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Executive Summary

Overview of Study

The U.S. Department of Interior (USDOI) Bureau of Ocean Energy Management (BOEM) has air quality
jurisdiction westward of 87°30'W longitude on the Outer Continental Shelf (OCS) in the Gulf of Mexico
Region (GOMR). Under the OCS Lands Act (OCSLA), BOEM is required to prescribe regulations for
compliance with the National Ambient Air Quality Standards (NAAQS) to the extent that OCS oil and
gas exploration, development, and production sources significantly affect the air quality of any state. The
area of possible influence includes the states of Texas, Louisiana, Mississippi, Alabama, and Florida
(Figure ES-1).
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Figure ES-1. Location of Air Quality Modeling in the GOMR Study Modeling Domains with Class |
Areas, Sensitive Class Il Areas, and Nonattainment Areas

After promulgating a NAAQS, the U.S. Environmental Protection Agency (USEPA) designates areas that
fail to achieve the NAAQS as nonattainment and requires states to submit emission control plans and
demonstrate that the areas will achieve the NAAQS by a required date. Within the 4-km photochemical
modeling domain, which is the focus of the cumulative air quality impacts assessment of this study, the
Houston-Galveston-Brazoria, Texas, region and the San Antonio (Bexar County), Texas, area are
designated nonattainment for the 2015 O3 8-hour (70 ppb) standard; the Baton Rouge, Louisiana, area is
an ozone (O3) maintenance area for the 2008 O 8-hour (75 ppb) standard; and Saint Bernard and
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Evangeline Parishes in Louisiana and Freestone and Anderson Counties in Texas are designated
nonattainment for the 1-hour (75 ppb) SO, standard.

National Parks and wilderness areas designated as Class | areas under the Clean Air Act are given special
protection for air quality based on more stringent Prevention of Significant Deterioration (PSD) increment
levels that help restrict deterioration of air quality caused by new sources. These areas are also protected
against excessive increases in visibility impairment, acid (sulfur and nitrogen species) deposition, and
nitrogen eutrophication. Breton Wilderness is the only Class | area along the coastal western and central
GOMR. Federal Land Managers also designate certain areas (Class Il areas) under their jurisdiction as
“sensitive” for tracking air quality impacts. The Breton National Wildlife Refuge, Padre Island National
Seashore, and Gulf Islands National Seashore are sensitive Class Il areas in the western and central
GOMR.

In this Air Quality Modeling on the GOMR Study, air quality modeling was conducted to assess the
existing pre- and potential post-lease impacts from OCS oil and gas development to the states, as required
under OCSLA. BOEM will use this information in National Environmental Policy Act (NEPA)
environmental impact statement (EIS) cumulative and visibility analyses. Past cumulative and visibility
impacts studies used older, less sophisticated models and no longer support the current NAAQS.

BOEM will also use this information to assess post-lease impacts using emission exemption threshold
(EET) formula screening methods to determine whether a proposed source will cause or contribute to a
violation of the NAAQS. The NAAQS have undergone several revisions, including changes in indicators
and averaging times, since the current EET formulas were developed. BOEM’s EET screening approach
is similar to the USEPA’s PSD screening methods, which use Significant Emission Rates (SERS) and
Significant Impact Levels (SILs) to determine the required level of detail in air quality analyses used to
demonstrate that a new source will not cause or contribute to violation of a NAAQS or exceedance of a
PSD increment.

BOEM contracted with a team consisting of Eastern Research Group, Inc. (ERG), Ramboll U.S.
Corporation (Ramboll), and Alpine Geophysics, LLC (Alpine), to conduct meteorological modeling,
develop emissions inventories, conduct photochemical modeling in support of the cumulative impact
analyses, and conduct dispersion modeling and photochemical modeling in support of EET analyses. The
following sections summarize the approach and results of these efforts.

Meteorological Modeling

Air quality modeling requires extensive data on meteorological parameters such as wind speed, wind
direction, air temperature, and humidity to determine the rate that pollutants disperse and react in the
atmosphere. Sources of meteorological information include datasets of measurements gathered at various
locations within the GOMR domain. However, the onshore and, to a much larger extent, the offshore
spatial coverage of these measurements is insufficient to describe the three-dimensional structure of the
atmosphere away from measurement locations. Using measurement data as inputs, gridded
meteorological models can estimate meteorological conditions in regions far from measurement sites. The
results of these models are often used to establish conditions near remote pollutant sources or remote
locations downwind of pollutant sources.

Ramboll performed five years (2010-2014) of meteorological modeling using the Weather Research and
Forecasting (WRF) model to support the photochemical and dispersion air quality modeling conducted in
this study. Section 2 of this report presents a model performance evaluation (MPE) of the 5-year WRF
results. Appendix F of the BOEM Gulf of Mexico Multisale Environmental Impact Statement for
Proposed Gulf of Mexico OCS Oil and Gas Lease Sales 249, 250, 251, 252, 253, 254, 256, 257, 259, and
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261 (2017 Multisale EIS) assesses the WRF model performance specifically for calendar year 2012,
which was used as the photochemical modeling base year.

The BOEM GOMR WRF meteorological model simulation for January 2010 through December 2014
reproduced the observed surface and upper-air meteorological variables very well. WRF performed
exceptionally well at onshore locations based on the statistical (METSTAT) analysis for the 36-km and
12-km domains and reasonably well at onshore and offshore locations within the 4-km domain, with a
small bias in spatially and temporally paired hourly wind directions at onshore towers and offshore buoys.
Overall, the performance results show a very strong agreement between model predictions and surface
observations.

Upper-air model performance in the 4-km domain at four locations in the GOMR where upper-air
observations are available indicates accurate predictions of the vertical structure of the atmosphere,
especially mixing layer heights and occurrences of surface-based temperature inversions. The daily and
monthly five-year average precipitation analysis for the 4-km domain indicates there is a strong
agreement between the modeled and observation-based precipitation estimates over land, including
simulations of convergence zones and other enhanced rainfall areas. Comparisons with satellite-based
precipitation accumulations do indicate an understatement of precipitation over water, most notably in the
winter months. Although the cause of this is unknown, WRF precipitation predictions are historically
biased high along the Gulf Coast states. Comparisons of predicted and observed wind roses at selected
locations along the Gulf Coast show WRF was able to simulate offshore and onshore wind speeds and
directions very well in the 4-km domain, thus indicating good fidelity reproduction of the land-sea breeze
circulation.

Emission Inventory for the Cumulative Air Quality Impacts Analysis

To support the cumulative air quality impacts analyses, ERG developed comprehensive air emissions
inventories within the GOMR for carbon monoxide (CO), lead (Pb), nitrogen oxides (NOy), particulate
matter with an aerodynamic diameter less than 2.5 micrometers (PM:s), particulate matter with an
aerodynamic diameter less than 10 micrometers (PMso), sulfur dioxide (SO>), volatile organic compounds
(VOCs), and ammonia (NHs). Using data from BOEM and the USEPA, ERG compiled emissions data for
the 4-, 12-, and 36-km modeling domains for anthropogenic (i.e., human-caused) sources including
onshore and offshore stationary point and nonpoint area sources, onroad motor vehicles, nonroad
equipment, locomotives, marine vessels, other offshore sources, and airports. ERG and Ramboll also
compiled emissions data for non-anthropogenic sources. The 2012 base case emissions estimates were
used in the photochemical MPE, whereby the predicted concentrations were evaluated against measured
ambient concentrations. The results of the MPE indicated that the model generally performed within the
range considered to be acceptable for USEPA regulatory applications.

To model the future year impacts associated with implementation of the Proposed Action for the 2017-
2022 OCS Oil and Gas Leasing Program (2017-2022 Program), data were obtained from the BOEM
2014 Gulfwide Emissions Inventory and the USEPA for predicted 2017 emissions from all sources. For
new emissions sources in the 2017-2022 Program, BOEM developed 10-sale and single-sale scenarios to
represent hypothetical assumptions based on estimated amounts, timing, and general locations of OCS
exploration, development, and production for offshore activities. The scenarios represent assumptions and
estimates that are reasonably suitable for pre-sale impact analyses. Based on the predicted annual
emissions estimates, 2036 was selected for use in modeling to represent a reasonable future emissions
scenario that would potentially be associated with the Proposed Action’s peak impact.

After extensive QA/QC, ERG provided the base case and future emissions estimates to Ramboll in the
required photochemical modeling emissions preprocessing input formats. Appendix G of the 2017
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Multisale EIS details the initial development of the base year and future year emissions inventories.
BOEM then directed ERG to refine these inventories based on feedback received from BOEM, the
USEPA, and the general public. Development of the refined emissions inventories is described in this
report.

Cumulative Air Quality Impacts Analysis

In 2016, Ramboll conducted a photochemical modeling analysis using the initial base case and future year
emissions inventories described in Appendix G of the 2017 Multisale EIS. Ramboll modeled air quality
conditions for the base case and future year peak emissions scenario, assuming full development of all

10 lease sales associated with the Proposed Action. Results of the analysis were presented in Appendix H
of the 2017 Multisale EIS. After completion of the initial modeling, BOEM directed Ramboll to prepare a
revised modeling analysis using the revised future year emissions scenario described above. Based on
lessons learned from the previous modeling work, Ramboll also incorporated a number of technical
improvements in the revised modeling, including updates to reduce the overprediction of sea salt
emissions.

Results of the revised photochemical modeling are presented in this report, including results for the 2012
base case and future year lease sale scenarios. These results present a comprehensive picture of projected
future air quality conditions under development of one or all 10 lease sales as compared to 2012 base case
conditions. In addition, source apportionment modeling results from the future year scenario provide
estimates of the incremental air quality impact of new sources associated with development of the lease
sales. Highlights of results of the air resource assessment presented in Section 4 are summarized below:

e Ozone design value concentrations are projected to decrease from 2012 levels at all air quality
monitoring sites in the 4-km domain despite new emission sources associated with additional
lease sales. The projected ozone reductions are due to reductions in emissions from other sources
such as onroad vehicles and nonroad mobile sources, switching to cleaner fuels for marine
vessels, and loss of production from older offshore oil and gas production platforms.

e Under the 10-sale scenario, the maximum contribution of the additional production platforms,
support vessels, and helicopters to ozone design values at any monitoring site along the western
or central Gulf Coast is calculated to be 1.2 ppb (1.7 percent of the NAAQS). The maximum
contribution under the single lease sale scenario is calculated to be 0.3 ppb (0.4 percent of the
NAAQS).

o A small area of O3 increases off the Louisiana coast in the vicinity of the Louisiana Offshore Oil
Port (LOOP) is anticipated, likely due to reductions in NOx emissions at the LOOP that
suppressed O3 production in this area in the 2012 base case.

e The 24-hour and annual average PM2s concentrations are projected to decrease from 2012 levels
at all air quality monitoring sites in the 4-km domain despite the additional lease sales because of
reductions in emissions from the other sources listed above. An exception is a small increase in
annual PM_; at Hidalgo Co., Texas which is unrelated to the 2017-2022 Program.

e The additional production platforms, support vessels, and helicopters associated with 10 lease
sales are estimated to contribute no more than 0.1 pg/m? to the 24-hour or annual average PM,s
design values (0.3 and 0.8 percent of the 24-hour and annual NAAQS, respectively) at monitoring
sites in the 4-km domain. Contributions over all model grid cells of new sources associated with
the 10-sale scenario to modeled eighth highest 24-hour PM_s are less than 0.8 pg/m?® (2.3 percent
of the NAAQS). The maximum contribution to the annual average PM,sis 0.5 pg/m* (4 percent
of the NAAQS). Maximum contributions over all model grid cells of new sources associated with
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the single lease sale scenario to modeled 24-hour and annual PM_ s are nearly the same as under
the 10-sale scenario.

e Incremental impacts on visibility in Class | and sensitive Class Il areas associated with a single
lease sale are calculated to be below the minimum significance threshold (0.5 deciview).

o Incremental impacts on visibility in Class I and sensitive Class Il areas associated with the 10-
sale scenario are calculated to exceed the upper significance threshold (1 deciview) on the eighth
highest day by 1 percent at the Breton Island Wilderness Area, which is the only such area with a
predicted incremental impact exceeding 1 deciview.

e Incremental nitrogen deposition from new sources associated with the single- or 10-sale scenario
is calculated to exceed the data analysis thresholds established by Federal Land Managers at
Class | and sensitive Class Il areas along the western and central Gulf Coast. Incremental sulfur
deposition is below the data analysis thresholds in all cases.

Emission Exemption Threshold Evaluation

The goal of the EET evaluation task was to test the efficacy of BOEM’s existing EET formulas provided
in 30 CFR 550.303(d). The EET formulas are used to determine whether a proposed source could cause
or contribute to a violation of short-term or annual NAAQS. ERG and Alpine conducted dispersion and
photochemical modeling to assess the efficacy of the EET formulas for direct release (primary) and
secondary formation of pollutants. A common set of synthetic sources based on publicly available BOEM
Air Quality Spreadsheets were used to ascertain the impacts from primary and secondary formation of
chemically reactive pollutants such as PM and Os. The emissions inventory used to evaluate the existing
EETs differs from the emissions inventory used in the cumulative air quality impacts analysis task. ERG
developed five synthetic source emission scenarios based on the calculation methods from the latest Air
Quality Spreadsheets that must be submitted by operators/lessees for approval prior to initiation of
drilling and production activities, then modeled them individually to assess their direct impacts. The
modeled impacts from these synthetic sources were compared to the results of the existing EET formulas
to determine how successfully the EETs screen de minimis sources (i.e., sources that will not impact the
NAAQS).

As shown in the Table ES-1, the short-term NAAQS EET formula results were mixed, in that most
pollutants saw false positive (i.e., the impact was under the SIL, but the formula determined that modeling
was necessary) and false negative errors (i.e., the impact was over the SIL, but the formula determined
that modeling not necessary). False negative errors were more common for the short-term standards (i.e.,
standards with averaging times < 24 hours), were higher than the false positive rates, and ranged from

2 percent for the 1-hour NO> NAAQS to 36 percent for 24-hour PM2s NAAQS.

Table ES-1. Short-Term NAAQS Results at the Shoreline?

Evaluation Outcome (percentage of total)
Averaging = Current EET Results Agree = False Positive | False Negative

Pollutant Time with Modeled Impacts (Type I (Type 1)
co 1 hour 7% 0% 23%
8 hours 84% 0% 16%
NO2 1 hour 91% 7% 2%
PM2.s 24 hours 64% 0% 36%
PMzio 24 hours 73% 0% 26%
1 hour 73% 6% 21%
SOz 3 hours 71% 8% 21%
24 hours 72% 8% 20%

a8 Based on 3,300 modeling runs.
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Table ES-2 shows that, for the annual NAAQS, the current EET formulas produce one very slight false
negative error for PM;sand false positive errors for all pollutants. That is, the EET formulas called for
modeling when an impact larger than the SIL was not seen. These errors were especially common at
distances greater than 50 miles to the shoreline.

Table ES-2. Long-Term NAAQS Results at the Shoreline?
Evaluation Outcome (percentage of total)

Current EET Results
Agree with Modeled False Positive False Negative
Pollutant® Impacts (Type I) (Type 1)
NO2 59% 41% 0.0%
PMa.s 96% 3% 1.2%
PMio 93% 7% 0.0%
SO2 73% 27% 0.0%

a8 Based on 3,300 modeling runs.
b There is no long-term NAAQS for CO.

Based on the synthetic sources tested, secondary formation of PM,s and O3z does not exceed the SILs. It
does not appear that the EET formulas need to account for these emissions. However, BOEM may
consider additional modeling of other platform emission scenarios, especially as new technologies and
larger operations emerge.

BOEM has several options if the EET formulas are to be revised. Cubic and logistic function forms for
regressions performed better than linear and quadratic forms. The ratio of false positive errors to false
negative errors varied across the models. One alternative to using regressions explored in this study is the
use of classification and regression tree (CART), which had good performance across all categories.
Another alternative is to utilize the database of modeling results from this study to find a comparable
operation to estimate impact. If this approach is used, BOEM will provide guidance on what constitutes a
comparable facility.

Uncertainties and Recommendations

As discussed in Section 6 of this report, one of the key uncertainties associated with analyzing the air
quality impacts from offshore oil and gas sources in the Gulf of Mexico is the magnitude of the modeled
ozone and particulate matter concentrations over the Gulf waters; a BOEM research goal should be the
collection of more offshore data that can be used in the meteorological and photochemical MPEs. This
could be combined with a tracer study to characterize plume dispersion from point sources as plumes are
blown across the coastal boundary. Top-down studies could also compare the results of this study’s
photochemical grid and dispersion modeling with ambient measurements made at or near the earth’s
surface, satellite remote sensing measurements of pollutant total column mass (and vertical profiles where
available), and measurements made by aircraft overflights to validate emission inventories.

Recommendations for the EET evaluation task are that BOEM assess the results of the CART analyses
performed in this study if the EET formulas are to be revised. BOEM can also continue to update the
modeling database developed for this study as operators submit plans that include dispersion modeling.
The results can be added to the database for use in a refresh of the analysis. Recent Air Quality
Spreadsheets and future GOMR emissions estimates can also be used to assess whether the synthetic
source emission estimates and emission release parameters are still representative and if additional
modeling is needed.
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1 Introduction

1.1 Study Overview

The U.S. Department of the Interior’s (USDOI’s) Bureau of Ocean Energy Management (BOEM) is
required under the Outer Continental Shelf Lands Act (OCSLA) 1334(a)(8) to prescribe regulations for
“compliance with the National Ambient Air Quality Standards (NAAQS) pursuant to the Clean Air Act to
the extent that Outer Continental Shelf (OCS) oil and gas exploration, development, and production
sources significantly affect the air quality of any state.” BOEM’s regulations are promulgated in 30 CFR
550 subparts B and C. BOEM’s Gulf of Mexico Region (GOMR) manages responsible development of
oil and gas and mineral resources on over 159 million acres of the OCS off Texas, Louisiana, Mississippi,
Alabama, and Florida. The GOMR OCS comprises the Western, Central, and Eastern Gulf of Mexico
(GOM) Planning Areas (shown in Figure 1-1). The Clean Air Act Amendments (CAAA) of 1990
designate air quality authorities in the GOMR, giving BOEM air quality jurisdiction westward of
87°30'W longitude and the U.S. Environmental Protection Agency (USEPA) air quality jurisdiction
eastward of 87°30'W longitude. A portion of the Central Gulf of Mexico Planning Area and most of the
Eastern Gulf of Mexico Planning Area is under restriction until 2022 as part of the Gulf of Mexico
Energy Security Act (GOMESA) of 2006. The area restricted is the portion of the Eastern Planning Area
within 125 miles of Florida, all areas in the Gulf of Mexico east of the Military Mission Line (86° 41'W
longitude), and the area within the Central Planning Area that is within 100 miles of Florida. The
GOMESA moratoria area is depicted on Figure 1-1. The figure also depicts the modeling domains
covered by this study. The 36-kilometer (km) photochemical modeling domain shown in purple covers
the continental U.S. and portions of Canada and Mexico. The more refined 12-km domain is shown in
blue. The focus of this study is the 4-km meteorological domain and the smaller 4-km photochemical
modeling domain.

The USEPA sets NAAQS for seven regulated pollutants: ozone (Os), particulate matter with an
aerodynamic diameter of 2.5 micrometers and smaller (PM_5), particulate matter with an aerodynamic
diameter of 10 micrometers and smaller (PMio), sulfur dioxide (SO>), nitrogen dioxide (NO>), carbon
monoxide (CO), and lead (Pb), as shown in Table 1-1.

After promulgating a NAAQS, the USEPA designates areas that fail to achieve the NAAQS as
nonattainment areas (NAAS) and requires states to submit State Implementation Plans (SIPs) that contain
emission control plans and demonstrate that the NAA will achieve the NAAQS by the required date.
After an area attains the NAAQS, it can be re-designated as a maintenance area and must continue to
demonstrate compliance with the NAAQS. Figure 1-1 displays the locations of NAAs in the 36-km
modeling domain.
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In addition, the Clean Air Act (CAA) designated 156 National Parks and wilderness areas as Class | areas
that are offered special protection for air quality and air quality related values (AQRVS), and all other
areas in the U.S. as Class Il areas. Figure 1-1 displays the locations of the mandatory Class | areas (in
green) in the GOMR. Federal Land Management (FLM) agencies have designated certain Class Il areas
as sensitive for tracking AQRYV impacts. Sensitive Class Il areas in the southeastern U.S. region are also
shown in Figure 1-1 (in yellow).

Compared to Class Il areas, Class | areas have lower Prevention of Significant Deterioration (PSD)
increments that new sources may not exceed. They are also protected against excessive increases in
several AQRVs, including visibility impairment, acid (sulfur and nitrogen) deposition, and nitrogen
eutrophication. The Regional Haze Rule (RHR) specifies a goal of achieving “natural” visibility
conditions by 2064 in Class | areas, and states must submit RHR SIPs that demonstrate progress toward
that goal.

Table 1-1. NAAQS and PSD Increments?

Pollutant PoIIutant/Averaglng NAAQS PSD Class | = PSD Class Il
Time Increment Increment
35 ppm
- b — _
CcO 1-hour 40,000 pg/m®
9 ppm
- b — _
CcO 8-hour 10,000 pg/m?
100 ppb
- c - —
NO2 1-hour 188 pg/m?
53 ppb
d 3 3
NO:2 Annual 100 pg/m? 2.5 ug/m 25 pg/m
0.070 ppm
- € — —
O3 8-hour 137 pg/m?
PMuo 24-hourf 150 pg/m3 8 pug/m?3 30 pg/m?
PMuo Annuald - 4 pg/m? 17 pg/m?®
PM2s 24-hour" 35 pug/m? 2 ug/m?® 9 pg/m3
PM2s Annual 12 pg/m?3 1 pg/m?3 4 pg/m?
; 75 ppb
- i - —
SOz 1-hour 196 pg/m?
0.5 ppm
- k 3 3
SO2 3-hour 1,300 pg/m? 25 pg/m 512 pg/m
SO2 24-hour - 5 ug/m?® 91 pug/m?
SOz Annuald - 2 ug/m?® 20 pg/m?®
Pb 3-Month' 0.15 pg/m?® - -
a  ppb = parts per billion; ppm = parts per million; ug/m? = micrograms per cubic meter air
b No more than one exceedance per calendar year.
¢ 98th percentile, averaged over 3 years.
4 Annual mean not to be exceeded.
¢ Fourth-highest daily maximum 8-hour ozone concentrations in a year, averaged over 3 years, NAAQS
promulgated December 28, 2015.
Not to be exceeded more than once per calendar year on average over 3 years.
Three-year average of the arithmetic means over a calendar year.

98th percentile, averaged over 3 years.

Annual mean, averaged over 3 years, NAAQS promulgated December 14, 2012.

99th percentile of daily maximum 1-hour concentrations in a year, averaged over 3 years.

No more than one exceedance per calendar year (secondary NAAQS).

I In areas designated nonattainment for the Pb standards before the promulgation of the current (2008) standards,
and for which implementation plans to attain or maintain the current (2008) standards have not been submitted
and approved, the previous standards (1.5 pg/m? as a calendar quarter average) also remain in effect.

—_ - 5 a -
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Table 1-2 summarizes the NAAs and maintenance areas in the southeastern U.S. SO, and Pb NAAs are
focused around specific large industrial sources, whereas ozone NAAs are more regional, reflecting the
formation of ozone as a secondary pollutant from emissions of nitrogen oxides (NOy) and volatile organic
compound (VOC) precursors from a wide range of sources.

Table 1-2. NAAs and Maintenance Areas in the Southeastern U.S. as of March 31, 20192

8-hr O3 8-hr O3 8-hr O3 SOz (6{0) Pb
(1997)° (2008) (2015) (2010) (1971) (2008)
Birmingham, AL M - - - - -
Troy, AL - - - - -
Tampa, FL - - - - -
Hillsborough-Polk - - - - -
Counties, I%L NAA

Nassau County, FL

Atlanta, GA
Charlotte-Rock Hill, NC-
SC

Baton Rouge, LA
Evangeline Parish, LA

St. Bernard Parish, LA - - - NAA - -
Clarksville-Hopkinsville,
TN-KY

Knoxville, TN - M - — - _
Sullivan County, TN - - - NAA - -
Memphis, TN-AR-MS M M - - - -
Beaumont-Port Arthur, TX M - - - - -

Houstqn—GaIveston— NAA NAA NAA B B _
Brazoria, TX
Dallas-Fort Worth, TX NAA NAA NAA - - -
Freestone-Anderson

Counties, TX - - - NAA - -
Rusk-Panola Counties,
TX

Titus County, TX - - - NAA - -
El Paso, TX - - - - M -

Frisco, TX - - - - - M
San Antonio (Bexar - - - - -
County), TX NAA

2 NAA=nonattainment area; M=maintenance area; blank cells indicate the area is in attainment of the NAAQS.
b Excluding former subpart 1 areas.
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Figure 1-2 depicts the NAAs, Class | areas, and sensitive Class Il areas within 4-km meteorological
modeling domain in more detail.
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The U.S. Secretary of the Interior approved BOEM’s Proposed Final Program (PFP) for the 2017-2022
Outer Continental Shelf Oil and Gas Leasing Program (2017-2022 Program) on January 17, 2017. The
2017-2022 PFP includes 10 proposed lease sales within the Western and Central/Eastern GOM Planning
Areas (the combined GOM Program Area). The Air Quality Modeling in the GOMR Study cumulative air
quality analysis examines the existing pre-lease and potential post-lease impacts of these lease sales with
respect to the NAAQS and AQRVSs, including visibility and acid deposition (sulfur and nitrogen), in
nearby Class | and sensitive Class Il areas, as well as incremental impacts of PSD pollutants (NO2, PMg,
PM2s) with respect to PSD Class | and Class Il increments.

BOEM contracted with a team consisting of Eastern Research Group, Inc. (ERG), Ramboll U.S.
Corporation (Ramboll), and Alpine Geophysics, LLC (Alpine), to conduct photochemical and dispersion
modeling for the GOMR to assess the OCS oil and gas development pre- and post-lease impacts to the
states. BOEM uses this information pre-lease in National Environmental Policy Act (NEPA)
environmental impact statement (EIS) cumulative analyses and post-lease in emission exemption
threshold (EET) analyses to support compliance with OCSLA.

Air quality 