88 sites with biological data. We analyzed these data to find 
associations between abiotic factors and species density in time and space. We also asked how species 
densities would change in response to a 15% reduction in wave height at a high-energy site suitable for 
energy extraction. 

Author contributions. Lafferty designed and oversaw the project, deployed and retrieved sensors, 
analyzed data, and wrote reports, Rassweiler designed sensor housing and deployment protocol, guided 
the integrated data set, and managed the cooperative agreement to UCSB, Gotschalk processed sensor 
data, estimated hindcasts, and aligned hindcasts with sensor data, Morton tracked and organized sensor 
logs, deployed and retrieved sensors, and coordinated wave energy databases. Bell scraped historical 
CDIP data to estimate wave climate and spatial distribution in the bight, Henderikx explored associations 
between sensor data and buoy data, Kushner and Sprague deployed and retrieved sensors. Johnson 
designed the wave sensor, and Washburn worked with Gotschalk on the processing and analysis of the 
sensor data. All authors contributed to this final report. 

1.3 Significant Results 
The prevailing swell in Southern California Bight is from the northwest. However, the May-September 
summer season is characterized by an absence of large swells, and the presence of swells from the south. 
Pt. Conception creates a substantial wave shadow that blocks northern swells, whereas the Channel 
Islands block swells from the west and the south. There are three focal areas for large winter swells: west 
San Miguel Island, west San Nicolas island, Tanner Bank and Cortez Bank. The custom-built sensors 
were improved, with the final version being reliable and deployable for over 9 months. These sensors 
were far less expensive than commercially available units and could be useful for other applications 
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where replicated information on non-directional wave energy is needed. The biggest expense and effort in 
our project was putting sensors out at remote field sites. Our sensors indicated that the CDIP model 
underestimated wave height around the islands, similarly as it is known to underestimate wave height 
along the mainland coast in the Santa Barbara Channel. CDIP periods were not biased, but were less 
precise, probably due to the bimodal periods that often occur when wind swell mixes with groundswell. A 
statistical model provided a simple way to correct CDIP hindcasts, though a few sites required more 
complicated corrections. By fitting a statistical model to the bias corrections, we were able to generalize 
corrections to any site in the Channel Islands region based on swell window and location. After 
controlling for site-specific effects, and other drivers like sea surface temperature, chlorophyll, substrate, 
depth, and turbidity, we found that wave energy (expressed as bottom orbital velocity in m/s) had a 
significant effect on several species. But for most taxa (36/56), density was unrelated to waves. Even for 
those species with a statistical relationship between density and orbital velocity, we found that a 15% 
reduction in wave height would not have a detectable effect on the density of any species. As a result, a 
reduction in wave height due to renewable energy projects is unlikely to result in substantial changes to a 
wide range of nearshore subtidal species in southern California. 
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2 Executive Summary 

2.1 Information Needed 
As the permitting agency for ocean renewable energy in federal waters, BOEM has need for guidance on 
the potential impacts of a 10-15% wave height reduction. Unfortunately little is known about 
relationships between wave energy and nearshore marine species. Shields et al. (2011) outlines the 
process needed to obtain the information required to evaluate the ecological consequences of extracting 
wave energy (Figure 2.1). We applied the left-hand side of this approach (green boxes) to the northern 
Channel Islands, because long-term monitoring throughout this regions makes it uniquely suited to meet 
the first and key requirement for this process (top left box Figure 2.1: identify species and habitats and 
their distribution). To estimate associations between wave energy and species abundances requires annual 
wave energy information matched to these sites (bottom left box, Figure 2.1). Understanding the 
influence of hydrodynamics on identified species and habitats is challenging in our region (Hegermiller et 
al. 2017), and therefore required collecting wave energy data. We then used statistical models to apply 
our models to a hypothetical Marine Renewable Energy Installation (MREI) that was placed at an 
exposed location and reduced wave height by 15%. 

 

Figure 2.1. Summary of the steps that should be taken when determining the potential 
implications of extracting wave energy (adapted from Shields et al. 2011). MREI stands for Marine 
Renewable Energy Installation. 

2.2 Research Summary 
This report describes the spatial and temporal variation in wave height for the study system in the broader 
context of the Southern California Bight. A new, low-cost pressure sensor was engineered for measuring 
wave height and period. These sensors were placed for several months at 32 sites around the Channel 
Islands where long-term kelp forest monitoring occurs. Matching sensor data with CDIP wave hindcasts 
made it possible to correct the CDIP model hindcast to make it applicable to nearshore sites in this region. 
With these corrections, annual wave energy was estimated for 88 sites where long term biotic monitoring 
had been conducted in the study region. These data were analyzed to assess the extent that wave energy 



 

5 
 

affects species abundances and, in particular, how a reduction in wave height would affect various 
species. 

2.3 Conclusions 
Across all species, only 12% of the variation in abundance in time and space was explainable by the 
factors in our study. Temperature explained the most variation, followed by wave orbital velocity, 
island/mainland, chlorophyll, diffuse attenuation, and fishing intensity. Density sensitivity to orbital 
velocity varied across taxa and was often non-linear. Consistent with past results (Bell et al. 2015), kelp 
biomass peaked at intermediate orbital velocity. For most taxa (36/56), density was unrelated to wave 
orbital velocity. Twenty species were statistically associated with wave energy, often in complex ways. 
Four species (Apostichopus parvimensis, Caulolatilus princeps, Cymatogaster aggregata, and 
Halichoeres semicinctus) had negative relationships with wave energy, whereas four species (Sebastes 
mystinus, S. serranoides, Embiotica lateralis, S. miniatus) had positive associations with wave energy. 
The remaining twelve species had concave (U-shaped) relationships with wave energy. At this point we 
do not have a hypothesis for what would create such a pattern, but it could be an indirect response to a 
parameter, like kelp biomass, that has a concave relationship with wave energy. Because the relationship 
with wave energy was often non-linear, it is difficult to predict the directional effect of wave energy 
extraction on species abundances. 

We modeled density responses to a 15% reduction in wave height, focusing at high wave energy sites, 
which would be locations where wave-power would be most likely considered. Such a reduction never 
altered density at the P < 0.05 threshold. This suggests that although some species do respond to changes 
in bottom orbital velocity within the ranges seen in our study system, a 15% reduction in wave height at a 
high wave energy site was too subtle for the models to detect a change in any species density. Although 
no modeled changes were statistically significant, some patterns in the data are worth speculating about. 
If there was to be an effect of reducing wave energy at high-energy sites, these results suggest up to 14 of 
the 56 species could decline slightly as a response, whereas some species might respond positively. In 
particular, reduced wave energy might allow two wave-averse fish species to persist where they could not 
before. Effects in deeper water should be even more subtle (and effects in shallow water greater) than we 
estimate. These results help reduce uncertainty about the impacts of wave energy extraction and, therefore 
may inform the streamlining of permitting processes for renewable energy projects near kelp forest 
communities. 
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3 Wave Height Varies Across the Southern California Bight 

3.1 Introduction 
To understand how wave energy affects biological resources in the Santa Barbara Channel, it is first 
useful to describe how it varies. The Santa Barbara Channel is relatively protected, but the wave climate 
varies from season to season, with southerly swell predominating in the summer months and northwest 
swell directions in the winter months. This complexity affects the potential locations for when and where 
wave extraction can occur within the region. The complex geography of the region also leads to 
considerable variation in wave exposure across space. 

Here, we sought to describe the wave climate of the region in terms of its seasonality and spatial 
variation. Directional wave information is derived from buoy motions, the power transfer functions and 
phase responses associated with the buoy, mooring, and measurement systems. The dependence between 
these signals is difficult to determine at low energy levels and at both short and long wave periods where 
the wave signal being measured is weak and potential for added signal contamination increases. Signal 
processing produces wave-height spectral data to estimate the significant heights and periods across a 
directional spectrum. Focusing on the energy from the wave-height spectrum, dominant period, and 
significant wave height measured by a sensor makes it easier to understand seasonal patterns in wave 
energy. 

To get spatial information from the temporal wave spectra, the Coastal Data Information Program (CDIP; 
cdip.ucsd.edu) uses a network of deep water directional buoy measurements to initialize a linear wave 
propagation model (O’Reilly et al. 2016). The computationally fast model takes wave height, period and 
directional spectral information from buoys and propagates this information through a model of the 
Southern California Bight, where it estimates nearshore wave energy (heights and periods) and low-order 
directional spectra moments (direction) for nearshore significant surface waves along the coast. Although 
CDIP models hourly nearshore wave height as a function of swell direction, amplitude and period in the 
study region, there has not been a simple summary of wave climate for these data. 

3.2 Methods 
The CDIP wave hindcast model is based on data from buoys. The most informative buoy for seasonal 
information in our study region is the Harvest Buoy (CDIP / USACE / CA DBW buoy 071). We 
downloaded hourly height and direction data from this buoy for 2014-2017. We then binned the averages 
by month and inspected their confidence limits. Sharp breaks between adjacent months in height and 
direction helped us categorize wave seasons. 

At the time of our study, historical information from CDIP was limited to archived hourly graphical 
model outputs from the CDIP nowcast wave models. Bell et al. (2015) developed an algorithm to access 
these hourly images from the archive and convert the images into a database. For the period from June 
1998 to November 2011, coordinates were spatially registered in the X-Y plane, and then the color for 
each pixel was interpreted as an integer representing hourly significant wave height in meters according 
to the CDIP scale. With this database, it is possible to generate average values for any particular time 
interval and location. Due to the seasonal differences in wave energy, the most useful summary for our 
purpose was winter versus summer. We wished to further define the wave seasons for later statistical 
analyses. To do so, we analyzed the Harvest Buoy wave spectra for modality over time. 
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3.3 Results and Discussion 
Mean significant wave height for the Southern California Bight differed during the winter (October – 
April) and summer (May – September) wave seasons. In this region swell direction varies by season, with 
northwest swells being present all-year round, but strongest in the winter and south swells being relatively 
rare outside the summer (Figure 3.1). These different swell directions could have different effects on sites 
with different exposures, and they group well into a summer season May-September and a winter season 
October-April (as indicated by the box in Figures 3.2 and 3.3). Hereafter, when analyzing wave data, we 
apply different models for summer and winter when appropriate.  

Compressing thousands of CDIP hourly wave height outputs also shows that wave heights and directions 
differ throughout the Southern California Bight between summer and winter. Four areas stand out as 
having unusually high winter wave exposure as indicated by the yellow patches. From top to bottom in 
Figure 3.3, these are the west end of San Miguel Island, the west end of San Nicolas Island, Tanner Bank, 
and Cortez Bank. This map and the site-location map of Figure 5.1 also showed that our in-situ 
measurements covered the full range of wave climate in the southern California bight (e.g., from highly 
exposed sites on the west ends of San Miguel and San Nicolas Island, to highly protected sites on 
Anacapa Island). Pt. Conception creates a major wind and wave shadow for the region. And the Channel 
Islands generate substantial wave shadows for the mainland below Pt. Conception. As such, the results in 
this report, though focused on the Santa Barbara Channel are relevant to the Southern California Bight in 
general. We note that since the advent of CDIP’s hind cast algorithm, there are now direct ways to 
generate more in-depth wave histories for this region (as we have done in the subsequent sections of this 
report). 

 

 

Figure 3.1. Hourly swell heights (as quartiles) from Harvest Buoy from 2014-2017. Boxed area is 
the proposed summer wave season. 
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Figure 3.2. Hourly swell direction (as quartiles) from Harvest Buoy from 2014-2017. Boxed area is 
the proposed summer wave season. 
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Figure 3.3. Spatial variation in wave height across in summer and winter seasons. 
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4 An Inexpensive and Accurate Sensor for Measuring in-situ Wave 
Height and Period 

4.1 Introduction 
Although Figure 3.1 is instructive, the CDIP wave models are coarse in their predictions and are not able 
to resolve the smaller spatial scales and shallower depths where species interact and kelp forests, which 
are known to be sensitive to waves, occur. Their ability is limited in indicating wave energy at different 
depths. Although they have been validated (and shown to be reasonably accurate) with wave sensors 
along the mainland coast, their accuracy around the Channel Islands has long been in doubt (O’Reilly et 
al. 2016, Hegermiller et al. 2017). Furthermore, although wave climates for the state of California have 
been modeled, estimates are lacking for the Channel Islands (Erikson et al. 2014). The physics of 
refracting, reflecting, and breaking waves leads to attenuation of wave forces and turbulence with depth. 
To extrapolate wave model predictions to forces acting on specific subtidal sites in marine communities, 
one must measure wave energy in the field at different depths and compare this to model predictions. 
Doing this at sites where ecological data have been collected for marine communities would make it 
possible to do several new types of analyses about how wave energy (or a change in wave energy) affects 
near-shore marine communities. Unfortunately, existing real-time wave energy sensors are expensive and, 
therefore, it would not be cost effective to deploy dozens in the field.  

To achieve our goals required improvements to an existing, inexpensive, and accurate wave sensor to 
measure wave statistics such as significant wave height (here defined as the mean of the largest one-third 
of the waves recorded during 17-minute intervals) and period of surface gravity waves in water depths of 
about 20 m and shallower. A main design goal was to record time series of bottom pressure at sufficiently 
high frequencies to observe the sea level variations due to waves at the various sites. Other pressure 
sensors used for determining wave statistics, such as the SeaBird Electronics 26+ wave and tide recorder 
(hereafter SBE 26+; Sea-Bird Electronics, Inc., Bellevue, WA), measure bottom pressure at 4 Hz. This 
was the sampling frequency chosen for the sensor used in the project. 

Several versions of the wave-height pressure sensors (WHPS) were used in the project. The versions 
evolved based on experience deploying the instruments in a variety of coastal ocean environments. The 
earliest design was powered by 4 alkaline D-cells mounted in a clear plastic tube along with the 
electronics board and pressure transducer. Later designs were powered by single lithium-ion D-cells with 
higher-energy density storage. These were enclosed in a smaller diameter tube. Other design changes 
were based on the availability of 3-D printing. The most recent WHPS versions used 3-D printing for the 
support of the electronics board and battery holder. Figure 4.1 shows a recent version of the WHPS that 
was used extensively in the project. All versions of the WHPS were successfully deployed in coastal 
waters of the Santa Barbara Channel and the Northern Channel Islands.  

In contrast to other wave-measuring pressure sensors such as the SBE 26+ which record burst samples of 
bottom pressure, the WHPS records continuously at a sampling frequency of fs = 4 Hz. Although this 
creates larger data files, it has the advantage of recording uniformly sampled time series. This allows 
considerable flexibility in post processing. Data were recorded on 2 Gbyte SD cards and deployments at 
remote islands lasted up to 1 year, although typical deployments were 3-6 months long. 
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Figure 4.1. Photos of the final WHPS wave measuring pressure sensor. 
 

The pressure transducer is temperature compensated to improve performance in environments with 
variable temperature. During field deployments temperature is typically measured concurrently by other 
instruments so temperature effects can be evaluated if necessary. For example, using data from side-by-
side deployments of WHPS and SBE 26+ no consistent pressure variations due to temperature changes 
have been detectable. To evaluate temperature sensitivity, WHPS data were sampled over times when the 
SBE 26+ measured a constant pressure. Anomalies in the WHPS pressure time series during times when 
pressure was constant were compared with available temperature time series. These comparisons did not 
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reveal significant correlations between temperature and pressure anomalies in the WHPS time series. This 
suggests that temperature effects on the WHPS time series were small. 

Early versions of the WHPS used a Honeywell 19C050PA4K (Honeywell International, Inc., Charlotte, 
NC) pressure transducer with a threaded port that was mounted over the diaphragm and strain gauges that 
respond to pressure changes. This configuration proved difficult to maintain due to corrosion around the 
diaphragm. Based on this experience, this transducer was replaced with a similar version, Honeywell 
19C050PA1K, that did not have the threaded port. Instead, the diaphragm was open, which made 
inspection and cleaning much easier. Figure 4.1d shows the diaphragm in the end cap of the pressure 
sensor. To prevent settlement of organisms on the diaphragm, the circular cavity around the diaphragm 
was filled with a mixture of silicone grease mixed with copper powder (Figure 4.1e). A clear-plastic 
protective cover was fitted just above the cavity to prevent the silicone and copper mixture from being 
flushed out due to water movement (Figure 4.1e). This modification proved successful. Typically the 
silicone and copper mixture remained in place following deployments of several months. 

4.2 Methods 
WHPSs were calibrated prior to each deployment. During the calibration procedure, the WHPS being 
calibrated was mounted on a fixture and the pressure transducer was exposed to compressed air. The air 
pressure was separately measured by another pressure sensor. Air pressure was increased and then 
decreased stepwise over a range that included the pressures corresponding to the deployment depth. In all 
cases the response of the pressure sensor was linear with no measurable hysteresis such as shown in 
Figure 4.2. 

 

Figure 4.2. Example of laboratory calibration of WHPS. a) Time series of digital sensor counts 
from pressure sensor during calibration procedure. b) Digital sensor count versus pressure in 
dbar. Pressure of 1 dbar corresponds to depth of about 1 m. 
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Pressure fluctuations were converted to sea-level variations using results from the linear theory of surface 
gravity waves and standard methods. A fast Fourier transform algorithm (FFT) converted bottom pressure 
p(t) from the time domain to the frequency domain Y(f). Frequency f was converted to period in seconds 
(s) as T = 1/f. Then wavelength L corresponding to each frequency was computed using the dispersion 
relation, 

ω2 = gk tanh(kd)   (1) 

 

where tanh is the hyperbolic tangent, ω = 2πf = 2π/T is the radian frequency, g is the acceleration of 
gravity (9.81 m s-2), k = 2π/L is the wavenumber, and d is the water depth. Fourier coefficients Y(f) were 
corrected for attenuation of pressure with depth as, 

    Yp(f) = Y(f)/[cosh(ks)/cosh(kd)]  (2) 

 

where cosh is the hyperbolic cosine and s is the sensor height above the seafloor (s = 0.05 m). An inverse 
FFT algorithm converted Yp(f) to sea surface height variations in the time domain η(t). The minimum 
period for transforming Yp(f) to η(t) was Tmin = 4 s. This was done to avoid applying very large 
attenuation factors for waves with periods less than Tmin. Wave signals from periods less than Tmin were 
near or below the sensor noise level. 

Significant wave height Hs and wave period Tp were estimated from autospectra of η(t). These spectra 
were computed from data segments of length M=8192 using a transform length of m = 4096 samples. A 
Gaussian spectral window was applied and FFT estimates were overlapped by 75%. The transform length 
m allowed resolution of variations in η(t) with periods ranging from Tmin = 4 s to Tmax = m/fs = 1024 s ≈17 
min. Tp was estimated as the frequency corresponding to the peak of the autospectrum. Hs was estimated 
as,    

   Hs = 4 (σ2)1/2    (3) 

 

where σ2 is the variance of η(t); σ2 was estimated in the time domain from each data segment of length M 
and, as a check, by integrating the autospectra. These estimates of σ2 typically agreed to within ~20%. 

Estimates of η(t), Hs, and Tp, from two WHPSs and a SBE 26+ wave tide recorder are compared in Figure 
4.3 from a ~9-week deployment on an oceanographic mooring at Mohawk Reef (34.393°N, 119.730°W) 
in the Santa Barbara Channel near Santa Barbara, CA, USA. The mooring is maintained by the Santa 
Barbara Channel Long Term Ecological Research project. The mean bottom pressure at the site was about 
10.2 dbar corresponding to a water depth of about 10.2 m. Mixed semidiurnal tidal variations are evident 
along with the spring-neap tidal cycle (Figure 4.3a).  

Hs from both WHPSs were significantly correlated with Hs from the SBE 26+ (r2 = 0.94, 0.92, for sn071 
and sn072, respectively; large N) as may be seen in Figure 4.3b. Correlations were lower for Tp (r2 > 0.41, 
0.42, for sn071 and sn072, respectively) likely due to the greater “quantization” of Tp values from the 
SBE 26+ compared with the WHPSs. This may be seen in Figure 4.3c where Tp values from the SBE 26+ 
tend to align in separate horizontal rows, particularly for longer periods. This is due to differences in data 
processing: FFT lengths can be made longer for the WHPS data because the data are continuously 
sampled. In contrast, the SBE 26+ collects data in separate bursts due to memory limitations so transform 
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lengths are typically shorter which causes separate Tp values to be more widely spaced. Another 
difference between the Tp records of the WHPSs and the SBE 26+ in Figure 4.3c is the minimum value of 
Tp: For the WHPSs it was set to 4 s and for the SBE 26+ it was set to 5 s. Although the WHPS sensed 
consistently larger wave heights than the SBE 26+, we did not interpret this as WHPS overestimating 
wave height, for the following reasons: 1) The SBE 26+ did not have a recent factory calibration whereas 
the WHPS were regularly calibrated, 2) short burst sampling could cause the SBE26+ to miss some of the 
highest, less frequent waves that the continuous records from the WHPS's would capture. Even though we 
suspect that the WHPS is more accurate than the SBE 26+, overall Figure 4.3 shows good agreement 
between Hs and Tp obtained from the WHPSs and the SBE 26+. The data processing procedure used to 
produce Figure 4.3c was the same as used to process data for this study. 

4.3 Results and Discussion 

   

 

Figure 4.3. a) Bottom pressure p(t), b) Significant wave height Hs, and c) peak wave period Tp from 
two WHPSs and a SeaBird 26+ wave tide recorder. Panel b) shows the legend.  

a) 

c) 

b) 
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Distances between a buoy and a site can result in time lags between a sensor observation and a wave 
model prediction. As can be seen in Figure 4.4, the longer the time interval, the closer the correspondence 
between sensor observations and model predictions (as discussed below, this is also true for 
correspondence between two sensors at the same site). For this reason, assessment of sensor fit to model 
fit is perhaps best done at daily time intervals. In addition to accounting for time lags, daily intervals, as 
averages, reduce the variance around the model and the sensor information. Sub-daily variance might be 
important for understanding the probability distribution of wave events. Specifically, using daily averages 
will exclude the largest and smallest wave events from the record. So, even though fits are best assessed 
at daily intervals, we generated data at hourly intervals (buoy data are at 30 minute intervals).  

 

Figure 4.4. Comparing correspondence with time interval (left raw, right daily). 
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5 Sensor Deployment around the Channel Islands 

5.1 Introduction 
Our goal was to obtain in situ height and period data for both wave seasons at each long term monitoring 
site at each of the National Park Service (NPS) Kelp Forest Monitoring sites, and later several of the 
USGS Kelp Forest Monitoring sites at San Nicolas Island (Figure 5.1 and Table 5.1).  

 

Figure 5.1. Thirty-two kelp forest monitoring locations where we deployed pressure sensors 
(basemap from Google fusion tables). 
  

 

HRX 

MMX WLX 

RRX 

CPX GIX 

FHX 

CSA SPX JLS 
JLN 

PBX SAX CVP 

PRF 

YBK 

KHX 

ARX EFC 

CCX 
LCX 

WAX 
APX 

GCX 

CAT SER 

NFX 

EDH 
DTN WEX 

SES N 



 

17 
 

Table 5.1. Site names, location and depth, including post-processing validation. 

Site code Site Name Island Name Longitude Latitude Depth (m) 
APX  Arch Point Santa Barbara -119.0275833 33.48753333 9.45 
ARX  Admiral's Reef Anacapa -119.43407 34.00773 14.33 
CAT  Cat Canyon Santa Barbara -119.0391667 33.46441667 7.62 
CCX  Cathedral Cove Anacapa -119.37628 34.01546 5.49 
CPX  Cluster Point Santa Rosa -120.18769 33.92284 10.36 
CSA  Chickasaw Santa Rosa -120.1361333 33.9005333 10.06 
CVP  Cavern Point Santa Cruz -119.56634 34.05454 12.50 
DTN Daytona Beach San Nicolas -119.44412 33.21687 10.36 
EDH East Dutch Hbr. San Nicolas -119.48407 33.21598 12.19 
EFC  East Fish Camp Anacapa -119.37628 34.0042 10.97 
FHX  Fry's Harbor Santa Cruz -119.75515 34.05635 13.11 
GCX  Graveyard Cyn Santa Barbara -119.0268167 33.47306667 12.19 
GIX  Gull Island South Santa Cruz -119.82754 33.94993 16.46 
HRX  Hare Rock San Miguel -120.3566 34.06438333 7.62 
JLN  Johnson's Lee N. Santa Rosa -120.10288 33.90179 9.14 
JLS  Johnson's Lee S.  Santa Rosa -120.10081 33.89791 16.46 
KHX  Keyhole Anacapa -119.43146 34.01628 8.84 
LCX  Landing Cove Anacapa -119.3611333 34.0170333 4.88 
LHX  Lighthouse Anacapa -119.35859 34.01448 7.62 
MMX  Miracle Mile San Miguel -120.3951333 34.0237 10.67 
NFX  NavFac San Nicolas -119.48555 33.27351 11.28 
PBX  Pelican Bay Santa Cruz -119.70325 34.034933 8.23 
PRF  Pedro Reef Santa Cruz -119.525 34.03799 9.14 
RRX  Rodes Reef Santa Rosa -120.1074 34.0328333 16.15 
SAX  Scorpion Anch. Santa Cruz -119.551 34.04776 7.01 
SER  Southeast Reef Santa Barbara -119.0312667 33.46293333 9.14 
SES  SE Sea Lion  Santa Barbara -119.0277833 33.46611667 12.19 
SPX  South Point Santa Rosa -120.1195 33.8923333 11.58 
WAX  Webster's Arch Santa Barbara -119.0622 33.47985 13.72 
WEX  West End San Nicolas -119.57367 33.24762 10.06 
WLX  Wyckoff Ledge San Miguel -120.3874667 34.02236667 14.02 
YBK  Yellow Banks Santa Cruz -119.5630667 33.98983333 14.94 

5.2 Methods 
Divers from UCSB, USGS and NPS began to deploy WHPS sensors in December 2013. After battery 
installation and calibration the sensor hardware was sealed with desiccant packs and a humidity 
indicator, and placed in a protective polyvinyl chloride housing with approximate dimensions of 11-inch 
long and 4-inch diameter, bolted to a 26-lb block of lead weight (Figure 5.1) and wrapped in yellow tape 
to reduce fouling and increase underwater visibility.  
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Figure 5.2. Pressure sensor within a housing, weighted down by lead bricks. 

To deploy a sensor, the boat captain anchored at one end of a monitoring transect based on GPS 
coordinates. The sensor was connected to a lift bag, and both were attached by a clip to a tether which 
was lowered slightly into the water and then tied off to a cleat. Data collected by the sensor is 
independent of orientation. In the water, divers filled the lift bag, unclipped it, and descended the boat’s 
anchor line. At the anchor, the sensor was staged on the bottom until the permanent transect line 
(marked by lead line and fixed bolts) was found. The sensor was moved to the end of the transect line 
and positioned in a suitable deployment position. As a result of this process, wave data come from 
within 10 m of areas (and at the same depths) where long term ecological monitoring is being collected, 
and thus directly measures the wave climate to which those communities are exposed. 

Sensors were deployed for several months until being exchanged for a new sensor. Deployed sensors 
were often fouled and would have been difficult to find if not for their placement along the permanent 
transect. Sensors were retrieved by placing the housing and attached weight in a dive bag and then 
attaching and inflating a lift bag for a controlled ascent to the surface. On the surface, fouling organisms 
were cleared from the housing and the units were stored for transport. 

Back at UCSB, sensors were removed from their housings, and their memory cards were removed and 
downloaded. WHPS pressure data in counts were downloaded from the SD cards and MATLAB was used 
to apply a valid calibration to each sensor, converting counts to pressure in dbar. Raw pressure time series 
were examined to identify and remove out of water pre- and post-deployment sections of the data record. 
Mean water depth was estimated by calculating the average pressure and assuming 1 dbar = 1 m. 
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5.3 Results and Discussion 
Obstacles to successful sensor deployment included weather, which made it difficult to reach the sites 
further from land, failing to relocate and retrieve sensors on two occasions (likely buried or removed), 
failed batteries, unreliable or suspect measurements, or other sensor failures. We inspected suspicious 
patterns in the time series or potential drift related to battery drain. Suspect data were excluded from the 
analyses (Table 5.2). Problems and failures declined appreciably with experience and as the newest sensor 
model came into use with its better battery life. After 41 months, we retrieved the final sensor in May 
2017 (Table 5.2). All hourly height and period sensor data are compiled and available online at Washburn 
et al. (2018). CDIP has concluded that these data would be valuable in an effort to tune their wave model 
to improve its reliability in the Channel Islands more generally (James Behrens pers. comm.).  

Table 5.2. Sensor deployments, by site, including post-processing validation. 

Site_code Deployment Start time End time Validation 
FHX 1 12/12/13 02/13/14 Suspect 
APX 1 06/11/14 07/13/14 Suspect 
EFC 1 05/30/14 09/04/14 Good 
FHX 1 03/19/14 09/24/14 Good 
LHX 1 05/29/14 11/06/14 Suspect 
ARX 1 05/28/14 11/25/14 Good 
CCX 1 05/30/14 11/25/14 Good 
JLS 1 07/18/14 12/01/14 Suspect 
CSA 1 07/29/14 12/01/14 Good 
CVP 1 12/12/13 12/04/14 Good 
JLN 1 07/30/14 12/08/14 Suspect 
SPX 1 07/31/14 12/08/14 Suspect 
SAX 1 08/26/14 01/03/15 Good 
LCX 1 09/29/14 01/28/15 Good 
HRX 1 08/13/14 02/07/15 Good 
PRF 1 08/25/14 02/08/15 Suspect 
MMX 1 11/05/14 02/10/15 Good 
EFC 2 11/25/14 03/11/15 Good 
KHX 1 05/28/14 03/29/15 Good 
LHX 1 11/25/14 04/06/15 Good 
CSA 2 01/22/15 05/17/15 Good 
RRX 1 08/12/14 05/19/15 Good 
CPX 1 07/15/14 06/10/15 Good 
JLS 1 12/19/14 06/10/15 Good 
GIX 1 03/19/14 06/22/15 Good 
YBK 1 03/19/14 06/22/15 Good 
PRF 1 02/24/15 06/25/15 Good 
APX 1 01/28/15 07/04/15 Good 
CCX 2 06/29/15 07/10/15 Good 
CAT 1 06/10/14 07/15/15 Good 
SES 1 01/28/15 07/15/15 Good 
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Site_code Deployment Start time End time Validation 
GCX 1 01/29/15 07/15/15 Good 
WAX 1 01/29/15 07/15/15 Good 
CVP 2 02/24/15 07/20/15 Good 
PBX 1 08/15/14 07/31/15 Suspect 
SAX 2 02/24/15 08/01/15 Good 
LCX 2 06/26/15 11/21/15 Good 
LHX 2 06/24/15 12/18/15 Good 
PRF 2 08/14/15 03/17/16 Good 
JLN 1 08/13/15 04/17/16 Good 
WLX 2 09/15/15 05/09/16 Good 
SER 1 01/28/15 05/26/16 Good 
GCX 2 10/14/15 05/27/16 Good 
SAX 3 08/14/15 05/31/16 Good 
CVP 3 10/02/15 06/23/16 Good 
SPX 2 08/27/15 06/27/16 Good 
MMX 2 08/26/15 07/01/16 Good 
WAX 2 10/13/15 07/10/16 Good 
CPX 2 11/13/15 07/24/16 Good 
SES 2 06/08/16 08/07/16 Good 
DTN 1 10/20/15 09/13/16 Good 
NFX 1 11/22/15 09/25/16 Good 
WEX 1 10/22/15 09/26/16 Good 
EDH 1 10/22/15 09/27/16 Good 
CCX 3 06/23/16 09/27/16 Good 
WLX 1 10/01/14 10/17/16 Good 
PBX 1 08/28/15 12/01/16 Good 
PRF 3 08/23/16 12/01/16 Good 
SAX 4 08/26/16 12/01/16 Good 
HRX 2 06/10/15 12/21/16 Good 
MMX 3 08/11/16 01/31/17 Good 
SPX 1 01/22/15 02/19/17 Good 
CSA 3 11/13/15 03/14/17 Good 
JLS 2 11/13/15 03/14/17 Good 
SPX 3 07/13/16 03/14/17 Good 
JLN 2 07/14/16 03/14/17 Good 
LCX 3 12/18/15 05/01/17 Good 
ARX 2 11/15/16 05/01/17 Good 
SER 2 11/30/16 05/11/17 Good 
SES 3 08/17/16 05/25/17 Good 
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6 Using Sensor Data to Assess CDIP Hindcast Accuracy 

6.1 Introduction 
Originally our intent was to match sensor data with Waverider® buoy data in order to produce wave 
hindcasts for each site. However, during our project CDIP developed a regional hindcast product 
(O'Reilly et al. 2016). Had this product been available, we could have used it to analyze biotic responses 
to wave energy at our sites and we might not have needed field measurements from wave sensors. 
However, validation along the mainland coast in the Santa Barbara Channel using two Datawell 
Directional Waveriders underestimated fit for energy, and had a poor fit for direction at one site. 
Furthermore, the CDIP model had not been validated in the Channel Islands. Given that the Channel 
Islands are a place with locally complex or rocky shallow water bathymetry and high degrees of 
sheltering (O'Reilly et al. 2016), we decided to use the WHPS sensor data to assess CDIP-hindcast 
accuracy.  

6.2 Methods 
Using our estimates for location, depth, and the normal angle of the coastline, CDIP engineers generated 
hourly hindcasts for height and period for each site back as far as possible using MOP v1.1 
(http://cdip.ucsd.edu/MOP_v1.1/). Sites were hindcast with the same parameterization that is used for 
modeling the mainland coast, because that was the amount of time and effort CDIP could invest. As such, 
buoys were used to model island coastal waves due to their raw proximity without regard for realistic 
applicability. For example, the buoys in the channel were used to model seas on the south coasts of the 
northern islands, which may explain why they underestimate Hs there. The time range for these hindcasts 
began in 2000 and included dates while our sensors were deployed. Before comparing our sensor data 
with the CDIP hindcasts, we needed to have identically formatted data sets from the sensor (i.e., WHPS) 
and the hourly CDIP hindcasts calculated at grid locations near each sensor. Because of the possibility of 
time offsets between the sensor and CDIP wave data there could be a need for a +/- 2hr adjustment to 
align the benchmark and CDIP wave energies. Therefore, before analysis, we used the CDIP 
WaveEvalTool (http://cdip.ucsd.edu/themes/cdip?d2=p6) to put the sensor data into identical frequency 
bands and time scales as the CDIP data. 

6.3 Results and Discussion 
Overall, the CDIP hindcast did well at predicting site-specific wave heights and periods. Plotting CDIP 
model height estimates vs sensor observations (Figure 6.1) showed that, for daily averages, the CDIP 
model underestimated wave height across the sites. This is consistent with previous validation attempts, 
and is partly due to the lack of local windswell energy in the model (O'Reilly et al. 2016). Hindcast wave 
period tended to be less accurate, but unbiased, on average (Figure 6.2). Periods are difficult to capture in 
this area with a single parameter because they are often biomodal due to a mix of ground swell with local 
wind swell (O'Reilly et al. 2016). In the next section, we used statistical fitting to correct hindcasts for 
each of the monitoring sites where we put sensors, as well as for any site in the Channel Islands. 

http://cdip.ucsd.edu/themes/cdip?d2=p6
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Figure 6.1. Plot of observed vs modeled daily wave height across 32 sites, with best-fit lines per 
site. At most, but not all sites, CDIP slightly underestimates wave height. 
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Figure 6.2. Plot of observed (Daily Sensor Period) vs modeled (Daily Model Period) daily wave 
period across 32 sites, with best-fit lines per site. At most, but not all sites, CDIP estimated period 
without bias.  
  



 

24 
 

7 Using Sensor Data to Correct Hindcast Bias 

7.1 Introduction 
We sought a simple, yet precise, statistical model to correct for the height bias described in Section 6. 
Doing so would allow us to correct hindcasts for the monitoring sites in our study. Because we wanted to 
be able to predict this correction for other sites outside our study, we sought a single coefficient 
correction. 

7.2 Methods 
Although many fitting approaches are possible, the simplest correction would be a single coefficient, 
which can be found using regression analysis with a zero intercept. This coefficient can be broken down 
into two parts, a system-wide component and a site-specific component, which sum together into a single 
proportional correction factor. To get this correction factor, we fit the following regression to the data: 
Sensor Hs = Hm + Hm * site, where Hs is the average daily height measured by the sensor, Hm is the daily 
average height from the CDIP model, and site is a categorical variable representing each sensor location. 
In other words, we sought to define the overall bias, and site specific biases, so that height and period 
CDIP estimates could be easily corrected. 

7.3 Results and Discussion 
The regression model for height explained 91% of the variance in the model predictions, and suggested 
that to correct for the tendency to underestimate wave height, CDIP height (Hm) should be multiplied by 
an overall bias correction of 1.18 (the average regional bias), +/– a site-specific bias coefficient (Table 
7.1). 

Although this simple approach worked surprisingly well, precision was lacking for two sites, PRF and 
RRX. PRF (Pedro Reef) is a protected site on Santa Cruz Island with small wind waves under most 
conditions. The three sensors deployments were consistent and seemed free from errors. However, CDIP 
consistently underestimated wave height, especially for south-east swells which wrap around the eastern 
tip of Santa Cruz Island. Adding an intercept and the swell angle Ab from Harvest Buoy (NDBC46218), 
removed the bias and improved the precision from R2 = .04 to R2 = .38. Model: Hs = 1.17 + .062 Hm – 
0.003 A. RRX (Rodes Reef) is an exposed site on the north shore of Santa Rosa Island. The CDIP model 
underestimated wave height for most directions at RRX. Hs was better fit directly with Harvest height Hb, 
Harvest period Tb, and Harvest direction Ab. This improved the precision fit from R2 = .08 to R2 = .57. 
The regression model for RRX is Hs = .32 Hb – .026 Tb + .002Ab  –  .001 (Tb – 12.6 ) (Ab – 280).  

We then asked whether there were site characteristics that could help explain the site to site variation in 
the correction coefficients. If so, we could improve CDIP model hindcasts at sites without sensor data. 
We first transformed the coefficient using the natural log to give equal weight to over and underestimates. 
We found that CDIP underestimated wave heights at sites with narrow swell windows (W in degrees), 
especially in the Northern Channel Islands. In addition, CDIP tended to underestimate height at south-
facing coastlines in the Northern Channel Islands and overestimate height at north-facing coastlines in the 
Southern Channel Islands (Where L is latitude in decimal degrees, and +/- is positive for south facing 
coastlines and negative for north facing coastlines). This is not surprising because the hindcast model 
used channel buoys (north of the islands) to model open ocean seas south of the islands. The regression 
(no intercept): Ln[Coefficient] = .018 L – .005 W – .017 (L – 33.8)(W – 102) +/– (.22 +.98(L – 33.8)) has 
a precision of R2 = .56 and can be used to correct these MOP hindcasts in the Channel islands, given a 
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measured swell window and location. Specifically, the wave height at a site that is not ground-truthed can 
be estimated as H = Hm * Exp[.0181 L – .005 W – .0168 (L – 33.8)(W – 102.4) +/– (.219 +.977(L – 
33.8))]. As an example, for a north-facing site like Scorpion Anchorage on Santa Cruz Island: L = 
34.04776 and W = 4 the indirectly estimated bias coefficient would be Exp[0.54] = 1.72 (compared to the 
directly computed bias coefficient for this site of 1.58). 

We applied a similar approach to correcting wave period. We fit Ts = Tm + Tm * site. This model 
explained 57% of the variance in the model predictions, and suggested CDIP hindcast period should be 
multiplied by 1.01, +/– a site-specific additive bias coefficient (Table 7.2). 

Although bias was small for most sites, precision was relatively low, and nearly lacking for five sites, 
CCX, LCX, PBX, PRF and RRX. CCX (Cathedral Cove) is a sheltered site on the north coast of East 
Anacapa Island. This site was well predicted by the dominant period from Harvest Buoy (NDBC46218), 
Ts = 4.7 + 0.52 Tb. This improved fit from R2 = .13 to R2 = .46. LCX (Landing Cove) is another sheltered 
site on the north coast of East Anacapa Island. Because CDIP underestimated south swell periods at this 
site, period was better predicted by including swell direction from Harvest Buoy (NDBC46218), Ts = 7.7 
+ 0.59 Tm – .006 A. This improved fit from R2 = .21 to R2 = .32. PBX (Pelican Bay) is a sheltered site on 
the north coast of Santa Cruz Island. Because CDIP underestimated south swell periods at this site, period 
was better predicted by including swell direction from Harvest Buoy (NDBC46218), Ts = 5.7 + 0.58 Tm. 
This improved fit from R2 = .25 to R2 = .57. PRF (Pedro Reef) is a protected site with small wind waves 
under most conditions. CDIP underestimated wave period, especially for smaller swells. Adding an 
intercept and the wave height and season improved the precision from R2 = .08 to R2 = .24. Model: Ts = 
6.7 + 0.54 Tm + .27 Hm + 2.4(Tm – 12.1)(Hm – 0.1) +/– .44, where +/– is positive for summer and negative 
for winter). As noted before, RRX (Rodes Reef), is an exposed site on the north shore of Santa Rosa 
Island. Here, the CDIP model overestimated wave period for small wave heights. Just as for height, 
period at the sensor Ts was better fit directly with buoy period Tb from platform Harvest. This improved 
the precision fit from R2= .17 to R2= .52. Ts = .30 + .81 Tb. There are some gaps in the Harvest Buoy 
record. We filled these gaps using the correlated hind casts from all other sites using Multivariate SVD 
Imputation (and setting any negative values to 0) from the JMP Pro 13.0™ platform. 

As we did for height, we looked to see if we could improve CDIP period hindcasts at sites without sensor 
data. Ideally, one would be able to use the MOP model to generate hindcasts for the south side of the 
islands based on appropriate buoys. In lieu of that, however, we first transformed the bias coefficient 
using the natural log to give equal weight to over and underestimates. CDIP underestimated wave period 
at sites with narrow swell windows (W in degrees). In addition, CDIP tended to underestimate period at 
south-facing coastlines (where +/– is positive for south facing coastlines and negative for north facing 
coastlines). CDIP also underestimated period at sites with a northern swell window (C in degrees), 
especially in the south (where L is latitude in decimal degrees). The regression: Ln[Coefficient] = – 
0.0055 L – .00154 W + .00149 C + – 0.0019 (C – 224) (L – 33.8)) +/– .16 has a precision of R2 = .46 and 
can be used to improve CDIP period hindcasts in the Channel Islands given a measured swell window 
(center and width) and location. Specifically, the wave period at a site that is not ground-truthed can be 
estimated as T = Tm * Exp[– 0.0055 L – .00154 W + .00149 C + – 0.0019 (C – 224) (L – 33.8)) +/– .16]. 
As an example, for a north-facing site like Scorpion Anchorage on Santa Cruz Island: L = 34.04776, W = 
4, and C = 296, the indirectly estimated bias coefficient would be Exp[0.052] = 1.05 (compared to the 
directly computed bias coefficient for this site of .99, which, ironically, would slightly reduce accuracy at 
this site). Given that others might want to apply corrections to other sites of interest, we curated and 
published the correction coefficients and equations (Lafferty and Morton 2018).  
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Table 7.1. List of total (1.18 + site) per-site bias (standard error), total correction coefficient 
(inverse of total bias), and R2 for a simple no-slope model for wave height. Multiplying Hm by the 
correction coefficient gives the corrected wave height for a site. * indicates where CDIP hindcast 
was such a poor fit to the sensor that regressions based on archived Harvest Buoy (NDBC46218) 
data were used in addition to or instead of the CDIP hindcasts (see below). 

Site Bias Std Error Coefficient R2 
APX 1.17 0.006 0.85 0.60 
ARX 0.63 0.004 1.57 0.86 
CAT 0.76 0.002 1.32 0.89 
CCX 0.90 0.008 1.11 0.43 
CPX 0.97 0.001 1.03 0.93 
CSA 1.03 0.002 0.97 0.83 
CVP 0.71 0.002 1.42 0.76 
DTN 0.97 0.002 1.03 0.94 
EDH 0.82 0.002 1.21 0.92 
EFC 0.76 0.004 1.32 0.9 
FHX 0.29 0.005 3.42 0.87 
GCX 0.99 0.002 1.01 0.88 
GIX 0.89 0.003 1.12 0.82 
HRX 1.01 0.002 0.99 0.89 
JLN 0.95 0.003 1.06 0.71 
JLS 0.91 0.002 1.10 0.82 
KHX 0.73 0.006 1.37 0.44 
LCX 0.63 0.003 1.58 0.58 
LHX 0.88 0.003 1.14 0.83 
MMX 0.99 0.002 1.01 0.87 
NFX 1.04 0.002 0.97 0.90 
PBX 0.46 0.007 2.19 0.83 
PRF* 0.23 0.004 4.26 0.04 
RRX* 0.85 0.003 1.18 0.08 
SAX 0.63 0.003 1.58 0.82 
SER 0.91 0.002 1.10 0.92 
SES 0.99 0.003 1.01 0.75 
SPX 1.02 0.002 0.98 0.76 
WAX 0.84 0.001 1.19 0.82 
WEX 1.40 0.002 0.71 0.87 
WLX 1.12 0.002 0.89 0.85 
YBX 0.86 0.003 1.17 0.87 
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Table 7.2. List of bias (standard error), correction coefficients (inverse of bias), and R2 for a simple 
no-slope model for wave period. List of bias (standard error), correction coefficients (inverse of 
bias), and R2 for a simple no-slope model. Multiplying the CDIP hind cast by the coefficient gives 
the corrected wave period for a site. * indicates where CDIP hindcast was such a poor fit to the 
sensor that regressions based on the Harvest Buoy data were used (see below).  

Site Bias Std Error Coefficient R2 
APX 0.96 0.010 1.05 .51 
ARX 0.97 0.017 1.03 .51 
CAT 1.00 0.006 1.00 .70 
CCX* 0.94 0.009 1.06 .13 
CPX 0.99 0.007 1.01 .69 
CSA 0.98 0.005 1.02 .56 
CVP 1.01 0.006 0.99 .78 
DTN 0.99 0.006 1.01 .81 
EDH 1.01 0.006 0.99 .72 
EFC 1.00 0.009 1.00 .72 
FHX 1.00 0.009 1.00 .27 
GCX 0.94 0.006 1.06 .64 
GIX 0.97 0.005 1.03 .60 
HRX 0.90 0.005 1.12 .46 
JLN 1.01 0.005 0.99 .67 
JLS 1.01 0.004 0.99 .65 
KHX 0.94 0.007 1.06 .35 
LCX* 0.84 0.005 1.19 .21 
LHX 1.01 0.005 0.99 .69 
MMX 0.97 0.005 1.03 .54 
NFX 0.83 0.007 1.21 .55 
PBX* 0.96 0.005 1.04 .25 
PRF* 0.80 0.005 1.25 .08 
RRX* 1.18 0.009 0.85 .17 
SAX 1.01 0.005 0.99 .27 
SER 1.00 0.005 1.00 .73 
SES 1.00 0.008 1.00 .84 
SPX 0.97 0.004 1.03 .47 
WAX 0.91 0.007 1.10 .74 
WEX 0.99 0.007 1.01 .74 
WLX 0.97 0.006 1.03 .41 
YBX 0.97 0.001 1.03 .57 
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8 Building a Corrected Hindcast Database for Wave Energy at Kelp 
Forest Monitoring Sites 

8.1 Introduction 
Before we could implement our goal to relate biotic responses to wave energy, we needed to correct 
hindcasts for all our sites. We also wanted to create a wave-energy database that others could use to 
explore relationships between wave energy and kelp-forest communities. 

8.2 Methods 
Using the bias correction coefficients in Section 7, and the statistical models for sites not well fit by the 
bias correction, and the derived statistical models for sites without past sensor data, we generated site-
specific hourly wave hind casts from 2000 through 2017.  

In addition, we were assisting with a larger effort to merge several databases for the study region, 
meaning that we could use Lafferty and Morton (2018) to expand our site list for an additional 56 sites, 
bringing our total sites to 88. However, given the annual nature of the biological data, these wave data 
were summarized annually (for the 12 month interval and 6 month interval before biological data 
collection for a particular site-year combination).  

8.3 Results and Discussion 
The hindcast database includes 383,942 site-specific hourly wave hind casts with the following data 
columns: year_utc, month_utc, day_utc, hour_utc, cdip_Hs_m, cdip_Tp_sec, cdip_Dp_degTrue, 
adjusted_cdip_Hs_m, mean_sensor_pressure_dbar, Transect_depth_m, ubr_Sensor, Tbr_sensor, 
wave_energy, date, juliand, season, wyr, waveyr, season_yr, Hs_corrected, Tp_corrected, ubr_corrected, 
Tbr_corrected, wave_energy_corrected. The full dataset has been curated, published, and made available 
as Lafferty et al. (2018). We used a similar study as an example for how to calculate and use “wave 
energy” (Williams et al. 2013). Bottom orbital velocity was calculated after Wiberg and Sherwood 
(2008). 

The larger 88-site database includes wave data on mean height, energy, and orbital velocity calculated at 
6- and 12-month intervals before biotic sampling. The wave data in Lafferty et al. (2018) were integrated 
into a large integrated data table produced by the Santa Barbara Channel Marine Biodiversity Observing 
Network (http://sbc.marinebon.org/) available at the following DOIs: 

doi:10.6073/pasta/1345f0148e6dfe4df9065e223b4dd783 

doi:10.6073/pasta/bf143fa962e1edb822847bc0ee90c2f7 

doi:10.6073/pasta/51d2db26e90d4b8687db81fb40bc58c4 

doi:10.6073/pasta/d09d4bfd54e6d4e490b4cc34731d808e 
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9 Estimating Biological Responses to Wave Energy 

9.1 Introduction 
 
Kelp forests are impacted by wave exposure, yet adapted to average conditions in the region (Bell et al. 
2015). Wave action has positive and negative features for organisms. It creates hydrodynamic stressors 
that can dislodge individuals, and it also provides flow that can transport materials such as nutrients and 
food (Shields et al. 2011). These contrasting effects could influence various ecological factors, such as 
recovery rates from disturbance, productivity and biodiversity. Furthermore, given the various food-web 
interactions in marine systems, indirect effects of waves are also possible. For instance, one way that 
waves likely affect species is in how they affect that species’ prey, predators and parasites (Shields et al. 
2011). 
 
Examining how species respond to wave exposure requires community time series data on ecological 
communities from several different sites. Such a long-term data set was organized and analyzed by the 
BOEM-funded DOI Partnership: Distinguishing Between Human and Natural Causes of Changes in 
Kelp Forests Using Long-term Data from DOI Monitoring Programs. These data are taken annually, 
meaning that we first needed to match annual wave energy measures from Lafferty and Morton (2018). A 
subset of these wave data are now incorporated into the integrated data set, making it possible to create 
statistical models that express nearshore communities as a function of wave energy in time and space. 
With such statistical models, it should be possible to estimate a change in community state that might 
result from a change in wave energy state data derived from the DOI Partnership study. From these data, 
we asked how organismal density responds to wave energy.  
 
Other researchers have asked similar questions, albeit for different reasons. For instance, sea grass 
meadows cannot persist under high wave energy, which might increase under sea level rise. By modeling 
the association of sea grass to a wave-energy gradient, Saunders et al. (2014) was able to predict 10-85% 
reductions in sea grass cover in shallow habitats after a 1m sea level rise (and no reef accretion). 
European kelps vary in their response to wave energy (Gorman et al. 2012), suggesting that species-
specific responses to wave energy could also vary in our region. 

9.2 Methods 
 
As part of the BOEM-funded DOI Partnership study, we incorporated our wave data into a broader data 
set assembled by the Santa Barbara Channel Marine Biodiversity Observation Network, which contains 
information about the densities of algal, invertebrate, and fish taxa, as well as environmental covariates. 
In our analyses, the dependent variable was organismal abundance for a particular taxon. Organismal 
abundance was averaged over all replicate transects for each site-date combination, subject to three 
constraints. For each taxon, we excluded sites combinations where the taxon was reported at < 20% of 
sampling dates (because we assumed habitat conditions were poor, or out of range, for this particular 
taxon at this particular site). To minimize seasonal effects, we excluded observations taken outside the 
June-October sampling window (this has the advantage of standardizing, with the disadvantage of 
missing observations from Santa Barbara Island and Anacapa Island). After imposing these restrictions, 
we further excluded rare taxa, as those with < 100 observations. To help meet assumptions of the general 
linear model, we transformed organismal density with the square root prior to statistical analysis. 
 
The wave variables were bottom orbital velocity (m/s) calculated over the 12 months before the date each 
ecological observation was collected. We chose orbital velocity because this was likely most related to the 
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physical experience of the benthic organisms tracked in the biological data. Furthermore bottom orbital 
velocity is a non-linear function of wave energy and depth (Wiberg and Sherwood 2008). By including 
bottom orbital velocity and depth in our analysis, we could consider the independent effects that depth 
might have apart from attenuating wave energy (e.g., reducing light, or increasing nutrients). Each wave 
measure was taken from corrected hourly wave heights, periods and depths (as described previously). 
Given the possibility that wave energy had a non-linear effect on taxon density, we also included bottom 
orbital velocity squared as potential predictors. 
 
The fixed effect covariates used were 12-month mean sea surface temperature (and its square), Log 
transformed 12-month mean Chlorophyll (within a 3 km buffer), Log transformed 12-month mean diffuse 
attenuation (a measure of water turbidity), % sand, Depth (m), and the categorical variables: 
fished/unfished, island/mainland. Site and year were treated as random effects and representing site-
specific habitat characteristics or annual variation not explained by the other covariates. 
 
We report the model coefficients (and their standard errors) in two ways: all variables included, or all 
non-significant variables excluded (the pruned model), the latter being an attempt to both reduce over 
fitting and increase power. When removing variables with squared terms, we always removed the squared 
term before removing the linear term. For our questions, results were consistent between each approach. 
 
To estimate taxon sensitivity to wave energy we simply report the pruned model coefficients for bottom 
orbital velocity (after controlling for other factors), with an emphasis on the significance and magnitude 
of the density response. 
 

9.3 Results and Discussion 

Across all species, only 12% of the variation in abundance in time and space was explainable by the fixed 
covariates in our study. Unmeasured site characteristics (e.g., habitat complexity) explained 32% of the 
variation on average (algae = 50%, invertebrate = 51%, fish = 20%), and unmeasured annual 
characteristics (e.g., a strong recruitment year or disease outbreak) explained 11% (algae = 4%, 
invertebrate = 9%, fish =13%). That left an average of 45% of the variation unexplained. Unexplained 
variance could be due to measurement error, intra-annual variation, seasonality, or species interactions.  

Each covariate explained some variance in the density of at least one species (Table 9.1). By far, sea 
surface temperature explained the most variance, followed by wave orbital velocity, island/mainland, 
chlorophyll, diffuse attenuation, and fishing. Species sensitivity to orbital velocity varied across taxa. For 
36 of the 56 taxa, density was not statistically associated with orbital velocity (Table 9.1).  
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Table 9.1. Significant standardized regression coefficients indicating density associations by species (algae in green, invertebrates in 
red and fishes in blue text), to various potential drivers. Colored shading in a cell corresponds to coefficient magnitude and sign (with 
dark red being strongly negative and dark blue being strongly positive). SST = 12-month average sea surface temperature, OV = 12-
month mean bottom orbital velocity, island = island/mainland, depth = transect depth in m, Chl. = satellite derived 12-month average log 
chlorophyll concentration within a 3 km buffer, sand = % sand on transect, DA-= satellite derived 12-month average diffusion 
attenuation, fish = fishing/reserve.  

Species SST SST2 OV OV2 island depth Chl. sand DA fish 
Egregia menziesii      -0.38     

Eisenia arborea           

Laminaria farlowii        -0.45    

Macrocystis pyrifera biomass -0.24  0.81 -0.52       
Macrocystis pyrifera density -0.50 0.48         
Pterygophora californica  -0.36        0.16  

Aplysia californica 2.06 -1.85   0.30      
Apostichopus parvimensis -0.05  -0.14  0.34 -0.24    -0.44 
Crassadoma gigantea 0.28    0.31      
Kelletia kelletii     -0.46 0.29     

Megastraea undosa 0.44    0.19      

Megathura crenulata -0.12          

Mesocentrotus franciscanus 3.14 -3.15   0.40   -0.23   

Neobernaya spadicea      0.27 -0.17 -0.21   

Patiria miniata -0.31    0.25 0.45     

Pisaster giganteus -0.59  -0.47 0.37     0.15  

Pycnopodia helianthoides -3.75 3.19   0.23      

Stephanocystis osmundacea 0.15          

Strongylocentrotus purpuratus  5.55 -5.41   0.33 -0.21  -0.15   

Styela montereyensis -0.19          

Tethya aurantium      0.50 0.30    

Urticina lofotensis        -0.15   

Aulorhynchus flavidus -0.33          

Brachyistius frenatus     -0.10      

Caulolatilus princeps -5.41 5.67 -0.18      0.14  
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Species SST SST2 OV OV2 island depth Chl. sand DA fish 
Chromis punctipinnis 0.34 0.19 -0.66 0.51 0.22      

Cymatogaster aggregata   -0.18        

Embiotoca jacksoni   -1.01 -1.01 -0.36      

Embiotoca lateralis -0.20  0.35  0.36      

Girella nigricans   -1.21 0.90  -0.14     

Gymnothorax mordax 0.31          

Halichoeres semicinctus -5.67 6.25 -0.29   -0.10     

Heterodontus francisci -0.02          

Hypsurus caryi 2.64 -2.80    0.24 0.15    

Hypsypops rubicundus -1.21 1.43 -1.45 1.12 0.18 -0.28     

Medialuna californiensis -3.98 4.28 -0.68 0.42       

Myliobatis californica      -0.11   0.17  

Ophiodon elongatus 4.07 -4.23        -0.32 
Oxyjulis californica 0.24          

Paralabrax clathratus -2.32 2.73 -1.03 0.74 -0.19 -0.13     

Phanerodon furcatus -0.21       0.41 0.24  

Rhacochilus toxotes   -0.54 0.39 -0.22  0.13    

Rhacochilus vacca   -0.72 0.53   0.35    

Scorpaenichthys marmoratus      -0.19 0.24    

Sebastes atrovirens -0.26          

Sebastes auriculatus     -0.41     0.21 
Sebastes carnatus -0.13  -0.68 0.61 -0.26   -0.31   

Sebastes caurinus -0.23          

Sebastes chrysomelas -0.63 0.45         

Sebastes miniatus   0.24        

Sebastes mystinus 3.51 -3.41 0.19  0.07 0.23     

Sebastes paucispinis       0.02  -0.02  

Sebastes rastrelliger        0.23   

Sebastes serranoides   0.20  0.14  0.03 0.02   

Sebastes serriceps 1.74 -1.74 -0.72 0.53       

Semicossyphus pulcher -1.27 1.68   0.19    0.10  
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Surprisingly, no macroalgal densities responded to wave energy. This is in contrast to other studies that 
show community level responses, with higher macroalgal diversity at intermediate wave-energy sites in 
Western Australia (England 2008). On the other hand, consistent with past results (Bell et al. 2015), kelp 
biomass (dashed line) peaked at intermediate orbital velocity (Figure 9.1).  
 

 
Figure 9.1. Modeled species density (note the logged axis) plotted against orbital bottom velocity 
for 20 species with significant responses to wave energy. Across all 395 site-year combinations, 
annual wave velocity ranged from 0.02 to 0.63 with a mean of 0.19 m/s. Kelp biomass adjusted 
(adj) is kelp biomass (kg/m2) divided by 1,000,000 to have comparable units). 

Twenty species were statistically associated with bottom orbital velocity, often in complex ways. Four 
species (Apostichopus parvimensis, Caulolatilus princeps, Cymatogaster aggregate, and Halichoeres 
semicinctus) had negative associations, whereas four species (Sebastes mystinus, S. serranoides, 
Embiotica lateralis, S. miniatus) had positive associations. The remaining twelve species unexpectedly 
reached minimum density at medium orbital velocities. This variation among species is consistent with 
other studies that have found fishes have different responses to wave energy, with few species adapted to 
highly turbulent conditions (Munks et al. 2015). Although we can only speculate about why these species 
differed with respect to their association with wave energy, the species associated with calmer water 
included a benthic sea cucumber (A. parvimensis) that cannot attach firmly to the substrate, a small surf 
perch (Cymatogaster aggregata) whose distribution includes calm bays and estuaries, and a rock wrasse 
(H. semicinctus) and ocean whitefish (Caulolatilus princeps) that tend to associated with sandy habitat, 
which might be more stable in calmer areas. The rockfishes associated with higher wave energy are less 
easy to explain. For instance, blue rockfish (S. mystinus) move deeper when wave energy is high (Green 
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et al. 2014), and were not associated with wave energy in another study (Young and Carr 2015). 
Furthermore, Young and Carr (2015) found that S. serranoides and Embiotica lateralis, were more often 
found at sites with low wave energy, rather than, as found here, at sites with high wave energy. 
Furthermore, the one fish species that Young and Carr (2015) found was associated with high wave 
energy (Sebastes chrysomelas) was not associated with wave energy in our study. Such inconsistencies 
suggest that the effects of wave energy are either weak or masked by other drivers, though there are many 
other difference, such as Young and Carr (2015) using general additive models and including as 
explanatory variables: depth, substrate, slope, kelp biomass and orbital velocity (meaning that their 
response to orbital velocity was considered after accounting for the interactions with kelp, which is 
known to drive species distributions and be affected by wave energy). 

 At this point we do not have a hypothesis for what would create such a pattern, but it could be an indirect 
response to a parameter, like kelp biomass, that has the opposite pattern. Because the relationship with 
wave energy was often non-linear, it is difficult to predict the directional effect of wave energy extraction 
on species abundances. Notably, fish move and their counts can be highly variable, perhaps in response to 
recent wave events. Our statistical predictions use long-term average wave energy, yet snapshot 
observations could be affected by recent storms. However, most sampling occurs during calm conditions. 
Other non-linear approaches, such as knotted splines or additive models would be more appropriate for 
assessing species-level responses to wave energy not attempted here.  
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10 Predicting the Consequences of Wave Energy Absorption from 
Marine Renewable Energy Facilities on Nearshore Ecosystems 

10.1 Introduction 
Given that several taxa respond to wave energy, we might expect that renewable energy facilities could 
lead to significant changes in their density. Therefore, we sought to see how the species that were 
associated with wave energy responded to a 15% reduction in wave height, which is the upper end of 
expected wave height reduction due to renewable energy facilities (EPRI 2004, Nelson et al. 2008). Here, 
the general expectation is that wave energy is a disturbance that impacts giant kelp and associated species, 
shifting the community toward high-energy specialists (Egregia and surfgrass) and their associated 
species (Parnell 2015). For instance, intense wave energy in Central California impairs kelp canopy 
persistence, leading to lower overall biomass density of kelps in Central California than in Southern 
California, despite the higher nutrients and lower grazing pressures in Central California (Reed et al. 
2011). However, non-linearities in the biological response (Figure 9.1) could result in a situation where 
organisms at low energy sites respond differently from organisms at high-energy sites. Here we focus on 
high-energy sites where renewable energy projects might occur (Shields et al. 2011).  

10.2 Methods 
 
Our approach builds on the statistical models described in Section 9. Orbital velocity is roughly 
proportional to wave height, so a 15% reduction in wave height will result in a 15% reduction in orbital 
velocity. To estimate taxon sensitivity to a change in wave height due to hydrokinetic energy extraction, 
we ran the statistical models to generate the best-fit predictions for taxon density. We set non-wave 
related parameters to their grand means (and assumed that wave energy extraction would not affect them). 
For the categorical variables, we chose the most common states: fished and island. 
 
To simulate species densities at a site where wave energy extraction might occur (e.g., high energy sites), 
we fit the previous model of species densities to the 97.5% upper quantile for mean annual orbital 
velocity at a site (e.g., 0.46 m/s). We used the profiler feature in JMP Pro 13.0™ to calculate the expected 
mean and 95% confidence limits for species density under such high energy conditions. For the “after” 
model we chose a 15%-lower wave orbital velocity (i.e., 0.46 * 0.85 = 0.39 m/s), and recalculated the 
predicted density and confidence limits. To focus the results on species with significant sensitivity to 
wave energy, this was done for pruned models only. We plotted species densities before and after a 15% 
reduction in wave energy to estimate if there are likely to be any statistically significant biological 
responses to reducing wave energy at high wave energy sites. 

10.3 Results and Discussion 

Density responses to a 15% reduction in wave height at an exposed site varied across species, but such a 
reduction never altered density significantly (P < 0.05) (given the existing sampling effort), as seen 
graphically by comparing the 95% confidence limits between the before and after bars (Fig. 10.1). This 
suggests that although some species do respond to the range in bottom orbital velocity seen in our study 
system, a 15% reduction in wave height at a high wave energy site was too subtle for the models to 
predict a detectable change in any species density. Figure 10.1 shows these effects for wave sensitive 
species only (insensitive species would have no change), listed from most abundant under high wave 
energy.  
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Figure 10.1. Modeled species densities before (blue) and after (red) a 15% reduction in wave 
height at an exposed site. Confidence limits all overlap the before-after comparison, indicating no 
statistically detectable change of wave energy extraction, even for the 20 species (and kelp 
biomass) with significant responses to wave energy. Kelp biomass is divided by 1,000,000 to have 
comparable units). 
 

Although none of the modeled changes were statistically significant, some patterns in the data are worth 
speculating about. Firstly, although we pose our hypothesis in terms of changes in abundances, species 
could also respond by changing their depth distributions, further lessening the site-level effects predicted. 
If there was to be an effect of reducing wave energy at high-energy sites, these results suggest up to 14 of 
the 56 species could decline slightly as a response, whereas some species might respond positively, most 
notably kelp biomass and the sea cucumber Apostichopus parvimensis. In particular, reducing wave 
energy might allow two fish species (Cymatogaster aggregata and Medialuna californiensis) to persist 
where they could not before, but for two wave-intolerant fish species (Caulolatilus princeps and 
Halichoeres semicinctus), a 15% reduction in wave height would not be sufficient to allow them to 
persist. Effects in deeper water (or far from a wave energy extraction device) should be even more subtle 
(and in shallower water more substantial) than estimated. To put these results in context, Young and Carr 
(2015) similarly predicted that kelp forest fish species richness declines with wave orbital velocity, 
suggesting that, if anything reducing wave energy by 15% would increase fish diversity in kelp forests. 
These results can inform the streamlining of predictions for the effects of renewable energy projects on 
temperate kelp forest communities and be used as a guide when planning associated monitoring.   
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