DISTRIBUTION AND SEASONAL ABUNDANCE OF J UVENILE SALMON AND OTHER FISHES IN THE YUKON DELTA

by
Douglas J. Martin
Clifford J. Whitmus and Lon E. Hachmeister
Envirosphere Company
10900 N.E. 8th Street
Bellevue Washington 98004
Eric C. Volk and Steven L. Schroder
Washington Department of Fisheries
Rm. 115, General Administration Building
Olympia, Washington 98504

Final Report
Outer Continental Shelf Environmental Assessment Program
Research Unit 660

J uly 1987

ACKNOWLEDGMENTS

The compl etion of this study could not have been accomplished without the aid of many individuals and organizations. We wish to thank all of the field team nenbers incl udi ng: Messrs. Ri chard Tyl er, Dan Tyl er, C arke Beaudry, and Ms. Alison Reak. Ve al so thank the ADF\&G crew at Pilot Station for providing fish samples and Messrs. Larry Buklis and JimRaynond (ADFSG) for providing supporting information concerning Yukon sal non. Speci al thanks to M. Cal vi n Van Zee, Envi rosphere Company, for his assi stance in obtaining and processing satellite i nages.

We are especially gratef ul to M . Jake Johnson and staff of the Emmonak Fi sheries Cooperative for their generous assistance in repairs of field equi pment. Logi stical support was provi ded by the NOAA OAD Hel i copter Group, from Miami, Florida, and staf f of the NOAN Ocean Assessment Division, Anchorage. Speci al thanks to Messrs. Carl Anderson and Mchael Meyer from NOAA for their concern and assistance in helping to make the job a little easier. Wealso thank Dr. David Carneggie and M. Mchael Fl eming, EROS Anchorage Field Office, U. S. Geol ogi cal Survey, for providing the AV-RR di gital tapes.

This study was funded in part by the Mnerals Managenent Service, Department of the Interior, through an interagency agreenent with the National Oceanic and Atnospheric Administration, Department of Commerce, as part of the Al aska Outer Continental Shelf Envi ronnental Assessnent Program

Abstract

The purpose of this study was to identify the importance of aquatic nabitats in the Yukon River Delta for juvenile sal mon and otner fishes, and to determine the vulnerability of these fish to the potential impacts of an oil spill. An investigation was conducted of the distributary channels, nearshore, and shallow offsnore naditats to determine the outmigration timing, distribution, and seasonal abundance of juvenile salmon and other fishes in the Yukon Ri ver Delta. Fisheries and oceanographic data were collected from three surveys that began immediately following ice breakup (i.e., early June) and ended in mid-August 1986.

Results indicated that outmigration of juvenile chinook salmon and chum salmon began bef ore ice breakup. Chi nook sal mon smel ts peaked on several dates during June and July Wth the largest catcnesoccurring during lateJune. The peak timing of the juvenile chum salmon outinigrationoccurs during the mid to latter part of June. Low numbers of bnth species continued to outmigrate during the rest of the summer. The I engths of al outinigrant chi nook sal non exceeded 69 mm , which suggests that most smolts were agelt. Dutmigrant chumfry were comprisedofthree different size groups with average lengths ranging from 36 mm to 60 mm

Chinook and cnum juveniles uti lized tne, outer delta front and delta platform habitats to a greater extent than the nearshore intertidal environment. Itilization of \mathbf{t} 'idal slough and mudflat nabitats were intermittent and restricted to regi ons near major distributary channels, whereas utilization of the offshore habitats was constant and rel atively uniformalong the delta front. There was no difference in the average size or size composition of \mathbf{j} uvenile sal non in lower river and other haibi tats which suggests that outmigrants were not residing in the Shallow delta environment. The resultsindicate that the lower river, intertidal habitats, delta platform, and delta front are not utilized as a nursery area but rather as a migration corridor for $j u v e n i l e$ salmon. Juvenile sal mon that migrate through the delta front are most likelymoving to deeper estuarine habitats in the prodel ta.

The migratory routes through the delta and the utilization of delta habitats by juvenile salmon are thought to be influenced by the unique physiographic conditions. The netuork of sub-ice channels and the large river discharge carry juvenile salmon across the delta platform and distribute them along the deltafront. Estuarine conditions that may be important rearing habitat exist onl y at the delta front and seaward as a result of the nassi ve freshwater pl une.

Peak outmigration of $\mathbf{j u v e n i l e ~ c o r e g o n i d ~ f i s h e s ~ o c c u r r e d ~ d u r i n g ~ J u l y . ~}$ J uveni le cisco were approxi natel y three ti nes nore abundant than juvenile sheefish and juvenile whitefish. Intertidal mudflats and tidal sloughs are the nost important habitats for these species.

Populations of juvenile salmon would be vul nerable to an oil spill in the offshore habitats and in the migration corridor. Outmigrants that may utilize the prodelta would be the nost vul nerable to oil impacts because this habitat is located within the OCS I ease area of Norton Sound. Sneefish, whitefish, and cisco populations would be nighly vul nerable to an oil spillthat reached the nearshore envi ronnent.

TABLE OF CONIENTS

Page
ACMOVLEDCMENTS 125
ABSTRAC 127
LIST OF FIGRES 127
LIST OF TABLES 131

1. INROOUCTION 135
2. NETHOOS 138
2.1 DESCRI PII ON OF STUDY AREA 138
3. 2 SAMPLING PLAN 140
2.3 SAM PLI NG TECH PI QES 144
2.3.1 Water Quality and Physi cal Measurenents 144
2,3.2 Fish Sanpling 145
2.3.3 Catch Processing 148
4. 4 ANLLYTIC PROCEDURES 148
2.4.1 Hydrographic Condi ti ons 148
2.4.2 Data Recordi ng and Archi val 151
2.4.3 Run Ti ming, Rel ative Abundance and Density 152
2.4.4 Si ze Composition and Grouth. 153
5. 4. 5 Associ ated Envi ronnental Condi ti ons 155
2.5 CHMM SALMON OTOLI TH STUDY 155
2.5.1 Sample Coll lection 155
2.5.2 Laboratory Procedures 156
1. RESUTS 157
2. 1 WATER QUALI TY AND PHYSI CAL MEASUREMENTS 157
3.1.1 Discrete Physi cal Measurenents 157
3.1.2 River Dis scharge 158
3.1.3 Hydrographic Characterization 158
3.2 CATCH SUMARY 171
3.2.1 Effort 171
3.2.2 Speci es Composition and Distribution 175

TABLE OF CONTENTS (Conti nued)

Page
3.3 CH NOOK SALMON 177
3.3.1 Mgration Timing 177
3.3.2 Distribution and Density 177
3.3.3 Size Conposition 180
3.3.4 Associ ated Envi ronnental Conditions 184
3.4 CHM SALMON 184
3.4.1 Mgration Timing 184
3.4.2 Distribution and Density 191
3.4.3 Size Composition 191
3.4.4 Associated Envifonmental Conditions 195
3.4.5 Otolith Microstructure and increment Periodicity 202
3.4.6 Resi dency 207
3.4.7 Growh 210
3.5 OTIER FISIES 210
3.5.1 Migration Tinni ng 213
3.5.2 Distribution and Density 213
4. D SCUSSION 219
4.1 CH NOOK SALMON 219
4.1.1 Outmigration 219
4. 1.2 Distribution and Habitat Utilization 222
4.1.3 Residene 225
4.2 CHUM SALMON 226
4.2.1 Outmigration 226
4.2.2 Distribution and Habitat Utilization 229
4.2.3 Determining Resi dency With Otoliths 231
4.2.4 Resi dency 234
4.2.5 Gowth. 235
4.3 ULNERABI LITY TO OL AND GAS DEVELOPMENT 235
5. REFERENCES a TED 239
APPENDIXA Whter Quality Data and Physical Conditions During Summer 1986 in the Yukon River Delta 247
APPENDIX B. Fi sh Catch and Fish Length Statistics Groupedby Species, Station, and Date for the 1986 Summer Survey of the Yukon River Del ta. 251
APPENDIX C. Length Frequency of Juvenile Chum Salmon by Station and Time Peri od Duri ng Summer 1986. 271

LIST OF FI GRES

Figure Page
2.1 Vicinity map of Norton Sound showing the location of the Yukon River Delta study area. 139
2-2 Depositional envi ronnents of the modern lobe of the Yukon Delta 141
2-3 Location of sample sites for thesummer 1986 survey of the Yukon River Delta 143
2-4 Location of study area andsample stations incl uded in the anal ysi sof hydrographic properties in the Yukon River Del ta 150
3-1 Yukon Ri ver di scharge at Pilot Station during summer 1985 and 1986 159
3-2 Vertical sections of salinity fortheon/ of fshore di rection and the al ong-shore di rection, and horizontal contours of surface saiinity di stribution and sources of freshyater inputto the area for the June 12, 1986 survey of the Yukon River Delta. 160
3-3 Vertical sections of salinity fortheon/ offshore di rection and the al ong-shore di rection, and horizontal contours of surface salinity di stribution and sources of freshwater input to the area for the June 15, 1986 survey of the Yukon River Del ta 162
3-4 NOAA AVRR satellite inagery of the Yukon Ri ver Delta, approxi mate scale l:3million, June 15, 1986 164
3-5 NOAA AMRR satellite imagery of the Yukon Ri ver Delta, approxi mate scale 1:1.5 million, J une 15, 1986 166
3-6 NOAA AM-RR satellite inagery of the Yukon River Delta, approxi mate scal e I: 750,000 , June 15,1986 168
3-7 Vertical sections of salinity fortheon/ offshore di rection and the al ong-shore di rection, and horizontal contours of surface salinity distribution and sources of freshwater input to the area for the June 19, 1986 survey of the Yukon River Del ta. 170
3-8 Vertical sections of salinity fortheon/ of fshore direction and the al ong-shore direction, and horizontal contours of surface salinity distribution and sources of freshwater input to the area for the August 6, 1986 survey of the Yukon River Del ta 172
3-9 Catch per unit effort of j uvenile chi nook sal non duri ng summer 1986 from the lower ri ver, stations 13 and 17, of the Yukon River Delta. 178
Fi gure Page
3-10 Length frequency of juvenile chi nook sal non by time period during summer 1986 from the lower river stations 13 and 17, of the Yukon River Delta. 181
3-11 Length frequency of j uvenile chi nook sal non during the peri od J une 12-15, 1986 from the Iowerriver, del ta platform and the delta front habitats of the Yukon River Delta 183
3-12 Length frequency of juvenile chi nook sal non during the peri od June 12-15, 1986 from thedel ta front, stations 1,2, and 3,0 fthe Yukon River Del ta 185
3-13 Length frequency of $\mathrm{j} u$ uvenile chi nook sal non during the period June 12-15, 1986 from the delta platform stations 4,5 , and60f the Yukon River Delta. 186
3-14 Catch per unit effort of juvenile chum sal non during summer 1986 from the lower river, stations 13 and 17, of the Yukon River Delta 190
3-15 Length frequency of juvenile chum sal non by time period during summer 1986 from the Iower river, stations 13 and 17, of the Yukon River Delta 193
3-16 Length frequency of juvenile chum sal non during the period J une 12-15, 1986 from offshore, tidal slough, and lower ri ver habitats of the Yukon River Delta. 196
3-17 Length frequency of juvenile chum sal non during the period J une 17-20, 1986 from offshore and lower river habitats of the Yukon River Delta 197
3-18 Length frequency of j uvenile chumsal mon during the period July 7-14, 1986 from offshore and Iower river habitats of the Yukon River Delta 198
3-19 Posthatching otol ith increment frequency for chum sal non collected during sumner 1986 from the Yukon Ri ver Del ta 203
3-20 Regressi on of posthatch otolith increnent number on length of chum sal non 204
3-21 Frequency histograns and statistics of otolith increment widths for si xteen outer increnents from chum sal non caught in the del ta platformanddel ta front of the Yukon River Del ta 208
3-22 Pl ot of length with tine forjuvenile chum sal non caught in the Iower Yukon Ri ver during summer 1986, 212
3-23 Catch perunit effort of j uvenile sheepi sh , j uvenile whitefish, and j uvenile cisco duri ng summer 1986 from the Iower ri ver station 17,0 fthe Yukon River Del ta. 214
TablePage
2-1 Location and description of stations sampl ed during the 1986 field season of the Yukon Del ta study 142
2-2 Specifications for fish sampling gear used for the summer 1986 survey of the Yukon River Delta 146
2-3 Comparison of species composition and catch statistics for the purse sei ne and tow net 147
2-4 Esti nates of towing speed, area sampl ed, and vol uneof water sampl ed during typical $\mathbf{1 0 - m}$ nute haul s with a 1.8 m and 6.8 m tow net 154
3-1 Sumary of sampling effort for beach seine and purse seine gear during the summer 1986 survey of the Yukon River Delta 173
3-2 Summary of sampling effort for tow net during the summer 1986 survey of the Yukon River Delta 174
3-3 Number of fish caught by species and habitat during summer 1986 in the Yukon River Delta. 176
3-4 Esti mated average density of j uveni le chi nook sal non during summer 1986 in the offshore, coastal, and lower river habi tats of the Yukon River Del ta 179
3-5 Percentage adjusted catch of chi nook sal non associ ated with surface and bottom temperature in the delta front and delta pl atform habitats of the Yukon Ri ver Delta during June 12-19, 1986 187
3-6 Percentage adj usted catch of chi nook sal non associ ated with surface and bottom sal inityin the del ta front and del ta platform habitats of the Yukon Ri ver Delta during June 12-19, 1986 188
3-7 Percentage adj usted catch of chi nook sal non associ at ed with water visibility in the delta front and delta platform habitats of the Yukon River Delta during June 12-19, 1986 189
3-8 Esti mated average density of j uvenile chum sal mon during sumer 1986 in the offshore, coastal, and lower river habitats of the Yukon River Delta 192
Table Page
3-9 Percentage adj usted catch of chumsal non associ ated with surface and bottom temperature in the delta front and delta platform habitats of the Yukon River Delta during June 12-19, 1986 199
3-10 Percentage adj usted catch of chumsal non associ ated with surface and bottomsalinity in the delta front and delta platform habitats of the Yukon River Delta during June 12-19, 1986 200
3-11 Percentage adj usted catch of chum sal non associ ated with water visibility in the del ta front and delta platform habitats of the Yukon Ri ver Del ta during June 12-19, 1986. 201
3-12 Results of t-tests on fish length and otolith increment number, and esti mated increnent periodicity for chum sal non from the fi sh hol di ng experi nents 205
3-13 Mean and 95 percent Cl. of otolith increment number for juvenile chumsal non by habitat and results of a multiple range test on increnent number anong habi tats 211
3-14 Estimated average density of sheefish during summer 1986 in the offshore, coastal, and lower river habitats of the Yukon River Delta 215
3-15 Estimated average density of whitefish during summer 1986 in the offshore, coastal, and lower river habitats of the Yukon River Delta 216
3-16 Esti mated average density of cisco during summer 1986 in the offshore, coastal, and lower river habitats of the Yukon River Delta 217
3-17 Estinated average density of boreal snel \mathbf{t}, snel t sp., and Pacific herring during sumer 1986 in the del ta front and del ta platform habi tats of the Yukon River Delta 218
4-1 Outmigration timing and size at outmigration of chi nook sal non snel ts from the Yukon River drai nage 220
4-2 Outmigration timing and size at outmigration of chum sal non snel ts from the Yukon River drai nage 227
4-3 Si zes of chum sal non j uveniles in estuarine habi tats 232
4-4 Grouth rate of j uvenile chum sal non in freshuater 236

1. I NTRODUCTI ON

On March 15, 1983 the U. S. Department of the Interior accepted 59 bids for oil and gas expl oration in Norton Sound (Sale No. 57). This lease sale area is located on the outer continental shelf just north of the Yukon River Delta (see map in Figure 2-1). Since this region supports a Iarge subsi stence and commercial fishery, baseline studi es were needed to assess the potential impacts of oil and gas devel opment. In response to tnis need for scientific information, the outer Continental Shel f Envi ronnental Assessment Program (OCSEAP), the National Oceanic and Atmospheric Administration (NOAA) contracted with LG. Ecol ogical Research Associ ates, Inc. to conduct a literature revi ew which resulted in an ecol ogical chardcterization of the Yukon River Delta (Truett et d1. 1984). Tnis characterization identified the estuarine envi ronment (including the nearshore delta platform and the delta distributaries influenced by marine water) as nost vul nerable to adverse effects of oil in the delta. However, site specific infornation concerning physical processes, fisn di stribution, and habitat utilization in the Yukon River Delta was very limited. This infornation is necessary to assess potential envi ronmental impacts and to enable managenent deci si ons necessary to protect fishery resources. Consequently, OCSEAP initiated a field investigation of the physical processes and fishery resources of the Yukon River Delta during 1984.

During winter 1984 and sunmer 1985 Envi rosphere Company conducted an investigation of the di stribution, seasonal abundance, and feeding dependencies of juvenile sal mon and other fisnes in the Yukon River Delta (i彳artinet al, 1986). Fish were collected from an area extending over $150 \mathbf{k m}$ of the delta coastline and from $40 \mathbf{k m}$ upriver to $30 \mathbf{~ k m}$ offshore. The results of this investigation indicated that del ta napitats support di verse and productive fish commities. Juvenile salmon occurred in most delta habitats during the period fromice breakup to early August and the peak abundance occurred during tne
 period suggested temporary residency in the delta. The diet
of juvenile sal non was limited to a narrow spectrum of drift, plankton and epibenthic taxa, which suggested a trophic dependency on the del ta envi ronment. Sheefish, whitefish, and cisco accounted for 65 percent of the total catch during 1985 and were the most widel y di stributed of all species in the Yukon River Delta. Juveniles of all three groups exhi bited a peak downstream migration during July and were nost abundant in the coastal mudflats and sloughs. Based on the di stribution and abundance of juvenile sal mon and other i mportant fisnes, the inner delta platform mudflat, and tidal slough habitats were identified as sites where the greatest potential impact could occur from an oil spill. Active di stributary channels al so recei ved hi gh potential impact ratings, whereas, the delta front and midelta pl atform recei ved the lowest ratings (Martin et al. 1986).

The 1984-85 investigation provi ded the nost comprehensi ve survey of fisheries resources ever conducted in the Yukon River Delta. However, data concerning run timing, di stribution, residency and di et were only general because tne sampling effort was spread over a large geographic area and most sites were sampl ed onl y a few ti nes. In particular, sampling was limited in the outer delta pl at orm and del ta front habitats. Inf ornation concerning the di stribution and abundance of salmon and other fish in these habitats is needed in order to determine the potential vulnerability to impacts. Nbre infornation is needed on fish abundance and habitat utilization during early June, imedi ately following ice break-up, since sampling was Iimited at this time during 1985. Also, results from 1985 suggest "that the distribution of fish nay he influenced by the dynamic physical processes (i.e., tidal flux, currents, and river flow in the nearshore environment. Theref ore nore infornation concerning physical conditions and physical processes in the delta is needed in order to understand the distribution of fish in the Yukon del ta. Envirosphere continued an investigation of the fisheries resources of the Yukon River Delta during 1986 in an effort to fill infornation needs and to address questions identified during the previ ous survey. Specific objectives addressed in this study i ncl ude:

1. Identify the outmigration timing of \mathbf{j} uvenile sal non;
2. Determine the abundance, residence time and habitat utilization of juvenile salmon and other estuarine fishes; and,
3. Relate the di stribution of $\mathbf{j u v e n i l e ~ s a l ~ n o n ~ t o ~ t h e ~ p h y s i c a l ~}$ envi ronment al conditions of the Yukon River delta.

Data obtained from this st udy and from the 1985 survey are used to address the three study objectives. Infornation concerning physi cal processes requi red for the thi rd objective was limited because the primary focus of this study was biological,. Data on the physical processes is currentlybeing devel oped by a compani on study (OCSEAP, RU 670) hut the results were not available to incorporate into this report. Therefore, physical data collected during this study and information from Advanced Very High Resol ution Radi onetry (AVHRR) satellite inagery were used to provide a physical characterization of the Yukon Delta.

2. METHODS

2. 1 DESCRI PTI ON OF STUDY AREA

The Yukon River Delta is Iocated along the southwestern coast of Norton Sound, Al aska, which occupi es the northeastern corner of the Bering Sea (Figure 2-I). The Yukon River is the 4th Iargest river in North America, has a maxi mum length of $\mathbf{3 , 1 8 5} \mathbf{~ k m}$ drains an area of 855,000 km^{2}, and has an average annual di scharge of $7,000 \mathrm{~m}^{2} / \mathrm{s}$ (Czaya 1981). The modern delta is a relatively young geol ogic feature, begi nning its devel opnent approxi nately 2,500 years ago when the river course shifted to where it currently enters Norton Sound (Dupre' 1978).

The geonetry of the Yukon Delta is composed of a variety of depositional envi ronnents that are forned by a complex interaction of ice-, river-, and storm dominated processes whi ch affect sediment transport and deposition. A description of these envi ronments is deri ved from Dupre' and Thompson (1979) and Dupre' (1980) as follows: The energent portion of the delta (referred to as "delta plain," Fi gure 2-2) is characterized as a gentle sloping plain containing a complex assenbl age of active and abandoned di stributaries, levees, interdi stributary marshes, and lakes. The active di stributaries have a radically bifurcating pattern consisting of tho large channels (1-1.5 km wide and $10-15 \mathrm{~m}$ deep) and numerous snaller channel s (sone as small as $\mathbf{2 0} \mathbf{m}$ wide and 2-5 m deep) typically spaced every $\mathbf{1 - 2} \mathbf{~ k m}$ al ong the coast. Point bars and mid-channel bars are common, particularly al ong the larger di stributaries. Internedi ate to the active di stributaries are numerous snall tidal sloughs which extend into and drain narsh areas al ong the coast. The width and length of these channel s vary with tidal level and they may becone dry at low tide. Surrounding the energent portion of the delta is the delta margin which incl udes the prograding tidal flats, distributary mouth bars, sub-ice platform and associ ated sub-ice channel s. Tidal flats are typically 100-1,000 m wide where they occur al ong the fringe of the delta plain. Unlike deltas in temperate areas, the Yukon Delta has a broad sub-ice platform

Fig. 2-1: Vicinity map of Norton Sound showing the Iocation of the Yukon River Del ta study area.
(here referred to as the del ta p 1 atforin) that extends $10-30 \mathrm{~km}$ offshore. The delta platform has an extremely gentle slope (1:1,000 or less) and typically shallow water (up co 3 m). The sub-ice channels, which are uni que anong most deltas, are the offshore extensi ons of the maj or di stributary channels. These subaqueous channel s are nost common on the western margin of the delta and are characteristically 0.5 to 1 kin wide, $5-15 \mathrm{~m}$ deep, and extend up to 30 kin across the del ta platform Adjacent to the delta platformis the steeper delta front (slope typically greater tilan 1:50U) witn water deptil ranging 3 to 14 m This zone is rel ati vely narrow (approxi natel y 10 km wide) except along the northwestern part of the del ta where it incl udes a series of large ($3-5 \mathrm{mhi}$ gh) shoal s . The prodelta is the nost distal edge of the deltaic sedi nents and extends up to 100 km offshore. The botton in this zone has a gentle slope (typically 1:2,000) and water depths are rel ati vel y shal low ($10-20 \mathrm{~m}$).

2.2 SAFIPLIAG PLAN

The primary emphasis of this study was to investigate the timing, di stribution, and abundance of \mathbf{j} uvenile sal non in habitats that nay be exposed to impacts from oil and gas devel opnent. Therefore, field survey timing and sampling locations were planned to provide these data and to extend tne data base that was devel oped during 1985. During 1986 the sampling progran was di vided into tnree field surveys which occurred for 30 days, 7 days, and 8 days during June, Jul y, and August, respectivel y. The J une survey was schedul ed to correspond with the timing of ice breakup in the Yukon Delta and the early phase of the juvenile salmon outmigration. The July and August surveys were scneduled to correspond \mathbf{W} th the postpeak and tail-end phases, respectivel y, of the outmigration period.

Samples were collected from 20 sites (Table 2-i) that were representative of the maj or and mor di stributary, tidal slough, mudflat, delta platformand delta front nabitats. '(he upper river stations (i.e., stations 14-16, Fi gure 2-3) were only sampl ed during early June prior to the tine of ice breakup in the lower delta. Fish

Fig. 2-2: Depositional envi ronments of the nodern lobe of the Yukon Delta (from Dupré and Thompson, 1979).

Location and Description of Stations Sampl ed During the 1986 Field Season of the Yukon Delta Study

Station Number	Descri ption	Latitude (N)		Longi tude (w)	
21	Del ta front (sampl ed 6/6 onl y)	62°	40.61'	$165{ }^{\circ}$	37.53'
1	Delta front	62"	29.85'	165°	33.70'
2	Delta front	62°	40.62'	165"	28.62'
3	Delta front	62°	53.97'	165°	15.02'
41	Delta platform (sample 6/4 and 6/ 6 onl y)	62°	29. 80	165°	15.05'
51	Delta pl atform (sampl ed 6/6 onl y)	62°	38.85'	165°	23. 69'
4	Delta platform	62°	30.06'	165"	27.58'
5	Delta platform	62"	40.69'	165"	23.05'
6	Delta platform	62°	54.00'	165°	05. 64'
8	Coastal mudflat	62°	40.79'	$164{ }^{\circ}$	52. 61'
9	Coastal mudflat	62°	56. $42{ }^{\prime}$	164°	49.08'
10	Tidal sl ough	62°	26.50'	165°	16.90'
11	Tidal sl ough	62°	40.74'	164"	51. 72'
12	Ti dal sl ough	62°	56.34'	164"	48. 73
13	Active di stri butary, maj or	62°	40.82'	$154{ }^{\circ}$	36. 62
17	Active di stributary, minor	62*	45. 79	$164{ }^{\circ}$	30.58'
14	Upper Yukon River, St. Mary's	62"	00.95'	163°	13.87
18	Upper Yukon River, Pilot Sta.	61°	56.75'	162"	52.77
15	Andreaf sky River	62°	03. $10{ }^{\prime}$	163°	08.67'
16	Andreafsky River, North Fk.	62°	05. 13'	163°	03.75'

Fig. 2-3: Location of sample sites for the sumer 1986 survey of the Yukon River Delta.
speci mens collected fromthese stations were retai ned for the otolith study (see Section 2.5 for details). After ice breakup, all sampling was concentrated in the lower delta and offshore areas. Two stations were locat ed in maj or and minor channel s of the lower river in order to document the timing of the outmigration and the size composition of the outmigrant population. These stations were located a short di stance (i.e., less than 25 km) upriver from the coast under the assumption that fish resi dency was not occurring at this point. Therefore, catch statistics from tinese sites would be indicative of the population just prior to entering the estuary. The distribution, abundance, and residency of fish was determined from samples collected at 11 sites whicn were located al ong the coast and offshore. These sample stations extended fromthe coastal tidal sloughs out to the del ta front and were di stributed al ong three transects (Fi gure 2-3). The tho southern transects were located within the turivid water pl une from Kwi kuak Pass and the northern transect was located al ong the outer edge of this pl une. Stations 1, 2, and 3 were positioned at approxi matel y the mid-slope point al ong the delta front and stations 4,5 , and bere positioned within several kiloneters of the outer edge of the delta platform (Figure 2-2). Several other stations that are located in the vicinity of tnese sites (i.e., stations 21, 4i, and 51, Tab-le 2-1) were al so sampl ed during an initial reconnai ssance survey. Stations 8 tnrough 12 were located in tidal slough and intertidal mudfiat areas.

2.3 SArPLING TECHNIQUES

2.3.1 Water Quality and Pnysical Measurements

Di screte neasurenents of water temperature, conductivity, salinity, depth, and water transparency were neasured at eacn fisn sampling station. Surface and bottom neasurenents of temperature, conductivity, and salinity were measured in situ with a Becknan RS-5 conductivity/ temperature instrument. A handhel d ther noneter and a YSI Model 31 conductivity meter were used as a backup and a $2 \mathbf{L}$ Van Doren bottle was used to collect water samples. Water depths and water transparency
were neasured with an Ecnotec fathometer and a standard (200 mm di aneter) secchi di sc. Sea state was observed and recorded according to tne World i' meteorol ogi cal organization Sea State scale.

2.3.2 Fisn Sampling

Fish were sampl ed with tirree types of active sampling gear. A 6.8 m wi de surface tow net (Table 2-2) was used to sample the river channel, delta platform and delta front habitats. A 45.7 ml ong beach sei ne and a 22.8 ml ong beach sei ne were used to sample tne mudflat and tidal sl ough habitats, respecti vel \mathbf{y} (Table 2-2).

The tow net was sel ected as the primary sampling gear in place of the 136 m purse sei ne, wnich was used in 1985 (Martin et al. 1986), because the tow net was found to be nore effective. Tests were perforned during the first week of the survey to compare catches vetween the purse sei ne and tow net when bot n gears were depl oyed at the sane site (Table 2-3). In three comparison tests the purse seine capt ured onl y juvenile chinook sal mon in one test, whereas, the tow net caught both juveni le chum and cninook salmon fromall tnree tests. The tow net also caught more \mathbf{j} uvenile sal non than the purse sei ne for an equal anount of effort as indicated from tne results of the June 4th test. The purse sei ne was nore effective, however, for catching larger fish and otiler fisn species (e.g., cisco, whitefish, smelt, and sucker).

The tow net was dep loyed between two boats and towed agai nst the di rection of the current at an average speed of 0.8 m per second. The net was towed for a period of either 5 or $\mathbf{1 0} \mathbf{~ m i n t e s}$ and from 2 to 15 hauls were collected at a sample site. In nost cases three 10 -minutes haul s were collected froma site.

Specifications for Fi sh Sampling Gear Used For the Summer 1986 Survey of the Yukon River Delta

Gear	Speci fication	
Tow Net	Overall size:	6.8 mi de $\times 1.3$ deep at nouth and tapered to a 0.3 mx 0.3 m bag at the cod end. Total l ength 11.0 m
	Front panel :	2.4 m long, 50.8 mm (stretch) knot less nesh.
	2nd panel:	2.4 m I ong, 38.1 mm (stretch) knotless mesh.
	3rd panel:	$2.4 \mathbf{~ m}$ ong, 19.1 mm (stretch) knotless mesh.
	Bag:	3.7 m long, 7.9 mm \{stretch) knotless nesh.
Long Beach Seine	Overal I size:	45. 7 m long x 1.2 m deep with bag I ocated at one end.
	Bag:	4.6 m wide x 1.2 m deep \mathbf{x} 3.0 m I ong, 7.9 mm (stretch)
	I nner wi ngs:	knot less nesh. 3.0 ml ong $\times 1.2 \mathrm{~m}$ deep and 4., $6 \mathrm{mlong} \times 1.2 \mathrm{~m}$ deep, 7.9
	Outer wing:	mm (stretch) knotless mesh. 33.5 ml ong $\times 1.2 \mathrm{~m}$ deep, $19.1 \mathrm{~mm}(s t r e t c h)$ knotless nesh.
Short Beach Seine	Overall size:	22.8 ml ong $\times 2.4 \mathrm{~m}$ deep at center and tapered to 1.3 m deep at end of wings, bag located in center.
	Bag:	7.7 ml ong $\times 2.4 \mathrm{~m}$ deep,
	Wings:	tuo each, 7.7 ml ong $\times 2.4 \mathrm{~m}$ deep near center and tapered to 1.8 m deep at end, 12.7 mm (stretch) knotless nesh.

Comparison of Species Composition and Catch
Statistics for the Purse Seine and Tow Net

Station	Date	Gear	Number of haul s	Speci es Ca	Catch	$\text { CPUE }^{\text {a/ }}$	Mean Fork Length (m)
14	6/1/86	Purse Sei ne		no fish	0	0	-
		Tow Net		chi nook	3	0. 43	105
				chum	12	1. 71	38
				1 amprey sp.	22	3. 14	--
				burbot	8	1. 14	--
13	6/4/86	Purse Sei ne		chi nook	3	1. 50	88
				whitefish sp.	1	0.50	112
				least cisco	8	4.00	222
				burbot	6	3.00	138
		Tow Net		chi nook	7	2. 33	90
				chum	16	5. 33	39
				I amprey sp.	2	0.67	--
				burbot	1	0.33	--
13	6/5/86	Purse Sei ne		whitefish sp.	1	1. 00	--
				least cisco	13	6.50	-
				boreal snelt	2	1. 00	-
				longnose sucker	r 1	0. 50	--
				burbot	1	0. 50	--
		Tow Net		chi nook	4	1. 33	100
				chum	15	5. 00	36
				1 amprey	2	1. 00	.-
				burbot	1	0. 33	-

[^0]The 45.7 mbeach sei ne was depl oyed by hand during the high tide period. Two round haul sets were collected from separate mudflat areas directly adjacent to the shore. The 22.8 mbeach sei ne was set by hand and was pulled in the downstream di rection in the tidal channel s. Two $30 \mathbf{m}$ long reaches were sampl ed during the hi gh tide period.

2. 3. 3 Catch Processing

All fish were identified to species, when possible, and the total catch was enumerated. Juvenile whitefish (i.e., broad whitefish and humpback whitefish) and \mathbf{j} uvenile cisco (i.e., Bering cisco and least cisco) less than $75-100 \mathrm{~mm}$ cannot be readily distingui shed in the fiel d. Therefore, both species groupswere labeled as whitefish and cisco, respectivel y. Lengths were neasured from a representative sample (i.e., mini mum of 40 indi vidual s per species) of all sal non from each sample site. Also, a minimun of five \mathbf{j} uvenile sal mon speci mens from each site were retai ned in 70 percent ethanol for otolith and stomach anal ysi s .

2.4 ANALYTI C PROCEDURES

2. 4. 1 Hydrographic Conditions

Temperature and Salinity Data

The surface and bottom temperature and salinity samples collected (from stations 1-6 and 8-10) during this sample programlend thensel ves to the devel opnent of a qualitative description of the hydrographic conditions on the delta pl atform and delta front for each day of the fisheries study. Data from four complete survey days have been sel ected to di scuss the physi cal processes of the Yukon Delta. These survey days are June 12, J une 15, J une 19, and August 6 of 1986. Wind conditions for these four surveys are dom nated by the mean northnortheast (NNE) flow that characterizes the spring conditions in Norton Sound.

In keeping with the desire to devel op a qualitative description of the di stribution of hydrographic properties in the study area, a sonewhat stylized rectangul ar nodel of the study area was devel oped incorporating the nine sampling stations (Figure 2-4). In this model the sampling positions were spaced evenly across a grid that defines the ends and midpoints of the rectangle's sides and center. The nearshore stations are assumed to be on the delta platform the internedi ate station at the delta front, and the offshore station at the outer edge of the delta front. Fresh water input enters the modeled study area at tuo locations along the coastline representing the middle and southern mouths of the Yukon Ri ver (Fi gure 2-4). Because only surface and bottom water sampl es were collected at each station, distributions of the hydrographic properties are highly interpretive and should be considered as qual itative descriptions of the conditions in exi stence during the surveys.

The spatial di stribution of three distinct water classifications are investi gated in this anal ysis: fresher water ($\langle 5 \mathrm{ppt}$), internedi ate salinity water (5-15 ppt), and marine water (> $\mathbf{1 5} \mathbf{~ p p t) . ~}$

Meteorological and Hydrol ogi cal Data

Meteorological conditions were not available fromthe Yukon Delta study regi on and therefore data from Nome, Bet hel, and Nunivak Island were obtained (from AEIDC) to approxi mate the wind conditions for each survey day. These wind data were i mportant to determine the di rection and rate of transport of coastal water masses in the study area. These three meteorol ogical stations showed good agreenent in both wi nd speed and di rection for the June study period with standard deviations of $\pm 2.0 \mathrm{kts}$ wind speed and ± 4.0 degrees for direction.

River di scharge was not measured during this study, theref ore data were obtained fromthe U.S. Geol ogi cal Survey, Anchorage. These data are based on measurements of river stage whi ch were recorded on a water level recorder located at pilot Station (Fi gure 2-3).

Fig. 2-4: Location of study area and sample stations incl uded in the anal ysis of hydrographic properties of the Yukon River Delta.

NOAA AVHRR visible and thermal digital images were acqui red for the 15 J une 1986 fisheries survey date. These data were anal yzed to determine the extent and behavi or of the Yukon River sedi ment and thernal pl unes. The di gital inages were acquired from the U.S. Geol ogi cal Survey EROS field office (Anchorage) through the NOAA OCSEAP Anchorage office. Digital inages nere processed by Envirosphere's VAX-based imaje processing system using computer software originally devel oped by Scripps and the Uni versity of British Col unbia. Processed images were di spl ayed on a Raster Technol ogi es Mbdel One/25 Computer color fraphics terminal. The general schene of digital processing was as foll ows:

1) Pedd computer tape into Envirosphere VAX 11/ 71.
2) Reformat data as requi red depending on the satelite sensor system and the agency from whi ch the computer tape was recei ved.
3) Preprocess data including geonetric and radiometric corrections to the digital data, apply the digital inage mask to define the Yukon Delta study area, and navi gate the inage to essentially convert the inage into a map.
4) Determine and apply a digital enhancenent to the image to better define the physical characteristics of the study area.
$5 ;$ Store the enhanced image on computer disk and video tape and take a color phot ograph of the enhanced inage from the graphics terminal.

2.4.? Data Recordi ng and Archi val

Al field data were recorded on an el ectronic data logger known as a "Polycorder" from Omnidata Inter national, Inc. An el ectronic data sheet was programed specifically for this project and included error checking al arns which operated during the data entry process. Data
stored in the Polycorder were downl oaded daily and four data files were created with the aid of a portable microcomputer. One copyof the raw data file was recorded on a floppy disk and another copy was printed on paper. A third copy of the raw data file was edited for errors and stored on floppy di sks. A backup copy of the edited data file was also created and archi ved.

After the field survey a 11 the edited data files were conbi ned to form one large data file. A hard copy of this file was created and visually checked for errors. Errors were al so identified from a frequencies anal ysis. All the errors were corrected and a new edited versi on of the large data file was created.

2. 4. 3 Run Timing, Rel ative Abundance, and Density

Run timing and rel ative abundance was identified with histogramplots of catch per unit effort (CPUE) versus time for each sample station. The unit of effort was variable and depended upon gear. Catch in the tow net was standardized to a 10-minute haul ; and, catch in the 45.7 m and 22.8 m beach sei nes was standardized to one round haul and one 30 m haul, respectively. Graphs for each speci es and station were compared in order to identify differences and similarities in the temporal utilization of habitat.

Density for $\mathbf{j u v e n i l e ~ s a l m o n ~ w a s ~ e x p r e s s e d ~ a s ~ t h e ~ n u m b e r ~ o f ~ f i s h ~ p e r ~}$ square kiloneter ($\mathrm{no} . / \mathrm{km}^{2}$) of water surface area. Densities were cal cul ated from a CPUE/density conversion factor which is based on the area sampl ed with one unit of effort for each gear type. Density equal s:

$$
\text { no. } / \mathrm{km} \mathrm{~m}^{2}=\text { CPUE } x \text { conversion factor, }
$$

where the average area sampl ed and conversion factor for each gear are:

Tow net
45. 7 m Beach Sei ne
22. 8 m Beach Sei ne

2, $923 \mathrm{~m}^{2}$
342
$165 \mathrm{~m}^{2}$
6, 061
$231 \mathrm{~m}^{2}$
4, 329

The average area sampl ed by the tow net was computed from neasurenents of the di stance covered during typical 10 -minute haul s (Table Z-4). Engine speed was held constant at $1,100 \mathrm{rpm}$ for all tow net hauls. Thus., the water speed and di stance covered by the tow net was constant regardless of differences in current vel ocity at each sample site. The area sampled by a round haul with the 45.7 m beach seine was assuned equal to the area of a circle witil a circunference of 45.7 m The area sampl ed by the 22.8 m beach sei ne was assuned equal to the product of d 30 m haul and the average width of a tidal slough (i.e., 7.7 m).

Al esti nates of fish density are consi dered to be conservati ve because no adj ust nents were nade to compensate for gear efficiency. Gear efficiencies were not measured, but each type of gear is not 100 percent effective for catching all the fish within the area sampled. However, catch efficiencies were probably similar anong the nets because each gear had small enough mesh to retain the target speci es and the turbid water conditions minized the number of fish that could avoid and/ or escape the nets.

2.4.4 Size Composition and Grouth

Size composition was determined from length frequency anal ysis.
Juvenile salmon were sorted by 3 mm size groups and length frequency di stributions were computed for each habitat by sample period. Seven 4-5 day I ong sample periods were sel ected according to the cl ustering of sample dates whi ch occurred during the survey.

Popul ation grouth rate during the survey period was computed by fitting a linear regression line to a pl of fish length with date.

Popul ation cohorts included in the regressi on were identified from the I ength frequency anal ysi s.

TABLE 2-4
Esti mates of Towing Speed, Area Sampl ed, and vol une of Water Sampl ed During Typi cal 10-Mnute Hauls With a
1.8 MX 5.8 M Tow Net

Station	Date	Repl i cate	Flow Meter Revolutionsa/	Di stance (neters $\}$	Speed (cmisee)	Area Fi shed ($\mathrm{m}^{\text {² }}$	$\begin{aligned} & \text { Vol une } \\ & \text { Fi shed } \\ & \text { (} \mathrm{m} \text {) } \end{aligned}$
13	8/8	1	18, 522	497.7	82.9	3, 026	5,519
		4	15, 651	420.6	70.1	2,557	4, 664
		5	15, 797	424. 5	70.8	2,580	4,708
17	8/8	1	18,982	510. 1	85.0	3,101	5,657
		2	16,629	446.9	74.5	2,717	4,355
		3	22,761	611.7	101. 9	3,719	6, 784
		4	16,917	454.6	75.8	2, 764	5, 041
Mean			17,894	480.9	80.1	2,923	5,333
S.D.			2,492	67.0	11. 1	407.2	742.8

al General Dceanics model 2030 di gital flowmeter.

2.4.5 Associ ated Envi ronnent al Conditions

The rel ationshi p bet ween fish abundance and important envi ronnent al parameters (i.e., surface and botton temperature, surface and bottom salinity, and visibility) was investigated. Fi sh catch associ ations with the above paraneters were determined for all delta platform dnd del ta front stations (i.e., stations 1 through 6). Envi ronnental di ssoci ations were rilade during the peri od of peak abundance for chum and chi nook sal non (i.e., June 12, 15, and 19). Each of the continuous envi ronmental paraneters were categorized and fisn catches that were associ ated with eacil category were summed. Since fishing effort was not equal for each envi ronmental category fish catch was adj usted by effort (i.e., catcin multiplied by the effort in the category di vided by the maxinuun effort in any category). The adj usted catch for each category was expressed as a percentage of the total adj usted catch for all categori es conbi ned,

2.b CHUA SALHUN UTOLITH STUOY

2.ל.1 Sample Collection

Churi sal mon specinens were retai ned for otolith anal ysis from each sample site during each survey period. These samples were used for the determination of resi dency and grouth rate of \mathbf{j} uveniles during the outrigration period. In order to determine otolith increment periodicity several fish hol ding experiments were conducted. During eacil experi ment, approxi nately 100 j uveniles that were collected from either stations 13 or 1%, were placed in a net pen (1.2 mx $\mathbf{1 . 2} \mathbf{~ m x}$ 1.2 in with $7 . y$ min mesil netting) and neld for a period of 6 days. A random sample of $30-50$ javeniles were sacrificed at the begi nning and di the end of eacil experinent. The hypothesis was that the difference in the average number of increments bet ween the deginning and end of the experi nental period di vided by six was equal to the increnental periodicity.

2.5.2 Laboratory Procedures

Fork length was measured for each fish used in the study. The left sagitta was di ssected fromeach fish and placed medial side down on a glass plate in an array so that indi vidual s processed together could be recognized. The array was covered with a rubber nol d and cast in po? yester resin. Using thin section grinding and polishing equi pnent, the otoliths were ground on the medial surface until the primordia were apparent with transmitted light microscopy. This surface of the preparation was then polished and fixed to a glass slide. The lateral surface of the otoliths were then sectioned and polished in the same fashi on until a preparation approxi natel y $\mathbf{9 0} \mathbf{m i c}$ crons thick was obtai ned.

Otoliths were analyzed using transmitted light at a magnification of $300 x$. Data were collected usi ng an Optical Pattern Recognition System which empl oys a microscope, video camera and nonitor, di gitizing pad and microcomputer. Data collected incl uded total otolith radi us, the radius from the point of hatching to the edge of the otolith, the number of otolith increnents in this latter segnent and the width of those increments. Measurenents were taken al ong a radius line which passed through the center of the prinordial core and was located at a 70 degree angle to the long axis of the otolith. The hat ching check was defined as the point of transition from very dark and irregularly spaced increnents to much more weakly expressed and regularly spaced increments. Results from our laboratory experiments suggest that this transition corresponds to tine time of hatching and that the dark, irregular increments represent the prehatching life history of the fish.

3. RESULTS

3.1 WATER QUALI TY AND PHYSI CAL MEASUREMENTS

3.1.1 Discrete Physical Measurements

Whter quality and physical environmental conditions for each sampling date and station are shown in Appendix Table A Salinity and conductivity data for the July 1986 survey period are missing due to equipment failure. Only one measurement (either surface or bottom) of salinity, conductivity, and temperature was collected fromthe mudflat and tidal slough habitats because the water was shallow (<2m) and assumed to be uniformy mixed.

Vatar quality and physical conditions were variable anong the different habitats and changed within habitats during the summer. Whter depths ranged from very shal low (i.e., 0.3-2.0 m) in the tidal slough and mudflat habitats to rel atively deep (i.e., $5.0-13.0 \mathrm{~m}$) in the river cilanel and delta front, habitats. Warmer fresh water was predominant in the lower river during the summer. Whter temperature varied from 3. $5^{\circ} \mathrm{C}$ in early June to $1.7 .1^{\circ} \mathrm{C}$ in mid-July. The tidal slough and mudflat habitats were slightly nore brackish (salinity range 0.6-2,7 ppt) and several tegrees warner (temperat ure range 8.4-19.1${ }^{\circ} \mathrm{C}$) than the river. The peak water temperature in these habitats occurred in mid-June which was several meeks earlier than the peak temperature neasured in the river. Differences in surface and bottom salinity in the delta platformand delta front indicated that water in these habitats was stratified. Stratification was nost evident at the delta front stations during early June. Bottom temperature and salinity was near $0^{\circ} \mathrm{C}$ and 26-29 pot, respectivel y, and surface temperature and salinity ranged $4-10^{\circ} \mathrm{C}$ and 7 - $\mathbf{1 4} \mathrm{ppt}$, respecti vel \mathbf{y}. By August the difference between surface and bottom conditions was less pronounced and the uaters were nore mixed.

Water clarity was lowin nost habitats throughout the summer and varied according to the di stance from a di stributary nouth. Secchi di sc visibility was al ways less than or equal to 0.3 min the river except on one occasi on when 0.4 m was measured. Similarly, visibility in the mudflats was low but visibility in the tidal channels was greater and ranged up to 0.9 m . Visibility generally increased with increasing di stance from shore where neasurenents as great as 1.2 m were recorded at the delta front.

3.1.2 River Discharge

Dischargeinthe Yukon River during spring 1986 was substantially less than nornal (Figure 3-1). The annual spring flood which normal !y precedes ice out in the lower river did not occur. Di scharge peaked at approxi matel y 580, 000 cfs during the last week of May, but the river level did not exceed the banks. Di scharge renai ned low throughout June and was substantially less than the nore typical flows observed during 1935. Fl ows during the renai nder of the summer were typical for this season.

3.1.3 Hydrographic Characterization

June 12, 1986

Winds ranged from 5 -- $\mathbf{1 5}$ kts from the NME on this survey day. In response to these winds, surface water would be expected to move generally toward the south along the western face of the Yukon Delta front. Superimposed on this mean southerly flow of water, an offshore valocity component would be induced in the upper water layer by a near-surface Ekman flow. The di stribution of water masses seen in the on/ $\mathrm{Jff}_{\mathrm{f}} \mathrm{hore}$ vertical sections of salinity indicate that this offshore surface flow tended to spread the fresher upper I ayer of water in an uffshore direction (Figure $3-2 a-c$). A compensating onshore flow of deeper water can be expected to accompany this offshore upper layer flow as indi cated by the deeper, more sal ine layer, which occurred at. all tirce on/offshore transects $\{$ Fi gure 3-2a-c). The bulk of the

Fi g. 3-1: Yukon Ri ver di scharge at Pilot Station during summer 1985 and 1986. Based on provi si onal data from the U.S. Geol ogi cal Survey, Anchorage, Al aska.

FIG 3-2. Vertical sections of salinity for the on/ offshore direction (a-c) and the al ong-shore di rection (d-f). Graphical depiction of study area showing sample stations, horizontal contours of surface salinity, and sources of freshwater input to the area (g) for the June 12, 1986 survey of the Yukon River Del ta.
fresher water ($<5 \mathrm{ppt}$) was generally contai ned in a narrow near-shore region inside of the 1 m isobath. Internedi ate salinity water (5-15 ppt) was generally di stributed in the upper 1.0-1.5m of the water column in the regi on extending from the fresher nearshore water to beyond the furthest of f shore station (Figure 3-2a-f). Thi s layer of water appears to have coupl ed effectively with the NE wind field while maintaining its identity fromthe deeper water. More marine water (>15 ppt) laybelowthis internedi ate salinity water and generally filled the entire lower portion of the water col umn. Hydrographic di stributions suggest a very dynamic system with net southerly wind dri ven water novenent and superimposed estuarine circulation patterns complete with upwelling.

June 15, 1986

Winds on this survey day ranged from 5 - 10 kts fromthe NNE. As descri bed in the di scussi on of the previ ous survey, the wind field would be expected to move coastal water southward al ong the delta front. The two northernnost transects (Figure 3-3a-b) contai ned fresher (≤ 5 pt), nearshore water than did the southerly section (Figure 3-3), suggesting that the source of the fresher water nay be fron the north (m ddle nouth of the Yukon River Figure 2-4). This hypothesis is consi stent with the southerly, wi nd dri ven novenent of the nearshore water. Botn the fresher and the internedi ate salinity water are confined to the delta platformin the northern section (Figure 3-7a). The middle section shows that the internedi ate salinity water extended throughout the offshore regi on in a $2 \mathbf{m t h i c k}$ upper layer. The fresher water in this section is confined to the nearshore in water depths less than $\mathbf{1 m}$ At the southern section, the offshore upperlayer flow had decreased the upper layer thi ckness to 1 mand all owed the nari ne water (> $\mathbf{1 5} \mathrm{ppt}$) to nove nore onshore under the upper layer to the 1.5 meter isobath. Wind mixing again was insufficient to mix the water col um below 1 - 2 m.

FIG 3-3. Vertical section of salinity for the on/ of shore di rection (a-c) and the al ong-shore di rection (d-f). Graphical depi ction of study area showing sample stations, horizontal contours of surface salinity, and sources of freshwater input to the area (g) for the June 15, 1986 survey of the Yukon River Delta.

Satellite inagery fromthis day show similar di stributions of surface temperature and water surface reflectivity (related to water clarity and total suspended solids (TSS), Groves and Stringer 1982) compared to the in-situ hydrographic samples. Fi gure $\mathbf{3 - 4}$ shows the Yukon Delta thernal and visible di stributions on a regi onal scale. The thermal i mage (Fi gure 3-4a) i ndi cates the warner I and, ri ver, and nearshore water nass temperatures ranging from the warnest (red) to the sonewhat cool er (yellow). As the river waters conbi ne with more narine water on the delta platform they cool (green). Water temperatures in the river pl une that extends beyond the delta front are cooler still (light blue). The Yukon Ri ver pl une water can be seen as it noves of f of the delta platformtoward the west and then south in response to northeasterly winds. The solid light bl ue region corresponds to the 1 mthick Iayer of fresher ($5-15 \mathrm{ppt})$, warm ($5-10^{\circ} \mathrm{C}$) water seen in the hydrographic data (Fi gure 3-3) on the del ta platform Just seanard of this regi on, thin pl unes of the nearshore water can be seen noving offshore across the delta front, and overriding the brackish water (Fi gure 3-3). Cool er of fshore water masses (darker blue) are di stributed in a more or less randomfashi on beyond this area. Further offshore, near the edge of the picture, the northerly noving cool er Al askan coastal water (purple) can be seen noving toward the Bering Strait.

Fi gure 3 - 4b al so shows the corresponding visible inage of the thernal configuration j ust di scussed. In this inage the col ors, noving from red to yel low to green, indicate the reflectance (low to high) of an area. Groves and Stringer (1982) has shown thatTSS can be rel ated to the reflectance of the water surface if other conditions are the sane. Research conducted by Envi rosphere Company in Stefansson Sound, Al aska (Hachmeister, et al. 1986) al so shows there is a rel ationship between Secchi depth and TSS. Although there is not a strong functional rel ationship established between the parameters, it is intuitively apparent that inverse Secchi depth is rel ated to TSS. Therefore, the rel ationshi p bet ween the AVFR surface reflectance inage and inverse Secchi depth might al so be rel ated. In this inge (Fi gure 3-4b), the land that is not covered with a large percentage of water appears as

FI GURE 3-4
NOAA AVHRR Satellite Inagery of the Yukon River Delta,
Approxi mate Scale 1:3 MIII on, June 15, 1986: A) Enhanced Ther mal Infrared (Channel 4); 8) Enhanced Visible (Reflected) (Channel 1).
blue. The purple region shows areas of very high reflectance that results from the presence of clouds. Assuming that reflectance (col or) is an indi cation of sedi ment concentration, we see that the heavi est sedi ment concentrations are on the del ta. These concentrations decrease sonewhat noving off the delta pl atform and within $\mathbf{2 0} \mathbf{~ k m}$ from the coast onshore/ of fshore gradi ents becone quite low The I owest levels of suspended sedi nent occur in the col der coastal water mass (purple) previ ously identified in the thernal inage. The long narrow band of green, imedi atel y to the north of the delta, suggests very hi gh concentrations of sedi nents. This is a very shallow regi on of the coastline and high particulate concentrations could result from resuspended bottom sedi nents near the nouth of the northern channel of the Yukon. These suspended sedi nents are then advected by wi nd dri ven (NNE winds) currents toward the west. Other snall patches of green are observed in the shal low nearshore water just west of Emmonak and south of the southern mouth of the river.

Fi gure 3-5 shous an enl argenent of the Yukon Delta regi on of the satellite inage previ ously di scussed. Details of the coastline and river channel s have been added to this image to al low easy reference to vi sible thernal feat ures al ong the coastline. The sampling stations where hydrographic measurenents were collected are indicated with their correspondi ng station numbers. In Fi gure 3-5a, the warner water (yellow) is seen in the shallow nearshore regi on where sol ar heating has increased the water temperature to that of the coastal Iand nasses. This is nost evident in the regi on around station 9 and al ong the northern edge of the delta, just north of Mddle Mouth of the Yukon river. In the 1985 fi sheries report (Martin et al. 1986) we had thought that these regi ons might be influenced by a marine water return $\mathrm{fl} \mathrm{ON}_{\mathrm{w}}$. However, it is evident from the AVHRR inages and our site surveys that this regi on is dom nated by warm water which results from the broad intertidal mudflats. During low tide this area is characterized by exposed mudflats and I arge shal low ($<20 \mathrm{~cm}$) tidal pool s.

FI GURE 3-5
NOAA AVHRR Satellite Inagery of the Yukon River Delta,
Approxi nate Scale 1:1.5 MIIion, J une 15, 1986: A) Enhanced Thernal Infrared (Channel 4); B) Enhanced Visible (Reflected) (Channel 1).

Note that the river water is light blue and green in the channels and yel low where an i mage pi xel (1 km by 1 km) overlaps the landmass (red) al ong the river bank. Detailed features of the pl unes of light blue del ta water moving off the delta platorm can be seen as they override the cool er offshore water.

Surface temperat ure measurements collected on this day indicate that the offshore water (Stations 1, 2, and 3) ranged 10-15 C. The light bl ue water of the delta pl atform (Stations 4, 5, and 6) ranged 9-17 ${ }^{\circ} \mathrm{C}$ and the shal low nearshore water was approxi mately $15-18^{\circ} \mathrm{C}$. The light blue water j ust offshore of the north nouth of the river is very uniform in appearance which indi cate temperat ures were approxi mately $13-14^{\circ} \mathrm{C}$. This regi on was i dentified as a region of possi ble intense mixing and sedi nent resuspensi on. The offshore regi on to the west of the delta platform appears very dynamic and extrenely variable at small scal es.

The correspondi ng vi si ble image (Fi gure 3-5b) shows the details of the del ta regi on with respect to the surface reflectance. The sedi ment pl une (green) identified in Figure $\mathbf{3 - 4 b}$ can be seen in greater detail in this figure. In the regi on sampled by the measurenent program sedi nent concentrations are depi cted by yellow through several shades of orange in two distant offshore zones defining the delta platorm and the regi on $\mathrm{j} u$ ut offshore of the delta front. In these zones the Secchi depth (which is inversel y rel ated to the TSS) ranged 0.2-1.2 mat stations 1-3 and 0.1-0.8 mat stations 4-6. Because no Secchi depths were recorded in offshore regi ons beyond the two zones described above, it cannot be determined how the further offshore di stributions rel ated to water clarity except that the reflectance is less and the clarity is assumed to be greater. Details of several hi gher turbidity regi ons can be seen south of the south nouth of the river near Station 10.

The hi gh degree of spatial variability on the delta platform can be seen in Figure 3-6. Note that the subtle differences in temperat ure (Figure 3-6a) around the sampling stations nould be advected

NOAA AVFRR Satellite Inagery of the Yukon River Delta, Approxi mate Scal e 1:750,000, J une 15, 1986: A) Enhanced Thernal Infrared \{Channel 4); B) Enhanced Visible (Reflected)
(Channel 1).
continuously across the delta by the wind driven current and that sampling of physical parameters on a given day is by no means synoptic relativeto the advective changes occurring at a given station during the daily sampling period. Inl and, the details of the river temperat ures can also be seen nore clearly. In the wider portions of the river, consi derable difference in temperature can be seen bet ween the river and the land. The vi sible inage (Figure 3-6b) shows more di stinction between the land nass (blue) and the water (orange) than did the thernal i nage. Note the offshore distance of Stations 9 and 10 in the vi sible image rel ative to the thernal inage, where warm temper at ures of the shal low water appear to extend the coastline of fishore into the shallow water. The source of the highly turbid delta water can be seen in the central channel of the river where the color (TSS) of the river water is similar to that of the nearshore water.

J une 19, 1986

During this survey, winds were 5 - 10 kts from the NNE. A consi derable change had occurred in the hydrography of the study regi on in the three day period bet ween the previ ous survey on 15 J une and this survey. Fresher water ($\leq 5 p p t$) extends beyond the outer station at all three of the sections (Fi gure 3-7). The sections show a consi derable increase in the anount of fresher water in the regi on that occupi ed the upper 1
? m of the water column at all stations. The internediate salinity water (5 - 15 ppt) occupi ed nost of the water col um bel ow the fresher water to a depth of $4 \mathbf{m}$ Exam nation of the wind field records i ndi cate that no si gni ficant changes occurred from 15-19June on the neteorol ogy and it must be assuned that the observed hydrographic changes are a result of increased runoff and/ or fresh water accuml ation fromthe Yukon River (Figure 3-I). These conditions leave much of the delta platform with salinities less than 5 ppt. No indi cation of estuarine type water novement or upwelling are apparent on the delta platform in these data.

FIG 3-7. Vertical sections of salinity for the on/ of fshore direction (a-c) and the al ong-shore di rection (d-f). Graphical depiction of study area showi ng sample stations, horizontal contours of surface salinity, and sources of freshwater input to the area (g) for the June 19, 1986 survey of the Yukon River Del ta.

Winds were 5-10kts from the HNE during this survey. Observed hydrographic di stributions (Fi gure 3-8) are indicati ve of a vertically well inixed system which might be brought on by sustai ned high wi nds and strong vertical mixing. However, no neteorol ogical data are available for the days preceeding the survey for verification of this hypothesis. Fresher water was generally confined to within 4-10 km of the coastline, Little vertical stratification is indicated in the salinity sections and almost all salinity variability is in the on/ Jffshore directionxamination of the available temperature data also indicate no vertical stratification, Internediate salinity water extended offshore frum the fresher water out to $12-16 \mathrm{~km}$ in a vertically well mixed band approxi matel y $6 \mathbf{k m}$ in width. As in the s!aryey of 12 June, the observed di stribution of salinity suggests that the source of fresher water in the study regi on is from the north. Wo effects of wi nd induced upwelling was observed along any of the transect lines.

3.2 CATCH SUMMARY

3.2.1 Effort

The sampling effort (i.e., in terns of sample frequency and date of sampling) was not eventy di stributed amony the del ta habitats (Tables 3-1 and 3-2). The shallow mudflat and tidal slough stations were very difficult to reach during the June and early July peri od 'when nelicopter usage was pronibited in these areas. Al nost a full day of travel was required to sample one pair (i.e., mudflat and tidal slough) of sample sites. Theref ore, nost of the effort was concentrated on obtaining replicate samples fromstations 8 and $\mathbf{1 1}$ (Table 3-l), which were representative of typical mudflat and tidal slough habitats, respectivel y. When the hel icopter restrictions were not in effect (i.e., August), several additional coastal locations (i.e., stations 8
12) were sampled in order to examine spatial differences anong these habitats. Poor weather and boat unavailability were the primary
DISTANCE (KM)

C

AUGUST 06, 1986

DISTANCE (KM

3,2	28	24	20	16	12	8	4	0

9

FIG 3-8. Vertical sections of salinity for the on/ of fshore direction (a-c) and the al ong-shore di rection (d-f). Graphical depiction of study area showing sample stations, horizontal contours of surface salinity, and sources of freshwater input to the area (g) for the August 6, 1986 survey of the Yukon River Delta.

TABLE 3-1
Summary of Sampling Effort (i.e., Number of Hauls)
For Beach Sei ne and Purse Sei ne Gear During the Summer 1986 Survey of the Yukon River Delta

Date	Short Beach Sei ne ${ }^{\text {o }}$ Habi tat/Station Ti dal Sl ough				Long Beach Sei ne ${ }^{\text {n/ }}$ Habitat/Station Mudflats				Purse Seine Habi tat/Station Ri ver				
	10	11	12	Total	Date	8	9	Total	Date	13	1		Total
6/10		2		2	6/ 10	2		2	6/ 01				2
6/14		2		2	6/ 14	2		2	6/ 04	2			2
$6 / 17$		2		2	6/ 17	2		2	6/ 05	2			2
6/22		2		2	6/ 22	2		2					
6/24		2		2	6/ 24	2		2	TOTAL		4	2	6
6/25			2	2	6/ 25		2	2					
7/ 12		2		2	7/12	2		2					
7/13			2	2	7/13		2	2					
8/04		2	2	4	8/ 04	2	2	4					
8/05	2			2									
TUTAL	2	14	6	22	TOTAL	14	6	20					
$\frac{a / 30}{b} / \text { Rou }$	met	ha ul.											

Summary of Sampling Effort
(i.e., Number of Hauls) a/ For the Tow Net

During the Sumer 1986 Survey of the Yukon River Del ta

[^1]factors restricting sampling of the delta front and delta platform Ics blockage in the river mouth prohibited sampling prior to June 4th and stormy conditions during August prevented a second sample trip during this survey peri od (Table 3-2). The assi gnment of the primary sampling vessel (i.e., Munson boat) to another project after June 20th el iminated one offshore sampling trip during the latter part of June.

3.2.2 Speci es Composition and Distribution

The three sample surveys resulted in the capture of 26 species of fish (Table 3-3). Juvenile sal non ranked third in abundance and represented approxi mately 14 percent of the overall catch. Only sticklebacks and smelt were nore abundant, each accounting for 40 and 29 percent of the catch, respectivel y. Most of the speci es caught were anadromous and pel agic type fishes, which was expected given the types of gear used and the envi ronnental conditions sampl ed. However, a snall number of marine and bottom type fishes were captured in the del ta front and delta pl atform habitats.

The greatest variety and the largest number of fish species were caught inthe delta platform and delta front habitats. Several marine bottom fish speci es (e.g., flounder, cod, and sculpin) were caught from these hab itats despite the fact that only surface waters were sampled with the tow net. Ninespine stickl ebacks, \mathbf{j} uvenile snelt, \mathbf{j} uvenile cisco, and $\mathbf{j u v e n i l e}$ chum sal non were the dominant species groups in these habitats. Mudflat and tidal slough habitats had a less di verse community whi ch was nostly comprised of coregonid species. The lower ri ver habitat was mostly composed of outmigrating \mathbf{j} uvenile sal non, juvenile cisco, and lamprey. A summary of all fish catches by species, station, and date is shown in Appendix Table B.
"TABLE 3-3
Number of FishCaught By Speciesand Habitat
Uuring Summer 1986 in the Yukon River Delta

				Habitat

3. 3. 1 Migration Timing

Juv eni le chi nook salmon were caught on the first day of sampling in the Andreafsky River (stations 15 and 16 on May 31st) and the Yukon River (station 14 on June 1 st) (Appendix Table B). Chi nook \mathbf{j} uveniles were al so present in the lower Yukon River on J une 4th (Fi gure 3-9), which was the beginning of the sample program at stations 13 and 17.
Juveniles were caught during all three survey periods, which indicate the outmigration was still in progress on August 8th, the last day of sampling. Catch per unit effort fluctuated greatly during the study period with the peak GPUE occurring during late June. Both sample stations showed similar trends in fish abundance over tine, but the number of fish caught was consi stently greater at station 17.

3.3.2 Distribution and Density

Juvenile chi nook sal non were caught primarily in the delta front, delta platform, and lower river habitats (Table 3-4). No fish were caught at the mudflat sites but \mathbf{j} uveniles were caught in a tidal slough (i.e., Station 11) on one sample date. Fi sh were caught on the delta platform on the first day of sampling (i.e., June 4 th) and occurred inthis habitat prior their occurrence in the delta front. Chinook salmon were caught in the delta front as late as July 13th, but were not deterted in the delta platfurm at this time. Juvenile chi nook salmon were not caught at any coastal or of fshore station during the August survey despite their continued presence in the I ower river.

The density of $\mathbf{j u v e n i l e}$ chi nook salmon was highly variable over time and among habitats (Table 3-4). Temporal trends of density in the offshore habitats had unimodal patterns with peak densities occurring in mid-June. Densities in the river fluctuated greatly during the survey period witi the largest peaks occurring during the latter half of June. The temporal trend in density in the offshore habitats did

Fig. 3-9: Catch per unit effort of j uvenile chi nook sal mon during summer 1986 fromthe lower river, stations 13 and 17, of the Yukon River Delta.

TABLE 3-4
Esti mated Average Density (no/ kmí) of Juveni le Chi nook Sal non
During Summer 1986 in tile Offshore, Coastal, and Lower River Habitats of the Yukon River Delta

Date	Habitat/Station																	
	Delta Front				Delta Platform				Mudflats			Tidal Slough				Lower River		
	1	2	3	Mean	4	5	6	Mean	8	9	Mean	10	11	1. 2	Mean	13	17	Mean
6/04					1112	-	-	171	-					-		798		798
6/05							-							-		456	1756	1539
6/06	0	0		0	0	171a/	-	86	-					-			-	-
6/07														-			570	570
$6 / 08$ $6 / 09$														-			114 1254	114 1140
$6 / 09$ $6 / 10$									u		D		0	-	0	026	1254 570	1140 570
6/11				-					u		D			-			456	456
6/12	342	684	1140	722	342	342	0	228						-				-
$6 / 13$														-		114	0	57
$6 / 14$	114							140	0		0		0	-	0	570	456	532
$6 / 15$ $6 / 17$	114	228	1026	456	684	684	2052	140	0		0		2165	-	2165			
$6 / 78$							-							-		228	7638	3933
6/19	0	114	0	38	0	114	114	76						-		-	-	
6/20														-		410	798	556
$6 / 22$									0		0		0	-	0	228	1140	684
6/24									0		0		0	-	0	912	6270	3591
6/25										0	0			0	0			
6/26														-		1026	6042	3534
7/10	0		0	0	171		u	86						-			2964	2964
7/11									0				0	-		342		
7/13	0	114	u	38	0	0	0	0		0	0			0	0		2736	2736
7/14														-				
8/04									u	0	0	-	0	0	0			
$8 / 05$												0		-	0	0	456	228
8/06	0	u	0	0		u	u	0						-				
8/07														-		0	228	114
8/08														-		u	171	76

a/ Estimated from catches at stations 41 or 51.
not appear to follow the density trends in the lower river. Compari sons anong habitats, excl uding the river, indi cates the greatest density occurred in the tidal slough on June 12th. The absence of juveniles in this habitat at any other time indicates that the duration of habitat utilization was short term Average densities of fish were generally greaterin the delta platforman the delta front, but the difference between both habitats was rel atively snall.

Juvenile chi nook sal non densities varied anong stations within a habitat type. During the period of peak densities in the delta front (i.e., 6/ 12 and 6/15), there was a trend of increasing fish density fromsouth to north (Table 3-4). This trend is not apparent in the delta pl atform wher fi sh densities were similar anong two of the three stations during this time period. In the lower river, densities mere consi stently greater at stãtion 17 than at station 13.

3.3.3 Si ze Composition

Juveni le chi nook sal non ranged in size from 69 mm to 128 mm (Appendi x Table B). Fi sh caught in the lower river during early J une had a slightly greater mean length and a greater variation in size (i.e., larger standard devi ation) than fish caught during late June (Figure 3-10). Mbre than one length frequency node is apparent during several sample periods which indicates nore than one cohort size group was outmigrating fromthe Yukon River. The length frequency of a small number of $\mathbf{f i s h}(i . e ., 8$ fish) caught in August was not plotted. But the large variations in fish lengths fromthis sample (range 85 115 mm) indi cates more than one size group of juveniles may occur at this time (Appendi x Table B). Tenporal trends in size compositions of chi nook sal non caught in other habitats were not anal yzed because catches were too small for a usef ul size frequency anal ysis.

A comparison of fish lengths anong habitats during the period of peak abundance offshore (i.e., 6/ 12/86-6/ 15/ 86) indi cates a cl ose similarity in size composition anong the delta front , delta platorm and Iower river (Fi gure 3-11). Fi sh fromall three habitats had a

Fig. 3-10: Length frequency of j uvenile chi nook sal non by time period during summer 1986 from the lower river, stations 13 and 17, of the Yukon River Delta.

6/17/88 TO 6/20/88

Fi g. 3-10 (conti nued)

Fig. 3-11: Length frequency of juvenile chi nook sal non during the period 6/ 12/86 to 6/ 15/86 from the lower river, delta pl atform and del ta front habitats of the Yukon Ri ver Del ta.
bimodal size di stribution with the nadir at approxi natel y $\mathbf{1 0 2} \mathbf{~ m m}$ and an average length of about 96 mm Differences in size composition were evi dent, however, among the stations within the delta front and delta pl atform habitats (Fi gure 3-12 and 3-13). The percentage of small fish (i.e., <102 mm) and Iarge fish (i.e., >102 mm) is not uniformanong stations. A greater percentage of large fish occur at the northern stations (i.e., stations 3 and 6) than at the southern stations (i.e., stations 1 and 4).

3. 3. 4 Associ at ed Envi ronment al Conditions

The chi nook sal non envi ronnental associ ations for temperature, salinity, and visibility are shown in Tables $3-5$ to $3-7$, respectively. The diagonal fromtop left to bottom right on the temperature and salinity tables represents mixed water. Devi ation fromthis di agonal represents stratified conditions. In nost cases juvenile chinook sal non catches were associated with stratified conditions. Mst fish were caught in rel atively warmsurface water (i.e., $>6^{\circ} \mathrm{C}$) with moderate to low salinity (i.e., <20 ppt) and cool bottom uater (i.e., $\left\langle 6^{\circ} \mathrm{C}\right.$) with moderate to high salinity (i.e., $>15 \mathrm{ppt}$). The largest catch of juvenile chi nook sal non was associ ated with surface water temperat ures that ranged ? 310'C, salinities that ranged $10-15 \mathrm{ppt}$, and water visibility that ranged greater than 0.5 m

Highest catches were nore associated with the deeper subtidal habitats (i.e., delta platform and delta front) than with the shallow intertidal habitats. Catches were not associated with any particular water depth in the offshore habitats.

3. 4 CHUM SALMDN

3.4.1 Mgration Timing

Juvenile chum sal non were present in the catch during all three sample surveys (Fi gure 3-14). Low numbers of j uvenile were caught in the Andreafsky River (stations 15 and 16) and Yukon Ri ver (station 14)

STATION I

\mathbf{P}
\mathbf{E}
\mathbf{R}
\mathbf{C}
\mathbf{E}
\mathbf{N}
\mathbf{T}
STATION 2

STATION 3

Fig. 3-12: Length frequency of juvenile chi nook sal non during the period 6/ 12/86 to 6/15/86 from the delta front, stations 1, 2 and 3, of the Yukon Ri ver Delta.

Fig. 3-13: Length frequency of j uvenile chi nook sal non during the period 6/ 12/86 to 6/ 15 / 86 from the delta platform stations 4, 5 and 6, of the Yukon River Delta.

Percentage Adj usted Catch of Chi nook Sal non Associ ated With
Surface and Bottom Temperature in the Delta Front and Delta Platform Habitats of the Yukon River Delta During June 12-19, 1986

Percentage Adj usted Catch of Chi nook Sal non Associ ated With Surface and Bottom Salinity in the Delta Front and Delta Platform Habitats of the Yukon Ri ver Delta During June 12-19, 1986

Bottom Sal inity (ppt)	$\mathbf{0 - 5}$	$\mathbf{5 - 1 0}$	$\mathbf{1 0 - 1 5}$	$\mathbf{1 5 - 2 0}$	$\mathbf{2 0 - 2 5}$	$\mathbf{2 5 - 3 0}$	$\mathbf{3 0 - 3 5}$

$\begin{array}{lllll}\text { TOTAL } & 5.1 & 32.1 & 39.7 & 23.1\end{array}$

Percentage Adj usted Catch of Chi nook Salmon Associ at ed With Vater Visibility in the Delta Front and Delta Pl at form Habitats of the Yukon River Delta Duri ng June 12-19, 1986

Visibility (m)	Adj usted Catch (Percent)
$0 .-0.1$	$-\ldots-$
$0.1-0.2$	0.3
$0.2-0.3$	7.1
$0.3-0.4$	$-\ldots-$
$0.4-0.5$	6.2
$0.5-0.6$	10.7
$0.6-0.7$	21.4
$0.7-0.8$	11.6
$0.8-0.9$	11.7
$0.9-1,0$	$-\ldots-$
>1.0	32.1

Fig. 3-14: Catch per unit effort of j uvenile chum sal non during sumer 1986, from the lower river, stations 13 and 17, of the Yukon River Del ta.
during trre first few days of sampling (i.e., May 31st and June 1st) (Appendix Tajle B). Catches were al so low at the lower river stations during the first neek of J une. Catches increased greatly during the second week of June and CPUE fluct uat ed over a broad range during the renai nder of the first survey period. Catches peaked three tines at eacn station (i.e., stations 13 and 17), but the timing of the peak catches were not similar between both stations except for the first peak, which occurred on June 9th. During July and August, the CPUE at both sample stations was reduced to 10 or less fish and fluctuations were very small.

3.4.2 Di stribution and Density

Juvenile cnum sal non were caught in all five habitats during the summer, but the duration of fish occurrence was variable anong habitats (Table 3-8). Fish were present in early June on tine first date that each habi tat was sampled. Juveniles were caught in the mudflat and tidal slough habitats for a short period during June and were caught in the delta front and del ta platform habitats fromearly June to early August.

Densities of \mathbf{j} uvenile chum salmon were hignly variable anong habitats and over time (Table 3-8). Densities were an order of nagnitude greater in the tidal slough (station 11) than at any other Iocation. Densities peaked in the coastal habitats during mid-June and were hi ghest in the offshore habitats during late June. During the period of peak density (i.e., $6 / 12$ to $6 / 1 y$), densities at the delta front showed a declining trend bet ween stations 1 and 3. No trend was evident anong delta plations stations during the sane time period.

3.4.3 Si ze Composition

Juvenile chum sal non ranged in lengtin from 29 mm to 107 mm with the maj ority of fish being less than 70 mm (Appendix B). In the I ower Yukon River at least three size groups were caught during the survey period (Figure 3-1b). A group of large fish (i.e., group I) with an

TABLE 3-8
Esti mated Average Density ($\mathrm{no} / \mathrm{km}$) of Juvenile Chi nook Sal non
During Summer 1986 in the Offshore, Coastal, and Lower River Habitats of the Yukon River Delta

[^2]

Fig. 3-15: Length frequency of j uvenile chum sal non by time period during summer from the lower river, stations 13 and 17, of the Yukon River Del ta.

FORK LENGTH IN 3 Mm GROUPS

Fi g. 3-15 (conti nued)
average length of 60 mm and a second group of smaller juveniles (i.e., group II) with an average length of $\mathbf{3 7} \mathbf{m m}$ were caught during the first sample period. Size group Ifish were not as abundant as fish from size group II and were not detectable in the catch after the June 20th sampling period. Size group II fish were present throughout the survey period and were identified as having an average length of 54 mm by the August sampling period. A third group of new smaller size fish with an average length of 41 mm were al so caught during the August sampling peri od.

Size composition of $\mathbf{j u v e n i l e}$ chum sal non varied anong different habitats during the sane time period. The average size of fish in the I ower river were slightly larger than fish from coastal or offshore habitats (Fi gures 3-16, 3-17, and 3-18). One size group of snaller fish were caught in the tidal slough and mudflat habitats (Figure 3-16, and Appendix B). Whereas, two size groups of fish were caught fromthe delta pl atform and delta front stations (Fi gure 3-16, and Appendi x C). Al so, several very Iarge juveniles (i.e., 85, 93, and $107 \mathbf{m m}$ fish, Appendi x B) were caught fromthe offshore stations. but were not caught in the river.

3.4.4 Associated Envi ronnental Conditions

Chum sal non envi ronmental associations for temperature, salinity, and vi sibility are shown in tables $3-9$ to $3-11$, respecti vel y. Juvenile chum sal mon catches were strongly associated with warm (i.e., 10 15"C) I ow salinity (i.e., <10 ppt) surface waters and stratified conditions. Catches were not associated with any particular water visibility level. Also, catches were highly vari able anong deep (i.e., delta front) and shallow habitats (i.e., delta platform and mudflat areas), which suggests that catches were not associated with any particular dept h.

Fig. 3-16: Length frequency of j uvenile chum sal non during the peri od 6/12/86 to $\mathbf{6 / 1 5 / 8 6}$ from offshore, tidal sl ough, and I ower river habitats of the Yukon River Delta.

DELTA FRONT （STATIONS 1，2，3）

ーでローウォ
DELTA PLATFORM

LOWER RIVER

Fig．3－17：Length frequency of juvenile chum sal non during the peri od 6／17／86 to 6／20／ 86 from of f shore and lower river habitats of the Yukon Ri ver Del ta．

Fig. 3-18: Length frequency of j uvenile chum sal non during the peri od 7/10/86 to 7/14/86 from offshore and lower river habitats of the Yukon River Del ta.

Percentage Adj usted Catch of Chum Sal non Associ ated With Surface and Bottom Temperature in the Del ta Front and Delta Platform Habitats of the Yukon River Delta During June 12-19, 1986

Bot tom

Temper ature	$\left({ }^{\circ}\right)$	Surface Temperat ure ("C)										Tot al
		<0	0-2	2-4	4-6	6-8	8-10	10-12	12-14	14-16	≥ 16	
<0												
0-2						5. 3	1.5	4. 9	16. 8	8. 5		37. 0
2-4							1. 7		8. 1			9.8
4-6							3. 9					3. 9
6-8									13. 7	9. 8		23. 5
8-10		-										
10-12		-						17. 7				17. 7
12-14		-							8. 1			8.1
14-16		-										
≥ 16												
TOTAL		-				5. 3	7.1	22. 6	46. 7	18. 3		

Percentage Adj usted Catch of Chum Sal non Associ ated With Surface and Bottom Salinity in the Delta Front and Delta Platform Habitats of the Yukon River Delta During June 12-19, 1986

Bottom Sal i nity (ppt)	Surface Salinity (ppt)								
	0.5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	Total
0-5	9.8								9.8
5-10	21.4								21.4
10-15									
15-20		11.8	4. 7	-					16. 5
20-25	16. 6	4.4	2. 0	-					23.0
25-30	10.4	13. 7	4, 1	1. 2					29.4
30-35									
35-40									
TOTAL	58. 2	29. 9	10. 8	1. 2	-	-	-	-	

TABLE 3-11

Percentage Adj usted Catch of Chum Sal non Associ ated With Water Visibility in the Delta Front and Delta Platform Habitats of the Yukon River Delta During June 12-19, 1986

Visibility	
(m)	Adjusted Catch
(percent)	

0-0.1
0.1-0. 2
6. 2
0. 2-0. 3
23.4
0. . 3-0.4
0. 4-0. 5
12.7
0. 5-0. 6
9.9
0. 6-0.7
26.7
0. 7-0. 8
3.7
0. 8-0. 9
14.5
0.9-1. 0
>1.0
2. 8

3.4.5 Otolith Microstructure and Increment Periodicity

Sample Composition

Otoliths were extracted from 491 fish for exam nation of microstructure. The sampled fish ranged in length from 33.0 mm to 68.4 $\mathbf{m m}$ and were representative of speci mens collected from 11 stations on 16 separate dates. Anong all the speci nens examined, 109 (22 percent) had otolith preparations from which no data could be collected, 19 (4 percent) had inherent problems in the physical structure of the otolith which also prevented data collections, and 24 (5 percent) were I ost during di ssection or preparation. Thus, 339 (69 percent) otoliths renai ned, upon which the results of this study were based.

Anong the speci nens examined, the number of post-hatching otolith i ncrenents ranged from 11-59 with a nean of 25. 1 (Fi gure 3-19). There was a positive rel ationship bet ween fish length and the number of post-hatch otolith increnents (Figure 3-20).

Otolith I ncrement Periodicity

A key el enent in these otolith anal yses was the ability to determine el apsed time by counting otolith increments produced with a known periodicity. To determine this periodicity, we anal yzed otoliths from fish hel din net pens to test the rel ationship bet ween increments accrued and days el apsed during the experi nent. The number of increnents accrued was determined from the difference in the nean number of increnents for fish collected at the start and at the end of a six-day hol ding period. Experimental results are shown in Table 3-12.

The results from each fish hol ding experinent were grouped according to the size of the test fish because differences in fish size affect increnent number as shown in figure 3-20. Changes in increnent number can only be eval uated in three of the experinental groups where differences in fish size were not significant (Table 3-ii?).

Fig. 3-19: Post-hatching otolith increnent frequency for chum sal mon collected during summer 1986 from the Yukon River Delta.

Fig. 3-20: Regression of post-hatch otolith increment number on length of chum s末 mon.

TABLE 3-12

Results of T-Tests on Fish Length and Otolith Increment Number, and Estimated Increment Periodicity For Chum Salmon From the Fish Holding Experiments

Experiment	Beginning or Ending Date	$\begin{aligned} & \text { Sample } \\ & \text { Size } \end{aligned}$	Fish Length				Increment Count				Periodicity (d/increment)
			Range	Mean	S.l.	Signif. of t	Range	Mean	S.D.	Signif. of t	
Ia	6-14-86	24	34-52	40.1	4.6	0.469	14-33	22.6	5.5	0. 019	1.6
	6-20-86	13	39-43	41.1	1.6		21-36	26.4	4.2		
16	6-14-86	8	39-41	39.6	0.6	0.679	17-28	22.0	5. 2	0.077	1.5
	6-20-86	7	39-41	39.8	0.9		23-36	25.9	4.6		
2a	6-20-86	23	38-55	44.3	4. 5	0. 014	4-33	24.0	5.4	0.004	0.8
	6-26-86	6	48-51	49. 3	1.4		9-42	32.0	8.7		
2 b	6-20-86	5	48-52	49.5	1.9	0. 814	20-27	24.0	2.9	0.042	0.8
	6-26-86	6	48-51	49. 3	1.4		19-42	32.0	8.7		

Results from the t-test on increment number (Table 3-12) indi cate there was a significant increase ($p \leq 0.05$) in two of the test groups (i.e., $\mathbf{I a}$ and 2b). Mean increnent number increased by $\mathbf{3 . 8}$ or 8 increnents, depending on experimental group, during the six day experi nental period. This increase results in an increment periodicity that ranges from 0.8 to $1.6 \mathrm{~d} / \mathrm{i}$ ncrenent. This large variation between the tho experiments nay be a function of the different size groups of fish that were tested.

In order to provide a better understanding of the potential effects of fish size or life stage on increment periodicity, an estimate of i ncrement periodicity for alevins was exam ned. In this method increnental periodicity is assumed to be equal to the quotient of the number days bet ween hatching and energence; and the number of post-hatch otolith increments at the time of emergence. Studies conducted by Trasky (1974) and Franci sco (1976, 1977) concerning the devel opnent of fall chum sal non in the Delta River (a tributary to the Yukon River) found that the tine period from hatching to energence ranged 25-48 days and averaged 39 days at temperatures ranging $1.1-1.5^{\circ} \mathrm{C}$. Bakkala's (1970) comprehensi ve review of chum sal non studi es indicated a period of 30 to 50 days, depending on water temperature, was needed for devel opment. The temperature regi ne during the alevin stage for nost Yukon chumis likely to be within the range observed in the Delta River. Therefore, a period of 40 days was assuned to be the nost reasonable period for alevin devel opnent. The number of otolith increnents at energence was determined from the otolith data. Several studies on the early devel opnent of fall chum sal non from Yukon River tributaries found that nost fry energe at lengths of $31-36 \mathrm{~mm}$ (Raynond 1981, Franci sco 1977, and Franci sco and Dinneford 1977). Fifteen chum otoliths were exam ned from fish that were $\leq 36 \mathrm{~mm}$ The number of post-hatch increnents in these fish ranged 14-27 with an average of 19.8. Therefore, based on this data the increnent periodicity during the alevin stage is estimated to be at least 2 days (i.e., $40 / 19.8=2.02$). A greater increnent periodicity is possible because all of the fish that were exam ned were button-upfry whi ch had emerged at sone earlier date. Thus the average number of post-hatch increments at energence was nost likely less than the number
observed from button- up-fry. These data al so show that daily increnents at this life stage are highly unlikel y, because devel opnent ti ne from hat ching to energence requi res nore than $14-27$ days.

3. 4. 6 Resi dency

The primary purpose of the otolith study was to measure the time el apsed after an indi vidual fish reached the estuary in order to provide an estimate of residency. This nould be accomplished by counting the number of otolith increnents that are forned after the point of transition from freshwater growth to estuarine growth. The product of this count and the increnent periodicity would be equi val ent to the duration of estuarine utilization. The criterion for determining the beginning of estuarine resi dency was identified by Volk et al. (MS) and Neilison et al. (1985) as the regi on in which there was a step-wise increase in increment width near the edge of the otolith compared to the width of previ ous increnents. This change in increnent width was associated with an increase in grouth rate, which corresponded with entry into an estuary.

Dtoliths fromjuvenile chum sal mon that were caught on the del ta platform and delta front were examined for the presence of changes in i ncrenent width. This exam nati on was focused on the outernost $\mathbf{1 6}$ posthatch increnents because this regi on of the otolith uould have been formed during the last 13 to 26 days (assuming increnent periodicity of 0.8 or 1.6, Table 3-12) bef ore fish capt ure (Fi gure 3-21). A one- way anal ysis of variance test of increnent width by increnent number indicated no si gnificant difference ($p \leq 0.05$) in increnent width. Therefore, no transition in increnent width could be identified and estimates of estuarine residency, if any, could not be deternined from the otolith data.

The relative age of the juvenile outmigrant chum that utilize each habitat can be determined from the number of post-hatch increments if We assune that all fish had a similar history of changes in increment periodicity. A comparison of mean increnent number for fish anong different habitats during the peak outmigration periodindicates that

Increment No. 3

Increment No. 5

Increment No. 7

Increment No. 4

Increment No. 8

Increment Vidth (u)
Fig. 3-21: Frequency histograns and statistics of otolith increment widths for 16 outer increnents from chum sal non caught in the delta platform and delta front of the Yukon River Delta.

Increment No. 11

Increment No. 13

Increment No. 15

Increment No. 14

Increment No. 16

Fi g. 3-21, conti nued.
fish in the lower river have si gnificantly nore ($p \leq 0.05$) increments than fish in the nearshore and offshore habitats (Table 3-13). This suggests that juvenile chumin the lower river are approxi nately 6 to 11 days ol der (assuming increnent periodicity is either 0.8 or 1.6 from Table 3-12) than j uveniles in other habitats.

3. 4. 7 Grouth

Three size groups of j uvenile chumsal mon were identified in the lower river during the outmigration period (see Section 3.4.1). Fish in size groups I and III (Fi gure 3-15) were caught only during early June or early August, respectively. Therefore, fish length data were insufficient to make any estimates of grouth rate for these two groups. Fish in size group II, however, were present throughout the three sample surveys (Fi gure 3-15). Outmigrants averaged 36.8 mm in early June and 54.2 mm in early August. A regressi on of fish length by time after the first sample date indicates the popul ation grouth rate was 0.31 mm day during the outmigration period (Figure 3-22). This grouth rate is most likely bi ased on the low side of true grouth rate because of imigration and emigration, to and from the study area, respectivel y. Also, the validity of this grouth rate is based on the assumption that group II fish all hatched at approxi nately the sane tine.

3. 5 OTHER FI SHES

Catch results for sheefish, whitefish, cisco, snelt, and herring are presented in this section because these species are considered i mportant for either comercial or subsistence fisheries. Catch results for other lesser inportant species are only presented in Appendi \mathbf{x} Table B.

Mean and 95 Percent C.I. of Otolith Increnent Number For Juvenile Chum Sal non By Habitat and Results of a Multiple Range Test on increnent Number Anong Habitats. Data From the Period of Peak Outmigration, June 10-24, 1986

a/ Non- overlapping x 's indicate groups that are significantly different at the 0.05 level. Data was tested by the Student Newnan Keuls Procedure.

Fig. 3-22: Pl ot of length with time for j uvenile chum sal non caught in the I ower Yukon River (i.e., stations 13 and 17, Group II) during summer 1986. Line fitted by regressi on where $y=37.16+0.31 x, N=1107, r=0.58$.

3.5. 1 M gration Ti ming

 important anadromous species that were caught in significant numbers in the lower river (Table 3-3). Snelt are also anadromous, but no juveniles were caught in the lower river during the three sample surveys. The timing of the \mathbf{j} uvenile outmigration of coregoni ds was similar anong all three species (Figure 3-23). Low numbers of fish were caught during June and August and peak catches occurred during the July survey. Juvenile cisco were approximately three times more abundant than $j u v e n i l e$ sheef $i s h$ and $j u v e n i l e ~ w h i t e f i s h$.

3.5.2 Distribution and Density

Cisco's were the nost broadly di stributed of all the coregonid fishes that were caught during 1986 (Tables 3-14, 3-15, and 3-16). High densities of cisco were found in both coastal and offshore habitats. Whereas, sheefish and whitefish were nore concentrated in the coastal habitats. Sheefish had the nost restrictive distribution with nost fish occurring at the mudflat stations. Their temporal distribution and abundance were not di rectly related to the July outmigration period si nce many ol der indi vidual s of each speci es nere caught during the June survey. Whitefish were generally the nost abundant of the coregonid fishes with nean habitat density ranging up to $43,000 / \mathbf{k m}$

Boreal snel \mathbf{t}, \mathbf{j} uvenile smel \mathbf{t}, and Pacific herring were caught predoninantly at the delta front and delta platform stations (Table 3-3). Boreal snelt were caught only during the June survey, whereas, \mathbf{j} uvenile snel t were nost abundant during the $\mathrm{Jul} y$ and August surveys (Table 3-17). Juvenile smelt densities ranged up to $300,000 / \mathrm{km}^{2}$, which is the hi ghest density of any species caught from the offshore habitats. Pacific herring were caught during all surveys and were nost abundant at the del ta front during July.

Fig. 3-23: Catch ner unit effort of iuvenile sheefish, \mathbf{j} uvenile whitefish, and juvenile cisco during summer 1986, from the lower river, station 17, of the Yukon River Delta.

TABLE 3-14
Estimated Average Density (no/km²) of Sheefish During Summer 1986 in the Offshore, Coastal, and Lower Kiver Habitats of the Yukon River Delta

TABLE 3-5
Estimated Average Density ($\mathrm{no} / \mathrm{km}^{2}$) of Whitefish (i.e., Humpback Whitefish and Broad Whitefish) During Summer 1986 in the Offshore, Coastal, and Lower River Habitats of the Yukon River Delta

TABLE 3-16
Estimated Average Density (no/ km^{2}) of Cisco (i.e., Least Cisco and Bering Cisco)
During Summer ly86in the Uffshore, Coastal, and Lower River Habitats of the Yukon River Delta

Date	Delta Front				Delta Platform				Mudflats			Tidal Slough			Lower River		
	1	2	3	Mean	4	5	6	Mean	8	Y	Nean	10	$11 \quad 12$	Mean	13	17	Nean
6/04					2280			2280							0	15	0
b/ 06	0	u		0	3078	0		1539								15	
$6 / 08$,	0
$6 / 09$ $6 / 10$									12122	-	12122	-	722		38	19:0	114
$6 / 10$									12122	-	12122	-	722	722		0	0
$6 / 12$	0	0	0	0	0	76	418	165							38	0	19
$6 / 15$$6 / 17$$6 / 17$$6 / 19$$6 / 20$$6 / 22$$6 / 24$$6 / 25$$6 / 26$									6061	-	6061		8658	8658	38	0	25
	0	0	0	0	0	38	874	304	2020	-	2020		5051 -	$505{ }^{\circ}$	0	$\overline{0}$	
	0	u	76	25	0	0	38	13							0	0	0
			76												0	0	0
									$\begin{aligned} & 6071 \\ & 704 \\ & \hline \end{aligned}$		$\begin{gathered} 601 \\ \mathbf{7 0 0 1} \\ 24244 \end{gathered}$	-	$\begin{array}{r} 51 / 2 \\ 0 \end{array}$	$\begin{array}{r} 512 \\ 0 \end{array}$	0	380	190
															190	266	228
$7 / 10$	1938		17062	11012	3135		34257	18696								3952	3952
7/12									1070			-	2886 -		14934	15086	15010
7/13									- 9		9092		- 17316	17316		13414	13414
7/14	1444	3268	988	1900	3458	3382	2318	3053									
$\begin{aligned} & 8 / 04 \\ & 8 / 05 \\ & 8 / 06 \\ & 8 / 07 \\ & 8 / 08 \end{aligned}$									021		10607		14431443	1443			
	38	38	38									722		722	76	266	171
	38	38	38	38		418	76	24							190		228
		-													91	342	203

TABLE 3-17
Estimated Average Density (no/km²) of Boreal Smelt, Smelt sp., and Pacific Herring During Sumner 1986 in theoel ta Front and Del ta Platform Habitats of the Yukon River Del ta

4. DI SCUSSI ON

4. 1 CH NOOK SALMON

4. 1. 1 Outmigration

The outmigration period for juvenile chi nook sal non most likely begi ns bef ore ice breakup and probably extends to early aut um. Catches of chi nook smelts on the first day of sampling indi cates that outmigration was in progress before the 1st of June. Si milarly, catches of snelts during the August survey suggests the migration extended past this tine. Chi nook sal non snel ts began migrating out of the upper Yukon River tributaries as early as mid April (Table 4-1) and could have reacned the delta by early May. For example, snelts leaving the Delta Ri ver on April 12th could reach the Yukon Delta by May lst if the fisn noved passi vel y with the current. Assuming a minimurrent vel ocity of 1 mds a fish could nove at a rate of 86.4 km day and nould require approxi natel y 20 days to travel fromthe Del ta River to the nouth of the Yukon River. If \mathbf{j} uveniles leaving the upper river tributaries during August continue to outmigrate (Table 4-1) the end of the outmigration period could extend to early September.

The catch of chi nook sal non smolts peaked on several dates duri ng June and July with the largest catches occurring during late June. These results suggest that the peak of the outmigration occurred during the Iatter part of June. Si nce sampling was not conducted during early July it was not possi ble to knowif another peak occurred. However, the migration timing for snel ts from upper river tributaries (Table 4-1) indi cates that nost of these smelts woul d have reached the delta during mid to late June if fish travelled at animm rate of 86 kmday. Sone stocks (e.g., Delta River) however, exhi bit a very early outmigration fromthe upper river and result in a peak novenent through the Del ta that probably occurs during May. The declining trend in catches during early June (Figure 3-5) may indicate the tail end of an early outmigrating stock.

Outmigration Timing and Size at Outmigration of Chinook Salmon Smelts from the Yukon River Drainage (Adapted from Table 3 in Raymond, 1981)

River	$\begin{aligned} & \text { Distancea/ } \\ & (\mathrm{km}) \end{aligned}$	Outmigration Dates			Mean Length (mm)	n	Ref erence
		From	TO	Peak			
Yukon	2, 462	$\begin{aligned} & 5-21^{*} \\ & 5-26 \end{aligned}$	$\begin{aligned} & 6-23 \\ & 6-1 \end{aligned}$	$\begin{aligned} & 5-29 \\ & 5-28 \end{aligned}$	$\begin{aligned} & 76.3 \\ & 880 \end{aligned}$	$\begin{array}{r} 130 \\ 31 \end{array}$	V*l ker 1976
Hodzana	1,443	6-2	8-17	6-5	78.8	57	Gissberg and Benning 1965
Del ta	1,659	4-12	5-16	$\begin{aligned} & 4-28 \\ & 5-14 \end{aligned}$	93.0	22	Franci sco 1977
Sal cha	1,553	5-1 6*	6- 8*	$\begin{array}{r} 5-26 \\ 6-4 \end{array}$	73. 0	488	Trasky 1974
Chena	1,496	5-1 4*	6-20	6-1	76.7	51	Ross 1973-1975
		5-3	5-30	5-9	79.6	187	
		5-7	5-23	5-14	86.2	22	
		5-4	5-16	5-11	75. 0		Wllianson 1981
Cl ear Creek	k 1, 380	4-30*	5-22	5-8	71.3	38	Raynond 1981
Yukon	101	6-8	7-7*	6-13	96.0	14	Barton 1979
Yukon	25	6_ 4*	8-8*	6-18	96.8	313	This report
a/ Distance from the nouth of the Yukon River. $\bar{\star} \quad$ Indicates that the outmigration was in progress when the sampling started or ended.							

Inf ornation on the outmigration timing for chi nook sal non snel ts from other western A aska Ri vers is not well documented. No infornation, for example, could be found for the Kuskokwi m River. However, several years of outmigration data are available fromthe Susitna River, which is located al ong the south central coast of Alaska and has freezeup and breakup timing similar to that of the mid-river tributaries of the Yukon River. In the Susitna River, chi nook sal non presmolts were found to have noved out of river slough habitats by early May (Stratton 1986) and Iarge numbers of snel ts were caught in the lower river imediately following ice breakup in late May (Roth et al., 1986). Thi s suggests that the snel \mathbf{t} outmigration in the Susitna River probably begins in I ate winter-early spring, which is similar to the timing indicated by data fromthe Yukon River. The smelt outmigration in the Susitna River al so peaks during late June and snelts continue to drible out through to Septenber (Roth et al., 1986, Roth and Stratton 1985).

The age composition of outmigrant j uvenile chi nook sal non was not determined but the size composition of the $j u v e n i l e s$ suggests that ages 0 , 1, and ol der indi vidual s probably occurred in the catch. J uveniles caught during June were nost likely age 1 and ol der because the I ength of al fish exceeded 69 mm Chi nook sal mon fry (i.e., age 0) nould likely be much smaller than 69 mm during this period. For compari son, \mathbf{j} uvenile chi nook sal non fry in the Delta River, Chena River, and Cl ear Creek during June ranged $31-45 \mathrm{~mm} \quad 32-62 \mathrm{~mm}$ and $34-40$ $\mathbf{m m}$ respectively (Franci sco 1977, Wil ker 1983, and Raynond 1981). Whereas, age 1 snelts from the Delta River at the sane time ranged 71-110 mm (Franci sco 1977). During the period of July through August it is possibe that age \mathbf{O} fry could be mixed together with age 1 and ol der chi nook sal non snelts. Juveniles caught during the July and August surveys ranged $82-123 \mathrm{~mm}$ The snaller individuals would fit within the size range of outmigrant age \mathbf{O} chi nook sal non caught in the Susitna River, which ranged $40-88 \mathrm{mmin} J u l y$ and $46-94 \mathrm{mmin}$ August (Roth and Stratton 1985). Only a snall percentage of the juveniles caught during this period were small enough to be considered age 0 snol ts. Therefore, if age \mathbf{O} snelts actually existed they probably
represent only a mor portion of the total snel outmigration Scal es collected from adult chi nook sal non, which were caught in the lower Yukon River indicate that fish with less than one year of freshwater grouth represent a very snall percentage of the total adult population (John Wilcox, ADF\&G personal communi cation).

4.1.2 Distribution and Habitat Uilization

There was a large variation in the density of j uvenile chi nook sal non among the coastal and offshore habitats. The results suggest that the outer delta platform and the delta front habitats are utilized to a greater extent than the mudflat or tidal slough habitats. The one time capt ure of chi nook smolts in the tidal slough at Station 11, and their absence fromthis site and the adj acent mudflats, indi cates that utilization of nearshore habitats was limited. This apparent absence of snelts is probably real and not due to low sampling effort, since these stations were sampled five times during June and the northern nost stations (i.e., Station 9 and 12) were al so sampl ed once during this period.

The di stribution of $\mathbf{j u v e n i l e ~ c h i n o o k ~ s a l ~ n o n ~ i n ~ t h e ~ Y u k o n ~ D e l ~ t a ~ m a y ~ b e ~}$ affected by river outflowin the sub-ice channel s. The hi gh di scharge during the outmigration period results in a very strong flow of freshnater that noves out the sub-ice channels to the delta front. Juveniles migrating downstreamin the maj or distributaries could be carried 20 to 30 km offshore and would compl etely bypass the nearshore and nost of the delta pl atform habitats. In the Col unbia River, chi nook sal non yearlings were nostly found migrating in mid-river and nost fry were found nearshore (Dawley et al. 1985). Si nce outmigrants in the Yukon River were composed Iargely of yearlings and ol der snelts it is likely that nost of these chi nook snelts did not encounter the nearshore habitats and were flushed out to the del ta front. A small portion of the outmigrants, however, were entrai ned in the small di stributary channels and were not carried across the delta platform These fish encounter the nearshore areas and utilize the mudflat and
tidal slough habitats. The \mathbf{j} uveniles that were caught in a tidal sl ough at Station 11 could have migrated out from any number of small di stributaries that were located within $5 \mathbf{k m}$ of this site.

The rel ationship between fish size and habitat preference may al so be an important factor affecting the distribution of uvenile chinook sal non in the Yukon River Delta. Generally, the snallest $j u v e n i l e s$ were found in the nearshore areas of the inner estuary and the Iarger juveniles occur in the offshore areas of the outer estuary. In sone cases there appears to be a threshol d size governing the novenent into deeper or hi gher salinity waters (Healey 1982). In the Nanaimo River Estuary when fry migrants reached 70 mm they began to leave that habitat. Al so, yearly snelts nostly occurred in the outer estuary during April-June, after which they migrate away from the coastal waters (Healey 1980). In the Yaquina Bay Estuary of Oregon snall juvenile chi nook (average 88 mm) were found in the nearshore areas of the upper estuary and larger juveniles (average 106 mm) were found in the offshore areas (Meyers 1980). Reimers (1973) al so found a similar size rel ated distribution for juvenile chi nook in the Sixes River Estuary. In the Yukon Del ta the \mathbf{j} uvenile outmigrants were al I Iarger than 69 mm These larger juveniles nay have reached the threshold size required for novenent into deeper and hi gher salinity water. This uould explain why chi nook snel ts occurred nost of ten in the vicinity of the delta front where internedi ate salinity conditions prevailed.

The catch results suggest that envi ronmental conditions in the surface water may affect the di stribution and abundance of j uvenile chinook sal mon in the Yukon Delta. Surface water quality is considered to be nost important because the vertical distribution of j uveniles in other estuaries indicates that juvenile sal non are concentrated near the top 2-3 meters (Stober et al. 1973, Dawley et al. 1985). Al so, the catch data from this survey are only representative of the surface water envi ronnent because the tow net sampl ed to 1.8 m deep. In the Yukon Delta nost $j u v e n i l e s$ were caught in the delta front and outer delta platform areas where visibility was greater than 0.5 m and surface waters were rel ativel y cool (i.e., $8^{\circ}-10^{\circ} \mathrm{C}$) with internedi ate
salinities (i.e., 5-15 ppt). Determination of which factor or combination factors is affecting this distribution is not possible because the envi ronmental conditions are physically rel ated. Each envi ronnental factor al ong could have an effect on habitat utilization. For example, juveniles nay be seeking areas with higher visibility because turbid water nay inhibit feeding. Studies with juvenile rai nbow trout and juvenile coho have found that feeding is significantly reduced or ceased when turbidity levels exceed a specific threshol d (Noggle 1978, Ol sen et al. 1973, Brett and Groot 1963). If $^{\text {ent }}$ this rel ationship applies to j uvenile chi nook sal non, then this uould expl ai n why there was a greater utilization of the offshore areas. Based on the distribution of turbid waters fromthe AVFRR inages, (Fi gure $3-4$ to $3-6$) smol ts must nove $\mathbf{1 0 - 2 0} \mathbf{~ k m}$ offshore in order to find waters with a Secchi disk depth greater than 0.5 m .

Outmigrants al so could have been seeking a more optinal temperature level. Brett (1952) has determined that temperatures of 9-14² C are the preferred range for chi nook sal non. Temperatures in the river and in the offshore areas were within this range during the peak outmigration period. However, temperatures in the nearshore areas ranged up to $19.1^{\circ} \mathrm{C}$ and were greater than the preferred range nost of the tine. These warner conditions may expl ain why uti'lization of the nearshore habitats was limited.

Salinity level scould a"l so affect the di stribution of \mathbf{j} uvenile chinook sal non. During June the di scharge from the Yukon River is so large that estuarine conditions do not exist within $\mathbf{1 0 - 2 0} \mathbf{~ k m}$ of the coastline. Juvenile chi nook nould not find brackish water until they migrated out to the outer delta pl atform and delta front. The internedi ate salinity levels that occur in these areas may be needed as a transition zone for juveniles while they adapt to saltwater conditions. As the river di scharge declines during the summer, this zone of internedi ate salinity water progressively noves closer to the coastline. By August the delta front was dominated by marine water and the transition zone had noved far into the delta platformbut not into the nearshore areas. No juvenile chi nook were caught at either the
nearshore or offshore stations at this time. The absence of fish in the catch could be due to their low density at this time and/ or their utilization of the transition areas on the delta platform which were not sampled.

Evi dence from other investigations suggests that the di stribution and abundance of \mathbf{j} uvenile sal non in estuaries is influenced by the abundance of food. Healey (1978) found that the abundance of \mathbf{j} uvenile chi nook sal non was positively correl ated with the anount of food in their stonachs in different regi ons of the Georgia Strait. He concl uded that these results suggest that the young sal non congregate in the best feedi ng areas. Healey (1982) al so indi cated that the growth and abundance of chi nook salmon was greater in the Nanaimo Estuary compared to the Nitinat Estuary because food resources were greater in the latter. Food habits studi es of juvenile chi nook sal non have found larval fish were the primary component in the diet for snelts in the outer estuaries of Yaquina Bay and Georgia Strait (Myers 1980, Healey 1978) and ranked third in importance in the Nanaimo Estuary (Healey 1982). In the Yukon Delta high densities of juvenile snel t were found in the delta front. These fish and zoopl ankton in this estuarine zone may influence the abundance of \mathbf{j} uvenile chi nook sal non in the Yukon Delta as well.

4. 1. 3 Resi dency

There was no difference in the average size or size composition of the juvenile outmigrants anong the lower river, delta platform and delta front habitats during the peak outmigration period. This would suggest that j uveniles were not residing in the offshore habitats long enough for changes in average size to be detectable. The duration of residence, if any, is probably very short because the snelts were large enough to nove into the narine envi ronment. The naj ority of the snelts I eaving the Yukon Ri ver reared for one or two years in freshwater. In other rivers, these older snelts generally do not utilize the nearshore waters, but instead migrate directly to the outer estuary and coastal mari ne envi ronnent (Healey 1982). Healey (1983) observed that these
"stream type" chi nook sal non occur predominantly in Al aska ri vers and I arger rivers (e. g., Fraser and Col unbia Rivers) south of Alaska. He found that these larger snelts utilized the coastal waters of Georgia Strait for about two nonths and then noved further seaward in Juan de Fuca Strait during late summer. Samples were not collected from the outer portion of the delta front and the prodelta. Therefore, it is unknown whet her j uvenile chi nook sal non utilize these deeper water habitats. It is possible that the areas sampledin this survey represent a transition zone that is located just on the inner edge of what nay be the primary estuarine rearing area for Yukon snelts.

4. 2 CHUM SALMDN

4. 2. 1 Outmigration

The outmigration period for \mathbf{j} uvenile chumsal non fromthe Yukon River appears to begin prior to ice breakups and probably extends to early autum. Si nce j uveniles were caught on the first and last days of sampling it is reasonable to assume that fish were migrating prior to J une and continued after the August survey. Chumfry migrating from upper river tributaries in early April (Table 4-2) could reach the delta by early May, which is several weeks prior to ice breakup. Similarly, fry leaving upper river tributaries during late August (e.g., Hodzana River, Table 4-2) would not reach the delta until early Septenber. In 1985 the field survey continued to Septenber 18th and juvenile chum were caught as late as Septenber 13th (Martin et al. 1986).

The hi ghest catch of chum sal non fry occurred on June 18th but other hi gh catches also occurred throughout the nonth of June. During 1985 the peak catches occurred during June 20-25 (Martin et al., 1986) and during 1977 Barton (1983) had the I argest catches on J une 13-15. These results would suggest that the peak timing of the \mathbf{j} uvenile chum outmigration occurs during mid to late June. A similar timing for the peak outmigration of chum sal non was observed in the Noatak River in Kotzebue Sound (Merritt and Raynond 1983) and in the Susitna River in

Outmigration Timing and Size at Outmigrationof Chum Salmon Smelts from the Yukon River Drainage (Adapted from Table 3 in Raymond, 1986)

River	Distancea/ (kn)	Outmigration Dates			Mean Length (m)	n	Ref erence
		From	To	Peak			
Del ta	1,659	4-17	5-27	4-24	34.2	92	Franci sco 1976
		4-2	5-25*	4-28	34.6	1,426	Francisco 1976
				5-18			"
		4. 9	4-20	4-9	32.0	72	Dinneford and Franci sco 1977
				4-18			
Sal cha	1,553	5-16*	6-8*		39.5	106	Trasky 1974
		5-10	5-30	5-20	34.6	27	Franci sco 1976
Chena	1,496	5-22	7- 3*	6-12	41. 3	142	
		5-8	6-27	5-8	36.2	139	
		5-6	6-7	5-21	35. 9	228	wll " 1981
		5-2	5-18	5-11	35.0		Willianson 1981
Hodzana	1,443	6-2	8-24*	6-5	39.2	474	Gissberg and Benning, 1965
Tanana	1,378	5- 9*	6-22*	6-2	35.8	274	Raynond and
		5-1 ${ }^{*}$	6-5	5-22	36.5	201	Raynond and Saugst ad,
Redo	719	5-1 3*			33.6	7	Fred DeCicco, unpub. 1981 data
Bear Creek	636	5-22	6-20*		38.2	69	"
Anvik	530	5-22	7-26*		36.0		Buklis, 1983
I nnoko	512		5-25*		33.6	7	Fred DeCicco, unpub. 1981 data
Yukon	101	6-7*	7-2	6-13	41.0	265	Barton 1979
Yukon	25	6- 4*	8- ${ }^{\text {* }}$	6-18	43.7	1, 078	This Report
$\frac{a /}{\star} \begin{gathered} \text { Distance } \\ \begin{array}{c} \text { Indi cat } \\ \text { ended. } \end{array} \end{gathered}$	from the ates that t	outh of outmigr	he Yuk tion was		s when	the sa	ing started or

Cook Inlet (Roth and Stratton 1985, Roth et al. , 1986). This timing of the peak outmigration is later than chumfry outmigrations from rivers further soutn. In the Fraser Ri ver the peak of chum sal non outmigration occurs during Iate April and early May (Levy and Northcote 1982), and in Puget Sound streans the migration peaks typically from Iate March to early May (Simenstad et al., 1982).

The presence of nore than one size group and the Iarge average size (i.e., 60 mm) of one group of chumsal non outmigrants suggests migration timing and $\mathrm{juvenill}_{\mathrm{m}}$ size may be rel ated to different stocks. The Iarger fish (i.e., group I, Figure 3-15) that outmigrated during early June were nost likely fall chum sal non. Mst \mathbf{j} uvenile chum begin to emigrate from Yukon Ri ver tributaries at approxi matel y 35 mm in I ength (Figure 4-2). In order to grow to an average size of 60 mm these fish uould have had to energe from $\mathbf{3 0}$ to $\mathbf{8 0}$ days earlier, assuming a growth rate of 0.3 - 0.8 mm per day (fromtable 4-4). Fal I chum sal non whi ch spawn in tributaries with upwelling groundwater (Buklis and Barton, 1984) are known to energe during April in many upper Yukon Ri ver tri butaries (Franci sco 1976, Dinneford and Franci sco 1977). For example, in the Delta Ri ver water temperature in a fall chum sal non redd was $6.6^{\circ} \mathrm{C}$ during Novenber 1975 and fry were energing as early as April 2 the following spring (Franci sco 1977). These fish nould have sufficient tine to grow to $\mathbf{6 0} \mathbf{~ m m}$ by early June. These large si ze chum nay al so be hatchery fish that were liberated from the Clear Creek Hatchery by the Alaska Department of Fish and Gane (ADF\&G). Approxi mately 1 milion chum fry averaging 49.5 mm were rel eased on May 5-6, 1986, into Clear Creek (tributary of Nanana River) (Jim Raynond, ADF\&G, personal commini cation).

The snaller size chum caught during June were most likely summer Cnum sal non. This stock of fish generally spawn in lower river runoff streans (Buklis and Barton, 1984) where devel opnent is slow hence energence from these tributaries does not begin until mid to late May (see Bear Creek, Anvik R., and Innoko R. Table 4-2). Si nce less ti me is requi red to reach the delta fromthese tributaries, the small size of sumer chum fry indicates very little grouth occurred since emergence. A second group of similarly snall chumfry occurred during

August (Group 111, Fi gure 3-15) and may be summer chum sal non, as well. The reason for this unusually late outmigration, and the life history of these Iater sumer outmigrants, needs further investigation.

4. 2. 2 Distribution and Habitat Uilization

Juveni le chum sal non were nore wi del y di stributed and occurred nore frequently in the offshore habitats than in the coastal habitats. These results suggest that the outer delta platform and the delta front habitats were utilized to a greater extent than the mudflat or tidal slough habitats. Although the hi ghest density of \mathbf{j} uvenile chum was detected in a tidal slough (i.e., Station 12, Table 3-8), their inconsi stent utilization of this habitat sUggests this was not an important envi ronnent. Similarly, the low frequency of occurrence in mudflat habitats suggests this envi ronnent may not be important as well.

The spatial distribution of j uvenile sal non in the Yukon River Delta is unlike the di stribution of chum observed in other estuaries. In snall estuaries of British Col unbia (i.e., Nanaimo, Cowichan, and Courtenay), Healey (1982) observed the following general pattern. Upon entry to the estuary juvenile chum uould utilize the shallow intertidal marsh and fringe areas during hightide. During lowtide fish would concentrate in flowing tidal creeks and adj acent delta channel s. Habitat utilization was size rel ated and as fish grow they progressi vel y noved from the inner to the outer estuary. A similar pattern of habitat utilization for chumfry in Puget Sound estuaries was described by Si nenstad et al. (1982). In the Fraser River Del ta si gnificant numbers of chumfry utilize the side channel s and sloughs for rearing until the fish reach an average size of 46 mm (Levy and Nbrthcote, 1982). Chum fry that bypass the sloughs and leave the river are di spersed by the pl une and occur in nearshore nursery areas away from the delta (Heal ey 1980). After rearing in these shallow water envi ronnents, juvenile chum from the Fraser nove into deeper water habitats in the Strait of Georgia where they reach an average size of 90-100 mm during the period of peak abundance (i.e., June - early July).

The difference in the di stribution of \mathbf{j} uvenile chumin the Yukon Del ta compared to other estuaries may be rel ated to the different hydrographic conditions. The nearshore envi ronnent of the Yukon Delta is very different than those typical of snall estuaries in British Col unbia or Puget Sound. For example, true estuarine conditions do not occur in the nearshore habitats of the Yukon Delta during the outmigration period. The intertidal mudflat areas are typically freshwater dom nated, very shallow ($<0.5 \mathrm{~mm}$), highly turbid, and rel ativel y warm (see AVHRR inages Figure 3-4 to 3-6). During the ebb tide, generally 1-2 km of mudflats are dewatered and only small shallow ponds ($<\mathbf{2 0} \mathbf{c m}$ deep) or shal low streans fromtidal sl oughs renai n. Chum sal mon that may utilize this habitat nould have to nove out quickly to the subtidal areas to find ref uge. These subtidal areas nould likely be poor habitat as they are very shallow with no vegetation, and have sand-silt substrates. Therefore, much of the coastal habitats are not very suitable or accessible for j uvenile rearing. Onl y the coastal areas adjacent to the Iarge di stributaries where the tidal flats are I ess extensive would be nore accessible for \mathbf{j} uvenile rearing. Al so, only the j uveniles that migrate al ong the rivers edge are likel y to find these nearshore habitats. As described for $\mathbf{j u v e n i l e ~ c h i ~ n o o k ~}$ sal non, outmigrant chum sal mon in the naj or di stributaries will nost likely be distributed to the delta front by the strong river outflow

Habitat utilization by $\mathbf{j u v e n i l e ~ c h u m ~ s a l ~ n o n ~ w i t h i n ~ t h e ~ Y u k o n ~ D e l t a ~}$ di stributaries and tidal channels is probably very similar to the Fraser River Delta. Data fromthe 1985 Yukon survey (Martin et al., 1986) indi cate a broad distribution of $\mathbf{j u v e n i l e ~ c h u m i n ~ a c t i v e ~}$ di stri butaries, adj acent tidal channel s , and Iake outlet streans. Movenent into tidal channels and outlet streans, however, was rel ated to tidal backuater effects as \mathbf{j} uveniles were sel dom found in these habitats at low tide, even though many of these channel s were accessible at this time. The anount of river di scharge during June probably affects fish di stribution and habitat access as well. During 1985 nost of the delta was covered by water, whereas during 1986 many of the snaller channels and di stributaries were not connected to the ri ver.

Utilization of the outer delta platformand delta front by j uvenile chum was greater than utilization of the coastal habitats. The snall average size of $j u v e n i l e s$ found in these habitats suggests that little or no rearing is occurring in this envi ronment and that $j u v e n i l e s$ must be rearing in sone other habitat bef ore migration to open ocean. The average size of chum $\mathrm{juvenil}^{\mathrm{l}} \mathrm{es}$ in the offshore habitats was slighty smaller than outmigrants from the river during the sane time period (see Figure 3-16 to 3-18). The rel ative age of these fish was al so I ess than fish fromthe river (see Table 3-13). This would indi cate that all but the largest and ol dest outnigrants from the river were probably moving di rectly to the delta front. Most of the fish utilizing the delta pl atform and delta front habitats were in the $\mathbf{4 0 - 5 0}$ mm size category and all the fish were less than $70 \mathrm{~mm} \quad \mathrm{In}$ other est uaries the size of chum sal non j uveniles at migration frominshore to deeper estuarine habitats ranged $40-75 \mathrm{~mm}$ and the size at migration from deeper estuarine habitats to the open ocean ranged $\mathbf{7 0 - 1 3 0} \mathbf{~ m m}$ (Table 4-3). Therefore, compared to other estuaries the snall size of juvenile chum utilizing the delta front indicates that this habitat nay function as the inner estuary or staging area for j uveniles before novenent to deeper water habitats. The deeper water in the prodelta (Fi gure 2-2) may serve as the outer estuary for \mathbf{j} uvenile outmigrants and may be an important habitat prior to ocean migration. O the other hand, juvenile chum could nove out from the Yukon pl une and northyard with prevailing current (Truett 1985) and rear in the deeper offshore habitats of Norton Sound. Healey (1980) exam ned the di stribution of chum juveniles in Georgia Strait during summer and found that juveniles were less abundant in the Fraser pl une than in ot her regions. Further investigations of the del ta front, prodelta and Norton Sound, are necessary in order to identify the spatial and temporal utilization of this preocean rearing habitat.

4. 2. 3 Determining Resi dency Vith Otoliths

The results of the otolith anal ysis suggest that increnent periodicity nay not be constant for the early life stages of j uvenile chum sal non. Periodicity appears to range from approxi matel y $2 \mathrm{~d} / \mathrm{i}$ ncrenent for pre-

TABLE 4-3
Si zes of Chum Sal non Juveniles in Estuarine Habitats (Adapt ed from Iwamoto and Sal e, 1977)

Locati on	Si ze (mm) at Mgration	Ref erence
Migration From Inner to Outer Estuary		
Bi g Qualicum, B. C.	75	Al len (1974)
Puget Sound, Washington	50-60	Feller (1974)
Hood Canal, Whshi ngton	40-50	Schreiner (1977)
Bellingham Bay, Wasnington	65	Tyler (1964)
Migration From Outer Estuary to Open Ocean		
Big Qualicum, B. C.	120	Allen (1974)
Little Port Walter, Al aska	130	Lagler and Wright (1962)
Hokkaido, J apan	70-100	Sano and Kobayasni (1952)

energent alevins to $0.8 \mathbf{d} / \mathrm{i}$ ncrenent for $\mathbf{5 0} \mathbf{~ m m o u t m i n g r y s . ~ T h e ~}$ question is, is this wide variation in increnent periodicity real? Research has shown that increment formation rates can vary from both less than and greater than one per day (Campanca and Neilson 1985). Envi ronmental variables such as photoperiod, temperature, and feedi ng regime are known to have an influence on the rate of otolith deposition (Neilson and Geen 1982, 1985; Jones 1984). Juvenile chum salmon in the Yukon Ri ver hould experience large variations in physical envi ronnental conditions during the alevin and fry outmigrant stages. For example, photoperiod (at $64^{\circ} \mathrm{N}$) varies from $13 \mathrm{hr} / \mathrm{d}$ during the alevin-early fry stage (i.e., early April) to $\mathbf{2 3} \mathbf{h r} / \mathrm{d}$ during the peak of the outmigration (i.e., mid-June). Whter temperature during this period will range from $5^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}$. Food supply uould vary greatly in quantity and quality as fish change fromindi genous to exogenous feeding and as they migrate from a clear tributary to a turbid river and through the delta/estuarine envi ronnent. Therefore, a variation in i ncrenent fornation rate is not unlikel y for Yukon chum sal non.

This apparent variation in increnent periodicity for Yukon chum sal non prohi bits us fromestimating fish age or el apsed time fromincrenent counts. Instead, the number of increments can only be viewed as a rel ative neasure of age. Mre infornation is needed on factors that may cause a transition in increment periodicity and when these transitions occur during juvenile devel opment.

The results of the 1986 otolith anal ysis do not concur with the results from 1985 concerni ng residency. The 1985 results suggested that juvenile chum may have been residing in some del ta habitats. Thi s interpretation was based on: 1) theidentification of anter edge zone where increnent width showed a stepwi se increase over the preceding increnents; and, 2) the assumption that this zone corresponded with the transition froma riverine to an estuarine or del ta envi ronment. It is now evident, however, from the anal ysis of a large number of otoliths in 1986 that the outer edge zone identified in

1985 was the post-hatching zone. Theref ore, the wider increnents in this zone were not an indicator of estuarine residency but rather an approxi nate neasure of age and a record of grouth si nce hatching.

4. 2. 4 Resi dency

Resi dency of juvenile chumsal mon in the offshore habitats examined in this study was either not occurring or was too short (i.e., less than 1 to 2 weeks) to be detected. The slight difference insize composition of outmigrants from the lower river compared to $\mathbf{j u v e n i l e s ~ f r o m ~ t h e ~}$ delta front or delta platformduring the same time periods (Figures 3-16 to 3-18) indi cates that juveniles could not have been residing for very long. The young relative age of the juveniles in the offshore habitats compared to the age of \mathbf{j} uveniles in the river supports this hypothesis. Juvenile chum are nost likely noving througn the lower river, bypassing the coastal habitats, and noving directly to the delta front. Fishinthe delta front apparently do not reside Iong and continue their outmigration either to a deeper estuarine habitat or to the open ocean.

The short resi dence of \mathbf{j} uvenile chum sal non in the Yukon Delta is not uncommon compared to residency in other estuaries. Healey (1979) found that residence timesinthe Nanaimo Estuary varied bet ween 0 and 18 days over two years of observations. In the Fraser River Delta, chum resi dency in tidal marsh channels ranged up to 11 days (Levy and Northcote 1982) and in the Skagit Ri ver Del ta chum residency ranged 0 to 12 days (Fol ey, personal communi cation cited in Shepard 1981). Healey (1979) showed that juveniles arriving early duringspring remained longer than fry arriving I ater. Iwamoto and Sal o (1977) cite several studies indi cating that fish size influenced di stribution and residency. In the Yukon Delta neither migration timing nor fish size seem to affect estuari ne resi dency since no residency was detected.

4. 2. 5 Growth

In the Yukon Delta grouth rates of chum sal non were not affected by the transition from a riverine envi ronnent to the shallow delta platform and delta front. Grouth rate was uniform during the last 13 to 26 days prior to fish capture, as denonstrated by the consi stency in otolith increnent widths (Fi gure 3-21). These results suggest that $\mathbf{j u v e n i l e}$ chumin the Yukon River do not require the shallow nearshore habitats for grouth as do, for example, chumin estuaries of British Col unbia and Puget Sound (Healy 1982, Si nenstad et al 1982). These results al so suggest that food availability in the Yukon River nay not be a limiting factor during the outmigration period. Food habits studies that were conducted in 1985 (Martin et al 1986) showed that only 16 percent of the chum stomachs examined were empty. Therefore, outmigrant chum must be obtaining sufficient food in order to maintain a fairly uniform growth rate.

Grouth rate of juvenile chum sal mon was not neasured during this study but was estimated fromfish length data. This grouth rate estimate (i.e., $0.31 \mathrm{~mm} / \mathrm{d}$) is probably bi ased on the low side because of the effects of imigration and emation on the size of fish in the sample popul ation. This estimate indicates that the grouth rate of chum sal mon in the Yukon River is similar to the grouth rates reported for chumin other freshwater envi ronments (Table 4-4).

4. 3 ULNERABI LITY TO OL AND GAS DEVELOPMENT

```
The vulnerability of a habitat to impacts from a potential oil spill is
largely dependent upon the location and elevation of the habitat. In
the Yukon Delta, habitats can be ranked in order of their relative
vulnerability as follows:
```

```
Growth Rate of Juvenile Chum Salmon in Freshwater
```

Location	Habi tat	Grouth Rate (mal d)	Temper at ure $\left({ }^{\circ} \mathrm{C}\right)$	Reference
Susitna, R, AK	Freshwater	.25-.45 ${ }^{\text {a }}$	3.6-11.8	Roth and Stratton (1985), Roth et al. (1986)
Laboratory, B.C.	Freshwater	.66-.82 ${ }^{\text {b/ }}$	$14.0{ }^{\circ}-16.00$	Le Brasseur (1969)
Clear Creek, Yukon R, AK	Freshwater	.22 ${ }^{\text {a/ }}$	$1.8{ }^{\circ}-10.00$	Raymond (1981)
Yukon R, AK	Freshwater	. 31 /	6. $8^{\circ}-17.10$	This Report

a/ Represents a population growth rate (after Ricker 1975) comput ed from nean I engt h data.

b/ Fish fed on excess ration grew at 5.4 percent body weight per day. Converted to mm / d for 40 mm and 50 mm fish using length-weight regression from Roth et al . (1986).

1) delta front and delta platform
2) intertidal mudflats and tidal sloughs
3) acti ve di stributaries
4) inactive di stributaries and connected Iakes

Theref ore, \mathbf{j} uvenile sal non that utilize the delta front or delta platform nould be the nost vul nerable to impacts from oil because these habitats are in close proximity to the oil and gas lease area (Figure 2-1). Whereas, fish that may occur in inactive distributaries or connected lakes would be the least likely to be impacted because oil would only reach these habitats by arge stormsurge event.

Results fromthis investigation and the 1985 fish investigations (Martin et al ., 1986) indicated that the major distributaries, nearshore habitats near the distributary mouths, the outer delta platform and the delta front are primarily utilized as a migration corridor for juvenile sal mon. An oil spill during the outmigration period that may reach any of these habitats could have a significant impact on Yukon river salmon stocks. Based on the 1985 data, Martinet al. (1986) indicate that the nearshore habitats (i.e., inner delta platform and tidal sloughs) were the most important for \mathbf{j} uvenile sal non and that an impact in these habitats would have the greatest effect on those populations. However, based on the 1986 data, it is evident that the nearshore habitats are not as important as previ ously thought. Additional fish sampling in the offshore areas indicates that the outer delta platform and the delta front are nore important for the j uvenile outmigrant popul ations. The 1986 data al so suggests that the prodelta
 their ocean migration. If the latter is true, fish that utilize the prodel ta would be the nost vul nerable to oil impacts because this habitat is partially located within the proposed OCS lease area. Mbre information is needed concerning the di stribution and duration of habitat utilization in the prodelta and Norton Sound region in order to assess potential impacts from oil and gas devel opment.

The di stribution of sheefish and whitefish observed in this survey and in the 1985 survey (Martin et al. 1986) indicates that the intertidal mudflats and tidal sloughs are the nost important habitats utilized by these speci es. These speci es and their popul ations would be hi ghl y vul nerable to an oil spill that reached the nearshore envi ronment. Similarly, juvenile cisco were very abundant in the nearshore habitats and in the delta platform Unlike juvenile sal non, the j uvenile whitefish, sheefish, and cisco do not migrate far beyond the nearshore envi ronnents. Instead, they utilize these shallow coastal habitats for rearing throughout the sumer and early fall. In winter, however, these habitats are frozen and the coregonids are assumed to move into the deeper active distributaries within the delta. This continuous, year-round utilization of the delta habitats makes the coregonid species potentially vulnerable to oil and gas development during all seasons.

5. REFERENCES C TED

Alen, B. 1974. Early marine life history of Big Qualicum River chum sal non. Ln: Proceedi ngs of the 1974 Northeast Pacific Pink and Chum Sal non Wbrkshop, D.R. Hardi ng (cd.), Dept. of the Envi ronnent, Fi sheri es, Vancouver, B. C., pp. 137-148.

Barton, L. 1979. Finfish resource surveys in Norton Sound and Kotzebue Sound. In:Environ. Assess. Alaskan Cont. Shel f. Fi nal Rept. Prin. Invest. BLM/NOAA, OCSEAP. Boul der, Colo. 4:75-313.

Bart on, L.H. 1983. Summary of j uvenile sal mon inf ornation collected during 1976 and 1977 OCS studies in Norton Sound and the Yukon River Delta. Unpublished draft report. 96 pp.

Brett, J.R. 1952. Temperature tol erance in young Pacific sal non, genus Oncorhynchus. J. Fi sh. Res. Bd. Canada 9:265-323.

Brett, J.R. and C. Groot. 1963. Sone aspects of olfactory and vi sual responses in Pacific sal non. J. Fi sh. Res. Board Can. 20:287-301.

Buklis, L. and L. Barton. 1984. Yukon Ri ver fall chum sal non bi ol ogy and stock status. Al aska Departnent of Fi sh and Gane, Di vi si on of Commerical Fi sheries, Anchorage AK. Inf ornation Leaflet Nb. 239.

Buklis, L., 1983. Anvik and Andreaf sky Ri ver sal non studi es. Al aska Department of Fi sh and Gane, Di visi on of Commerical Fi sheri es, Anchorage, AK. AYK Regi on, Yukon Sal non Escapenent Report No. 20.

Campana, S.E. and J.D. Neilson. 1985. M crostructure of fish otoliths. Can. J. Fish Aquat. Sci. 42:1014-1032.

Czaya, Eberhard. 1981. Ri vers of the Wbrld. Van Nostrand Rei nhol d Company, New York. 247 pp.

Dawley, E., R. Ledgerwood, T. Blanm, C. Si ns, J. Durkin, R. Kim A Rankis, G Monan, and F. Ossiander. 1985. M grational characteristics, bi ol ogi cal observations, and rel ative survi val of juvenile salmonids entering the Colubmia Ri ver estuary, 1956-1983. Fi nal Report, project no. 81-102, Bonneville Power Administration, Portland, OR.

Dinneford, W.B. and K. Franci sco. 1977. Fourth interim report of the Commercial Fish - Techni cal Eval uation Study: Tanana and Delta Ri vers. J oi nt State/ Feder al Fish and Wildlife Advisory Team. Special Report\#19.

Dupre', W.R. 1978. Yukon Delta Coastal Processes Study. Ln: Annual Reports of Princi pal Investi gators for year endi ng Marcn 1978. NOAA OCSEAP.

Dupre', W.R. 1980. Yukon delta coastal processes study. In:
Envi ronmental Assessnent of the Alaska Continental Shelf. Final Rep. Prin. I nvest. , OCSEAP, Boul der, CO.

Dupre', W.R., and R. Thompson. 1979. The Yukon Delta: a nodel for deltaic sedi mentation in an ice-dominated envi ronment. Proc. 11 th Annual Offshore Technology Conference, OTC Paper 3434, p. 657-664.

Fel Ier, R.J. 1974. Trophic anal ysis of $\mathrm{j} u$ uenile pink and chum sal non from Puget Sound. In: Proceedi ngs of the 1974 Northeast Pacific Pi nk and Chum Sal non Workshop, T. Bi rd (cd.), Canada Dept. Envi ronment, pp. 149-160.

Francisco, K. 1976. First Interim Report of the Comercial Fish Techni cal Eval uation Study. Joint State/ Feder al Fish and Wildlife Advisory Team. Special Report \#4. Anchorage.

Franci sco, K. 1977. Second Interim Report of the Commercial Fi sh Techni cal Eval uation Study. Joint State/ Federal Fish and Vildife Advi sory Team Speci al Report \#9. Anchorage.

Gissberg, J.G. and D. S. Benning. 1965. Yukon foundation studies summary report, 1965. U.S. Dept. of Interior, Fish and WIdife Service. Anchorage (unpubl ished).

Groves, J. and W. Stringer. 1982. Eval uation of the utility of Landsat i magery for determination of sediment concentration: Prudnoe Bay, Alaska. Report for NOAA OCS Contract No. 81-AA00147. Geophysi cal Institute, Univ. of Alaska, Fairbanks.

Hachmeister, L., K. short., G. Schrader, K. Winnick, and J. Johannessen. 1986. Oceanographic monitoring. Endicott Monitoring Program. Envirosphere Company.

Healey, M.C. 1978. The distribution, abundance, and feeding habits of juvenile Pacific Salmon in Georgia Strait, British Col unbia. Department of Fi sheries and the Envi ronment, Fi sheries and Marine Service, Techni cal Report No. 788. Nanaimo, British Columbia.

Hea ey, M.C. 1982. Juvenile Pac fic Sal mon in estuaries: the Iife support system pp. 315-342 $\mathbf{\perp}$: V.S. Kennedy (cd) Estuarine Compari sons. Academi c Press. New York, NY.

Hea ey, M.C. 1983. Coastwi de di stribution and ocean migration patterns of steam- and ocean-type chinook salmon, Oncorhynchus tshawytscha. Canada Field-Naturalist 97(4):427-433.

Healey, M.C. 1979. Detritus and juvenile sal non production in the Nanaimo estuary. 1:Production and feeding rates of $\mathbf{j u v e n i l e ~ c h u m ~}$ sal mon (Oncornynchus keta). J. Fi sh. Res. Board Can. 36:488-496.

Iwamoto, R. and E. Sal e. 1977. Estuari ne survi val of juvenile salmonids: a review of the literature. Wash. Dept. Fi sh contract No. 807., Fish Res. inst., Univ. of Wash., Seattle, WA.

Jones, C. 1986. Determining age of larval fish with the otolith i ncrement technique. Fi sh. Bull. 84:91-102.

Lagler, K.F. and A.T. Wrignt. 1962. Predation of the Dolly Varden, Salvenlinusmalma, on young salmon, Oncornynchus spp., in an estuary of southeastern Alaska. Trans. AM Fish. Sot. 91(1):90-93.

LeBrasseur, R. 1969. Growth of juvenile chum salmon (Oncornynchus keta) under different feeding regimes. J. Fish. Res. Bd. Can. 26:1631-1545.

Levy, D.A and T.G.Northcote. 1982. Juvenile salmon residency in a marsh area of the Fraser River Estuary. Can. J. Fish. Aquat. Sci. 39:270-276.

Martin, D. D. G ass, C. Whitmus, C. Si menstad, M Stevenson, and R. Grotef endt. 1986. Distribution, seasonal abundance, and feedi ng dependencies of juvenile salmon and non-salmonid fishes in the Yukon River Delta. Fi nal Report for Contract No. 84- ABC- 00178 to NOAA OCSEAP and M neral Managenent Service, Anchorage, AK.

Merritt, M and J. Raynond. 1983. Early life hi story of chum salmon in the Noatak River and Kotzebue Sound. Alaska Department of Fish and Gane, Di vi si on of fish Rehabilitation, Enhancement, and Development. 56 pp.

Meyers, K.W.W. 1980. An investigation of the utilization of four study areas in Yaquine Bay, Oregon, by hatchery and wild juvenile salmonids. M S. Thesis. Oregon State Uni v. Corvallis, OR.

Neilson, J.D. and G.H. Geen. 1982. Otoliths of chi nook sal mon (Oncornynchus tshawytscha): daily growth increments and factors influencing thei \mathbf{r} production. Can. J. Fish. Aquat. Sci. 39:1340-1347.

Neilson, J.D. and G.H. Geen. 1985. Effects of feeding regi nes and di el temperature cycles on otolith increment formation in juvenile chi nook sal mon (Oncorhynchus tshawytscha). Fish. bull. 83:91-101.

Neilson, J.D., G.H. Geen, and D. Bottom. 1984. Estuarine growth of juvenile chi nook sal non (Oncorhynchus tshawytscha) as inferred from otolith mi crostructure. Can. J. Fish. Aquat. Sci. 42: 899-908.

Noggle., C. 1978. Behavioral, physiological and lethal effects of suspended sedi ment on j uvenile salmonids. M.S. Thesis. Uni versity of Kashi ngton, Seattle, WA.

O son, WH, D.L. Chase, and J.N. Hanson. 1973. Preli minary studi es using synthetic pol yner to reduce turbidity in a hatchery water supply. Prog. Fish. Cult. 35:66-73.

Raymond, J. and C. Skaugstad. 1986. Emigration of salmon from Clear Creek and the Tanana River in interior Alaska. Unpublished Report of Alaska Department of $\mathbf{F i} \mathbf{s h}$ and Gane. Di vi si on of Fi sheri es Rehabilitation, Juneau, AK.

Raymond, J.A. 1981 . Outmigration of sal non smelts from dear Creek, Al aska. Al aska Department of Fi sh and Gane, Di vi si on of Fi sheries Rehabilitation (unpubl ished).

Rei ners, P.E. 1973. The length of resi dence of j uvenile fall chinook salmon in Si xes Ri ver, Oregon. Res. Dept. Fi sh. Comm Oregon. 4(2):3-41.

Ross, D. 1973. Fi sh and wildife investigations, Chena River Lakes Project. U.S. Dept. of Interior, Fish and Wildife Service. Fai rbanks, AK (unpubl i shed).

Ross, D. 1974. Fi sh and wildifeinvestigations, Chena River Lakes Project. U.S. Dept. of Interior, Fish and Wildife Service. Fai rbanks, AK (unpubl ished).

Ross, D. 1975. Snelt trapping, Chena River flood control project, 1975. U.S. Dept. of Interior, Fish and Wildlife Service.

Fai rbanks, AK (unpubl i shed).

Roth, K and M Stratton. 1985. The migration and growth of juvenile salmon in the Susitna River. Part 1 in: D.C. Schnidt, S.S. Hale, and D.L. Crawf ord, (eds). Resi dent and Juvenile Anadronous I nvesti gations (May-October 1984). Susitna Aquatic Studi es Program Report No. 7. Al aska Department of Fi sh and Gane, Anchorage, AK.

Roth, K., D. Gray, J. Anderson, A Blaney, J. McDonell. 1986. The migration and grouth of $\mathbf{j} u v e n i l e ~ s a l ~ n o n ~ i n ~ t h e ~ S u s i t n a ~ R i v e r, ~$ 1985. In: Susitna Aquatic Studi es Program Report No. 14. Al aska Departnent of Fi sh and Gane, Anchorage, AK.

Sane, S. and T. Kobayashi . 1952. An ecol ogi cal study on the sal non fry, Oncorhynchus keta (2). The migration and growth of the fry in the narking experiment. Sci entific Reports of the Hokkaido Fish Hat chery 8(2):71 (Abstract in English).

Schreiner, J.U. 1977. Salmonid outmigration studi es in Hood Canal, Whsh. M.S. Thesis, Uni v. Whsh., Seattle. 91 pp.

Shepard, M 1981. Status and revi ew of the know edge pertaining to the est uarine habitat requi renents and life history of chum and chi nook sal mon juveniles in Puget Sound. Whshi ngton Cooperative Fi shery Research Unit, College of Fisheries, Univ. of Wash., Seattle, WA. Fi nal Report.

Si menstad, D., K. Fresh, and E. Sal e. 1982. The role of Puget Sound and Vashington coastal estuaries in the life history of Pacific Sal non: an unappreci ated function. pp. 343-364 1 n: V.S. Kennedy, Est uari ne Compari sons. Academic Press. New York, NY.

Stober, QJ., S.J. WAl den, and D.T.Griggs. 1973. Juvenile salmon migration through Skagit Bay. I n: Ecol ogical studies of the proposed Kiket Isl and nucl ear power site, Q.J. Stober and E.O.Salo (eds), Final Report, FRI-UW-7304, pp. 35-70.

Stratton, M 1986. Summary of juvenile chi nook and coho sal mon winter studi es in the middle Susitna Ri ver, 1984-85. Part 2 of: ADF\&G. Winter Studi es of Resident and Juvenile Anadronous Fi sh I nvesti gations (October 1984 - May 1985). Susitna Aquatic Studies Program Report No. 11. Al aska Departnent of Fish and Gane, Anchorage, AK.

Trasky, L.L. 1974. Yukon River anadronous fish investigations, compl etion report. Al aska Dept. Fi sh \& Gane Comerci al Fi sheri es Di vi si on Fishery Bulletin \#24. Anchorage.

Truett, C., P. Craig, D. Herter, M Raynolds and T. Kozo. 1984. Ecol ogi cal characterization of the Yukon River Delta. U. S. Dept. Commer. and U. S. Dept. Inter. OCSEAP Final Rep. 32(1985): 121-397.

Truett, J.C. 1985. Physi cal envi ronment and pollutant behavi or. p. 11-42. ! n: J.C. Truett (cd). Proceedings of a synthesis neeting: the Norton Basin envi ronment and possi ble consequences of pl anned offshore oil and gas devel opment. Denali National Park, Al aska, 5-7 J une 1984. Outer Conti nental Shelf Envi ronnental Assessment Program NOAA and ME.

Tyl er, R.W. 1964. Distribution and mration of young sal mon in Bellingham Bay, Whshi ngton. Circ. 212, Fi sh. Res. Inst., Uni v. Uksh., 26 pp.

Vol k, E.C., C.A. Si menstad, and R.C. Wissnar. (ins.). The use of otolith microstructure to determine estuarine entry and residence time of \mathbf{j} uvenile chUm salmon (Oncorhynchus keta).

Whl ker, C.E. 1976. Studi es on the anadromous fishes of the Yukon River within Canada. Dept. of the Environment, Fisheries and Marine Servi ce. Vancouver, B. C.

Wal ker, R.J. 1983. Grouth of young-of-the-year salmonids in the Chena Ri ver, Al aska, M.S. Thesi s. Uni versity of Al aska, Fai rbanks, AK.

WIlianson, D. 1981. Outmigration of \mathbf{j} uvenile sal mon in the Chena Ri ver. U.S. Fish \& Willifife Service. In preparation.

Station	Date	$\underset{(\mathrm{m})}{\substack{\text { Depth }}}$	Bottom Conducti vity (mmhos/cm)	Salt inity (ppt)	$\underset{\substack{\text { Bottom } \\ \text { Temperature } \\\left({ }^{\circ} \mathrm{C}\right)}}{ }$		Surface Sal inity (ppt)	$\begin{gathered} \text { Surf ace } \\ \text { Temperature } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Secch i Depth (m)	Sea State
1	6/06	7.5	22.3	26.1	0.0	15.0	14.3	3.9	0.7	2
1	6/12	6.0		27.4	0.4	16.0			0.9 0.5	3
	6/15	5.5	24.4	27.3	1.1	10.7 5	8.0 3.8	13.2 12.0	0.5 0.2	4
,	6/19	5.0	25.7	23.6	${ }_{8.6} 8.3$			12.0 16.0	0.2	3
1	7/14	5.0			11.7			13.0	0.4	${ }_{2}$
1	$8 / 06$	5.0	30.0	26.6	9.4	30.0	27.0	9.8	0.5	2
2	$6{ }_{6} 12$	9.0	24.0	28.3	0.0	9.2	7.1	10.8		3
2	$6{ }_{6} 15$	8.0	24.2	28.0	0.1	6.3 6.0	4.3	15.2		
2	6/19	9.0	25.5	29.2	0.0	6.0	4.1	11.9 14	0.2	${ }_{2}$
2	$7 / 14$ $8 / 06$	9.0 8.5	27.1	23.8	10.3 9.7	22.1	18.8	14.9 10.2	0.2 0.3	${ }_{2}$
3	${ }_{6}^{6 / 12}$	8.0	23.9 24.3	29.2 29.2	0.0 0.0	14.9 19.5	12.9	8.2 10.0	0.8 1.1	${ }_{3}^{4}$
3	$6 / 19$	8.5	25.3	27.2	3. 2	6.3	4.6	12.1	0.2	1
3	$7 / 11$	8.5			5.5			14.5	1.2	4
3	7/14	9.0			9.5			15.5	0.2	3
3	8/ 06	9.0	30.8	27.1	10.1	23.4	19.8	10.7	0.5	2
4	$6 / 12$	1.5	19.9	19.9	4.1	14.1	12.1	8. 0	0.8	3
4	$6 / 19$	2.0 1.0	23.3	23.9 1.4	3.5 12.6	16.8 2.4	13.9 1.3	${ }_{12.6}^{9.6}$	0.5	2
4	7/11	1.5			15.3			16.0	${ }_{0} 0.3$	3
4	7/14	1.5			13.9			14.1	0.2	2
5	${ }_{6 / 12}^{6 / 15}$	2.0 2.0	21.5	23.6	1.5	11.3	9.0	10.2	0.6	3
5		2.0	19.9	$\begin{array}{r}18.3 \\ \hline\end{array}$	6.5 10.9	8.5 2.4	6.0 1.5	14.7	0.7 0.2	$\frac{2}{3}$
5	7/14	1.7			13.9			11.9	0.2	
5	8/06	3.5	11.6	9.1	10.8	10.3	7.9	11.0	0.3	2
6	$6 / 12$	2.0	23.6	27.9		8.3	6.6	10.9		3
6	6/19	2.0 3.5	20.0 3.6	18.7 5.2	6.2 11.8	5.7 2.6	3.5 1.5	17.2 12.3	0.4 0.2	3
6	7/11	2. 2			16.0			16.2	0.1	3
6	$7 / 14$ $8 / 06$	2.5			15.0			15.0	0.2	3
6	$8 / 06$	3.0	2.9	3.0	11.1	2.4	1.7	11.2	0.2	2

WATER QUALITY DATAAND PHYSICAL CONDITIONS DURING SUMMER 1986 IN THE YUKONRIVERDELTA

Station	Date	Depth (m)	Botton Conductivity (minhos/cm)	Bottom Salinity (npt)	$\underset{\substack{\text { Bnttom } \\ \text { Temperature } \\\left({ }^{\circ} \mathrm{C}\right)}}{\substack{\text { Bin }}}$	$\begin{gathered} \text { Surface } \\ \text { Conductivity } \\ \text { (mmhos } / \mathrm{cm} \text {) } \end{gathered}$	Surface Salinity (ppt)	Surface Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Secc hi Depth (n)	Sea Statea
8	$6 / 10$	0.5	1.2	0.8	9.4					2
8	6/14	0.3	1.3	1.0	15.2				0.2	2
8	6/17	0.5						15.4	0.3	?
8	$6 / 22$	0.5	2.1	1.3	17.0				0.4	1
8	6/24	0.5	1.0	0.7	10.0			14.5	0.2 0.2	2
8	$8 / 04$	0.3						11.7	0.1	1
9	6/25	1.0	1.8	1.4	9.1	1.8	1.3	9.2	0.1	2
9	7/13	0.5						13.5	0.3	
9	8/04	0.5						12.5	0.2	2
10	8/05	0.6						10.1	0.6	1
- 11	6/ 10	1.5	1.3	1.0	8.5	1.3	0.9	8.7	0.5	1
-11	6/14	1.5	1.5	0.9	19.1	1.4	0.8	17.8	0.8	${ }^{2}$
- 11	$6 / 17$	2.0				3.8	2.7	16.1 13.5	0.5 0.9	1
11	$6 / 24$	0.5	1.0	${ }_{0.6}$	12.2	1.0	2.6	13.5 10.2	0.6	1
11	7/12	2.0						13.5	0.2	1
11	$8 / 04$	1.5						10.8	0.1	1
12	6/25	1.5	2.2	1.7	8.4	2.2	1.8	8.8	0.3	
12	7/13	2.0						13.5	0.4	0
12	8/04	2.0						11.5	0.5	1
13	6/04	10.0	1.4	0.9	6.5	1.2	0.9	6.8	0.2	2
13	6/05	9.0	1.1	0.8	7.6	1.1	0.8	7.6	0.2	0
13	6/09	9.0	1.3	0.8	9.9	1.3	0.8	10.2	0.4	2
13	6/13	10.0	1.3	0.8	12.7	1.4	0.9	12.9	0.3	
13 13	6/14 $6 / 17$	6. 0	1.3	0.8	13.3	$\underline{1.9}$	0.8 1.9	13.3 14.6	0.2 0.3	
13	6/18	9.0	2.0	1.2	13.7	2.1	1.1	13.8	0.2	${ }_{3}$
13	6/20	9.5	2.1	1.3	13.8	2.6	1.4	13.8	0.2	
13	$6 / 22$	10.0	2.5	1.8	14.6	2.7	1.8	14.5	0.2	0
13	6/24	10.0	1.0	0.6	14.4	1.0	0.6	14.3	0.2	3
13	$6 / 26$	10.0	1.9	1.3	13.6	1.5	0.9	13.7	0.2	3
13	7/12	10.0			17.0			17.1	${ }_{0}^{0.2}$	3
13	8/07	10.5			12.6	0.7	0.4	12.8	0.2	2
13	$8 / 08$	9.5	0.7	0.3	12.8	0.7	0.3	12.7	0.1	1

WATER QUALITY DATAAND PHYSICAL $\begin{gathered}\text { APPENDIXA (Continued) } \\ \text { CONDITIONS DURING SUM }\end{gathered}$

Station	Date	Depth (m)	Bottom Conductivity (mmhos/cm)	Bottom Salinity (ppt)	Bottom Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Surface Conductivity (mmhns/cm)	Sirface Salinity (ppt)	Surface Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Secchi Dept.h (m)	Sea Statea/
14	6/01	10.0						4.9	0.1	1
$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 5 / 31 \\ & 6 / 02 \end{aligned}$	6. 0	1.1	1.1	8. 0	1.1	0.8	$\begin{aligned} & \text { 9. } 1 \\ & \text { 8. } 2 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.9 \end{aligned}$	0
16	5/31									0
17	$6 / 05$ $6 / 07$	10.0 9.5						9. 0 9.3	0.2	0
17	.6/07	9.5 10.0	1. 2	0.8 0.8	9.4 10.1	1. 2	0.8 1.0	9.3 10.0	0.2 0.2	1
17	6/08	10.0 8.0	1. 2	0.8 0.8	10. 2	1. 2	1. 1.0	10.2	0.2 0.3	1
17	6/ 10	9.0	1.2	0.8	11.5	1.1	0.8	11.4	0.4	2
17	6/11	8. 0	1.2	0.9	11. 8	1. 2	0.8	11. 8	0.3	0
17	6/ 13	8. 5	1.1	0.5	13. 1	1. 2	0.9	13. 2	0.3	$?$
17	6/14	10. 0	1.4	0.9	13.9	1.4	0.9	13. 8	0.2	2
17	6/17	10.0	2.1	0.8	14.7	2.4	1.4	14.9	0.2	$?$
17	6/ 18	11.0	2.4	1.6	13. 6	2.3	1. 0	13. 8	0.2	2
17	$6 / 20$	10. 0	2.1	1.3	13. 6	2.7	1.7	13. 9	0.2	1
17	6/22	7.0	2. 5	1.6	14. 5	2.8	1.8	14. 6	0.2	0
17	$6 / 24$	9.0	1. 0	(). 6	14.4	1. 0	0.6	14.5	0.2	2
17	1i/26	9.0	1. 5	1.0	13. 6	1.6	1. 0	13.7	0.2	2
17	7/10	11.0	5. 6	2.7	17.9	5.7	2.5		0.2	1
17	$7 / 12$	10.0		2.7	16.4			16.7	$0 . ?$	1
17	$7 / 13$	10.0			17.0			17. 1	0.2	1
17	8/ 05	8. 0			12. 8			12.8	0.1	1
17	8/07	9. 5	0.7	0.4	12. 5	0.7	0.4	12.5	0.1	1
17	8/ 08	9. 5	0.7	0.4	12.7	0.7	0.5	12.7	0.1	1
17	8/ 08	9.5	0.7	0.4	12.7	0.7	0.5	12.7	0.1	1
21	6/06	13.0	23.4	28. 5	0.0	8.7	8. 3	4. 1	1.0	2
41	$6 / 04$ $6 / 06$	2.0 1.0	1.1 1.3	1.1 1.1	3.5 3.9	1.2 1.3	0.8 1.1	3.4 3.9	0.2 0.2	2
51	6/ 06	2.5	22. 0	25. 4	0.0	6. 6	5.5	5.4	0.3	$?$

a/ WorlHMptenroloqical Organization sea state sCale

FISH CATCH AND FISH LENGTH STATISTICS GROUPED BY SPECIES, STATION, AND DATE FOR THE 1986 SUMMER SURVEY OF THE YUKON RIVER DELTA

Station Da te Gear Catch Reps CPUE Catch $\quad N$| Mean |
| :---: |

CH NOOK SALMON

3	1.00	1. 73	3	83. 33	77	90	6. 51
3	0.33	0.58	1	78. 00	78	78	
3	2.00	1.00	6	94.17	72	116	14.73
3	0.67	1.15	2	97.00	87	107	14. 14
3	0.33	0.58	1	88.00	88	88	
3	0.33	0. 58	1	101.00	101	101	
3	3.33	0.58	10	103. 90	82	115	9. 69
3	3.00	5.20	9	96. 33	74	115	14. 46
3	1.00	1.73	3	92. 00	82	105	11. 79
3	2.00	1.73	6	90. 33	76	110	12. 53
2	0.50	0.71	1	95. 00	95	95	
3	1.00	1.00	3	100. 33	92	112	10.41
3	2.00	1. 00	6	96.67	83	109	11.36
3	0.33	0.58	1	98. 00	98	98	
3	6.00	5.57	18	98. 11	72	116	13. 65
3	0.33	0.58	1	102.00	102	102	
2	0.50	0.71	1	115.00	115	115	
3	2.33	1.53	7	92.71	69	125	17.90
2	1.50	0.71	3	95.00	77	109	16. 37
3	1. 33	1. 53	4	99. 75	75	122	22. 38
3	3.00	2.65	9	101. 33	72	128	17. 20
3	0.33	0. 58	1	93. 00	93	93	
6	1.67	3.20	5	98.6(I	87	111	9.53
3	2.00	1.00	6	85. 50	79	89	4.04
3	0.67	1.15	2	92.50	89	96	4. 95
5	1. 20	1. 10	3	91.67	83	98	7.77
3	0.67	0.58	2	90. 50	83	98	10.61
3	2. 67	3. 79	8	89. 38	82	95	4. 69
3	3.00	2. 65	4	93. 50	85	110	11. 39

Station	Date	Gear	catch	Reps	CPUE	SD Cat ch	N	Mean Length	Minimum Length	Maximum Len gth	SD Len gth
	7/12	Tow Net	3	3	1. 00	1. 73	3	106.67	96	116	10. 07
14	6/ 01	Tow Net	3	7	0.43	G. 53	3	105. 67	79	128	24. 79
15	5/31	Tow Net	78	1			78	94. 65	73	117	11. 63
	6/ 02	Tow Net	69	3	23. 00	16. 37	19	94. 00	71	126	19.39
$\begin{aligned} & 16 \\ & 17 \end{aligned}$	5/ 31	Tow Net	27	1	27.00		27	97. 78	85	116	8.57
	6/ 05	Tow Net	40	15	5. 13	4.97	25	100. 08	83	118	9.51
	6/ 07	Tow Net	5	3	1. 67	0.58	5	93. 00	78	112	12. 77
	6/08	Tow Net	1	3	0. 33	0. 58	1	96. 00	96		
	6/ 09	Tow Net	11	3	3. 67	1. 15	11	89.00	72	1: :	10. 88
	6/ 10	Tow Net	5	3	1. 67	1. 15	5	91. 40	75	110	12.93
	6/11	Tow Net	4	3	1. 33	1.75	4	100. 25	94	107	5. 85
	6/ 14	Tow Net	4	3	1. 33	1. 53	4	92. 75	83	110	12. 28
	6/ 17	Tow Net	42	3	14. 00	1. 00	15	94. 80	85	119	9.99
	6/ 18	Tow Net	67	3	22. 33	2. 52	31	95. 48	78	114	8. 91
	6/ 20	Tow Net	7	3	2. 33	2. 52	7	95.71	80	117	13. 36
	6/ 22	Tow Net	10	3	3. 33	1. 15	10	92. 80	83	108	7. 32
	6/24	Tow Net	55	3	18. 33	5.69	34	93. 50	84	123	7.83
	6/ 26	Tow Net	53	3	17. 67	1. 53	52	93.21	81	109	6. 93
	7/10	Tow Net	26	3	8. 67	14. 15	1	113.00	113	113	
	7/ 12	Tow Net	20	3	6. 67	5. 13	19	101. 89	87	123	12. 46
	7/ 13	Tow Net	24	3	8. 00	2. 65	24	99. 83	82	117	8. 60
	8/ 05	Tow Net	4	3	1. 33	0. 58	4	101. 00	85	115	12. 33
	8/ 07	Tow Net	2	3	0.67	0. 58	2	112. 50	110	115	3.54
	8/ 08	Tow Net	2	4	0.50	0.58	2	112. 00	111	113	1. 41
41	6/ 04	Tow Net	1	2	0. 50	0.71	1	112. 00	112	112	
51	6/ 06	Tow Net	1	2	0. 50	0.71	1	103. 00	103	103	
					CHUM SA	LMON					
1	6/ 12	Tow Net	57	3	19. 00	8. 89	56	38. 70	35	46	2. 43
	6/15	Tow Net	181	3	60. 33	35.13	68	40. 00	33	52	$\text { 4. } 33$
	6/19	I "ow Net	148	3	49. 33	34. 44	45	41. 64	36	55	4. 23
	7/ 14	Tow Net	4	3	1. 33	1.53	4	49. 50	40	62	10. 02

	Station	Date	Gear Catch	Reps	CPUE	SD Catch	N	Mean Length	M ni mum Len gth	Maxi mum Length	SD Length
	2	6/ 12	Tow Net 63	3	21. 00	19.29	62	39. 74	35	61	5. 60
		6/ 15	Tow Net 92	3	30. 67	5. 03	41	40. 83	36	53	4. 36
		6/19	Tow Net 98	3	32. 67	3. 79	68	41.66	36	56	3.46
		7/14	Tow liet 1	3	0.33	0.58	1	57.00	57		
		8/06	Tow Net 2	3	0.67	0.58	2	83. 00	59	1:;	33.94
	3	6/ 12	Tow Net 16	3	5.33	2.08	16	37. 44	35	40	1.93
		6/15	Tow Net 11	3	3.67	3. 79	11	43. 64	36	61	7. 13
		6/19	Tow Net 87	3	29. 00	29. 44	63	40. 38	36	48	2.96
		7/11	Tow Net 25	3	8.33	8. 02	25	47. 72	36	68	7.21
		7/14	Tow Net 1	3	0.33	0.58	1	43. 00	43	43	
	4	6/12	Tow Net 42	3	14.00	9.85	41	39. 15	34	51	3.42
		$6 / 15$	Tow Net 18	3	6.00	2.65	18	44.00	37	85	11. 27
N N్ర		6/19	Tow Net 87	3	29.00	5: 57	41	40. 20	34	47	3. 04
		7/11	Tow Net 1	2	0.50	0.71	1	46. 00	46	46	
		7/14	Tow Net 1	3	0.33	0.58	1	51.00	51	51	
	5	6/ 12	Tow Net 39	3	13.00	6. 24	39	40.03	35	54	4.68
		6/15	Tow Net 105	3	35. 00	16.09	50	42.88	35	55	5. 63
		6/19	Tow Net 191	3	63.67	7.09	54	40.93	35	48	3. 37
	6	6/12	Tow Net 3	3	1.00	1.00	3	38. 67	38	40	1.15
		6/15	Tow Net 135	3	45.00	6.08	38	41. 45	35	50	4.12
		6/19	Tow Net 60	3	20.00	4.36	60	41. 82	35	52	3. 68
		7/14	I ow Net 4	3	1. 33	0.58	4	46. 00	42	53	4.97
		8/06	Tow Net 1	3	0.33	0.58	1	33. 00	33	33	
	8	6/ 10	Beach Sei ne- 1503	2	1. 50	0.71	3	36. 67	34	38	2.31
		6/14	Beach Sei ne-150 4	2	2.00	2.83	4	38. 50	38	39	0.58
		6/24	Beach Sei ne-150 1	2	0.50	0.71	1	42. 00	42	42	
	11	6/10	Beach Sei ne-759	2	4.50	0.71	9	37.00	32	39	2. 18
		6/ 14	Beach Sei ne- 75197	2	98. 50	55.86	40	39. 70	36	43	1. 79
	13	6/ 04	Tow Net 16	3	5.33	2.89	16	39. 38	33	62	8. 88
		6/ 05	Tow Net 15	3	5. 00	1.00	15	36. 40	35	38	0.
		6/ 09	Tow Net 158	3	52.67	10.02	46	39. 93	34	69	6. 10
		$6 / 13$ $6 / 14$	Tow Net Tow Net 122 195	3	40.67	$\text { 13. } 65$					
		6/14	Tow Net 195	6	$\text { 65. } 00$	$\text { 6. } 29$	36	41. 89	35	53	4. 21

Station	Date	Gear	Catch	Reps	CPUE	SD Cat ch	N	Mean Len gth	M ni mum Length	Maxi mum Len gth	$\underset{\text { Len gth }}{\text { S D }}$
	6/ 17	Tow Net	150	3	50. 00	17.35	47	45.51	38	70	5.96
	6/18	Tow Net	66	3	22. 00	4. 36	49	44. 76	36	52	3.57
	6/ 20	Tow Net	171	5	68.40	30. 31	32	43. 25	36	57	5.21
	6/22	1-OWNet	165	3	55.00	7.00	55	45. 64	38	6.1	4.66
	6/ 24	Tow Net	53	3	17.67	12.22	53	45.43	35	56	4.51
	6/ 26	Tow Net	44	3	14.67	2.31	44	48.91	39	57	4.33
	7/12	Tow Net	3	3	1.00	1.00	3	51.00	42	59	8.54
	8/ 05	Tow Net		3	0.67	0.58	2	46. 50	36	57	14.85
	8/07	Tow Net	1	3	0.33	0.58	1	49. 00	49	49	
	8/08	Tow Net	2	5	0.40	0.55	2	47.50	38	45	4.95
14	6/01	Tow Ne t	12	7	1.71	1. 70	12	37.50	29	61	9.49
15	6/ 02	Tow Net	43	3	14. 33	13.58	43	37.14	35	40	1.19
16	5/31	Tow Net	5	.	5.00		5	36. 00	34	37	1.22
17	4/ 05	Tow Net	103	15	12. 87	7. 62	30	40. 90	34	66	9.84
	6/07	Tow Net	35	3	11. 67	7.51	35	37. 46	33	42	2.28
	6/ 08	Tow Net	67	3	22. 33	5. 13	67	37.58	33	42	1.86
	6/09	Tow Net	324	3	108.00	12.53	45	37.36	34	48	2.39
	6/10	Tow Net	22	3	7.33	3. 06	22	38. 77	34	50	3.41
	6/11	Tow Net	21	3	7.00	3.61	21	42. 33	35	52	5.08
	6/ 13	Tow Net	45	3	15. 00	8. 54					
	6/14	Tow Net	49	3	16. 33	5. 13	49	42.41	35	53	5.31
	6/17	Tow Net	187	3	62.33	20.60	55	44.16	36	55	4.76
	6/18	Tow Net	336	3	112.00	26.00	61	42. 54	32	55	4.27
	$6 / 20$	Tow Net	95	3	31.67	7.77	47	42.98	35	62	4.58
	$6 / 22$	Tow Ne t	83	3	27.67	10.60	56	46.07	37	59	4.94
	6/24	Tow Net	115	3	38. 33	12.10	63	45. 54	35	58	5.55
	6/26	Tow Net	326	3	108.67	4. 73	93	45. 84	37	59	4.84
	$7 / 10$	1 ownet	13	3	4.33	2. 52	13	47.92	41	57	5.@
	7/12	Tow Net	25	3	8.33	4. 04	25	47. 80	37	71	7.52
	$7 / 13$	Tow Net	30	3	10. 00	3. 46	30	48. 57	38	65	6.28
	8/(.)5	Tow Net	18	3	6.00	1. 00	18	47. 28	35	60	7.09
	8/07	Tow Net	6	3	2. 00	1. 73	6	43. 50	37	55	6.09
	8/08	Tow Net	16		4.00	2.45	16	43.75	35	59	7.65

APPENDIXB (Continued)

Station	Date	Gear	Catch	Reps	CPUE	SD Cat ch	N	Mean Length	M ni mum Length	Maxi mum Len gth	$\begin{aligned} & \text { Length } \end{aligned}$
11	6/17	Beach Sei ne-75 1		2	0.50	0.71					
	8/ 04	Beach	Sei ne-75 4	2	2.00	1.41					
13	7/12	Tow	Net 3	3	1.00	1.00					
	8/ 05	Tow	Net 2	3	0.67	0. 58					
	8/07	Tow	Net 5	3	1. 67	0. 58					
	8/ 08	Tow	Net 4	5	0.80	0.84					
17	7/10	Tow	Net 10	3	3. 33	1. 15					
	7/12	Tow	Net 69	3	23. 00	9.85					
	7/13	Tow	Net 116	3	38. 67	8.96					
	8/05	Tow	Net 21	3	7.00	1. 73					
	8/07	Tow	Net 8	3	2. 67	2. 89					
	8/08	Tow	Net 19	4	4.75	2. 75					
41	6/ 04	Tow	Net 1	2	0.50	0.71					
				HUMPBACK WH TEFI SH							
8	6/ 10	Beach	Sei ne- 1504	2	2.00	1. 41					
	6/ 14	Beach	Sei ne- 1507	2	3. 50	2. 12					
	6/22	Beach	Seine-150 4	2	2. 00	0.00					
9	6/25	Beach	Sei ne-150 39	2	19. 50	$\begin{array}{r} \text { 21. } 92 \\ 1.41 \end{array}$					
	7/13	Beach	Sei ne-150 2	2	1. 00						
	8/04	Beach	Sei ne-150 17	2	8. 50	10.61					
11	$6 / 17$	Beach	Sei ne-75 4	2	2. 00	1.41					
	6/ 22	Beach	Sei ne- 752	2	1.00	0.00					
	8/ 04		10	2	5.00	2.83					
12	6/25		5	2	2.50	$\begin{aligned} & 0.71 \\ & 0.71 \end{aligned}$					
	7/13		5	2	2.50						
	8/04		1	2	0.50	0.71					
17	6/ 05	Tow	Net 4	15	0.53	1. 60					
41	6/ 04		3	2	1. 50	2. 12					

APPENDIXB (Continued)

Station Date Gear \quad Catch \quad Reps \quad CPUE Catch $\quad N \quad$\begin{tabular}{c}
Mea n

Len gth

\quad

Mni mum

Len gth
\end{tabular}

BROAD WH TEFI SH

APPENDIXB (Continued)

APPENDIXB (Continued)

11	$\mathbf{6 / 2 4}$	Beach Sei ne-75	$\mathbf{1 3}$	2	6.50	3.54
17	$\mathbf{6 / 2 4}$	Tow Net	$\mathbf{2}$	3	$\mathbf{0 . 6 7}$	$\mathbf{1 . 1 5}$

Station	Date	Gear	Catch	Reps	CPUE	SO Cat ch	N	Mea n Length	M ni mum Length	Maxi mum Len gth	n SD
5	7/ 14	Tow Net	kt 475	3158.3359 .23							
	8/ 06	l ow Net	et 180		30.00	26. 46					
6	6/15	Tow Net	et 184		61. 33	57.78					
	7/11	Tow Net	tet 793	2	396.5(.1	178.90					
	7/ 14	Tow Net	bt 320	3	167.00	2. 88					
	8/ 06	Tow Net	kt 23	3	7.67	2. 31					
8	6/ 14	Beach Sei ne-150 1		2	0. 50	0.71					
				THREESPINE STI CKLEBACK							
12	$7 / 13$	$\begin{array}{llr} \text { Beach } & \text { Sei ne- } 75 & 12 \\ \text { Beach } & \text { Sei ne- } 75 & 2 \end{array}$				7.07					
	$8 / 04$				$\text { 1. } 00$	$\text { 1. } 41$					
				N NESPI NE STI CKLEBACK							
1	6/ 06	I ow Net	bet 106		53.00	38.18					
	6/12	Tow Net			3346.67	92.22					
	$6 / 15$	1 "ow Ne	let 457		3152.33	32.59					
	6/19	Tow Net	let		3356.67	141.45					
	7/11	Tow Net	- 23		211.50	0.71					
	$7 / 14$	Tow Ne	let 274		391.33	23.07					
	8/06	Tow Net	let 165		355.00	22.91					
2	$6 / 12$	Tow Ne	比 $\quad 974$		3324.67	239.06					
	6/15	Tow Ne			3268.33	110.95					
	6/19	Tow Net	let 1		3548.002	266.57					
	7/14	Tow Net	et 256		385.33	91.53					
	8/ 06	Tow Ne	let 115		338.33	10.41					
3	6/ 12	Tow Ne	Net 409	3	3136.33	158.34					
	$6 / 15$	Tow Net	Net 12		34.00	1.00					
	6/19	Tow Net	let 1		3423.33	248.71					
	7/11	Tow Ne	let 292		397.33	57.13					
	7/14	Tow Ne	Net 57		319.00	4.58					
	8/ 06	Tow Net	let 140		346.67	16.07					

APPENDIXB (Continued)

	Station	Ua te	Gear Catch	Reps	CPUE	$\underset{\text { Catch }}{\text { SD }}$	N	Mea n Len gth	M ni mum Length	Maxi mum Len gth	SD Length
N	${ }^{4}$	6/12	Tow Net 746	3	248.67	69. 01					
		6/15	Tow Net 115	3	38. 33	11. 72					
		6/19	Tow Net 237	3	79.00	67.51					
		711	Tow Net 2	2	1.00	0.00					
		7/14	Tow Net 3	3	1. 00	1. 00					
	5	$6 / 12$	Tow Net 1	3	470.67	412. 85					
		6/15	Tow Net 489	3	163.00	41. 90					
		6/19	Tow Net	3	343. 33	335. 31					
		7/14	Tow Net 20;	3	69.001	104. 85					
		8/06	Tow Net 90	3	30.00	30.41					
	6	$6 / 12$	Tow Net 21	3	7.00	3.46					
		6/15	Tow Net 85	3	28. 33	18.90					
		6/19	Tow Net 373	3	124. 33	5.51					
		7/11	Tow Net 163	2	81.50	45. 96					
		8/06	Tow Net 20	3	6.67	0.58					
	8	$6 / 10$	Beach Sei ne- 15018	2	9.00	5. 66					
		$6 / 14$	Beach Sei ne- 1507	2	3.50	3. 54					
		6/17	Beach Sei ne-150 3	2	1.50	0.71					
		$6 / 22$	Beach Sei ne- 1504	2	2.00	2.83					
		$6 / 24$	Beach Sei ne-150 2	2	1. 00	0.00					
		8/ 04	Beach Sei ne-150 1	2	0.50	0.71					
	9	6/25	Beach Seine-150 1	2	0.50	0.71					
		8/ 04	Beach Sei ne-15(18	2	4.00	5. 66					
	10	8/05	Beach Sei ne-75 840	2	420.001	113. 14					
	10	$8 / 05$	Beach Sei ne- 75840	2	420.00	113.14					
	11	$6 / 10$	9	2	4.50	2.12					
		$6 / 14$	15	2	7.50	0.71					
		$6 / 17$	6	2	3.00	1.41					
		6/ 24	3	2	1. 50	2. 12					
		8/ 04		2	0.50	0.71					
	12	6/25	1	2	0.50	0.71					
		7/13	4	2	2. 00	2. 83					

	Station	Date	Gear	Catch	Reps	CPUE	SD Catch	N	Mea n Len gth	M ni mum Length	Maxi mum Len gth	$\begin{aligned} & \text { SD } \\ & \text { Len gth } \end{aligned}$
		8/04		736	2	368.00	45.25					
	21	6/06	Tow Net	8	3	2.67	0.58					
	41	6/ 04		42	2	21.00	9.90					
		6/06		452	2	226.00	96.17					
	51	6/ 06		13		6.50	0.71					
$$					ARCTIC LAMPRE ${ }^{\text {¢ }}$							
	1	6/12		12	3	4.00	3.61					
		6/1 5		17	3	5. 67	3.06					
		6/19		49	3	16. 33	10. 02					
		7/14		3	3	1. 00	1. 00					
	2	6/ 12		11	3	3.67	3.21					
		6/15		41	3	13. 67	2.89					
		6/19		53	3	17.67	1. 53					
		7/14		2	3	0.67	1.15					
	3	$6 / 19$		9	3	3.00	0.00					
		7/11		14	3	4.67	2.08					
	4	6/12		14	3	4.67	4.04					
		6/15		16	3	5. 33	3.06					
		6/19		25	3	8. 33	1. 53					
		7/11		1	2	0. 50	0.71					
	5	$6 / 12$		14	3	4.67	1. 53					
		6/15		32	3	10. 67	4.04					
		6/ 19		38	3	12. 67	2. 31					
		7/14		1	3	0.33	0.58					
	6	6/12		3	3	1.00	1. 00					
		6/ 19		11	3	3. 67	1. 15					
	13	6/ 09		9	3	3.00	3. 00					
		$6 / 13$		13	3	4.33	5.86					
		6/ 14		35	6	11. 67	6.86					
		6/ 17		234	3	78. 00	14.00					

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Station \& Vate \& Gear \& \& Catch \& Reps \& CPUE \& SD Catch \& N \& Mea n Len gth \& M ni mum Length \& Maxi mum Length \& SD Length

\hline \multirow[b]{15}{*}{17

41} \& 6/18 \& \& \& 121 \& 3 \& 40. 33 \& 18. 34 \& \& \& \& \&

\hline \& 6/20 \& \& \& 41 \& 5 \& 16. 4(I \& 3. 58 \& \& \& \& \&

\hline \& 6/22 \& \& \& 42 \& 3 \& 14.00 \& 5. 20 \& \& \& \& \&

\hline \& 6/24 \& \& \& 48 \& 3 \& 16. 00 \& 4.36 \& \& \& \& \&

\hline \& 6/26 \& \& \& 29 \& 3 \& 9.67 \& 11. 24 \& \& \& \& \&

\hline \& 6/ 08 \& \& \& 3 \& 3 \& 1.00 \& 0.00 \& \& \& \& \&

\hline \& 6/13 \& \& \& 1 \& 3 \& 0.33 \& 0.58 \& \& \& \& \&

\hline \& 6/14 \& \& \& 5 \& 3 \& 1.67 \& 1. 53 \& \& \& \& \&

\hline \& 6/17 \& \& \& 9 \& 3 \& 3. 00 \& 2. 65 \& \& \& \& \&

\hline \& 6/18 \& \& \& 16 \& 3 \& 5. 33 \& 5.03 \& \& \& \& \&

\hline \& 6/20 \& \& \& 14 \& 3 \& 4.67 \& 3.06 \& \& \& \& \&

\hline \& 6/ 22 \& \& \& 5 \& 3 \& 1.67 \& 1.53 \& \& \& \& \&

\hline \& $6 / 24$ \& \& \& 1 \& 3 \& 0.33 \& 0.58 \& \& \& \& \&

\hline \& 6/26 \& \& \& 4 \& 3 \& 1. 33 \& 1.53 \& \& \& \& \&

\hline \& 6/ 06 \& \& \& \& 2 \& 0.50 \& 0.71 \& \& \& \& \&

\hline 41 \& \multicolumn{12}{|c|}{LAMPRE Y Sp.}

\hline 4 \& 7/ 14 \& \& \& 1 \& 3 \& 0. 33 \& 0. 58 \& \& \& \& \&

\hline 13 \& 6/ 04 \& \& \& 2 \& 3 \& 0.67 \& 0.58 \& \& \& \& \&

\hline \& 6/ 05 \& \& \& 2 \& 3 \& 0.67 \& 1.15 \& \& \& \& \&

\hline 14 \& 6/01 \& \& \& 22 \& 7 \& 3. 14 \& 2. 67 \& \& \& \& \&

\hline 17 \& 6/ 05 \& \& \& , \& 15 \& 0.07 \& 0.26 \& \& \& \& \&

\hline \& \& \& \& \& \multicolumn{3}{|r|}{LONGNOSE SUCKER} \& \& \& \& \&

\hline \multirow[t]{2}{*}{8} \& 6/ 17 \& \multirow[t]{2}{*}{Beach} \& \multirow[t]{2}{*}{Sei ne-150} \& 5011 \& 2 \& 5.50 \& 4.95 \& \& \& \& \&

\hline \& 6/22 \& \& \& 6 \& 2 \& 3. 00 \& 2.83 \& \& \& \& \&

\hline 13 \& 6/ 05 \& Purse \& Sei ne \& 1 \& 2 \& 0.50 \& 0.71 \& \& \& \& \&

\hline
\end{tabular}

APPENDIXB (Continued)

Station Date Gear Catch Reps CPUE \quad\begin{tabular}{llllll}

SU \& Catch \& \mathbf{N} \& \begin{tabular}{c}
Mean

Len gth

\quad

M ni mum

Len gth
\end{tabular} Maxi mum Len gth Length

\end{tabular}

FOURHORN SCULPIN

1	$8 / 06$
2	$7 / 14$
3	$7 / 11$
$\mathbf{4}$	$\mathbf{6 / 1 9}$
5	$6 / 19$
	$\mathbf{7 / 1 4}$
6	$\mathbf{7 / 1 4}$
10	$\mathbf{8 / 0 5}$

Beach Sei ne- 75

0.33	0.58
0.33	0.58
0.67	1.15
1.33	0.58
0.33	0.58
0.33	0.58
0.33	0.58
3.50	0.71

SCULPIN Sp.

2	$\begin{aligned} & 7 / 14 \\ & 6 / 12 \end{aligned}$	Tow Net	1	3	0. 33	0. 58
			1	3	0.33	0.58
				PACI FIC HERRING		
1	6/ 19		11	3	3. 67	3.51
	7/11		46	2	23. 00	5. 66
	7/ 14		140	3	46. 67	20.11
	8/06		1	3	0.33	0.58
2	6/15		7	3	2. 33	1. 53
	6/19		56	3	18. 67	2. 08
	7/ 14		91	3	30. 33	19.86
	8/ 06		11	3	3.67	2.52
3	6/ 12		1	3	0.33	0.58
	6/ 19		9	3	3.00	2. 65
	7/11		70	3	23. 33	26. 41
	7/ 14		14	3	4.67	4.16
	8/ 06		25	3	8.33	7.57
4	6/ 12		1	3	0.33	0.58

APPENDI X C

LENGTH FREQUENCY OF JUEN LE CHUM SALMDN BY STATI ON AND TI ME PERI OD DURI NG SUMMER 1986

STATI ON

CHUM SALMDN

FORK LENGTH IN 3 MM GROUPS

STATI ON 2

CHUM SALMDN

FORK LENGTH IN 3 MM GROUPS

STATION 3
CHUM SALMON

6/12/86 то 6/15/86

FORK LENGTH IN 3 MM GROUPS

STATION 4
CHUM SALMON

6/12/86 то 6/15/86

STATION 5
CHUM SALMON

6／12／8670 6／15／86

STATION 6
CHUM SALMON

[^0]: al Catch Per Unit Effort.

[^1]: a/ Al haul s were 10 minutes except where indi cated.
 $\bar{b} /$ One 10 -minute tow and 145 -minute tows.
 \bar{c} / Fi ve- minute tows.

[^2]: al Estimated from catches at stations, 21, 41, or 51.

