Coastal Marine Institute

# Air Quality and Dispersion Meteorology over the Northeastern Gulf of Mexico: Measurements, Analyses, and Syntheses 



## Coastal Marine Institute

# Air Quality and Dispersion Meteorology over the Northeastern Gulf of Mexico: Measurements, Analyses, and Syntheses 

Authors
S. A. Hsu
and
B. W. Blanchard

March 2000

Prepared under MMS Contract
14-35-0001-30660-19925
by
Coastal Marine Institute
Louisiana State University
Baton Rouge, Louisiana 70803

Published by

## DISCLAIMER

This report was prepared under contract between the Minerals Management Service (MMS) and the Coastal Studies Institute, Louisiana State University. This report has been technically reviewed by the MMS and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Service, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. It is, however, exempt from review and compliance with MMS editorial standards.

## REPORT AVAILABILITY

Extra copies of the report may be obtained from the Public Information Office (Mail Stop 5034) at the following address:

U.S. Department of the Interior Minerals Management Service<br>Gulf of Mexico OCS Region<br>Attention: Public Information Office (MS 5034)<br>1201 Elmwood Park Boulevard<br>New Orleans, Louisiana 70123-2394<br>Telephone Number: 1-800-200-GULF or<br>504-736-2519

## CITATION

Suggested citation:
Hsu, S. A. and B. W. Blanchard. 2000. Air Quality and Dispersion Meteorology Over the Northeast Gulf of Mexico: Measurements, Analyses, and Syntheses. OCS Study MMS 2000-014. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. 188 pp.

## FRONT COVER

Advanced Very High Resolution satellite infrared image of our study area in the northeast Gulf of Mexico captured on 3 March 19970859 GMT (courtesy of the Earth Scan Lab, Louisiana State University).


#### Abstract

Meteorological and air quality data recorded during the period of May 1997 through July 1998 is reduced and presented in this final report. The data was acquired from monitoring stations located on Dauphin and Breton Islands in the northeast Gulf of Mexico. It was found that the hourly average pollutant $\left(\mathrm{SO}_{2}\right.$ and $\left.\mathrm{NO}_{2}\right)$ concentrations at both sites were less than 6 ppb during over half of this reporting period. Weak seasonal and diurnal trends were exhibited at Dauphin Island; the seasonal trend was less evident at Breton Island and diurnal peaks were generally not distinguishable. Maximum concentrations of both $\mathrm{SO}_{2}$ and $\mathrm{NO}_{2}$ at Dauphin Island were primarily associated with wind flow from the north and northeast; maximum $\mathrm{SO}_{2}$ concentrations at Breton were also seen with northerly winds, but $\mathrm{NO}_{2}$ maximums were often recorded under flow from the south and southwest. Unstable atmospheric conditions dominated over the Breton Sound area throughout the year, with free convection being observed as often as $15 \%$ of the time. Methods for determining the stability category, turbulence intensity, drag coefficient, and mixed heights from routinely available measurements are described. Computed values are in good agreement with observed data. Both air quality and meteorological results are consistent with findings from datasets previously obtained in this area.


## TABLE OF CONTENTS

List of Figures ..... ix
List of Tables ..... xvii
Acknowledgments ..... xix
I. Introduction ..... 1
II. Data Acquisition and Processing ..... 3
A. Overview ..... 3
B. Dauphin Island ..... 3
C. Breton Island ..... 14
III. Analysis and Results ..... 27
A. Dauphin Island Air Quality ..... 27
B. Breton Island Air Quality ..... 75
C. Station Comparison ..... 136
D. Boundary Layer and Dispersion Meteorology Over Breton Island and Sound ..... 151

1. Description of Key Processes in Pollutant Transport and Dispersion Over ..... 151the Breton National Wildlife Area
a. Topography ..... 151
b. Air-Sea Exchange ..... 151
c. Wind-Wave Interaction ..... 153
d. Atmospheric Turbulence ..... 155
e. Vertical Mixing ..... 157
2. The Vertical Eddy Diffusivity ..... 157
3. The Mixing Height ..... 157
4. Use of Observations to Compare Methods that Evaluate Parameters ..... 159
Associated with Key Processes
a. Determining Z/L ..... 159
b. Turbulence Intensity ..... 161
c. The Mixing Height ..... 169
IV. Summary ..... 184
V. References ..... 186

## LIST OF FIGURES

Figure
Page
1 Advanced Very High Resolution Radiometer (AVHRR) satellite thermal image showing the approximate locations of our two air quality monitoring stations (courtesy of Buddy Martin, Earth Scan Lab, Louisiana State University).
2 Layout of air quality monitoring station at Dauphin Island (distances are approximated).

3 Schematic of the Kerr-McGee facility on Breton Island showing location of monitoring site following Hurricane Danny.
4 May 1997 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1. $\mathrm{SO}_{2}$ missing on 15 May.
5 June 1997 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1.

6 July 1997 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1. Air quality data missing on 4 July and in midmonth as depicted.
7 August 1997 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1. $\mathrm{SO}_{2}$ data missing on 18 August.
8 September 1997 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1.

9 October 1997 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1.

10 November 1997 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1. $\mathrm{NO}_{\mathrm{x}}$ missing on 24 November.
11 December 1997 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1. Missing $\mathrm{SO}_{2}$ data on 29 December.

12 January 1998 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1. $\mathrm{SO}_{2}$ data missing on 5 and 21 January, $\mathrm{NO}_{\mathrm{x}}$ missing on 7 and 21 January.
13 February 1998 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1. $\mathrm{NO}_{x}$ missing on 3 and 16 February, $\mathrm{SO}_{2}$ on 16 and 17 February.
14 March 1998 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1. $\mathrm{SO}_{2}$ and $\mathrm{NO}_{x}$ missing on 20 March.
15 April 1998 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1. $\mathrm{SO}_{2}$ data missing on 13-14 April.

## List of Figures continued.

Figure

## Page

16 Frequency distribution of hourly-averaged $\mathrm{SO}_{2}$ and $\mathrm{NO}_{2}$ concentrations at ..... 40 Dauphin Island during the study period.
17 Dauphin Island 3-hour block average $\mathrm{SO}_{2}$ annual trends. ..... 47
18 Dauphin Island 24-hour block average $\mathrm{SO}_{2}$ annual trends ..... 48
19 Dauphin Island 3-hour block average $\mathrm{NO}_{2}$ annual trends. ..... 49
20 Dauphin Island 24-hour block average $\mathrm{NO}_{2}$ annual trends. ..... 50
21 Dauphin Island diurnal $\mathrm{SO}_{2}$ variations as represented by first (dashed), second ..... 51(solid), and third (dashed) quartile lines.
22 Dauphin Island diurnal $\mathrm{NO}_{2}$ trends as represented by first (dashed), second ..... 54(solid), and third (dashed) quartile lines.
23 Dauphin Island May 1997 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, $\mathrm{NO}_{2}$ ..... 63 bottom right).
24 Dauphin Island June 1997 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, $\mathrm{NO}_{2}$ ..... 64bottom right).
25 Dauphin Island July 1997 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, $\mathrm{NO}_{2}$ ..... 65bottom right).
26 Dauphin Island August 1997 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, ..... 66 $\mathrm{NO}_{2}$ bottom right).
27 Dauphin Island September 1997 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, ..... 67 $\mathrm{NO}_{2}$ bottom right).
28 Dauphin Island October 1997 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, ..... 68$\mathrm{NO}_{2}$ bottom right).
29 Dauphin Island November 1997 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, ..... 69 $\mathrm{NO}_{2}$ bottom right).
30 Dauphin Island December 1997 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, ..... 70 $\mathrm{NO}_{2}$ bottom right).
31 Dauphin Island January 1998 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, ..... 71$\mathrm{NO}_{2}$ bottom right).
32 Dauphin Island February 1998 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, ..... 72 $\mathrm{NO}_{2}$ bottom right).
33 Dauphin Island March 1998 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, ..... 73 $\mathrm{NO}_{2}$ bottom right).

## List of Figures continued.

## Figure <br> Page

## 34 Dauphin Island April 1998 wind(top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, $\mathrm{NO}_{2}$

 bottom right).35 May 1997 time series of Breton Island hourly-averaged concentrations and wind 76 direction.

36 June 1997 time series of Breton Island hourly-averaged concentrations and wind direction.

37 July 1997 time series of Breton Island hourly-averaged concentrations and wind direction. Missing $\mathrm{SO}_{2}$ and $\mathrm{NO}_{\mathrm{x}}$ on 11 and 12 July.
38 September 1997 time series of Breton Island hourly-averaged concentrations and 79 wind direction.

39 October 1997 time series of Breton Island hourly-averaged concentrations and wind direction. $\mathrm{SO}_{2}$ and $\mathrm{NO}_{x}$ missing on 26 October.

40 November 1997 time series of Breton Island hourly-averaged concentrations and wind direction.

41 December 1997 time series of Breton Island hourly-averaged concentrations and wind direction.

42 January 1998 time series of Breton Island hourly-averaged concentrations and wind direction.

43 February 1998 time series of Breton Island hourly-averaged concentrations and wind direction. Missing air quality data on days 20-22, 23-25, 26-27, and 28.
44 March 1998 time series of Breton Island hourly-averaged concentrations and wind direction. $\mathrm{SO}_{2}$ data has been corrected for an offset.
45 April 1998 time series of Breton Island hourly-averaged concentrations and wind direction. $\mathrm{SO}_{2}$ and $\mathrm{NO}_{\mathrm{x}}$ data missing on days 6 and 23-24 April. $\mathrm{SO}_{2}$ corrected for offset to 21 April.
46 May 1998 time series of Breton Island hourly-averaged concentrations and wind direction.

47 June 1998 time series of Breton Island hourly-averaged concentrations and wind direction.

48 July 1998 time series of Breton Island hourly-averaged concentrations and wind direction.

49 Frequency distribution of Breton Island hourly-averaged pollutant 90 concentrations recorded during this study period.
50 Breton Island annual $\mathrm{SO}_{2}$ trends based on 3-hour block averages.

## List of Figures continued.

Figure Page
51 Breton Island annual $\mathrm{SO}_{2}$ trends based on 24-hour block averages. ..... 101
52 Breton Island annual $\mathrm{NO}_{2}$ trends based on 3-hour block averages. ..... 103
53 Breton Island annual $\mathrm{NO}_{2}$ trend based on 24 -hour block averages. ..... 105
54 Breton Island diurnal $\mathrm{SO}_{2}$ trends as represented by first (dashed), second (solid), ..... 107and third (dashed) quartile lines.
55 Breton Island diurnal $\mathrm{NO}_{2}$ trends as represented by first (dashed), second (solid), ..... 110and third (dashed) quartile lines.
56 Breton Island May 1997 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, $\mathrm{NO}_{2}$ ..... 115missing).
57 Breton Island June 1997 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, $\mathrm{NO}_{2}$ ..... 116bottom right).
58 Breton Island July 1997 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, $\mathrm{NO}_{2}$ ..... 117
bottom right). Note that Hurricane Danny occurred during this month.
59 Breton Island September 1997 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, ..... 118$\mathrm{NO}_{2}$ bottom right).
60 Breton Island October 1997 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, ..... 119$\mathrm{NO}_{2}$ bottom right).
61 Breton Island November 1997 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, ..... 120$\mathrm{NO}_{2}$ bottom right).
62 Breton Island December 1997 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, ..... 121$\mathrm{NO}_{2}$ bottom right).
63 Breton Island January 1998 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, $\mathrm{NO}_{2}$ ..... 122bottom right).
64 Breton Island February 1998 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, ..... 123 $\mathrm{NO}_{2}$ bottom right).
65 Breton Island March 1998 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, $\mathrm{NO}_{2}$ ..... 124bottom right).66 Breton Island April 1998 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, $\mathrm{NO}_{2}$125bottom right).
67 Breton Island May 1998 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, $\mathrm{NO}_{2}$ ..... 126bottom right).
68 Breton Island June 1998 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, $\mathrm{NO}_{2}$ ..... 127 bottom right).

List of Figures continued.
Figure Page

> 69 Breton Island July 1998 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, $\mathrm{NO}_{2} \quad 128$ bottom right).

70 A classification scheme for synoptic weather types affecting New Orleans, Louisiana and the northeast Gulf of Mexico (after Muller, 1977).
71 Comparison of monthly mean $\mathrm{SO}_{2}$ (top) and $\mathrm{NO}_{2}$ (bottom) values recorded at Breton and Dauphin Islands during the study period.
72a Time series of 1996 24-hour block averaged $\mathrm{SO}_{2}$ at Breton and Dauphin Islands. 138
72b Time series of 1996 24-hour block average $\mathrm{NO}_{2}$ at Breton and Dauphin Islands. 139
72c Time series of 1997 24-hour block averaged $\mathrm{SO}_{2}$ at Breton and Dauphin Islands. 140
72 d Time series of 1997 24-hour block averaged $\mathrm{NO}_{2}$ at Breton and Dauphin Islands. 141
72e Time series of 1998 24-hour block averaged $\mathrm{SO}_{2}$ (top) and $\mathrm{NO}_{2}$ (bottom) at 142 Breton and Dauphin Islands.

73a 0700 EST surface weather maps for 28-30 September 1997 from NOAA Daily Weather Map Series.

73b Meteorological and air quality values observed at Breton and Dauphin Islands on 28-30 September 1997.
74a 0700 EST surface weather maps for 15-17 October 1997 from NOAA Daily Weather Map Series.

74b Meteorological and air quality values observed at Breton and Dauphin Islands on 15-17 October 1997.

75a 0700 EST surface weather maps for 14-18 December 1997 from NOAA Daily Weather Map Series.
75b Meteorological and air quality values observed at Breton and Dauphin Islands during 14-18 December 1997.
76a 0700 EST surface weather maps for 22-24 January 1998 from NOAA Daily Weather Map Series.
76b Meteorological and air quality values observed at Breton and Dauphin Islands on 22-24 January 1998.
77 Aerial photographs (color infrared) of the northernmost part of Breton Island taken on 9 December 1996 (top) and 11 January 1999 (bottom). The Kerr McGee facility is visible as the small circular object on the inside of the island. Top of photos is oriented approximately to the northeast.

## List of Figures continued.

Figure
78 Determining overwater mixing height from the dewpoint depression at the surface or from surface and cloud-top temperatures based on atmospheric thermodynamics (see text for explanation).
79 Approximate locations of NOAA buoys and C-MAN stations used in this analysis.

80 Frequency of occurrence of stability classes for three NOAA stations and Breton Island during the period of May 1997 through July 1998.
81 Monthly statistics of air and water temperatures at Breton Island and two NOAA163 buoys. Vertical lines are standard deviation at Breton.
82 The stability classes as a function of wind speed and air-sea temperature difference (from Hsu, 1992).

83 Monthly statistics of stability characteristics and frequency of occurrence of free165 convective conditions at Breton Island and two NOAA buoys. Vertical lines are standard deviation at Breton.
84 A relationship between $\mathrm{Z} / \mathrm{L}$ and the bulk Richardson number, $\mathrm{R}_{\mathrm{b}}$, based on measurements from a continental shelf environment by Donelan et al. (1997).
85 Observed turbulence intensities at Breton Island compared to the relationship167 found for the North Sea.

86 Lateral (crosswind) turbulence intensities at Breton Island compared to the168 relationship for the North Sea (see text for explanation).
87 A demonstration of LCL (mixed height) from cloud-top temperature using data obtained over Breton Island on 4 August, 1998 at approximately 1500 GMT ( 1000 LT).

88 Thermodynamic and boundary layer profiles of 3 August 1998, 1619 CDT radiosonde over Breton Island. -line is $\theta$, $X$-line is $\mathfrak{q}$, dashed line is $\theta_{v}$.
89 Thermodynamic and boundary layer profiles of 3 August 1998, 1804 CDT radiosonde over Breton Island. Lines as in Fig. 88.

90 Thermodynamic and boundary layer profiles of 3 August 1998, 2002 CDT radiosonde over Breton Island. Lines as in Fig. 88.
91 Thermodynamic and boundary layer profiles of 3 August 1998, 2157 CDT radiosonde over Breton Island. Lines as in Fig. 88.
92 Thermodynamic and boundary layer profiles of 4 August 1998, 0541 CDT radiosonde over Breton Island. Lines as in Fig. 88.

## List of Figures continued.

Figure Page
93 Thermodynamic and boundary layer profiles of 4 August 1998, 0802 CDT 177 radiosonde over Breton Island. Lines as in Fig. 88.
94 Thermodynamic and boundary layer profiles of 4 August 1998, 1000 CDT 178 radiosonde over Breton Island. Lines as in Fig. 88.
95 Thermodynamic and boundary layer profiles of 4 August 1998, 1217 CDT 179 radiosonde over Breton Island. Lines as in Fig. 88.

96 Thermodynamic and boundary layer profiles of 4 August 1998, 1415 CDT 180 radiosonde over Breton Island. Lines as in Fig. 88.
97 One-to-one comparison of LCL heights versus mixed heights from profile and computed by Eq. (16).
98 Variations of monthly mean mixed heights computed for Eq. (16) over the 182 southeastern Louisiana coast and eastward over the BNWA.
$99 \quad \begin{aligned} & \text { Stable mixed layer height nomogram for air temperature of } 19^{\circ} \mathrm{C} \text {. Lines indicate } 183 \\ & \text { temperature difference }\left(\mathrm{T}_{\text {air }}-\mathrm{T}_{\text {sea }}\right) \text {. }\end{aligned}$

## LIST OF TABLES

Table Page
1 Dauphin Island $\mathrm{SO}_{2}$ Monitor Zero Values ..... 6
2 Dauphin Island $\mathrm{SO}_{2}$ Monitor Precision Values ..... 6
3 Dauphin Island $\mathrm{SO}_{2}$ Monitor Accuracy Values ..... 7
4 Dauphin Island $\mathrm{NO}_{\mathrm{x}}$ Monitor Zero Values ..... 9
5 Dauphin Island $\mathrm{NO}_{x}$ Monitor Precision Values ..... 9
6 Dauphin Island $\mathrm{NO}_{x}$ Monitor Accuracy Values ..... 10
7 Dauphin Island $\mathrm{NO}_{2}$ Precision Values ..... 12
8 Dauphin Island $\mathrm{NO}_{2}$ Accuracy Values ..... 13
9 Percent Data Return for Air Quality - Dauphin Island (* indicates < 75\% ..... 14 complete)
10 Breton Island $\mathrm{SO}_{2}$ Monitor Zero Values ..... 18
11 Breton Island $\mathrm{SO}_{2}$ Monitor Precision Values ..... 19
12 Breton Island $\mathrm{SO}_{2}$ Monitor Accuracy Values ..... 20
13 Breton Island $\mathrm{NO}_{x}$ Monitor Zero Values ..... 21
14 Breton Island $\mathrm{NO}_{x}$ Monitor Precision Values ..... 22
15 Breton Island $\mathrm{NO}_{x}$ Monitor Accuracy Values ..... 23
16 Breton Island $\mathrm{NO}_{2}$ Precision Values ..... 24
17 Breton Island $\mathrm{NO}_{2}$ Accuracy Values ..... 25
18 Percentage Air Quality Data Return - Breton Island (* indicates $<75 \%$ complete) ..... 26
19 Dauphin Island $\mathrm{SO}_{2}$ Maximums and Averages (ppb) based on 1 Hour Block ..... 41 Averages*
20 Dauphin Island $\mathrm{NO}_{2}$ Maximums and Averages (ppb) based on 1 Hour Block ..... 44 Averages*
21 Dauphin Island $\mathrm{SO}_{2}$ Maximums (ppb) ..... 58
22 Dauphin Island $\mathrm{NO}_{2}$ Maximums (ppb) ..... 60
23 U.S. Federal Primary and Secondary Ambient Air Quality Standard ..... 61
24 Frequency Distribution of Dauphin Island Top 10\% Concentrations ..... 62

## List of Tables continued.

Table Page
25 Breton Island $\mathrm{SO}_{2}$ Maximums and Averages (ppb) based on 1 Hour Block ..... 91 Averages*
26 Breton Island $\mathrm{NO}_{2}$ Maximums and Averages (ppb) based on 1 Hour Block ..... 95 Averages*
27
Breton Island $\mathrm{SO}_{2}$ Maximums (ppb) ..... 129
28 Breton Island $\mathrm{NO}_{2}$ Maximums (ppb) ..... 131
29 Breton Island Top 10\% Frequency Distribution by Month and Direction ..... 133
30 Frequency of Occurrence of Synoptic Weather Types Associated with Peak ..... 135 Pollutant Days at Breton Island
31 Summary of Breton and Dauphin Islands Monthly Air Quality Values (ppb) ..... 136

## ACKNOWLEDGMENTS

The successful execution and completion of this field measurement program would not have been possible without the assistance of both the Alabama Marine Resources Division and the KerrMcGee Corporation, who provided facilities for our monitoring stations. We especially recognize Kerr-McGee for preparing a second location for us following damage from Hurricane Danny. The staffs of Southern Seaplane and the fishing camp Chandeleur Islander provided logistic support for our service trips to Breton Island. The field technicians of the Coastal Studies Field Support Group deserve our gratitude for their efforts to install and maintain the monitoring stations - particularly Mr. Bill Gibson and Mr. Steve Dartez, the Chief Technicians for Dauphin and Breton Islands, respectively. Finally, thanks to Dr. William Hutzell and Dr. Alexis Lugo-Fernandez, our COTRs at the MMS New Orleans for their guidance and support.

## I. Introduction

Ambient air quality conditions existing over coastal areas bordering the northeast Gulf of Mexico have come under greater scrutiny in recent years. Increases in both the population along the coast and in offshore energy production have raised concerns that emissions from these various source areas may be impacting the fragile habitats indigenous to these shoreline environments. This is especially critical as portions of this coastal region contain protected wildlife areas, and have been designated as Class I (the Breton National Wildlife Area (BNWA)) by the U.S. Congress. For these areas, the Prevention of Significant Deterioration (PSD) restrictions are applicable.

Since 1993, the Coastal Studies Institute of Louisiana State University has deployed several field programs to measure ambient air quality and meteorology at stations in the Delta National Wildlife Refuge, the BNWA, and the Gulf Islands National Seashore. The majority of this data record has been analyzed and discussed in three previous Minerals Management Service Reports (e.g., Hsu, 1995b; Hsu, 1996; and Hsu and Blanchard, 1998). The first two Reports documented data collected during short-term summer deployments (July to September 1993 and 1994, respectively). The last of these was an Interim Report which detailed aspects of the long term records obtained at Breton (October 1994 to April 1997) and Dauphin (March 1996 to April 1997) Islands in the northeast Gulf of Mexico (see Fig. I for locations). This document will build upon those prior findings by presenting data collected during the period of May 1997 through July 1998, the final phase of our field program.

The annual arithmetic means of $\mathrm{SO}_{2}$ and $\mathrm{NO}_{2}$ concentration recorded at Dauphin Island during the study period were 2.3 ppb and 4.4 ppb , respectively. These values are less than $10 \%$ of the National Ambient Air Quality Standards. For both pollutants, hourly concentrations were less than 4 ppb over $50 \%$ of the time. Annual trends show slight increases in both $\mathrm{SO}_{2}$ and $\mathrm{NO}_{2}$ during the fall and winter months. Median $\mathrm{SO}_{2}$ values show little variation diurnally, while $\mathrm{NO}_{2}$ often exhibits a peak in the morning hours. Maximum 1- and 3-hour average concentrations of both pollutants are mostly associated with north and northeast wind directions, and occasionally west winds (particularly for $\mathrm{NO}_{2}$ ).

For the Breton Island monitoring station, calculated annual arithmetic means were 1.2 ppb and 6.2 ppb for $\mathrm{SO}_{2}$ and $\mathrm{NO}_{2}$, respectively. During more than half the study period, hourly concentrations of both pollutants were less than 6 ppb . The $\mathrm{NO}_{2}$ data, however, showed greater frequency of higher concentrations than at Dauphin, with values more than 20 ppb recorded about $5 \%$ of the time. Annual trends of average concentrations for $\mathrm{SO}_{2}$ and $\mathrm{NO}_{2}$ show a very slight increase in the fall and winter months. Median $\mathrm{SO}_{2}$ values are very low and are generally consistent throughout the day, while median $\mathrm{NO}_{2}$ usually shows a slight morning peak. An opposite dependency of maximum concentrations and wind direction is observed here, with peak $\mathrm{SO}_{2}$ associated with north winds, and peak $\mathrm{NO}_{2}$ with winds from southwest and west. Higher $\mathrm{SO}_{2}$ concentrations are more likely to be observed under Continental High and Frontal Overrunning synoptic conditions (see, e.g., Muller 1977); and higher $\mathrm{NO}_{2}$ under Gulf Return, Frontal Overrunning, or Continental High. All average and maximum values obtained at Breton are well below the National Standards. Note that comparisons of the observed pollutant concentrations with

PSD increments are not valid since the baseline concentrations were unavailable for Breton and Dauphin Islands.

Concentrations of $\mathrm{SO}_{2}$ at Dauphin were higher than those at Breton for both averages and maximums. Average $\mathrm{NO}_{2}$ values were similar, with maximums frequently being higher at Breton. The Breton $\mathrm{NO}_{2}$ maximums often result from short-duration (less than one day) episodes of high $\mathrm{NO}_{x}$, with $\mathrm{NO}_{2}$ concentrations exceeding 30 to 40 ppb . These events are observed several times each month.

Characteristics of dispersion and the atmospheric boundary layer prevailing over the BNWA are detailed. Included are methods for determining the drag coefficient, stability category, vertical and cross-wind turbulence intensities, the vertical eddy diffusivity, and the mixed layer height under both stable and unstable conditions. Slightly unstable conditions are shown to dominate in the study area with free convection occurring nearly 4 to $15 \%$ of the time. Monthly mean mixed heights ranged from about 375 to 775 m . Analysis of radiosonde data obtained over Breton Island verifies a relationship between surface dewpoint depression and lifting condensation level, or mixed height, at this location.


Figure 1. Advanced Very High Resolution Radiometer (AVHRR) satellite thermal image showing the approximate locations of our two air quality monitoring stations (courtesy of Buddy Martin, Earth Scan Lab, Louisiana State University).

## II. Data Acquisition and Processing

## A. Overview

During the period of May 1997 through July 1998, near-continuous monitoring of ambient air quality $\left(\mathrm{SO}_{2}\right.$ and $\left.\mathrm{NO}_{\mathrm{x}}\right)$ was conducted at two near-shore stations; one at Breton Island in the Chandeleur chain, and the other at Dauphin Island near the opening of Mobile Bay (see Fig. 1). Measurements at Breton Island were further complemented by a suite of standard meteorological sensors. The stations were designed to operate autonomously by employing Campbell Scientific CR-10 dataloggers with high capacity storage modules. The air quality monitors were scanned at 10 -second intervals, and a five-minute average was recorded (giving 12 samples / hour). Most meteorological parameters were recorded on the hour; however several intervals were applied for the turbulence (uvw) data ( 15 and 30 minute averages). The storage modules were downloaded during regular service trips, at which time the memory would be cleared and the system reinitialized.

These stations were located in an attempt to best capture the spatial and temporal characteristics of ambient air quality and meteorology over the northeast Gulf of Mexico. In reality, site selection was primarily governed by the instrumentation's requirements for power and environmental control. While Dauphin Island is near enough to the mainland for commercial power, facilities at Breton Island were dependent upon power produced by diesel generators on site. Surface and marine vehicular traffic was also present at both locations. Hence, it is inevitable that these factors contributed to the recorded air quality records to some degree.

## B. Dauphin Island

Air quality instrumentation at Dauphin Island was housed within the Alabama Marine Resources Division building on the east end of the island (see Fig. 2 for an approximate layout of the facility). Primary station components were Monitor Labs, Inc. ML $9850 \mathrm{SO}_{2}$ analyzer, ML $9841 \mathrm{~A} \mathrm{NO}_{\mathrm{x}}$ analyzer, and an Environics Series 100 Multi-Gas Calibrator. All of these units are designated as an "equivalent method" for monitoring by the U.S. EPA, as defined in 40 CFR Part 53 (1994). Minimal detectable concentrations by the analyzers was approximately 1 ppb .

A Coastal-Marine Automated Network (C-MAN) station, DPIA 1, is maintained by NOAA at Dauphin Island, less than 3 miles from our air quality monitors. Meteorological records obtained during this reporting period at DPIA1 were downloaded from the National Data Buoy Center (NDBC) website, and integrated with the air quality files during post-processing.

Calibration of the air quality monitors was achieved through gas phase titration, in which a traceable gas standard is diluted with pure air or ozone to generate multiple known concentrations (see, e.g., 40 CFR , App. B, 1994). If functioning properly, the monitor should produce a linear response, hence accuracy is consistent from low to high concentrations. For a more detailed description of servicing routines and calibrations, see the Interim Report (Hsu and Blanchard, 1998).


Figure 2. Layout of air quality monitoring station at Dauphin Island (distances are approximated).

Dauphin Island servicing dates and significant operational notes recorded during this reporting period are as follows:

May 13, 1997 Filters changed and cleaned, calibration.
June 12, $1997 \quad$ Filters changed and cleaned, calibration.
July 16, 1997 UV filters cleaned, internal and external filters changed, charcoal changed, leak test, flow check, calibration.

September 12, 1997 Calibration.
September 26, 1997 Filters replaced and cleaned, flow check, calibration.
November 6, 1997 Units cleaned and leak tested, vacuum pump on $\mathrm{NO}_{\mathrm{x}}$ monitor weakening but still within acceptable limits, calibration.

November 25, 1997 Discovered bad o-rings while working on $\mathrm{NO}_{\mathrm{x}}$ monitor pump, one replaced, calibration.

December 11, 1997 O-rings replaced, improved vacuum reading on $\mathrm{NO}_{\mathrm{x}}$ monitor, calibration.
January 8, 1998 Remaining o-rings replaced, clean and replaced filters, calibration.
January 22, 1998 Cleaned both monitors, leak test, flow check on $\mathrm{SO}_{2}$ monitor, flow check on calibrator, calibration.

February 4, 1998 Replaced filters, failure of ozone generator in $\mathrm{NO}_{\mathrm{x}}$ monitor, unit offline, calibration of $\mathrm{SO}_{2}$ monitor.

February 13, 1998 Ozone generator installed in $\mathrm{NO}_{\mathrm{x}}$ monitor, leak test, calibration.
February 27, 1998 Filters changed, calibration.
March 15, 1998 Filters changed, calibration.
April 2, 1998 Filters changed, calibration.
April 16, 1998 Filters changed, calibration.
May 9, $1998 \quad$ Flow check on calibrator and $\mathrm{SO}_{2}$ monitor, calibration, end of monitoring.
Results of the $\mathrm{SO}_{2}$ monitor calibrations are given in Tables 1 to 3 , and those for the $\mathrm{NO}_{\mathrm{x}}$ monitor in Tables 4 to 8. Exceptional accuracy is obtained, with mean errors being less than $5 \%$. No significant zero or span drift is evident for either monitor.

The $\mathrm{SO}_{2}$ monitor has a built-in function for performing a daily background cycle and electronic zero check, hence no zero offsets were applied to the data. Periods in which known power outages occurred were removed from the record. Other negative values were either removed or converted to zero, depending on the magnitude and duration. Field experience has shown that minor power fluctuations can cause this monitor to re-initialize, sometimes producing intervals of bogus values until the unit stabilizes. Removed data periods were generally less than 24 hours in duration.

A consistent offset of 2-3 ppb was present in the $\mathrm{NO}_{2}$ channel (see Table 4) during most of the study period. In an analysis of air quality data recorded from these stations prior to April 1997, this was addressed by subtracting the offsets from the recorded values (see Interim Report). This method can produce excessive negative values; also, since $\mathrm{NO}, \mathrm{NO}_{2}$, and $\mathrm{NO}_{\mathrm{x}}$ each has an offset, subtraction may not remove the discrepancies (as evidenced by $\mathrm{NO}_{2} / \mathrm{NO}_{\mathrm{x}}$ ratios $>1$ ). It was found that subtracting the hourly averaged NO concentration from the $\mathrm{NO}_{\mathrm{x}}$ concentration produced a value (computed $\mathrm{NO}_{2}$ ) whose difference from the recorded $\mathrm{NO}_{2}$ was nearly equivalent to the zero offset. Applying this technique to the previous dataset presented in the Interim Report resulted in monthly and annual averages within about 1 ppb of those listed. Therefore, for this analysis, the computed $\mathrm{NO}_{2}$ value is used.

Table 1.
Dauphin Island $\mathrm{SO}_{2}$ Monitor Zero Values

| Date | Actual $\mathrm{SO}_{2}$ |
| :--- | :---: |
| 13 May 1997 | 2 |
| 12 June 1997 | 0 |
| 17 July 1997 | 6 |
| 12 September 1997 | -1 |
| 26 September 1997 | 0 |
| 6 November 1997 | 1 |
| 25 November 1997 | 1 |
| 10 December 1997 | 1 |
| 8 January 1998 | 1 |
| 22 January 1998 | 1 |
| 4 February 1998 | 0 |
| 13 February 1998 | 1 |
| 27 February 1998 | 1 |
| 15 March 1998 | 1 |
| 2 April 1998 | -1 |
| 16 April 1998 | 1 |
| 8 May 1998 | 0 |

Table 2.
Dauphin Island $\mathrm{SO}_{2}$ Monitor Precision Values

| Date | Expected | Actual $\mathrm{SO}_{2}$ | \% Error |
| :---: | :---: | :---: | :---: |
| 6 November 1997 | 107 | 107 | 0.00 |
| 22 January 1998 | 107 | 106 | -0.93 |
| 8 May 1998 | 107 | 102 | -4.67 |
| Sum |  |  | -5.60 |
| Mean |  |  | -1.87 |
| Standard Deviation |  |  | 2.47 |
| Upper 95\% Limit |  |  | 2.97 |
| Lower 95\% Limit |  |  | -6.71 |

Table 3.
Dauphin Island $\mathrm{SO}_{2}$ Monitor Accuracy Values

| Date | Expected | Actual $\mathrm{SO}_{2}$ | \% Error |
| :---: | :---: | :---: | :---: |
| 13 May 1997 | 207 | 207 | 0.00 |
|  | 428 | 425 | -0.70 |
| 12 June 1997 | 207 | 205 | -0.97 |
|  | 428 | 424 | -0.94 |
| 18 July 1997 | 312 | 315 | 0.96 |
|  | 207 | 210 | 1.45 |
|  | 428 | 428 | 0.00 |
| 12 September 1997 | 230 | 230 | 0.00 |
|  | 477 | 475 | -0.42 |
| 26 September 1997 | 230 | 233 | 1.30 |
|  | 477 | 480 | 0.63 |
| 6 November 1997 | 331 | 330 | -0.30 |
|  | 230 | 232 | 0.87 |
|  | 477 | 477 | 0.00 |
| 25 November 1997 | 230 | 229 | -0.44 |
|  | 477 | 477 | 0.00 |
| 10 December 1997 | 230 | 228 | -0.87 |
|  | 477 | 475 | -0.42 |
| 8 January 1998 | 230 | 229 | -0.44 |
|  | 477 | 475 | -0.42 |
| 22 January 1998 | 331 | 331 | 0.00 |
|  | 230 | 231 | 0.44 |
|  | 477 | 478 | 0.21 |

Table 3 continued

| Date | Expected | Actual $\mathrm{SO}_{2}$ | \% Error |
| :---: | :---: | :---: | :---: |
| 4 February 1998 | 230 | 229 | -0.44 |
|  | 477 | 473 | -0.84 |
| 13 February 1998 | 230 | 228 | -0.87 |
|  | 477 | 471 | -1.26 |
| 27 February 1998 | 230 | 227 | -1.30 |
|  | 477 | 471 | -1.26 |
| 15 March 1998 | 230 | 226 | -1.74 |
|  | 477 | 467 | -2.10 |
| 2 April 1998 | 230 | 228 | -0.87 |
|  | 477 | 469 | -1.68 |
| 16 April 1998 | 230 | 226 | -1.74 |
|  | 477 | 466 | -2.31 |
| 8 May 1998 | 331 | 317 | -4.23 |
|  | 230 | 221 | -3.91 |
|  | 476 | 454 | -4.62 |
| Sum |  |  | -29.23 |
| Mean |  |  | -0.77 |
| Standard Deviation |  |  | 1.36 |
| Upper 95\% Limit |  |  | 1.90 |
| Lower 95\% Limit |  |  | -3.44 |

Table 4.
Dauphin Island $\mathrm{NO}_{\mathrm{x}}$ Monitor Zero Values

| Date | Actual NO | Actual $\mathrm{NO}_{2}$ | Actual $\mathrm{NO}_{\mathrm{x}}$ |
| :--- | :---: | :---: | :---: |
| 13 May 1997 | 1 | 2 | 1 |
| 12 June 1997 | 1 | 2 | 1 |
| 18 July 1997 | 1 | 2 | 1 |
| 12 September 1997 | 1 | 2 | 2 |
| 26 September 1997 | 0 | 3 | 1 |
| 6 November 1997 | 1 | 2 | 1 |
| 25 November 1997 | 0 | 3 | 1 |
| 11 December 1997 | -1 | 3 | -1 |
| 8 January 1998 | 0 | 3 | 1 |
| 22 January 1998 | 0 | 2 | 0 |
| 13 February 1998 | 1 | 2 | -1 |
| 27 February 1998 | 0 | 0 | -3 |
| 15 March 1998 | -1 | -1 | -3 |
| 2 April 1998 | 0 | -1 | -3 |
| 16 April 1998 | 0 | -1 | -3 |
| 8 May 1998 | 1 | -1 | -2 |

Table 5.
Dauphin Island $\mathrm{NO}_{\mathrm{x}}$ Monitor Precision Values

| Date | Expected | Actual NO | Actual $\mathrm{NO}_{\mathrm{x}}$ | \% Error | \% Error |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 November 1997 | 100 | 96 | 98 | -4.00 | -2.00 |
| 22 January 1998 | 100 | 97 | 98 | -3.00 | -2.00 |
| 8 May 1998 | 100 | 98 | 96 | -2.00 | -4.00 |
| Sum |  |  |  | -9.00 | -8.00 |
| Mean |  |  |  | -3.00 | -2.67 |
| Standard Deviation |  |  |  | 1.00 | 1.15 |
| Upper 95\% Limit |  |  |  | -1.04 | -0.40 |
| Lower 95\% Limit |  |  |  | -4.96 | -4.93 |

Table 6.
Dauphin Island $\mathrm{NO}_{x}$ Monitor Accuracy Values

| Date | Expected | Actual NO | Actual $\mathrm{NO}_{\mathrm{x}}$ | \% Error | \% Error |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 13 May 1997 | 214 | 213 | 215 | -0.47 | 0.47 |
|  | 443 | 439 | 448 | -0.90 | 1.13 |
| 12 June 1997 | 214 | 219 | 222 | 2.34 | 3.74 |
|  | 443 | 455 | 461 | 2.71 | 4.06 |
| 18 July 1997 | 323 | 322 | 328 | -0.31 | 1.55 |
|  | 214 | 211 | 214 | -1.40 | 0.00 |
|  | 443 | 441 | 447 | -0.45 | 0.90 |
| 12 September 1997 | 215 | 212 | 216 | -1.40 | 0.47 |
|  | 445 | 441 | 452 | -0.90 | 1.57 |
| 26 September 1997 | 215 | 218 | 224 | 1.40 | 4.19 |
|  | 445 | 462 | 473 | 3.82 | 6.29 |
| 6 November 1997 | 309 | 307 | 312 | -0.65 | 0.97 |
|  | 215 | 213 | 216 | -0.93 | 0.47 |
|  | 445 | 442 | 446 | -0.67 | 0.22 |
| 25 November 1997 | 215 | 211 | 216 | -1.86 | 0.47 |
|  | 445 | 441 | 450 | -0.90 | 1.12 |
| 11 December 1997 | 215 | 213 | 216 | -0.93 | 0.47 |
|  | 445 | 442 | 450 | -0.67 | 1.12 |
| 8 January 1998 | 215 | 213 | 215 | -0.93 | 0.00 |
|  | 445 | 443 | 447 | -0.45 | 0.45 |
| 22 January 1998 | 309 | 308 | 312 | -0.32 | 0.97 |
|  | 215 | 213 | 215 | -0.93 | 0.00 |
|  | 445 | 443 | 448 | -0.45 | 0.67 |

Table 6 continued.

| Date | Expected | Actual NO | Actual $\mathrm{NO}_{\mathrm{x}}$ | \% Error | \% Error |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 13 February 1998 | 215 | 214 | 215 | -0.47 | 0.00 |
|  | 445 | 444 | 448 | -0.22 | 0.67 |
| 27 February 1998 | 215 | 213 | 213 | -0.93 | -0.93 |
|  | 445 | 444 | 446 | -0.22 | 0.22 |
| 15 March 1998 | 215 | 213 | 215 | -0.93 | 0.00 |
|  | 445 | 443 | 449 | -0.45 | 0.90 |
| 2 April 1998 | 215 | 213 | 214 | -0.93 | -0.47 |
|  | 445 | 445 | 448 | 0.00 | 0.67 |
| 16 April 1998 | 215 | 214 | 215 | -0.47 | 0.00 |
|  | 445 | 448 | 450 | 0.67 | 1.12 |
| 8 May 1998 | 309 | 304 | 306 | -1.62 | -0.97 |
|  | 215 | 211 | 212 | -1.86 | -1.40 |
|  | 445 | 438 | 443 | -1.57 | -0.45 |
| Sum |  |  |  | -14.25 | 30.66 |
| Mean |  |  |  | -0.40 | 0.85 |
| Standard Deviation |  |  |  | 1.22 | 1.53 |
| Upper 95\% Limit |  |  |  | 1.97 | 3.85 |
| Lower 95\% Limit |  |  |  | -2.77 | -2.15 |

Table 7.
Dauphin Island $\mathrm{NO}_{2}$ Precision Values

| Date | Expected | Actual $\mathrm{NO}_{2}$ | \% Error |
| :---: | :---: | :---: | :---: |
| 13 May 1997 | 101 | 106 | 4.95 |
| 12 June 1997 | 103 | 109 | 5.83 |
| 18 July 1997 | 100 | 103 | 3.00 |
| 12 September 1997 | 93 | 103 | 10.75 |
| 26 September 1997 | 96 | 107 | 11.46 |
| 6 November 1997 | 95 | 100 | 5.26 |
| 25 November 1997 | 102 | 104 | 1.96 |
| 11 December 1997 | 98 | 103 | 5.10 |
| 8 January 1998 | 95 | 99 | 4.21 |
| 22 January 1998 | 98 | 99 | 1.02 |
| 13 February 1998 | 99 | 100 | 1.01 |
| 27 February 1998 | 98 | 99 | 1.02 |
| 15 March 1998 | 101 | 103 | 1.98 |
| 2 April 1998 | 98 | 100 | 2.04 |
| 16 April 1998 | 99 | 100 | 1.01 |
| 8 May 1998 | 98 | 100 | 2.04 |
| Sum |  |  |  |
| Mean |  |  | 3.92 |
| Standard Deviation |  |  | 3.27 |
| Upper 95\% Limit |  |  | 10.33 |
| Lower 95\% Limit |  |  | -2.49 |

Table 8.
Dauphin Island $\mathrm{NO}_{2}$ Accuracy Values

| Date | Expected | Actual $\mathrm{NO}_{2}$ | \% Error |
| :---: | :---: | :---: | :---: |
| 13 May 1997 | 339 | 343 | 1.18 |
| 12 June 1997 | 354 | 356 | 0.56 |
| 18 July 1997 | 340 | 344 | 1.18 |
| 12 September 1997 | 336 | 344 | 2.38 |
| 26 September 1997 | 348 | 358 | 2.87 |
| 6 November 1997 | 343 | 348 | 1.46 |
| 25 November 1997 | 354 | 355 | 0.28 |
| 11 December 1997 | 353 | 359 | 1.70 |
| 8 January 1998 | 345 | 349 | 1.16 |
| 22 January 1998 | 341 | 343 | 0.59 |
| 13 February 1998 | 349 | 350 | 0.29 |
| 27 February 1998 | 345 | 346 | 0.29 |
| 15 March 1998 | 352 | 355 | 0.85 |
| 2 April 1998 | 334 | 337 | 0.90 |
| 16 April 1998 | 347 | 349 | 0.58 |
| 8 May 1998 | 348 | 351 | 0.86 |
| Sum |  |  | 17.13 |
| Mean |  |  | 1.07 |
| Standard Deviation |  |  | 0.74 |
| Upper 95\% Limit |  |  | 2.52 |
| Lower 95\% Limit |  |  | -0.38 |

Table 9 lists the monthly air quality data capture rate for Dauphin Island after processing. Only February 1998 falls below $85 \%$ complete for $\mathrm{NO}_{x}$, due to failure of the ozone generator as described above. Other missing data is a result of station maintenance and calibrations, and power outages.

Table 9.
Percent Data Return for Air Quality - Dauphin Island
( $*$ indicates $<75 \%$ complete)

| Month | $\% \mathrm{SO}_{2}$ | $\% \mathrm{NO}_{\mathrm{x}}$ |
| :--- | ---: | ---: |
| May 1997 | 95.7 | 98.4 |
| June 1997 | 99.6 | 99.6 |
| July 1997 | 86.6 | 86.6 |
| August 1997 | 98.8 | 99.7 |
| September 1997 | 96.5 | 96.5 |
| October 1997 | 100.0 | 100.0 |
| November 1997 | 92.5 | 92.1 |
| December 1997 | 96.2 | 96.6 |
| January 1998 | 97.7 | 98.1 |
| February 1998 | 95.5 | $65.3 *$ |
| March 1998 | 98.0 | 98.0 |
| April 1998 | 95.8 | 99.0 |

C. Breton Island

During this reporting period, several changes were made both to instrumentation and operating procedures at the Breton Island station. These modifications were brought about to enhance our measurement capability, and in response to damage incurred from environmental conditions, natural and man-made.

The air quality measurements suite consisted of identical Monitor Labs, Inc. analyzers as deployed at Dauphin Island; here a Monitor Labs, Inc. ML 8550 Gas Calibrator was used. Wind speed and direction was obtained from a roof-mounted RM Young Wind Sensor. The air quality monitors and datalogging system were located on the third floor of the Kerr-McGee building, with the air intake facing roughly northeast (see Fig. 3 for schematic).


Figure 3. Schematic of the Kerr-McGee facility on Breton Island showing location of monitoring site following Hurricane Danny.

In early June 1997, a meteorological tower was installed inside of the large pier extending from Kerr-McGee. It was instrumented with a RM Young Gill UVW sensor ( $\sim 9.4 \mathrm{~m}$ asl), air temperature and relative humidity sensors ( $\sim 7.9 \mathrm{~m}$ asl), atmospheric pressure ( $\sim 6 \mathrm{~m}$ asl), and water temperature at approximately -1 m depth. These sensors were connected to a separate datalogger within a weatherproof box on the pier.

Approximately six weeks later, Breton Island endured the full force of Hurricane Danny. Five-minute average wind speeds of over $30 \mathrm{~m} \mathrm{~s}^{-1}$ were recorded for several hours. The storm inflicted considerable damage to the Kerr-McGee facility, as well as to several houseboats and camps present nearby. Significant changes to the island's topography were produced. Power was lost early, but fortunately the only damage to our equipment was bent mounts on the wind sensors. On the other hand, in view of condition of the Kerr-McGee main building, it was decided that no repairs would be made and power would not be restored. Major equipment was removed from the island.

By the end of August, 1997, Kerr-McGee had prepared another location for our monitoring station - a small portable building which they had powered and air-conditioned specifically for our study program. The air quality intake was nearer to ground level (about 4 m ) and to the generator shed (to the south-southeast); but the building was much better regulated both for power and environmental conditions. The meteorological tower was re-deployed, with the addition of the RM Young Wind Sensor to the tower (about 4.9 m asl).

As described in the Interim Report, fluctuations in voltage and power outages continued to affect operations at Breton Island. Much of May and June $1997 \mathrm{NO}_{x}$ data was lost due to electronic damage to the monitor. Power spikes were better controlled following installation in the new building, however prolonged outages were noted in February and July 1998.

Like Dauphin Island, monitoring at Breton was scheduled to conclude at the end of April 1998. Considering the generally low data capture rate obtained at Breton, monitoring was allowed to continue through July 1998. A data gap occurred in June 1998 due to full memory between servicings.

Service dates and notes from the Breton Island station log are as follows:
May 9, 1997 Both monitors found malfunctioning, changed power inverter, $\mathrm{SO}_{2}$ corrected, $\mathrm{NO}_{\mathrm{x}}$ offline, $\mathrm{SO}_{2}$ calibration.

June 4, $1997 \quad \mathrm{NO}_{x}$ re-installed, meteorological tower installed, calibration.
June 10, 1997 Discovered logging software error, no air quality data collected since 3 June, corrected.

June 24, 1997 Flow check of calibrator, calibration.
July 10, 1997 Installed new mast and RM Young Wind Sensor on roof of building, calibration.

July 23, 1997 Site inspection following Hurricane Danny on 18 July. All power lost; data downloaded and systems disconnected.

August 28, 1997 Station re-deployed in new location. Flow check of calibrator and monitor calibration.

September 19, 1997 Calibration.
November 4, 1997 Calibration begun but failure of zero air pump.
November 7, 1997 Repaired pump installed - problem remains. Discovered low line voltage. Kerr-McGee personnel adjust generator. Calibration begun and pump stops again. Power drop seen. Found that generator has worn spot near 110 volts,
vibration of unit keeps output voltage fluctuating. Generator set up to 115 VAC. All electronic setting on $\mathrm{SO}_{2}$ monitor re-set. Calibration completed.

December 20, $1997 \mathrm{NO}_{x}$ monitor pump changed, leak test, calibration.
January 18, 1998 Flow check of calibrator, calibration.
February 5, 1998 Calibration.
February 18, 1998 No communication with meteorological datalogger. Logging program lost reloaded. Recorded data ended on 11 February. Air quality monitor's lens cleaned, ozone generator in $\mathrm{NO}_{\mathrm{x}}$ replaced, leak test, calibration.

March 13, 1998 Found electronic settings on $\mathrm{SO}_{2}$ monitor zeroed - reset. Monitor appeared to have lost settings following repeated power outages at end of February. $\mathrm{NO}_{x}$ monitor also required adjustment, calibration.

April 21, 1998 Meteorological program re-installed, zero offset on $\mathrm{SO}_{2}$ adjusted, replaced PMT, ozone generator, and vacuum pump in $\mathrm{NO}_{\mathrm{x}}$ monitor, calibration.

June 22, 1998 Calibration gas cylinder changed and quick purge of system attempted, flow check of calibrator, resulting calibration bad due to insufficient time for system purge, linearity of monitors good; no setting changed on either unit.

August 3, 1998 Final calibration before station removal.
Results of the monitor calibrations are given in Tables 10-17. As expected, slightly higher errors are seen throughout the record, however mean errors remain below $5 \%$. As described above, the highest errors occurred following installation of a new span gas cylinder before the system could be completely purged.

Data processing routines applied to this dataset were the same as for Dauphin, i.e., removal of data during known power outages, conversion of negative values to zero, and calculation of $\mathrm{NO}_{2}$ from hourly $\mathrm{NO}_{x}-\mathrm{NO}$. Negative values were generally less than 3 ppb . Several data spikes were observed following power outages or fluctuations; these were also removed since they were likely due to impurities in the sample line and / or instability in the monitor following re-start.

Corrective actions were required on the $\mathrm{SO}_{2}$ and wind records on multiple occasions. After experiencing power failures in February 1998, the $\mathrm{SO}_{2}$ monitor would not hold its electronic zero setting. Time series of the raw data combined with operator notes showed a negative displacement of 13.5 ppb during 1-13 May, 1998, and 5.7 ppb from May 14 to April 21, 1998, at which time the problem was corrected. These offsets were added to the affected data.

Table 10.
Breton Island $\mathrm{SO}_{2}$ Monitor Zero Values

| Date | Actual $\mathrm{SO}_{2}$ |
| :--- | :---: |
| 9 May 1997 | 0 |
| 4 June 1997 | 0 |
| 24 June 1997 | -1 |
| 10 July 1997 | 0 |
| 19 September 1997 | 0 |
| 7 November 1997 | 1 |
| 20 December 1997 | 1 |
| 18 January 1998 | 1 |
| 5 February 1998 | 1 |
| 18 February 1998 | 1 |
| 13 March 1998 | 1 |
| 21 April 1998 | 0 |
| 22 June 1998 | 1 |
| 3 August 1998 | 0 |
| 29 August 1998 | 1 |

Table 11.
Breton Island $\mathrm{SO}_{2}$ Monitor Precision Values

| Date | Expected | Actual $\mathrm{SO}_{2}$ | \% Error |
| :---: | :---: | :---: | :---: |
| 9 May 1997 | 95 | 93 | -2.11 |
| 24 June 1997 | 100 | 96 | -4.00 |
| 10 July 1997 | 100 | 98 | -2.00 |
| 19 September 1997 | 114 | 118 | 3.51 |
| 7 November 1997 | 114 | 108 | -5.26 |
| 20 December 1997 | 114 | 115 | 0.88 |
| 18 January 1998 | 117 | 115 | -1.71 |
| 5 February 1998 | 117 | 113 | -3.42 |
| 18 February 1998 | 117 | 115 | -1.71 |
| 13 March 1998 | 117 | 115 | -1.71 |
| 21 April 1998 | 117 | 115 | -1.71 |
| 22 June 1998 | 109 | 82 | -24.77 |
| 3 August 1998 | 109 | 100 | -8.26 |
| Sum |  |  | -52.27 |
| Mean |  |  | -4.02 |
| Standard Deviation |  |  | 6.83 |
| Upper 95\% Limit |  |  | 9.37 |
| Lower 95\% Limit |  |  | -17.41 |

Table 12.
Breton Island $\mathrm{SO}_{2}$ Monitor Accuracy Values

| Date | Expected | Actual $\mathrm{SO}_{2}$ | \% Error |
| :---: | :---: | :---: | :---: |
| 9 May 1997 | 494 | 493 | -0.20 |
| 4 June 1997 | 494 | 490 | -0.81 |
|  | 162 | 158 | -2.47 |
| 24 June 1997 | 416 | 416 | 0.00 |
|  | 274 | 269 | -1.82 |
|  | 168 | 160 | -4.76 |
| 10 July 1997 | 416 | 416 | 0.00 |
| 19 September 1997 | 414 | 415 | 0.24 |
|  | 222 | 222 | 0.00 |
| 7 November 1997 | 414 | 416 | 0.48 |
| 20 December 1997 | 414 | 414 | 0.00 |
| 18 January 1998 | 417 | 416 | -0.24 |
|  | 350 | 349 | -0.29 |
|  | 223 | 220 | -1.35 |
| 5 February 1998 | 417 | 407 | -2.40 |
| 18 February 1998 | 417 | 416 | -0.24 |
| 13 March 1998 | 417 | 416 | -0.24 |
| 21 April 1998 | 417 | 416 | -0.24 |
| 22 June 1998 | 386 | 293 | -24.09 |
|  | 328 | 251 | -23.48 |
|  | 208 | 157 | -24.52 |
| 3 August 1998 | 386 | 365 | -5.44 |
|  | 328 | 306 | -6.71 |
|  | 208 | 192 | -7.69 |
| 29 August 1998 | 414 | 415 | 0.24 |
|  | 222 | 220 | -0.90 |
| $\overline{\text { Sum }}$ |  |  | -106.93 |
| Mean |  |  | -4.11 |
| Standard Deviation |  |  | 7.66 |
| Upper 95\% Limit |  |  | 10.90 |
| Lower 95\% Limit |  |  | -19.12 |

Table 13.
Breton Island $\mathrm{NO}_{\mathrm{x}}$ Monitor Zero Values

| Date | Actual NO | Actual $\mathrm{NO}_{2}$ | Actual $\mathrm{NO}_{\mathrm{x}}$ |
| :--- | :---: | :---: | :---: |
| 4 June 1997 | 1 | 3 | 3 |
| 24 June 1997 | 1 | 2 | 2 |
| 10 July 1997 | 0 | 2 | 1 |
| 19 September 1997 | 1 | 1 | 2 |
| 7 November 1997 | 1 | 2 | 2 |
| 20 December 1997 | 1 | 1 | 1 |
| 18 January 1998 | -1 | 2 | 0 |
| 5 February 1998 | -1 | -1 | 0 |
| 18 February 1998 | 0 | 0 | -1 |
| 13 March 1998 | 0 | 2 | 0 |
|  | 0 | 2 | 0 |
| 21 April 1998 | -2 | 6 | 2 |
| 22 June 1998 | -1 | 5 | 2 |
| 3 August 1998 | 0 | 6 | 3 |
| 29 August 1998 | 1 | 2 | 1 |

Table 14.
Breton Island $\mathrm{NO}_{\mathrm{x}}$ Monitor Precision Values

| Date | Expected | Actual NO | Actual $\mathrm{NO}_{\mathrm{x}}$ | \% Error | \% Error |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 24 June 1997 | 71 | 69 | 71 | -2.82 | 0.00 |
| 10 July 1997 | 71 | 70 | 70 | -1.41 | -1.41 |
| 19 September 1997 | 108 | 106 | 108 | -1.85 | 0.00 |
| 7 November 1997 | 108 | 103 | 104 | -4.63 | -3.70 |
| 20 December 1997 | 108 | 108 | 108 | 0.00 | 0.00 |
| 18 January 1998 | 112 | 113 | 112 | 0.89 | 0.00 |
| 5 February 1998 | 112 | 123 | 122 | 9.82 | 8.93 |
| 18 February 1998 | 112 | 110 | 114 | -1.79 | 1.79 |
| 13 March 1998 | 112 | 91 | 92 | -18.75 | -17.86 |
|  | 112 | 111 | 111 | -0.89 | -0.89 |
| 21 April 1998 | 112 | 110 | 113 | -1.79 | 0.89 |
| 22 June 1998 | 112 | 82 | 85 | -26.79 | -24.11 |
| 3 August 1998 | 112 | 97 | 100 | -13.39 | -10.71 |
| Sum |  |  |  | -63.40 | -47.07 |
| Mean |  |  |  | -4.88 | -3.62 |
| Standard Deviation |  |  |  | 9.48 | 8.87 |
| Upper 95\% Limit |  |  |  | 13.70 | 13.77 |
| Lower 95\% Limit |  |  |  | -23.46 | -21.01 |

Table 15.
Breton Island $\mathrm{NO}_{\mathrm{x}}$ Monitor Accuracy Values

| Date | Expected | Actual NO | Actual $\mathrm{NO}_{x}$ | \% Error | \% Error |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 June 1997 | 477 | 477 | 477 | 0.00 | 0.00 |
|  | 151 | 146 | 146 | -3.31 | -3.31 |
| 24 June 1997 | 388 | 385 | 388 | -0.77 | 0.00 |
|  | 233 | 229 | 230 | -1.72 | -1.29 |
|  | 118 | 113 | 115 | -4.24 | -2.54 |
| 10 July 1997 | 388 | 388 | 388 | 0.00 | 0.00 |
| 19 September 1997 | 501 | 499 | 502 | -0.40 | 0.20 |
|  | 348 | 346 | 348 | -0.57 | 0.00 |
|  | 241 | 240 | 243 | -0.41 | 0.83 |
| 7 November 1997 | 501 | 498 | 501 | -0.60 | 0.00 |
| 20 December 1997 | 501 | 501 | 502 | 0.00 | 0.20 |
| 18 January 1998 | 417 | 417 | 419 | 0.00 | 0.48 |
|  | 308 | 316 | 313 | 2.60 | 1.62 |
|  | 177 | 176 | 175 | -0.56 | -1.13 |
| 5 February 1998 | 417 | 470 | 473 | 12.71 | 13.43 |
| 18 February 1998 | 417 | 415 | 416 | -0.48 | -0.24 |
| 13 March 1998 | 417 | 351 | 351 | -15.83 | -15.83 |
|  | 417 | 415 | 417 | -0.48 | 0.00 |
| 21 April 1998 | 417 | 417 | 417 | 0.00 | 0.00 |
| 22 June 1998 | 416 | 294 | 303 | -29.33 | -27.16 |
|  | 307 | 218 | 227 | -28.99 | -26.06 |
|  | 177 | 123 | 128 | -30.51 | -27.68 |
| 3 August 1998 | 416 | 379 | 381 | -8.89 | -8.41 |
|  | 307 | 282 | 283 | -8.14 | -7.82 |
|  | 177 | 158 | 161 | -10.73 | -9.04 |
| 29 August 1998 | 501 | 499 | 505 | -0.40 | 0.80 |
|  | 241 | 239 | 242 | -0.83 | 0.42 |
| Sum |  |  |  | -131.88 | -112.53 |
| Mean |  |  |  | -4.88 | -4.17 |
| Standard Deviation |  |  |  | 10.19 | 9.57 |
| Upper 95\% Limit |  |  |  | 15.09 | 14.59 |
| Lower 95\% Limit |  |  |  | -24.85 | -22.93 |

Table 16.
Breton Island $\mathrm{NO}_{2}$ Precision Values

| Date | Expected | Actual $\mathrm{NO}_{2}$ | \% Error |
| :---: | :---: | :---: | :---: |
| 4 June 1997 | 101 | 108 | 6.93 |
| 24 June 1997 | 93 | 91 | -2.15 |
| 10 July 1997 | 89 | 88 | -1.12 |
| 19 September 1997 | 81 | 81 | 0.00 |
| 7 November 1997 | 77 | 77 | 0.00 |
| 20 December 1997 | 78 | 76 | -2.56 |
| 18 January 1998 | 68 | 67 | -1.47 |
| 5 February 1998 | 79 | 76 | -3.80 |
| 18 February 1998 | 76 | 76 | 0.00 |
| 13 March 1998 | 58 | 55 | -5.17 |
|  | 81 | 80 | -1.23 |
| 21 April 1998 | 71 | 71 | 0.00 |
| 3 August 1998 | 50 | 49 | $-2.00$ |
| 29 August 1998 | 95 | 90 | -5.26 |
| Sum |  |  | -17.83 |
| Mean |  |  | -1.27 |
| Standard Deviation |  |  | 2.97 |
| Upper 95\% Limit |  |  | 4.55 |
| Lower 95\% Limit |  |  | -7.09 |

Table 17.
Breton Island $\mathrm{NO}_{2}$ Accuracy Values

| Date | Expected | Actual $\mathrm{NO}_{2}$ | \% Error |
| :---: | :---: | :---: | :---: |
| 4 June 1997 | 430 | 433 | 0.70 |
| 24 June 1997 | 343 | 345 | 0.58 |
| 10 July 1997 | 240 | 239 | -0.42 |
| 19 September 1997 | 236 | 238 | 0.85 |
| 7 November 1997 | 218 | 224 | 2.75 |
| 20 December 1997 | 348 | 346 | -0.57 |
| 18 January 1998 | 183 | 179 | -2.19 |
| 5 February 1998 | 320 | 321 | 0.31 |
| 18 February 1998 | 293 | 293 | 0.00 |
| 13 March 1998 | 240 | 238 | -0.83 |
|  | 307 | 310 | 0.98 |
| 21 April 1998 | 293 | 295 | 0.68 |
| 3 August 1998 | 232 | 234 | 0.86 |
| 29 August 1998 | 367 | 366 | -0.27 |
| Sum |  |  | 3.43 |
| Mean |  |  | 0.25 |
| Standard Deviation |  |  | 1.13 |
| Upper 95\% Limit |  |  | 2.47 |
| Lower 95\% Limit |  |  | -1.97 |

Several versions of the meteorological datalogging program were produced during development and testing. On 28 August 1997 and 18 February 1998, a version containing an error in the wind speed logging was loaded accidentally while in the field. The error resulted in recorded wind speed values being off by a factor of 10 . Affected periods were 1 September to 7 November 1997, and 18 February to 20 March 1998. The corrected wind data, along with the rest of the wind record, was found to be in good agreement with observations from NOAA buoy 42007 located at the northern end of the Chandeleurs.

As described previously, re-location of the equipment helped to produce a much improved data return rate at Breton, as shown in Table 18. Low values in July and August 1997 were due to Hurricane Danny, while June 1998 resulted from a full storage module between servicing. Other missing data is from monitor failure, power outages, and station maintenance.

Table 18.
Percentage Air Quality Data Return - Breton Island ( $*$ indicates $<75 \%$ complete)

| Month | $\% \mathrm{SO}_{2}$ | $\% \mathrm{NO}_{\mathrm{x}}$ |
| :--- | ---: | ---: |
| May 1997 | 79.7 | $7.3^{*}$ |
| June 1997 | 75.3 | $66.9^{*}$ |
| July 1997 | $34.5^{*}$ | $51.2^{*}$ |
| August 1997 | $0^{*}$ | $0^{*}$ |
| September 1997 | 83.2 | 83.2 |
| October 1997 | 98.9 | 98.9 |
| November 1997 | 99.0 | 99.0 |
| December 1997 | 99.5 | 99.5 |
| January 1998 | 99.2 | 99.2 |
| February 1998 | 79.2 | 81.9 |
| March 1998 | 99.3 | 99.3 |
| April 1998 | 93.6 | 93.6 |
| May 1998 | 100.0 | 100.0 |
| June 1998 | $56.8^{*}$ | $56.8^{*}$ |
| July 1998 | 88.3 | 88.3 |

## III. Analysis and Results

This section will present a summary of the air quality records obtained at Dauphin and Breton Islands during the period of May 1997 through July 1998. All air quality analysis is based on 1-, 3-, and 24-hour block averaged data. Station records will be compared, and case studies of simultaneous high concentrations discussed. Synoptic weather patterns associated with pollutant peaks at Breton Island are determined. Finally, a detailed analysis of boundary layer and dispersion meteorology over the BNWA is explained.

## A. Dauphin Island Air Quality

Hourly air quality data were merged with meteorological records from the NOAA C-MAN station DPIA1. Figures 4-15 depict the monthly time series for wind direction, $\mathrm{SO}_{2}$, and $\mathrm{NO}_{2}$, along with servicing days. The majority of $\mathrm{SO}_{2}$ and $\mathrm{NO}_{2}$ values fall within the $0-10 \mathrm{ppb}$ range, with $\mathrm{NO}_{2}$ concentrations being slightly higher in general. A frequency distribution of all hourly values shows that almost $70 \%$ of the $\mathrm{SO}_{2}$ values are less than 2 ppb , while $\mathrm{NO}_{2}$ concentrations were less than 4 ppb approximately $60 \%$ of the time (Fig. 16).

Annual statistics were based on 8417 samples for $\mathrm{SO}_{2}(96.1 \%$ complete) and 8267 samples for $\mathrm{NO}_{2}\left(94.4 \%\right.$ complete). The annual arithmetic mean $\mathrm{SO}_{2}$ concentration was 2.28 ppb with a standard deviation of 3.18 ppb and a $95 \%$ confidence level of 0.068 . For $\mathrm{NO}_{2}$, the mean was 4.38 ppb with a standard deviation of 4.02 ppb and $95 \%$ confidence level of 0.087 . These values compare well with those listed in the Interim Report (i.e., 1.86 ppb for $\mathrm{SO}_{2}$ and 4.58 ppb for $\mathrm{NO}_{2}$ ) (Hsu and Blanchard, 1998).

Monthly averages and maximums for $\mathrm{SO}_{2}$ and $\mathrm{NO}_{2}$ are listed in Tables 19 and 20, respectively. A slight increase in average concentration of both pollutants is seen during the late fall - early winter months of October - December 1997. The wintertime peaks, particularly for $\mathrm{NO}_{2}$, were also evident in the 1996-1997 data as shown in Figs. 17-20, the 3- and 24-hour average time series for $\mathrm{SO}_{2}$ and $\mathrm{NO}_{2}$.

First, second, and third quartile values are used to show the diurnal variations of $\mathrm{SO}_{2}$ and $\mathrm{NO}_{2}$ concentrations in Figs. 21 and 22, respectively. Median ( $2^{\text {nd }}$ quartile) $\mathrm{SO}_{2}$ values are generally $1-2 \mathrm{ppb}$; a slight peak is often observed in the mid-morning to mid-day hours. Median $\mathrm{NO}_{2}$ values range from $1-7 \mathrm{ppb}$. A distinct peak is seen in the early morning (about 0700 CST ), with minimum values in the late afternoon. This distribution is expected due to photoabsorption of solar radiation, which can cause $\mathrm{NO}_{2}$ to dissociate into NO and O molecules (Bouble et al., 1994).


Figure 4.
May 1997 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1. $\mathrm{SO}_{2}$ missing on 15 May.


Figure 5. June 1997 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1.


Figure 6. July 1997 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1. Air quality data missing on 4 July and in mid-month as depicted.


Figure 7.
August 1997 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1. $\mathrm{SO}_{2}$ data missing on 18 August.


Figure 8. September 1997 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1.


Figure 9.
October 1997 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1.


Figure 10. November 1997 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1. $\mathrm{NO}_{\mathrm{x}}$ missing on 24 November.


Figure 11. December 1997 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1. Missing $\mathrm{SO}_{2}$ data on 29 December.


Figure 12.
January 1998 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1. $\mathrm{SO}_{2}$ data missing on 5 and 21 January, $\mathrm{NO}_{\mathrm{x}}$ missing on 7 and 21 January.


Figure 13. February 1998 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1. $\mathrm{NO}_{\mathrm{x}}$ missing on 3 and 16 February, $\mathrm{SO}_{2}$ on 16 and 17 February.


Figure 14. March 1998 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1. $\mathrm{SO}_{2}$ and $\mathrm{NO}_{\mathrm{x}}$ missing on 20 March.


Figure 15. April 1998 time series of Dauphin Island hourly-averaged concentrations and wind direction from DPIA1. $\mathrm{SO}_{2}$ data missing on 13-14 April.


Figure 16. Frequency distribution of hourly-averaged $\mathrm{SO}_{2}$ and $\mathrm{NO}_{2}$ concentrations at Dauphin Island during the study period.

Table 19.
Dauphin Island $\mathrm{SO}_{2}$ Maximums and Averages (ppb) based on 1 Hour Block Averages*

| Day | May 1997 |  | June 1997 |  | July 1997 |  | August 1997 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Max | Avg | Max | Avg | Max | Avg | Max | Avg |
| 1 | 2.3 | 0.8 | 1.7 | 0.6 | 4.3 | 1.4 | 1.4 | 0.8 |
| 2 | 0.2 | 0.0 | 11.1 | 1.8 | 13.9 | 2.8 | 8.3 | 2.2 |
| 3 | 1.6 | 0.4 | 6.2 | 1.8 | 11.5 | 1.8 | 3.3 | 1.1 |
| 4 | 6.9 | 2.2 | 9.7 | 4.7 | 42.5 | 4.0 | 3.9 | 1.1 |
| 5 | 2.6 | 1.0 | 4.1 | 0.8 | 14.7 | 2.2 | 2.9 | 0.7 |
| 6 | 2.6 | 1.1 | 2.1 | 0.6 | 1.5 | 0.5 | 3.9 | 1.7 |
| 7 | 2.8 | 0.6 | 0.7 | 0.2 | 1.4 | 0.5 | 13.5 | 5.4 |
| 8 | 0.4 | 0.2 | 0.6 | 0.3 | 12.3 | 2.0 | 7.3 | 2.1 |
| 9 | 9.9 | 1.1 | 1.0 | 0.3 | 12.2 | 3.3 | 2.7 | 0.6 |
| 10 | 6.0 | 2.0 | 1.6 | 0.5 | 16.2 | 4.0 | 1.1 | 0.4 |
| 11 | 5.8 | 1.9 | 2.4 | 0.7 | 25.3 | 8.6 | 1.4 | 0.5 |
| 12 | 2.9 | 1.0 | 1.2 | 0.3 | 13.0 | 4.2 | 2.6 | 0.4 |
| 13 | 15.3 | 4.6 | 2.7 | 0.9 | 5.6 | 2.4 | 0.4 | 0.1 |
| 14 | 1.5 | 0.8 | 0.7 | 0.2 | 10.2 | 3.3 | 2.0 | 0.4 |
| 15 | $2.4 *$ | 1.3* | 3.8 | 1.3 | 2.3 | 0.6 | 0.3 | 0.1 |
| 16 | 16.3 | 3.2 | 0.4 | 0.2 | 2.4* | 0.9* | 0.4 | 0.2 |
| 17 | 8.7 | 2.8 | 1.9 | 0.6 |  |  | 0.4 | 0.1 |
| 18 | 0.7 | 0.3 | 0.9 | 0.2 | 6.3* | 6.1* | 1.7* | 0.5* |
| 19 | 0.7 | 0.3 | 1.2 | 0.2 |  |  | 0.7 | 0.3 |
| 20 | 0.6 | 0.4 | 1.0 | 0.2 | 1.4* | 1.0* | 3.7 | 0.7 |
| 21 | 6.0 | 1.5 | 0.5 | 0.3 | 3.6 | 0.6 | 11.8 | 2.8 |
| 22 | 2.9 | 1.7 | 4.7 | 1.5 | 1.5 | 0.6 | 12.5 | 6.6 |
| 23 | 3.8 | 1.3 | 7.1 | 2.3 | 5.0 | 1.5 | 8.1 | 3.5 |
| 24 | 0.5 | 0.2 | 4.1 | 0.9 | 2.0 | 0.9 | 7.8 | 2.2 |
| 25 | 0.7 | 0.2 | 0.7 | 0.3 | 4.8 | 1.3 | 6.0 | 1.9 |
| 26 | 1.0 | 0.4 | 0.7 | 0.4 | 7.4 | 2.4 | 4.3 | 1.4 |
| 27 | 0.7 | 0.4 | 7.8 | 0.7 | 9.1 | 2.3 | 10.1 | 2.7 |
| 28 | 1.3 | 0.3 | 6.2 | 1.2 | 0.8 | 0.4 | 12.6 | 4.0 |
| 29 | 0.1 | 0.0 | 1.0 | 0.5 | 1.1 | 0.6 | 6.0 | 3.0 |
| 30 | 0.3 | 0.1 | 1.9 | 0.5 | 9.9 | 0.6 | 10.1 | 4.3 |
| 31 | 6.8 | 1.7 |  |  | 0.7 | 0.3 | 12.3 | 4.7 |
| \# Hours | 712 |  | 717 |  | 644 |  | 735 |  |
| Maximum | 16.3 |  | 11.1 |  | 42.5 |  | 13.5 |  |
| Arith-Mean |  | 1.1 |  | 0.8 |  | 2.0 |  | 1.8 |

* boxes indicate less than $75 \%$ ( 18 hours) complete.

Table 19 continued.

| Day | September 1997 |  | October 1997 |  | November 1997 |  | December 1997 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Max | Avg | Max | Avg | Max | Avg | Max | Avg |
| 1 | 10.6 | 3.6 | 17.2 | 5.1 | 0.9 | 0.5 | 9.3 | 3.1 |
| 2 | 13.8 | 3.7 | 8.9 | 5.1 | 7.9 | 2.5 | 6.5 | 2.1 |
| 3 | 12.0 | 3.7 | 5.0 | 2.3 | 18.5 | 3.9 | 13.2 | 1.7 |
| 4 | 10.6 | 3.8 | 10.2 | 2.6 | 21.3 | 4.3 | 3.8 | 1.9 |
| 5 | 4.6 | 1.3 | 2.8 | 0.9 | 3.2* | 1.8* | 50.5 | 3.6 |
| 6 | 2.1 | 1.1 | 4.6 | 1.2 |  |  | 27.0 | 3.8 |
| 7 | 5.0 | 1.0 | 3.9 | 1.6 | 3.9* | 2.5* | 11.8 | 3.4 |
| 8 | 21.6 | 5.2 | 1.4 | 0.6 | 7.0 | 4.5 | 4.3 | 0.8 |
| 9 | 6.6 | 2.2 | 3.3 | 0.5 | 11.2 | 7.4 | 1.0 | 0.2 |
| 10 | 4.5 | 1.6 | 2.6 | 0.7 | 20.6 | 6.5 | 3.1* | 1.2* |
| 11 | 5.7* | 3.4* | 7.6 | 2.7 | 19.1 | 8.8 | 16.9* | 9.6* |
| 12 | 13.2* | 3.4* | 3.1 | 0.7 | 3.2 | 1.0 | 14.9 | 9.8 |
| 13 | 38.0 | 7.1 | 0.9 | 0.4 | 3.3 | 1.5 | 13.3 | 6.1 |
| 14 | 8.3 | 3.5 | 8.0 | 3.2 | 6.1 | 1.8 | 9.7 | 2.7 |
| 15 | 18.6 | 6.0 | 15.0 | 6.3 | 9.9 | 3.1 | 33.8 | 10.2 |
| 16 | 18.0 | 6.8 | 15.2 | 7.4 | 8.3 | 3.2 | 12.1 | 7.4 |
| 17 | 13.6 | 4.0 | 12.0 | 7.2 | 12.6 | 4.2 | 9.3 | 3.6 |
| 18 | 11.0 | 2.2 | 18.9 | 8.8 | 9.9 | 3.8 | 23.8 | 4.5 |
| 19 | 3.4 | 0.7 | 37.1 | 9.9 | 19.0 | 3.0 | 1.1 | 0.6 |
| 20 | 6.6 | 1.7 | 20.1 | 6.8 | 2.7 | 1.1 | 6.0 | 1.2 |
| 21 | 4.4 | 2.2 | 35.4 | 6.3 | 0.8 | 0.5 | 4.8 | 1.1 |
| 22 | 18.3 | 7.8 | 16.8 | 7.3 | 10.4 | 1.6 | 5.4 | 2.3 |
| 23 | 1.9 | 1.1 | 12.5 | 3.3 | 29.3 | 8.8 | 6.5 | 2.4 |
| 24 | 0.8 | 0.4 | 4.9 | 1.0 | 17.8 | 5.9 | 3.3 | 0.9 |
| 25 | 5.1 | 0.7 | 0.5 | 0.0 | 9.9 | 4.1 | 14.5 | 5.5 |
| 26 | 5.7 | 2.7 | 5.1 | 0.9 | 8.0 | 2.3 | 8.6 | 5.4 |
| 27 | 5.4 | 1.9 | 17.5 | 4.1 | 1.9 | 0.7 | 9.2 | 1.6 |
| 28 | 16.7 | 4.8 | 20.1 | 5.5 | 0.8 | 0.3 | 11.4 | 3.3 |
| 29 | 12.6 | 3.8 | 14.9 | 7.8 | 1.9 | 0.7 | 8.3 | 2.5 |
| 30 | 27.8 | 6.6 | 29.0 | 3.2 | 5.0 | 1.9 | 11.4 | 3.5 |
| 31 |  |  | 12.2 | 3.2 |  |  | 9.8 | 3.4 |
| \# Hours | 695 |  | 744 |  | 666 |  | 716 |  |
| Maximum | 38.0 |  | 37.1 |  | 29.3 |  | 50.5 |  |
| Arith-Mean |  | 3.3 |  | 3.8 |  | 3.2 |  | 3.5 |

Table 19 continued.

| Day | January 1998 |  | February 1998 |  | March 1998 |  | April 1998 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Max | Avg | Max | Avg | Max | Avg | Max | Avg |
| 1 | 20.0 | 4.2 | 3.1 | 1.7 | 4.2 | 1.5 | 13.7 | 2.2 |
| 2 | 1.7 | 1.0 | 7.2 | 1.1 | 15.1 | 3.0 | 5.4 | 1.3 |
| 3 | 1.8 | 0.9 | 4.5 | 1.7 | 6.1 | 2.3 | 1.5 | 0.7 |
| 4 | 2.1 | 1.2 | 2.2* | 1.4* | 2.6 | 1.5 | 4.4 | 1.1 |
| 5 | 3.8 | 1.5 | 17.9 | 3.8 | 0.9 | 0.5 | 6.8 | 3.4 |
| 6 | 3.7 | 2.3 | 12.1 | 3.7 | 1.5 | 0.6 | 10.5 | 4.1 |
| 7 | 7.2 | 1.0 | 13.1 | 4.8 | 0.6 | 0.2 | 1.6 | 0.7 |
| 8 | 1.5 | 0.6 | 20.9 | 5.8 | 2.0 | 0.8 | 1.3 | 0.6 |
| 9 | 7.1 | 3.2 | 9.7 | 2.7 | 2.0 | 1.2 | 4.6 | 1.2 |
| 10 | 8.6 | 4.0 | 1.4 | 0.5 | 5.2 | 1.5 | 2.9 | 1.0 |
| 11 | 4.1 | 1.8 | 9.3 | 1.9 | 14.3 | 5.9 | 6.1 | 2.3 |
| 12 | 2.4 | 0.6 | 11.8 | 3.0 | 5.4 | 3.8 | 11.7 | 2.9 |
| 13 | 1.9 | 1.0 | 7.6 | 3.2 | 17.0 | 6.5 | 1.0 | 0.6 |
| 14 | 10.2 | 1.4 | 17.2 | 6.3 | 1.7 | 0.8 | 1.0* | 0.7* |
| 15 | 4.0 | 1.2 | 9.4 | 2.9 | 10.5 | 2.4 | 2.8 | 1.5 |
| 16 | 5.8 | 1.8 | 2.2 | 0.6 | 1.7 | 0.5 | 0.5 | 0.1 |
| 17 | 3.5 | 1.8 | 1.9* | 0.9* | 0.8 | 0.6 | 0.5 | 0.1 |
| 18 | 9.6 | 2.6 | 7.8 | 2.7 | 2.7 | 0.8 | 1.2 | 0.6 |
| 19 | 16.4 | 4.2 | 6.8 | 2.1 | 2.8 | 0.9 | 2.8 | 1.2 |
| 20 | 8.0 | 3.1 | 5.2 | 2.9 | 4.5* | 1.0* | 9.1 | 4.1 |
| 21 | 15.1 | 2.3 | 23.0 | 2.8 | 3.5 | 0.7 | 9.1 | 4.3 |
| 22 | 0.8 | 0.3 | 3.3 | 1.1 | 8.4 | 3.4 | 8.3 | 1.6 |
| 23 | 3.4 | 1.3 | 4.1 | 1.8 | 8.8 | 3.0 | 3.8 | 1.9 |
| 24 | 3.5 | 1.9 | 8.1 | 3.2 | 1.8 | 0.7 | 7.9 | 2.7 |
| 25 | 14.6 | 4.1 | 1.0 | 0.7 | 1.7 | 0.7 | 1.5 | 1.0 |
| 26 | 13.8 | 2.3 | 0.8 | 0.5 | 1.3 | 0.7 | 1.4 | 0.7 |
| 27 | 4.1 | 1.8 | 5.1 | 2.4 | 0.8 | 0.5 | 0.7 | 0.3 |
| 28 | 11.1 | 4.5 | 12.0 | 3.6 | 0.8 | 0.1 | 0.9 | 0.3 |
| 29 | 6.2 | 2.8 |  |  | 1.7 | 0.5 | 0.8 | 0.3 |
| 30 | 22.4 | 6.1 |  |  | 1.0 | 0.6 | 1.5 | 0.3 |
| 31 | 19.0 | 5.2 |  |  | 0.8 | 0.5 |  |  |
| \# Hours | 727 |  | 642 |  | 729 |  | 690 |  |
| Maximum | 22.4 |  | 23.0 |  | 17.0 |  | 13.7 |  |
| Arith-Mean |  | 2.4 |  | 2.5 |  | 1.5 |  | 1.5 |

Table 20.
Dauphin Island $\mathrm{NO}_{2}$ Maximums and Averages (ppb) based on 1 Hour Block Averages*

| Day | May 1997 |  | June 1997 |  | July 1997 |  | August 1997 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Max | Avg | Max | Avg | Max | Avg | Max | Avg |
| 1 | 5.0 | 2.4 | 4.8 | 3.1 | 15.6 | 4.4 | 8.5 | 2.8 |
| 2 | 3.4 | 2.1 | 15.7 | 5.3 | 18.1 | 6.8 | 7.2 | 3.3 |
| 3 | 9.1 | 3.4 | 14.7 | 7.5 | 9.3 | 5.7 | 6.2 | 3.5 |
| 4 | 5.8 | 3.5 | 14.8 | 7.5 | 12.3 | 6.6 | 9.4 | 3.8 |
| 5 | 7.7 | 2.7 | 12.5 | 3.8 | 10.3 | 4.9 | 12.0 | 4.3 |
| 6 | 22.1 | 4.2 | 5.8 | 2.9 | 4.4 | 2.1 | 12.9 | 4.5 |
| 7 | 9.9 | 3.1 | 5.4 | 2.6 | 21.1 | 4.4 | 17.2 | 6.0 |
| 8 | 3.0 | 1.4 | 3.3 | 1.5 | 15.4 | 5.9 | 13.1 | 3.6 |
| 9 | 10.1 | 3.3 | 5.2 | 2.9 | 10.5 | 5.6 | 6.0 | 2.0 |
| 10 | 7.3 | 3.2 | 5.9 | 2.5 | 19.9 | 5.8 | 10.4 | 3.6 |
| 11 | 9.1 | 3.8 | 7.5 | 3.8 | 27.4 | 8.0 | 4.9 | 2.3 |
| 12 | 6.3 | 3.2 | 6.5 | 2.3 | 18.9 | 8.6 | 3.7 | 1.7 |
| 13 | 11.3 | 5.7 | 6.2 | 3.4 | 12.4 | 5.3 | 5.2 | 1.5 |
| 14 | 4.7 | 3.2 | 4.4 | 3.1 | 12.8 | 5.5 | 12.9 | 3.2 |
| 15 | 11.9 | 4.6 | 7.0 | 3.5 | 8.0 | 3.2 | 2.4 | 1.3 |
| 16 | 18.8 | 5.7 | 6.0 | 2.5 | 8.8* | 4.6* | 1.7 | 0.8 |
| 17 | 12.8 | 4.4 | 7.6 | 2.5 |  |  | 1.9 | 0.8 |
| 18 | 4.2 | 2.2 | 7.6 | 3.3 | 1.2* | 0.9* | 6.8 | 2.3 |
| 19 | 6.0 | 2.6 | 5.9 | 3.7 |  |  | 8.5 | 3.3 |
| 20 | 4.9 | 2.8 | 6.3 | 2.9 | 23.8* | 15.2* | 15.0 | 3.9 |
| 21 | 9.2 | 5.5 | 3.7 | 2.3 | 9.2 | 4.5 | 12.6 | 4.8 |
| 22 | 8.3 | 4.6 | 4.8 | 3.1 | 12.3 | 7.6 | 12.8 | 7.9 |
| 23 | 8.4 | 4.8 | 17.9 | 6.4 | 13.6 | 6.2 | 10.8 | 4.0 |
| 24 | 5.5 | 2.5 | 6.0 | 2.7 | 13.0 | 5.6 | 8.5 | 3.7 |
| 25 | 4.3 | 2.3 | 4.7 | 2.3 | 23.1 | 5.2 | 6.3 | 3.2 |
| 26 | 3.9 | 2.1 | 6.4 | 2.3 | 12.9 | 5.8 | 12.4 | 4.2 |
| 27 | 4.3 | 2.2 | 8.1 | 3.8 | 13.4 | 4.6 | 7.7 | 4.0 |
| 28 | 5.2 | 2.4 | 7.2 | 3.5 | 5.3 | 2.5 | 12.9 | 6.4 |
| 29 | 5.0 | 2.1 | 7.9 | 3.1 | 8.0 | 3.5 | 19.0 | 6.4 |
| 30 | 6.0 | 2.0 | 5.4 | 2.4 | 5.8 | 2.8 | 8.5 | 4.7 |
| 31 | 11.8 | 4.2 |  |  | 5.0 | 2.5 | 12.3 | 5.3 |
| \# Hours | 732 |  | 717 |  | 644 |  | 742 |  |
| Maximum | 22.1 |  | 17.9 |  | 27.4 |  | 19.0 |  |
| Arith-Mean |  | 3.3 |  | 3.4 |  | 5.1 |  | 3.7 |

* boxes indicate less than $75 \%$ (18 hours) complete.

Table 20 continued.

| Day | September 1997 |  | October 1997 |  | November 1997 |  | December 1997 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Max | Avg | Max | Avg | Max | Avg | Max | Avg |
| 1 | 8.3 | 4.6 | 17.1 | 8.0 | 7.0 | 3.9 | 15.4 | 7.6 |
| 2 | 7.1 | 3.7 | 21.5 | 6.6 | 9.8 | 5.0 | 7.8 | 5.4 |
| 3 | 15.8 | 5.3 | 21.5 | 6.5 | 12.2 | 6.4 | 17.9 | 4.1 |
| 4 | 9.5 | 4.7 | 7.5 | 3.7 | 11.9 | 5.0 | 5.2 | 3.9 |
| 5 | 3.6 | 1.9 | 14.1 | 4.6 | 13.3* | 6.7* | 7.0 | 4.1 |
| 6 | 4.1 | 2.4 | 10.5 | 3.0 |  |  | 19.5 | 6.3 |
| 7 | 7.1 | 2.2 | 12.0 | 3.5 | 8.1* | 6.4* | 13.2 | 6.1 |
| 8 | 20.8 | 5.2 | 7.1 | 3.0 | 12.2 | 6.7 | 7.0 | 3.7 |
| 9 | 9.3 | 3.6 | 4.9 | 2.8 | 16.7 | 10.2 | 20.2 | 5.9 |
| 10 | 7.4 | 3.5 | 6.1 | 3.1 | 23.5 | 10.3 | 9.5* | 5.7* |
| 11 | 8.7* | 4.5* | 6.8 | 3.2 | 20.6 | 8.3 | 19.2* | 16.8* |
| 12 | 5.0* | 3.6* | 4.7 | 2.0 | 9.0 | 5.0 | 21.2 | 14.3 |
| 13 | 22.4 | 6.6 | 3.7 | 1.8 | 19.0 | 7.9 | 14.8 | 6.7 |
| 14 | 7.7 | 4.7 | 15.4 | 6.6 | 14.3 | 7.0 | 12.7 | 3.8 |
| 15 | 8.0 | 4.5 | 14.6 | 8.3 | 11.5 | 5.9 | 27.8 | 14.4 |
| 16 | 15.4 | 5.1 | 19.8 | 11.0 | 11.8 | 5.0 | 29.8 | 16.8 |
| 17 | 10.4 | 4.6 | 19.5 | 10.9 | 17.2 | 5.1 | 32.8 | 15.0 |
| 18 | 8.7 | 3.8 | 18.9 | 10.7 | 26.4 | 8.3 | 51.4 | 12.9 |
| 19 | 6.0 | 2.6 | 24.5 | 9.9 | 8.5 | 5.4 | 20.5 | 10.3 |
| 20 | 12.7 | 3.9 | 26.1 | 14.9 | 8.3 | 4.7 | 14.4 | 7.9 |
| 21 | 9.7 | 4.7 | 14.9 | 7.7 | 7.3 | 2.9 | 8.3 | 3.5 |
| 22 | 13.1 | 5.7 | 15.6 | 9.7 | 24.6 | 8.4 | 38.8 | 12.1 |
| 23 | 4.5 | 2.3 | 11.5 | 5.2 | 19.8 | 8.9 | 32.8 | 8.1 |
| 24 | 3.9 | 2.2 | 10.1 | 2.8 | 28.7 | 7.3 | 7.4 | 3.5 |
| 25 | 8.7 | 3.8 | 4.0 | 2.2 | 11.7 | 6.9 | 19.0 | 9.4 |
| 26 | 8.6 | 5.7 | 5.2 | 2.5 | 12.7 | 6.0 | 13.1 | 6.4 |
| 27 | 7.2 | 4.0 | 13.0 | 5.5 | 9.7 | 4.4 | 13.8 | 4.1 |
| 28 | 14.2 | 5.7 | 21.5 | 7.8 | 12.0 | 3.2 | 11.5 | 4.4 |
| 29 | 11.4 | 6.1 | 28.0 | 10.7 | 6.9 | 1.9 | 7.8 | 4.1 |
| 30 | 19.3 | 7.1 | 13.2 | 8.1 | 6.6 | 4.1 | 18.2 | 6.6 |
| 31 |  |  | 21.7 | 8.2 |  |  | 12.5 | 6.7 |
| \# Hours | 695 |  | 744 |  | 663 |  | 719 |  |
| Maximum | 22.4 |  | 28.0 |  | 28.7 |  | 51.4 |  |
| Arith-Mean |  | 4.3 |  | 6.3 |  | 6.1 |  | 7.6 |

Table 20 continued.

| Day | January 1998 |  | February 1998 |  | March 1998 |  | April 1998 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Max | Avg | Max | Avg | Max | Avg | Max | Avg |
| 1 | 8.5 | 4.3 | 10.6 | 4.7 | 5.7 | 1.7 | 10.3 | 1.7 |
| 2 | 10.5 | 5.7 | 3.8 | 2.6 | 10.4 | 3.3 | 6.3 | 0.9 |
| 3 | 11.3 | 5.3 | 6.8 | 4.5 | 10.0 | 2.6 | 2.9 | 0.7 |
| 4 | 9.5 | 4.6 | 5.0* | 3.0* | 6.2 | 1.3 | 7.6 | 2.2 |
| 5 | 9.1 | 3.3 |  |  | 4.1 | 1.2 | 8.6 | 1.3 |
| 6 | 11.9 | 3.0 |  |  | 6.7 | 1.5 | 5.6 | 1.8 |
| 7 | 5.7 | 3.0 |  |  | 2.4 | 0.2 | 4.7 | 0.6 |
| 8 | 13.8 | 6.0 |  |  | 7.9 | 2.0 | 2.3 | 0.4 |
| 9 | 10.0 | 6.8 |  |  | 1.6 | 0.5 | 7.8 | 1.9 |
| 10 | 15.3 | 7.2 |  |  | 6.1 | 0.8 | 3.3 | 1.2 |
| 11 | 14.0 | 5.9 |  |  | 10.0 | 5.0 | 11.7 | 3.0 |
| 12 | 7.9 | 3.4 |  |  | 6.4 | 2.3 | 6.5 | 1.0 |
| 13 | 24.1 | 8.9 | 12.5* | 8.5* | 8.3 | 2.6 | 2.1 | 0.3 |
| 14 | 9.8 | 3.9 | 16.0 | 5.9 | 10.7 | 2.4 | 2.0 | 0.4 |
| 15 | 11.7 | 4.9 | 3.9 | 1.4 | 8.6 | 4.0 | 2.0 | 0.5 |
| 16 | 8.5 | 5.2 | 14.3 | 4.4 | 7.1 | 2.0 | 0.8 | 0.1 |
| 17 | 28.4 | 9.0 | 6.0 | 3.3 | 0.0 | 0.0 | 1.9 | 0.4 |
| 18 | 10.5 | 4.8 | 8.1 | 3.7 | 19.6 | 3.0 | 1.8 | 0.4 |
| 19 | 20.7 | 5.7 | 22.0 | 8.8 | 17.4 | 4.4 | 6.8 | 0.8 |
| 20 | 7.1 | 4.1 | 18.0 | 8.6 | 6.8* | 2.6* | 3.2 | 0.8 |
| 21 | 9.3 | 3.8 | 17.9 | 4.5 | 7.9 | 1.1 | 14.6 | 5.8 |
| 22 | 26.2* | 5.9* | 4.3 | 1.7 | 7.1 | 3.0 | 5.8 | 1.4 |
| 23 | 19.1 | 10.9 | 4.0 | 2.1 | 11.0 | 4.6 | 4.3 | 1.5 |
| 24 | 10.7 | 5.7 | 11.4 | 3.9 | 3.9 | 1.3 | 12.9 | 3.8 |
| 25 | 10.9 | 4.6 | 18.7 | 2.6 | 7.4 | 1.6 | 2.5 | 0.3 |
| 26 | 15.9 | 5.3 | 3.1 | 0.6 | 1.5 | 0.4 | 1.5 | 0.2 |
| 27 | 5.6 | 3.5 | 15.5 | 5.1 | 1.1 | 0.3 | 2.4 | 0.5 |
| 28 | 21.9 | 7.9 | 11.6 | 4.1 | 0.8 | 0.2 | 2.8 | 0.3 |
| 29 | 16.4 | 7.7 |  |  | 1.5 | 0.4 | 2.0 | 0.1 |
| 30 | 33.5 | 12.5 |  |  | 1.0 | 0.2 | 3.3 | 0.9 |
| 31 | 17.8 | 8.2 |  |  | 1.5 | 0.3 |  |  |
| \# Hours | 730 |  | 439 |  | 729 |  | 713 |  |
| Maximum | 33.5 |  | 22.0 |  | 19.6 |  | 14.6 |  |
| Arith-Mean |  | 5.8 |  | 4.1 |  | 1.8 |  | 1.2 |



Figure 17. Dauphin Island 3-hour block average $\mathrm{SO}_{2}$ annual trends.


Figure 18. Dauphin Island 24-hour block average $\mathrm{SO}_{2}$ annual trends.


Figure 19. Dauphin Island 3-hour block average $\mathrm{NO}_{2}$ annual trends.


Figure 20. Dauphin Island 24-hour block average $\mathrm{NO}_{2}$ annual trends.


Figure 21. Dauphin Island diurnal $\mathrm{SO}_{2}$ variations as represented by first (dashed), second (solid), and third (dashed) quartile lines.


Hour CST

Figure 21 continued.


Hour CST

Figure 21 continued.


Figure 22. Dauphin Island diurnal $\mathrm{NO}_{2}$ trends as represented by first (dashed), second (solid), and third (dashed) quartile lines.


Hour CST

Figure 22 continued.


Figure 22 continued.

Using the combined air quality / meteorology data sets, monthly wind and pollution roses were created as shown in Figs. 23-34. The pollution roses represent the range of concentrations associated with a particular direction (i.e., direction from which the wind is blowing). Note that the February $1998 \mathrm{NO}_{2}$ rose is only $65 \%$ complete, due to failure of the $\mathrm{NO}_{\mathrm{x}}$ monitor. $\mathrm{SO}_{2}$ maximums are mostly associated with northerly wind directions; $\mathrm{NO}_{2}$ maximums also occur mostly with northerly winds, however higher concentrations from the west and southwest are occasionally seen. This directional dependence is clear in Tables 21 and 22, which list the monthly 1,3 , and 24 hour block-averaged maximums for $\mathrm{SO}_{2}$ and $\mathrm{NO}_{2}$, respectively. $\mathrm{NO}_{2} / \mathrm{NO}_{\mathrm{x}}$ ratios are included in Table 22. In general, the ratios are high, indicating a more aged air mass (and more distant source). For comparison to the National Ambient Air Quality Standard established by the U.S. EPA for $\mathrm{SO}_{2}$ (see Table 23), the maximum 3 hour $\mathrm{SO}_{2}$ concentration was 29.2 ppb and for 24 hours, 10.2 ppb .

The entire hourly air quality record for $\mathrm{SO}_{2}$ and $\mathrm{NO}_{2}$ obtained during this study period was ranked by concentration, and the top $10 \%$ selected for the analysis listed in Table 24. The greater frequency of high concentration measurements during the months of September to January is seen; even more striking is the clear association of high concentrations with north-northeasterly winds for both pollutants. Therefore, from this analysis it may be concluded that ambient air quality experienced at Dauphin Island is mostly dominated by land-based conditions, with little influence from offshore sources.

Table 21.
Dauphin Island $\mathrm{SO}_{2}$ Maximums (ppb)

| Month | Averaging Interval | Maximum | Day / Hour | Wind Direction / Speed |
| :---: | :---: | :---: | :---: | :---: |
| May 1997 | 1 hour | 16.3 | 16/03 | 035 / 5.3 |
|  | 3 hour | $\begin{gathered} 11.5 \\ 9.1 \end{gathered}$ | $\begin{aligned} & 13 / 14 \\ & 16 / 05 \end{aligned}$ | $\begin{aligned} & \hline 114 / 2.4 \\ & 048 / 4.8 \end{aligned}$ |
|  | 24 hour | 4.6 |  |  |
| June 1997 | 1 hour | 11.1 | $2 / 23$ | 342 / 7.6 |
|  | 3 hour | 7.4 | 4/11 | $008 / 4.1$ |
|  | 24 hour | 4.7 |  |  |
| July 1997 | 1 hour | 42.5 | $4 / 0$ | 322 / 3.8 |
|  | 3 hour | 20.2 | 4 / 02 | 317 / 3.1 |
|  | 24 hour | 8.6 |  |  |
| August 1997 | 1 hour | 13.5 | $7 / 06$ | $006 / 4.5$ |
|  | 3 hour | 11.7 | 7/08 | 012 / 4.1 |
|  | 24 hour | 6.6 |  |  |
| September 1997 | 1 hour | 38.0 | 13/12 | $035 / 1.2$ |
|  | 3 hour | 23.0 | $30 / 08$ | 278 / 4.7 |
|  | 24 hour | 7.8 |  |  |
| October 1997 | 1 hour | 37.1 | 19/09 | $355 / 6.4$ |
|  | 3 hour | 29.2 | 19/11 | $360 / 5.9$ |
|  | 24 hour | 9.9 |  |  |
| November 1997 | 1 hour | 29.3 | 23/13 | $003 / 7.7$ |
|  | 3 hour | 25.6 | 23/14 | $003 / 7.9$ |
|  | 24 hour | 8.8 |  |  |
| December 1997 | 1 hour | 50.5 | 5/06 | $326 / 9.5$ |
|  | 3 hour | 20.2 | $5 / 08$ | $331 / 9.2$ |
|  | 24 hour | 10.2 |  |  |

Table 21 continued.

| Month | Averaging Interval | Maximum | Day / Hour | Wind Direction / Speed |
| :---: | :---: | :---: | :---: | :---: |
| January 1998 | 1 hour | 22.4 | $30 / 14$ | $005 / 2.8$ |
|  | 3 hour | 13.6 | $30 / 17$ | 332 / 1.0 |
|  | 24 hour | 6.1 |  |  |
| February 1998 | 1 hour | 23.0 | 21/05 | 041/5.3 |
|  | 3 hour | 13.2 | 8/08 | $330 / 3.8$ |
|  | 24 hour | 6.3 |  |  |
| March 1998 | 1 hour | 17.0 | 13/04 | 054 / 6.6 |
|  | 3 hour | 11.4 | 13/11 | 043/3.8 |
|  | 24 hour | 6.5 |  |  |
| April 1998 | 1 hour | 13.7 | 1/05 | 357 / 8.9 |
|  | 3 hour | 9.8 | 6/08 | 039 / 4.4 |
|  | 24 hour | 4.3 |  |  |

Table 22.
Dauphin Island $\mathrm{NO}_{2}$ Maximums (ppb)

| Month | Avg. Int. | Maximum | Day / Hour | Wind Dir. / Speed | $\mathrm{NO}_{2} / \mathrm{NO}_{\mathrm{x}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| May 1997 | 1 hour | 22.1 | 6/05 | 239 / 1.6 | 0.73 |
|  | 3 hour | 11.2 | 16/02 | 019/4.4 | 0.98 |
|  | 24 hour | 5.7 |  |  |  |
| June 1997 | 1 hour | 17.9 | $23 / 09$ | 349 / 4.3 | 0.85 |
|  | 3 hour | 12.6 | 4/08 | 003 / 4.3 | 0.88 |
|  | 24 hour | 7.5 |  |  |  |
| July 1997 | 1 hour | 27.4 | 11/08 | 003 / 3.3 | 0.88 |
|  | 3 hour | 18.5 | 11/08 | 008 / 3.1 | 0.90 |
|  | 24 hour | 8.6 |  |  |  |
| August 1997 | 1 hour | 19.0 | 29/02 | $295 / 1.8$ | 1.00 |
|  | 3 hour | 12.6 | $7 / 05$ | $353 / 4.0$ | 1.00 |
|  | 24 hour | 7.9 |  |  |  |
| September 1997 | 1 hour | 22.4 | 13/06 | 011/4.9 | 0.97 |
|  | 3 hour | 15.5 | 8/08 | 011 / 5.0 | 0.90 |
|  | 24 hour | 7.1 |  |  |  |
| October 1997 | 1 hour | 28.0 | $29 / 17$ | $298 / 0.8$ | 0.91 |
|  | 3 hour | 23.8 | 20/08 | $356 / 3.2$ | 0.78 |
|  | 24 hour | 14.9 |  |  |  |
| November 1997 | 1 hour | $\begin{aligned} & 28.7 \\ & 26.4 \end{aligned}$ | $\begin{aligned} & 24 / 20 \\ & 18 / 01 \end{aligned}$ | $\begin{gathered} 000 / 0 \\ 030 / 4.7 \end{gathered}$ | $\begin{aligned} & \hline 1.00 \\ & 0.82 \\ & \hline \end{aligned}$ |
|  | 3 hour | 18.4 | 23/14 | $003 / 7.9$ | 0.66 |
|  | 24 hour | 10.3 |  |  |  |
| December 1997 | 1 hour | 51.4 | 18/21 | $178 / 3.1$ | 0.78 |
|  | 3 hour | 29.1 | 16/05 | 352 / 3.9 | 0.80 |
|  | 24 hour | 16.8 |  |  |  |

Table 22 continued.

| Month | Avg. Int. | Maximum | Day / Hour | Wind Dir. / Speed | $\mathrm{NO}_{2} / \mathrm{NO}_{\mathrm{x}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| January 1998 | 1 hour | 33.5 | $30 / 19$ | Missing | 0.79 |
|  | 3 hour | 22.5 | $30 / 20$ | Missing | 0.92 |
|  | 24 hour | 12.5 |  |  |  |
| February 1998 | 1 hour | 22.0 | $19 / 06$ | $282 / 1.6$ | 0.96 |
|  | 3 hour | 13.6 | $20 / 08$ | $288 / 4.4$ | 0.83 |
|  | 24 hour | 8.8 |  |  |  |
| March 1998 | 1 hour | 19.6 | $18 / 22$ | $013 / 4.5$ | 1.00 |
|  | 3 hour | 12.6 | $18 / 23$ | $002 / 4.3$ | 1.00 |
|  | 24 hour | 5.0 |  |  | 0.80 |
| April 1998 | 1 hour | 14.6 | $21 / 07$ | $003 / 5.6$ | 0.83 |
|  | 3 hour | 12.7 | $21 / 08$ | $004 / 5.2$ |  |
|  | 24 hour | 5.8 |  |  |  |

Table 23.
U.S. Federal Primary and Secondary Ambient Air Quality Standard Source: 40 CFR § 50, July 1992
(From Bouble et al., 1994)

| Pollutant | Type of <br> Standard | Averaging <br> Time | Frequency <br> Parameter |  | Concentration <br> $\mu \mathrm{g} / \mathrm{m}^{3}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sulfur Oxides (as <br> sulfur dioxide) | Primary | 24 hour | Annual <br> Maximum | 365 | 138.7 |  |
|  | Secondary | 3 hour | Arithmetic <br> Mean | 80 | 30.4 |  |
|  | Annual <br> Maximum | 1300 | 494 |  |  |  |
| Nitrogen Dioxide | Primary and <br> Secondary | 1 year | Arithmetic <br> Mean | 100 | 53 |  |

${ }^{*}$ Not to be exceeded more than once per year.

Table 24.
Frequency Distribution of Dauphin Island Top 10\% Concentrations

| Month | $\mathrm{NO}_{2}$ (827 samples) | $\mathrm{SO}_{2}$ (842 samples) |
| :---: | :---: | :---: |
| May 1997 | 18 | 20 |
| June 1997 | 18 | 14 |
| July 1997 | 69 | 58 |
| August 1997 | 45 | 64 |
| September 1997 | 42 | 103 |
| October 1997 | 169 | 156 |
| November 1997 | 95 | 106 |
| December 1997 | 197 | 138 |
| January 1998 | 108 | 58 |
| February 1998 | 43 | 65 |
| March 1998 | 11 | 30 |
| April 1998 | 12 | 30 |
| Direction |  |  |
| 0-45 | 246 | 296 |
| 46-90 | 75 | 103 |
| 91-135 | 16 | 24 |
| 136-180 | 16 | 36 |
| 181-225 | 21 | 34 |
| 226-270 | 75 | 32 |
| 271-315 | 104 | 65 |
| 316-360 | 255 | 239 |
| Missing | 19 | 13 |

Dauphin Island


Figure 23. Dauphin Island May 1997 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, $\mathrm{NO}_{2}$ bottom right).

Dauphin Island


CALM WINDS 0.70\% WIND SPEED (KNOTS)


NOTE: Frequencies
indicate direction indicale direction
from which the wind is blowing


Figure 24. Dauphin Island June 1997 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, $\mathrm{NO}_{2}$ bottom right).


Figure 25. Dauphin Island July 1997 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, $\mathrm{NO}_{2}$ bottom right).

Dauphin Island


Figure 26. Dauphin Island August 1997 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, $\mathrm{NO}_{2}$ bottom right).

Dauphin Island


CALM WINDS 1.12\%
WIND SPEED (KNOTS)


Figure 27. Dauphin Island September 1997 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, $\mathrm{NO}_{2}$ bottom right).


Figure 28. Dauphin Island October 1997 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, $\mathrm{NO}_{2}$ bottom right).

Dauphin Island



Zero Conc. 8.86\%



Figure 29. Dauphin Island November 1997 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, $\mathrm{NO}_{2}$ bottom right).


Figure 30. Dauphin Island December 1997 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, $\mathrm{NO}_{2}$ bottom right).


Figure 31. Dauphin Island January 1998 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, $\mathrm{NO}_{2}$ bottom right).

Dauphin Island


Figure 32. Dauphin Island February 1998 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, $\mathrm{NO}_{2}$ bottom right).

Dauphin Island


Figure 33. Dauphin Island March 1998 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, $\mathrm{NO}_{2}$ bottom right).


Figure 34. Dauphin Island April 1998 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, $\mathrm{NO}_{2}$ bottom right).

## B. Breton Island Air Quality

Wind measurements obtained on Breton Island by the RM Young Wind Monitor were merged with the hourly-averaged air quality data except for during the periods of 3-10 June, 1997 and 24 June to 11 July 1997; for these times winds were computed from the RM Young Gill UVW Anemometer. Monthly time series are presented in Figs. 35-48. Hourly $\mathrm{SO}_{2}$ concentrations are generally within 2-3 ppb, while $\mathrm{NO}_{2}$ mostly falls within 6 ppb . One notable feature is the greater frequency of short duration (hours to a day) high $\mathrm{NO}_{2}$ concentration events, often reaching peaks in excess of 40 ppb .

Although the station monitoring was extended through July 1998, logistical concerns allowed only one servicing trip after 21 April 1998. As can be seen in Figs. 47 and 48, little variation is present in the $\mathrm{SO}_{2}$ record while a slight positive drift may have entered the $\mathrm{NO}_{2}\left(\mathrm{NO}_{\mathrm{x}}\right)$ data. Because an acceptable calibration was achieved at station removal, the data is presented here. However, for analysis purposes, the periods of May 1997 - April 1998 and June 1997-May 1998 are selected for $\mathrm{SO}_{2}$ and $\mathrm{NO}_{2}$ annual statistics since they are most complete for the parameters.

The annual arithmetic mean $\mathrm{SO}_{2}$ concentration found at Breton Island is 1.2 ppb with a $95 \%$ confidence level of 0.034 (based on 6863 samples, $78.3 \%$ complete). The annual arithmetic mean $\mathrm{NO}_{2}$ concentration is 6.2 ppb with a $95 \%$ confidence level of 0.154 (based on 7096 samples, $81 \%$ complete). While the annual $\mathrm{SO}_{2}$ statistics are in good agreement with previous findings listed in the Interim Report, the annual $\mathrm{NO}_{2}$ is about 1 ppb higher. This may be accounted for primarily by the relocation of the monitor to ground level, and to a lesser extent by the use of computed $\mathrm{NO}_{2}$ values.

Frequency distribution of the air quality data is depicted in Fig. 49. Approximately $80 \%$ of the $\mathrm{SO}_{2}$ record is less than $2 \mathrm{ppb} . \mathrm{NO}_{2}$ concentrations are below 5 ppb almost $60 \%$ of the record. On the other hand, higher concentrations are observed more frequently here than at Dauphin, with concentrations greater than 20 ppb recorded almost $5 \%$ of the time.

Breton Island monthly maximum and average $\mathrm{SO}_{2}$ and $\mathrm{NO}_{2}$ concentrations are listed in Tables 25 and 26, respectively. Slight peaks of both pollutants during the late fall - early winter months are evident here as at Dauphin. Note that the higher $\mathrm{NO}_{2}$ averages at the end of the record may reflect the positive offset in the monitor. These seasonal trends are illustrated in Figs. $50-53$, which show the annual 3-and 24-hour average trends. The improvement in data capture following relocation of the equipment is clear in these figures.

Diurnal quartile values are shown in Figs. 54 and 55 for $\mathrm{SO}_{2}$ and $\mathrm{NO}_{2}$, respectively. Median $\mathrm{SO}_{2}$ is generally less than 1 ppb ; a very slight increase is sometimes seen in late morning to midday hours. Median $\mathrm{NO}_{2}$ values are higher at about $3-6 \mathrm{ppb}$. The morning peak observed at Dauphin Island is much less pronounced here, and often accompanied by an evening increase.


Figure 35. May 1997 time series of Breton Island hourly-averaged concentrations and wind direction.


Figure 36. June 1997 time series of Breton Island hourly-averaged concentrations and wind direction.


Figure 37.
July 1997 time series of Breton Island hourly-averaged concentrations and wind direction. Missing $\mathrm{SO}_{2}$ and $\mathrm{NO}_{\mathrm{x}}$ on 11 and 12 July.


Figure 38. September 1997 time series of Breton Island hourly-averaged concentrations and wind direction.


Figure 39.
October 1997 times series of Breton Island hourly-averaged concentrations and wind direction. $\mathrm{SO}_{2}$ and $\mathrm{NO}_{\mathrm{x}}$ missing on 26 October.


Figure 40. November 1997 time series of Breton Island hourly-averaged concentrations and wind direction.


Figure 41. December 1997 time series of Breton Island hourly-averaged concentrations and wind direction.


Figure 42. January 1998 time series of Breton Island hourly-averaged concentrations and wind direction.


Figure 43. February 1998 time series of Breton Island hourly-averaged concentrations and wind direction. Missing air quality data on days $20-22,23-25,26-27$, and 28 .


Figure 44. March 1998 time series of Breton Island hourly-averaged concentrations and wind direction. $\mathrm{SO}_{2}$ data has been corrected for an offset.


Figure 45. April 1998 time series of Breton Island hourly-averaged concentrations and wind direction. $\mathrm{SO}_{2}$ and NOx data missing on days 6 and 23-24 April. $\mathrm{SO}_{2}$ corrected for offset to 21 April.


Figure 46. May 1998 time series of Breton Island hourly-averaged concentrations and wind direction.


Figure 47. June 1998 time series of Breton Island hourly-averaged concentrations and wind direction.


Figure 48. July 1998 time series of Breton Island hourly-averaged concentrations and wind direction.


Figure 49. Frequency distribution of Breton Island hourly-averaged pollutant concentrations recorded during this study period.

Table 25.
Breton Island $\mathrm{SO}_{2}$ Maximums and Averages (ppb) based on 1 Hour Block Averages*

| Day | May 1997 |  | June 1997 |  | July 1997 |  | September 1997 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Max | Avg | Max | Avg | Max | Avg | Max | Avg |
| 1 | 2.0 | 0.7 | 1.3 | 0.4 | 0.7 | 0.3 | 1.1 | 0.6 |
| 2 | 0.5 | 0.2 | 1.6 | 0.7 | 6.0 | 1.8 | 0.6 | 0.4 |
| 3 | 0.2* | 0.2* | 1.3* | 0.6* | 4.1 | 1.2 | 2.1 | 0.6 |
| 4 |  |  |  |  | 0.5 | 0.5 | 2.3 | 0.8 |
| 5 |  |  |  |  | 0.5 | 0.3 | 1.7 | 0.6 |
| 6 |  |  |  |  | 0.6 | 0.3 | 0.6 | 0.4 |
| 7 |  |  |  |  | 0.2 | 0.1 | 0.7 | 0.4 |
| 8 |  |  |  |  | 0.5 | 0.1 | 2.3 | 0.8 |
| 9 | 1.0* | 0.3* |  |  | 1.1 | 0.5 | 1.3 | 1.0 |
| 10 | 5.6 | 2.4 | 0.6* | 0.2* | 3.9 | 1.5 | 1.1 | 0.9 |
| 11 | 3.2 | 1.1 | 0.8 | 0.5 | 1.0* | 0.2* | 4.6 | 1.4 |
| 12 | 1.2 | 0.2 | 1.1 | 0.5 | 0.3* | 0.1* | 2.5 | 1.2 |
| 13 | 2.6 | 0.8 | 1.4 | 0.6 |  |  | 1.6 | 0.6 |
| 14 | 0.6 | 0.2 | 0.8 | 0.4 |  |  | 0.8 | 0.2 |
| 15 | 1.1 | 0.3 | 2.2 | 0.8 |  |  | 1.5 | 0.5 |
| 16 | 2.0 | 0.7 | 1.2 | 0.5 |  |  | 1.5 | 0.2 |
| 17 | 1.2 | 0.2 | 0.5 | 0.3 |  |  | 1.2 | 0.7 |
| 18 | 0.8 | 0.3 | 0.9 | 0.4 |  |  | 0.6 | 0.3 |
| 19 | 0.6 | 0.3 | 1.3 | 0.6 |  |  | 1.2* | 0.5* |
| 20 | 1.7 | 0.6 | 2.4 | 0.7 |  |  |  |  |
| 21 | 0.7 | 0.1 | 2.0 | 0.7 |  |  |  |  |
| 22 | 0.9 | 0.4 | 2.2 | 0.8 |  |  |  |  |
| 23 | 1.1 | 0.3 | 2.4 | 0.9 |  |  |  |  |
| 24 | 0.5 | 0.2 | 1.0 | 0.5 |  |  | 0.2* | 0.1* |
| 25 | 0.4 | 0.1 | 0.6 | 0.1 |  |  | 0.4 | 0.3 |
| 26 | 0.4 | 0.1 | 0.8 | 0.2 |  |  | 5.0 | 1.2 |
| 27 | 0.5 | 0.1 | 1.5 | 0.6 |  |  | 9.7 | 3.8 |
| 28 | 2.6 | 0.3 | 1.2 | 0.7 |  |  | 7.6 | 3.0 |
| 29 | 0.2 | 0.0 | 1.5 | 0.6 |  |  | 10.9 | 4.2 |
| 30 | 0.3 | 0.1 | 0.5 | 0.3 |  |  | 7.0 | 2.8 |
| 31 | 0.4 | 0.1 |  |  |  |  |  |  |
| \# Hours | 593 |  | 542 |  | 257 |  | 599 |  |
| Maximum | 5.6 |  | 2.4 |  | 6.0 |  | 10.9 |  |
| Arith-Mean |  | 0.4 |  | 0.5 |  | 0.6 |  | 1.1 |

* boxes indicate less than 75\% (18 hours) complete.

Table 25 continued.

| Day | October 1997 |  | November 1997 |  | December 1997 |  | January 1998 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Max | Avg | Max | Avg | Max | Avg | Max | Avg |
| 1 | 5.2 | 2.2 | 3.4 | 1.0 | 3.5 | 1.2 | 3.3 | 1.5 |
| 2 | 8.5 | 4.5 | 3.8 | 1.8 | 5.3 | 1.5 | 1.1 | 0.8 |
| 3 | 6.3 | 3.4 | 5.5 | 2.4 | 2.5 | 0.9 | 1.4 | 0.7 |
| 4 | 2.4 | 1.2 | 2.0 | 1.1 | 1.4 | 0.8 | 1.1 | 0.6 |
| 5 | 1.9 | 0.6 | 1.7 | 0.9 | 3.6 | 1.3 | 1.4 | 0.7 |
| 6 | 0.8 | 0.2 | 2.4 | 1.2 | 6.1 | 1.9 | 0.9 | 0.7 |
| 7 | 0.9 | 0.6 | 2.8 | 1.5 | 5.1 | 2.4 | 1.1 | 0.8 |
| 8 | 1.4 | 0.6 | 8.1 | 4.4 | 1.2 | 0.7 | 1.8 | 0.9 |
| 9 | 0.1 | 0.0 | 6.1 | 3.7 | 1.2 | 0.5 | 7.0 | 2.4 |
| 10 | 0.1 | 0.0 | 8.1 | 4.2 | 1.6 | 0.7 | 5.8 | 2.1 |
| 11 | 0.6 | 0.1 | 8.4 | 3.1 | 5.9 | 2.7 | 1.3 | 0.9 |
| 12 | 1.1 | 0.6 | 1.1 | 0.4 | 6.4 | 3.7 | 1.8 | 0.6 |
| 13 | 1.2 | 0.5 | 5.1 | 1.8 | 6.0 | 3.4 | 1.7 | 0.8 |
| 14 | 3.2 | 0.7 | 4.7 | 2.0 | 4.8 | 2.1 | 0.8 | 0.6 |
| 15 | 5.2 | 3.3 | 4.8 | 1.3 | 11.0 | 4.9 | 2.5 | 0.9 |
| 16 | 16.8 | 5.7 | 3.8 | 1.6 | 5.3 | 2.6 | 7.1 | 3.3 |
| 17 | 13.4 | 6.0 | 5.7 | 2.6 | 5.4 | 1.7 | 3.7 | 1.7 |
| 18 | 7.6 | 4.3 | 2.5 | 1.6 | 7.2 | 1.9 | 2.5 | 1.3 |
| 19 | 7.4 | 3.1 | 5.2 | 1.5 | 2.6 | 0.7 | 3.1 | 1.6 |
| 20 | 9.4 | 3.1 | 1.3 | 0.7 | 1.1 | 0.7 | 4.9 | 1.9 |
| 21 | 8.1 | 4.3 | 1.6 | 0.9 | 1.3 | 0.9 | 1.2 | 0.9 |
| 22 | 10.5 | 2.9 | 11.8 | 1.2 | 3.9 | 1.4 | 0.8 | 0.6 |
| 23 | 3.4 | 1.4 | 8.8 | 4.2 | 2.3 | 1.1 | 2.0 | 1.1 |
| 24 | 1.1 | 0.6 | 5.9 | 1.9 | 2.4 | 1.2 | 3.5 | 1.5 |
| 25 | 1.1 | 0.4 | 2.5 | 1.2 | 9.1 | 2.3 | 4.3 | 2.0 |
| 26 | 1.3* | 0.4* | 1.7 | 0.5 | 9.2 | 2.7 | 1.1 | 0.9 |
| 27 | 3.9 | 1.3 | 1.7 | 0.5 | 1.6 | 0.9 | 3.9 | 1.4 |
| 28 | 6.5 | 2.9 | 0.9 | 0.3 | 5.4 | 1.8 | 5.1 | 4.1 |
| 29 | 6.8 | 2.4 | 0.7 | 0.2 | 2.4 | 1.5 | 2.8 | 2.0 |
| 30 | 3.1 | 1.4 | 4.1 | 1.9 | 5.2 | 2.6 | 3.6 | 2.3 |
| 31 | 1.4 | 0.7 |  |  | 4.1 | 2.0 | 3.6 | 2.3 |
| \# Hours | 736 |  | 713 |  | 740 |  | 738 |  |
| Maximum | 16.8 |  | 11.8 |  | 11.0 |  | 7.1 |  |
| Arith-Mean |  | 1.9 |  | 1.7 |  | 1.8 |  | 1.4 |

boxes indicate less than $75 \%$ ( 18 hours) complete.

Table 25 continued.

| Day | February 1998 |  | March 1998 |  | April 1998 |  | May 1998 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Max | Avg | Max | Avg | Max | Avg | Max | Avg |
| , | 2.1 | 0.9 | 1.0 | 0.7 | 5.3 | 0.7 | 3.3 | 1.3 |
| 2 | 1.8 | 0.9 | 2.1 | 0.9 | 1.1 | 0.4 | 1.3 | 0.9 |
| 3 | 1.9 | 0.9 | 9.0 | 1.5 | 1.2 | 0.3 | 1.5 | 0.9 |
| 4 | 4.7 | 2.7 | 2.0 | 1.0 | 3.9 | 0.8 | 2.9 | 1.6 |
| 5 | 3.2 | 1.9 | 0.2 | 0.0 | 5.0 | 2.3 | 2.2 | 1.4 |
| 6 | 7.2 | 2.1 | 0.0 | 0.0 | 3.6 | 1.9 | 3.0 | 1.7 |
| 7 | 6.9 | 3.2 | 0.2 | 0.1 | 0.5 | 0.2 | 1.6 | 0.8 |
| 8 | 9.6 | 4.5 | 1.6 | 0.4 | 0.3 | 0.0 | 1.1 | 0.6 |
| 9 | 5.0 | 1.9 | 2.5 | 1.1 | 3.7 | 1.4 | 1.1 | 0.8 |
| 10 | 0.8 | 0.2 | 1.0 | 0.6 | 3.3 | 0.4 | 1.9 | 0.9 |
| 11 | 1.2 | 0.6 | 3.7 | 1.5 | 3.1 | 1.4 | 7.3 | 3.3 |
| 12 | 4.8 | 2.0 | 6.1 | 2.9 | 2.0 | 1.2 | 3.1 | 2.0 |
| 13 | 4.6 | 2.1 | 4.4 | 2.1 | 0.8 | 0.2 | 2.6 | 1.7 |
| 14 | 6.2 | 2.6 | 1.2 | 0.6 | 1.1 | 0.2 | 2.0 | 1.3 |
| 15 | 1.4 | 0.7 | 1.3 | 0.4 | 0.3 | 0.1 | 6.2 | 1.5 |
| 16 | 0.7 | 0.2 | 1.3 | 0.3 | 0.1 | 0.0 | 7.4 | 1.8 |
| 17 | 1.0 | 0.3 | 0.3 | 0.0 | 1.4 | 0.4 | 4.9 | 2.3 |
| 18 | 2.9 | 1.6 | 0.1 | 0.0 | 1.2 | 0.2 | 7.7 | 3.4 |
| 19 | 3.1 | 1.0 | 0.2 | 0.0 | 4.1 | 0.9 | 7.7 | 3.9 |
| 20 | 4.7 | 2.5 | 4.5 | 1.7 | 4.6 | 2.4 | 4.9 | 2.6 |
| 21 |  |  | 2.9 | 0.5 | 4.9 | 2.2 | 2.1 | 1.4 |
| 22 | 1.9* | 1.0* | 2.4 | 1.2 | 3.0 | 1.1 | 2.3 | 1.3 |
| 23 | 2.7 | 1.7 | 9.8 | 2.9 | 0.9 | 0.9 | 2.3 | 1.2 |
| 24 |  |  | 2.9 | 0.6 | 3.1 | 2.6 | 2.9 | 1.7 |
| 25 | 0.7* | 0.2* | 1.2 | 0.3 | 3.6 | 1.9 | 2.2 | 1.4 |
| 26 | 0.5 | 0.1 | 1.0 | 0.4 | 1.7 | 1.2 | 2.1 | 1.3 |
| 27 |  |  | 0.8 | 0.2 | 2.0 | 1.0 | 2.1 | 1.2 |
| 28 | 0.8* | 0.7* | 0.9 | 0.2 | 1.1 | 0.7 | 1.9 | 1.0 |
| 29 |  |  | 1.0 | 0.2 | 1.1 | 0.7 | 1.4 | 0.9 |
| 30 |  |  | 2.3 | 0.2 | 1.4 | 0.8 | 1.0 | 0.7 |
| 31 |  |  | 0.4 | 0.1 |  |  | 0.7 | 0.6 |
| \# Hours | 532 |  | 739 |  | 674 |  | 744 |  |
| Maximum | 9.6 |  | 9.8 |  | 5.3 |  | 7.7 |  |
| Arith-Mean |  | 1.5 |  | 0.9 |  | 0.9 |  | 1.5 |

"boxes indicate less than $75 \%$ ( 18 hours) complete.

Table 25 continued.

| Day | June 1998 |  | July 1998 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Max | Avg | Max | Avg |
| 1 | 0.6* | 0.4* | 0.7 | 0.7 |
| 2 |  |  | 1.4 | 0.8 |
| 3 |  |  | 1.2 | 0.9 |
| 4 |  |  | 1.1 | 0.8 |
| 5 |  |  | 1.2 | 0.7 |
| 6 |  |  | 1.7 | 0.9 |
| 7 |  |  | 1.1 | 0.7 |
| 8 |  |  | 1.1 | 0.8 |
| 9 |  |  | 1.1 | 1.0 |
| 10 |  |  | 0.8 | 0.7 |
| 11 |  |  | 0.9 | 0.7 |
| 12 |  |  | 0.8 | 0.7 |
| 13 |  |  | 1.1 | 0.8 |
| 14 | 0.7* | 0.6* | 1.1 | 0.9 |
| 15 | 0.7 | 0.6 | 0.7 | 0.7 |
| 16 | 0.7 | 0.6 | 0.7 | 0.7 |
| 17 | 1.2 | 0.9 | 0.7 | 0.7 |
| 18 | 1.2 | 0.8 | 0.7 | 0.7 |
| 19 | 0.9 | 0.6 | 1.0 | 0.7 |
| 20 | 1.1 | 0.7 | 1.1 | 0.8 |
| 21 | 1.0 | 0.7 | 1.1 | 0.9 |
| 22 | 0.9 | 0.6 | 1.2 | 1.0 |
| 23 | 1.0 | 0.7 | 0.7 | 0.7 |
| 24 | 0.9 | 0.7 | 1.0 | 0.7 |
| 25 | 1.1 | 0.8 | 1.0 | 0.7 |
| 26 | 1.1 | 0.7 | 0.9 | 0.7 |
| 27 | 1.2 | 0.9 | 1.1 | 0.8 |
| 28 | 1.1 | 0.8 | 1.1* | 1.0* |
| 29 | 1.1 | 0.8 |  |  |
| 30 | 0.7 | 0.7 |  |  |
| 31 |  |  |  |  |
| \# Hours | 409 |  | 657 |  |
| Maximum | 1.2 |  | 1.7 |  |
| Arith-Mean |  | 0.7 |  | 0.8 |

boxes indicate less than $75 \%$ ( 18 hours) complete.

Table 26.
Breton Island $\mathrm{NO}_{2}$ Maximums and Averages (ppb) based on 1 Hour Block Averages*

| Day | May 1997 |  | June 1997 |  | July 1997 |  | September 1997 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Max | Avg | Max | Avg | Max | Avg | Max | Avg |
| 1 | 9.3 | 5.8 |  |  | 7.4 | 3.7 | 17.8 | 3.1 |
| 2 | 9.1 | 3.3 |  |  | 13.1 | 5.6 | 9.0 | 2.0 |
| 3 | 10.3* | 7.0* |  |  | 17.7 | 7.0 | 7.7 | 4.0 |
| 4 |  |  |  |  | 10.1 | 4.8 | 5.0 | 3.2 |
| 5 |  |  |  |  | 13.2 | 6.0 | 4.0 | 1.5 |
| 6 |  |  |  |  | 18.1 | 6.8 | 20.3 | 2.7 |
| 7 |  |  |  |  | 7.3 | 3.7 | 18.2 | 2.6 |
| 8 |  |  |  |  | 11.3 | 5.4 | 40.0 | 8.3 |
| 9 |  |  |  |  | 25.0 | 5.5 | 14.1 | 6.8 |
| 10 |  |  | 2.1* | 1.3* | 18.9 | 10.3 | 5.9 | 3.6 |
| 11 |  |  | 6.4 | 2.5 | 19.2* | 5.4* | 10.0 | 3.3 |
| 12 |  |  | 13.4 | 6.6 | 11.2* | 4.6* | 8.9 | 3.1 |
| 13 |  |  | 14.8 | 5.5 | 22.4 | 5.5 | 26.3 | 6.3 |
| 14 |  |  | 8.4 | 3.9 | 13.6 | 4.3 | 13.0 | 4.1 |
| 15 |  |  | 10.2 | 4.8 | 18.8 | 8.3 | 36.3 | 6.0 |
| 16 |  |  | 10.9 | 5.7 | 9.9 | 4.5 | 42.1 | 7.2 |
| 17 |  |  | 10.9 | 4.3 | 7.2 | 4.9 | 36.0 | 7.8 |
| 18 |  |  | 16.2 | 7.0 |  |  | 19.9 | 5.4 |
| 19 |  |  | 12.1 | 7.6 |  |  | 35.4 | 7.6 |
| 20 |  |  | 18.7 | 7.6 |  |  |  |  |
| 21 |  |  | 12.1 | 5.5 |  |  |  |  |
| 22 |  |  | 15.4 | 6.1 |  |  |  |  |
| 23 |  |  | 8.8 | 4.7 |  |  |  |  |
| 24 |  |  | 9.9 | 5.0 |  |  | 3.7 | 2.6 |
| 25 |  |  | 16.6 | 7.0 |  |  | 4.2 | 2.0 |
| 26 |  |  | 16.5 | 8.0 |  |  | 26.0 | 9.4 |
| 27 |  |  | 16.1 | 7.4 |  |  | 7.0 | 5.1 |
| 28 |  |  | 19.9 | 7.4 |  |  | 12.7 | 6.8 |
| 29 |  |  | 12.9 | 6.1 |  |  | 14.1 | 6.6 |
| 30 |  |  | 10.1 | 4.5 |  |  | 7.9 | 5.3 |
| 31 |  |  |  |  |  |  |  |  |
| \# Hours | 54 |  | 482 |  | 381 |  | 599 |  |
| Maximum | 10.3 |  | 19.9 |  | 25.0 |  | 42.1 |  |
| Arith-Mean |  | 4.8 |  | 5.7 |  | 5.6 |  | 4.8 |

*boxes indicate less than $75 \%$ ( 18 hours) complete.

Table 26 continued.

| Day | October 1997 |  | November 1997 |  | December 1997 |  | January 1998 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Max | Avg | Max | Avg | Max | Avg | Max | Avg |
| 1 | 15.1 | 6.5 | 24.9 | 7.1 | 6.2 | 4.0 | 2.5 | 1.0 |
| 2 | 11.6 | 8.5 | 10.6 | 4.7 | 7.9 | 4.4 | 3.5 | 1.2 |
| 3 | 29.7 | 7.7 | 13.4 | 6.7 | 37.4 | 13.7 | 2.4 | 1.0 |
| 4 | 34.5 | 6.5 | 9.2 | 2.9 | 6.9 | 3.2 | 4.1 | 0.8 |
| 5 | 2.4 | 1.5 | 27.1 | 6.1 | 5.9 | 2.6 | 19.1 | 3.8 |
| 6 | 12.4 | 1.7 | 24.2 | 7.1 | 6.8 | 3.4 | 8.7 | 2.3 |
| 7 | 3.5 | 1.0 | 16.9 | 4.6 | 6.3 | 3.1 | 18.0 | 7.1 |
| 8 | 3.6 | 1.1 | 7.4 | 5.6 | 32.4 | 10.4 | 4.9 | 2.7 |
| 9 | 4.3 | 0.8 | 5.5 | 3.9 | 32.2 | 14.8 | 10.4 | 3.8 |
| 10 | 4.2 | 0.7 | 20.5 | 6.6 | 8.9 | 5.6 | 5.1 | 2.2 |
| 11 | 1.0 | 0.5 | 13.2 | 5.1 | 14.4 | 7.6 | 4.6 | 1.2 |
| 12 | 5.9 | 2.0 | 25.3 | 6.0 | 14.4 | 5.4 | 20.6 | 7.7 |
| 13 | 26.4 | 8.4 | 29.2 | 11.6 | 5.7 | 3.4 | 10.9 | 4.9 |
| 14 | 4.1 | 2.4 | 15.6 | 8.4 | 5.4 | 1.7 | 23.9 | 7.2 |
| 15 | 5.8 | 3.5 | 7.9 | 4.6 | 27.9 | 9.3 | 17.1 | 5.0 |
| 16 | 10.0 | 4.8 | 4.6 | 2.8 | 39.7 | 22.9 | 18.5 | 8.2 |
| 17 | 9.9 | 5.5 | 5.1 | 2.8 | 47.8 | 23.8 | 40.2 | 16.5 |
| 18 | 5.8 | 3.6 | 5.0 | 2.8 | 41.5 | 18.1 | 20.4 | 13.7 |
| 19 | 9.0 | 3.4 | 14.8 | 4.1 | 32.9 | 12.9 | 4.7 | 1.9 |
| 20 | 19.4 | 8.0 | 25.5 | 7.9 | 22.6 | 5.9 | 3.1 | 0.9 |
| 21 | 52.9 | 15.6 | 38.6 | 19.7 | 26.8 | 10.0 | 3.3 | 1.2 |
| 22 | 8.2 | 4.4 | 13.8 | 8.1 | 24.7 | 8.2 | 14.8 | 3.7 |
| 23 | 22.3 | 8.0 | 7.6 | 4.7 | 13.0 | 5.9 | 13.5 | 7.3 |
| 24 | 20.0 | 5.7 | 5.3 | 2.8 | 17.5 | 7.0 | 4.9 | 2.3 |
| 25 | 23.5 | 11.1 | 6.0 | 2.5 | 19.1 | 5.7 | 2.6 | 1.1 |
| 26 | 12.5* | 4.1* | 35.2 | 8.1 | 12.1 | 4.2 | 11.5 | 2.7 |
| 27 | 5.0 | 3.3 | 41.5 | 10.2 | 2.4 | 0.7 | 5.6 | 1.5 |
| 28 | 4.9 | 3.5 | 17.0 | 6.3 | 20.1 | 4.0 | 26.7 | 7.4 |
| 29 | 7.4 | 3.3 | 21.8 | 8.9 | 3.0 | 1.7 | 38.3 | 16.5 |
| 30 | 10.2 | 3.4 | 10.2 | 5.5 | 15.3 | 6.0 | 40.2 | 13.9 |
| 31 | 25.8 | 6.7 |  |  | 10.1 | 3.5 | 5.9 | 2.7 |
| \# Hours | 736 |  | 713 |  | 740 |  | 738 |  |
| Maximum | 52.9 |  | 41.5 |  | 47.8 |  | 40.2 |  |
| Arith-Mean |  | 4.8 |  | 6.3 |  | 7.5 |  | 4.9 |

* boxes indicate less than 75\% (18 hours) complete.

Table 26 continued.

| Days | February 1998 |  | March 1998 |  | April 1998 |  | May 1998 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Max | Avg | Max | Avg | Max | Avg | Max | Avg |
| 1 | 4.2 | 1.4 | 3.8 | 2.6 | 2.5 | 0.8 | 26.6 | 10.1 |
| 2 | 3.2 | 1.0 | 7.6 | 3.7 | 19.0 | 8.5 | 10.8 | 6.8 |
| 3 | 2.9 | 1.0 | 10.2 | 3.4 | 20.8 | 7.8 | 11.8 | 7.6 |
| 4 | 6.1 | 3.2 | 12.2 | 6.2 | 8.4 | 1.5 | 48.7 | 11.2 |
| 5 | 5.7 | 3.2 | 15.7 | 5.9 | 9.0 | 2.4 | 37.4 | 10.6 |
| 6 | 10.2 | 4.3 | 11.8 | 4.1 | 8.3 | 4.3 | 37.2 | 20.7 |
| 7 | 14.7 | 6.4 | 7.8 | 3.0 | 20.3 | 10.5 | 13.6 | 8.5 |
| 8 | 23.4 | 9.5 | 7.5 | 4.4 | 25.1 | 7.9 | 14.8 | 8.3 |
| 9 | 35.5 | 12.6 | 4.6 | 3.0 | 6.2 | 2.7 | 27.5 | 12.6 |
| 10 | 12.1 | 5.1 | 2.5 | 1.6 | 3.0 | 1.6 | 6.7 | 5.3 |
| 11 | 8.1 | 4.4 | 4.3 | 2.6 | 12.0 | 2.1 | 12.1 | 6.6 |
| 12 | 21.9 | 9.0 | 5.9 | 3.1 | 20.1 | 9.3 | 45.1 | 11.5 |
| 13 | 11.6 | 6.5 | 21.1 | 4.2 | 13.6 | 5.6 | 48.0 | 16.7 |
| 14 | 7.9 | 3.8 | 20.6 | 5.7 | 19.2 | 12.2 | 51.6 | 29.7 |
| 15 | 9.1 | 3.3 | 8.5 | 3.4 | 21.6 | 7.4 | 39.5 | 21.1 |
| 16 | 13.9 | 4.3 | 11.3 | 4.0 | 17.9 | 4.1 | 13.5 | 8.4 |
| 17 | 9.4 | 4.1 | 9.6 | 2.1 | 23.1 | 10.9 | 18.4 | 8.4 |
| 18 | 9.0 | 5.1 | 14.1 | 3.3 | 14.0 | 6.2 | 18.8 | 7.7 |
| 19 | 7.6 | 4.1 | 17.9 | 5.9 | 1.4 | 0.4 | 17.1 | 9.3 |
| 20 | 22.8 | 10.9 | 8.4 | 3.6 | 3.0 | 1.0 | 28.0 | 12.8 |
| 21 |  |  | 2.3 | 0.6 | 8.7 | 4.3 | 14.1 | 8.0 |
| 22 | 5.3 | 4.0 | 7.9 | 1.7 | 9.0 | 5.3 | 35.6 | 10.6 |
| 23 | 4.9 | 2.9 | 20.5 | 8.7 | 5.2 | 5.2 | 23.2 | 9.8 |
| 24 |  |  | 23.3 | 10.1 | 35.8 | 12.1 | 43.8 | 23.6 |
| 25 | 5.2* | 3.0* | 9.4 | 4.6 | 59.9 | 28.8 | 38.6 | 15.8 |
| 26 | 10.3 | 4.6 | 11.1 | 3.0 | 47.1 | 14.6 | 44.3 | 16.2 |
| 27 | 5.8* | 4.0* | 2.4 | 1.1 | 22.6 | 8.7 | 30.9 | 8.5 |
| 28 | 4.4* | 3.0* | 9.0 | 2.2 | 21.0 | 7.0 | 28.1 | 9.9 |
| 29 |  |  | 8.0 | 1.8 | 34.7 | 7.8 | 31.1 | 15.0 |
| 30 |  |  | 15.9 | 2.9 | 35.5 | 8.7 | 27.2 | 9.8 |
| 31 |  |  | 20.3 | 6.8 |  |  | 10.4 | 6.0 |
| \# Hours | 550 |  | 739 |  | 674 |  | 744 |  |
| Maximum | 35.5 |  | 23.3 |  | 59.9 |  | 51.6 |  |
| Arith-Mean |  | 4.9 |  | 3.8 |  | 7.0 |  | 11.8 |

boxes indicate less than 75\% (18 hours) complete.

Table 26 continued.

| Day | June 1998 |  | July 1998 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Max | Avg | Max | Avg |
| 1 | 16.0* | 7.2* | 11.9 | 7.6 |
| 2 |  |  | 35.0 | 12.9 |
| 3 |  |  | 32.0 | 17.6 |
| 4 |  |  | 17.4 | 8.9 |
| 5 |  |  | 11.4 | 6.6 |
| 6 |  |  | 20.4 | 9.6 |
| 7 |  |  | 31.9 | 12.3 |
| 8 |  |  | 15.8 | 8.9 |
| 9 |  |  | 14.6 | 7.6 |
| 10 |  |  | 14.7 | 8.0 |
| 11 |  |  | 10.6 | 6.7 |
| 12 |  |  | 9.7 | 6.1 |
| 13 |  |  | 9.9 | 6.2 |
| 14 | 5.2* | 4.3* | 23.4 | 10.4 |
| 15 | 6.9 | 4.9 | 13.9 | 7.1 |
| 16 | 11.4 | 6.9 | 12.9 | 8.0 |
| 17 | 20.9 | 10.0 | 18.3 | 9.9 |
| 18 | 18.5 | 9.2 | 30.2 | 10.5 |
| 19 | 13.0 | 6.3 | 23.5 | 9.7 |
| 20 | 23.4 | 8.4 | 23.8 | 11.0 |
| 21 | 22.2 | 9.6 | 28.8 | 12.6 |
| 22 | 22.0 | 10.0 | 25.4 | 12.9 |
| 23 | 39.3 | 9.3 | 12.4 | 8.4 |
| 24 | 26.3 | 7.6 | 21.6 | 9.1 |
| 25 | 32.0 | 12.2 | 26.7 | 11.1 |
| 26 | 23.0 | 10.6 | 8.9 | 7.0 |
| 27 | 23.0 | 11.9 | 24.2 | 8.4 |
| 28 | 28.1 | 12.7 | 12.3* | 10.2* |
| 29 | 16.1 | 11.4 |  |  |
| 30 | 15.4 | 8.2 |  |  |
| 31 |  |  |  |  |
| \# Hours | 409 |  | 657 |  |
| Maximum | 39.3 |  | 35.0 |  |
| Arith-Mean |  | 9.1 |  | 9.5 |

*boxes indicate less than $75 \%$ ( 18 hours) complete.


Figure 50. Breton Island annual $\mathrm{SO}_{2}$ trends based on 3-hour block averages.


Figure 50 continued.


Figure 51. Breton Island annual $\mathrm{SO}_{2}$ trends based on 24-hour block averages.


Figure 51 continued.


Figure 52. Breton Island annual $\mathrm{NO}_{2}$ trends based on 3-hour block averages.


Figure 52 continued.


Figure 53. Breton Island annual $\mathrm{NO}_{2}$ trend based on 24-hour averages.


Figure 53 continued.


Figure 54. Breton Island diurnal $\mathrm{SO}_{2}$ trends as represented by first (dashed), second (solid), and third (dashed) quartile lines.


Figure 54 continued.


Figure 54 continued.


Figure 55. Breton Island diurnal $\mathrm{NO}_{2}$ trends as represented by first (dashed), second (solid), and third (dashed) quartile lines.


Figure 55 continued.


Figure 55 continued.

Monthly wind and pollution roses are given in Figs. 56-69. Higher $\mathrm{SO}_{2}$ concentrations are very clearly associated with northerly wind directions, particularly north-northeast. High $\mathrm{NO}_{2}$ concentrations are more distributed, often from west-northwest directions but mostly from southerly directions. Again, it must be noted that the Kerr-McGee generator shed was situated to the southsoutheast of our monitoring station; however the peaks were often observed from the southwest and west. Maximum observed concentrations of $\mathrm{SO}_{2}$ and $\mathrm{NO}_{2}$ at Breton Island are listed in Tables 27 and 28 , respectively. These directional relationships are further confirmed by the maximum values. Lower $\mathrm{NO}_{2} / \mathrm{NO}_{\mathrm{x}}$ ratios are found here than at Dauphin, suggesting a much nearer source (less $\mathrm{NO}_{\mathrm{x}}$ to $\mathrm{NO}_{2}$ conversion). For comparison to the NAAQS (Table 23), maximum 3- and 24-hour $\mathrm{SO}_{2}$ was 10.6 and 6.0 ppb ; well below both the standard and similarly averaged values at Dauphin.

Table 29 lists the statistics for the top $10 \%$ of the Breton Island air quality data for this study period. The winter peak in $\mathrm{SO}_{2}$ concentrations from October to January is pronounced; $\mathrm{NO}_{2}$ exhibits dual peaks in early winter and late spring. More importantly, the opposite directional dependence of $\mathrm{SO}_{2}$ to north and $\mathrm{NO}_{2}$ to south is apparent. North and northeast of Breton Island is the Chandeleur Sound and eventually the Mississippi Gulf coast; to the south and southwest is the Breton Sound and the Mississippi River Delta. Numerous oil and gas platforms are active in these coastal waters. Obviously then, this location can be exposed to a wide variety of sources, both landbased and marine; however identification and quantification of sources is beyond the scope of this work.

In order to determine the synoptic weather regimes most frequently associated with high pollutant concentrations, the classification scheme of Muller (1977) is employed. A brief description of each synoptic type is as follows (see Fig. 70):

Pacific High (PH): following a "Pacific" cold front, this weather type is normally fair and mild with west to northwest winds. Ahead of the front, stronger southerly wind may prevail.

Continental High (CH): associated with polar or arctic outbreaks. North or northeasterly winds will prevail over a large section of the Gulf.

Frontal Overrunning (FOR): cloudy and rainy type occurs frequently when cold fronts become stationary along the Gulf coast or northern or central Gulf.

Coastal Return (CR): wind around high pressure over east Canada will bring southeasterly and southerly flow over Gulf.

Gulf Return (GR): similar to CR, wind direction is mainly from southeast and south but speed is higher due to developing low pressure system over Texas.

Frontal Gulf Return (FGR): when cold front is approaching Gulf from northwest, return flow ahead of front becomes increasingly turbulent and stormy.

Gulf High (GH): high pressure system prevails over Gulf, calm weather results.

Gulf Tropical Disturbance (GTD): any tropical weather system prevails over Gulf.
The 1995-1998 annual records at Breton Island were ranked by 24-hour block average, and the top 20 days (about $5 \%$ ) selected. The synoptic weather type present at New Orleans, Louisiana on these days as supplied by the "Louisiana Monthly Climate Review" (LOSC, 1995-1998) was determined. Table 30 lists these results. Maximums in $\mathrm{SO}_{2}$ concentrations throughout the record are mostly associated with CH and FOR types; $\mathrm{NO}_{2}$ maximums are more distributed but usually seen under GR, FGR, or CH types. This analysis is consistent with previous findings in that higher $\mathrm{SO}_{2}$ occurs when wind blows from land to sea $(\mathrm{CH})$, while high $\mathrm{NO}_{2}$ is seen mostly when wind blows from sea to land (GR). It is interesting to see that a high percentage of $\mathrm{NO}_{2}-\mathrm{CH}$ cases are found, as the northerly wind $-\mathrm{NO}_{2}$ relation was detected in the pollution rose analysis. Note that under FOR conditions, winds can either be from sea to land or land to sea, depending on location of the stationary front. This analysis may be slightly biased toward weather types commonly associated with the fall-winter seasons, since more of the air quality data was collected during those periods (from the time series depicted in Figs. 51 and 53, it is seen that the data return was higher during the winter seasons).


Figure 56. Breton Island May 1997 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, $\mathrm{NO}_{2}$ missing).


Figure 57. Breton Island June 1997 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, $\mathrm{NO}_{2}$ bottom right).

Breton Island


Figure 58. Breton Island July 1997 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, $\mathrm{NO}_{2}$ bottom right). Note that Hurricane Danny occurred during this month.


Figure 59. Breton Island September 1997 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, $\mathrm{NO}_{2}$ bottom right).


Figure 60. Breton Island October 1997 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, $\mathrm{NO}_{2}$ bottom right).


Figure 61. Breton Island November 1997 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, $\mathrm{NO}_{2}$ bottom right).


Figure 62. Breton Island December 1997 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, $\mathrm{NO}_{2}$ bottom right).

Breton Island


Figure 63. Breton Island January 1998 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, $\mathrm{NO}_{2}$ bottom right).


Figure 64. Breton Island February 1998 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, $\mathrm{NO}_{2}$ bottom right).


Figure 65. Breton Island March 1998 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, $\mathrm{NO}_{2}$ bottom right).


Figure 66. Breton Island April 1998 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, $\mathrm{NO}_{2}$ bottom right).


Figure 67. Breton Island May 1998 wind (top) and pollution roses ( $\mathrm{SO}_{2}$ bottom left, $\mathrm{NO}_{2}$ bottom right).


Figure 68. Breton Island June 1998 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, $\mathrm{NO}_{2}$ bottom right).


Figure 69. Breton Island July 1998 wind (top) and pollution roses $\left(\mathrm{SO}_{2}\right.$ bottom left, $\mathrm{NO}_{2}$ bottom right).

Table 27.
Breton Island $\mathrm{SO}_{2}$ Maximums (ppb)

| Month | Averaging Interval | Maximum | Day / Hour | Wind Direction / Speed |
| :---: | :---: | :---: | :---: | :---: |
| May 1997 | 1 hour | 5.6 | $\begin{aligned} & 10 / 22 \\ & 10 / 23 \end{aligned}$ | $\begin{aligned} & 046 / 6 \\ & 048 / 7 \end{aligned}$ |
|  | 3 hour | 5.5 | 10/23 | 048 / 6 |
|  | 24 hour | 2.4 | 10 |  |
| June 1997 | 1 hour | 2.4 | $\begin{aligned} & 20 / 8 \\ & 23 / 8 \end{aligned}$ | $\begin{aligned} & 166 / 3 \\ & 325 / 6 \end{aligned}$ |
|  | 3 hour | 1.7 | $\begin{gathered} 20 / 8 \\ 22 / 14 \end{gathered}$ | $\begin{aligned} & 189 / 2 \\ & 107 / 2 \end{aligned}$ |
|  | 24 hour | 0.9 | 23 |  |
| July 1997 | 1 hour | 6.0 | $2 / 9$ | $312 / 6$ |
|  | 3 hour | 4.5 | $2 / 11$ | 309 / 5 |
|  | 24 hour | 1.8 | 2 |  |
| September 1997 | 1 hour | 10.9 | 29/10 | 305/3 |
|  | 3 hour | 9.4 | 29/11 | 307/3 |
|  | 24 hour | 4.2 | 29 |  |
| October 1997 | 1 hour | 16.8 | 16/11 | $000 / 6$ |
|  | 3 hour | 10.6 | 16/14 | 007/6 |
|  | 24 hour | 6.0 | 17 |  |
| November 1997 | 1 hour | 11.8 | 22/21 | 025 / 5 |
|  | 3 hour | 6.9 | 8/11 | 002 / 4 |
|  | 24 hour | 4.4 | 8 |  |
| December 1997 | 1 hour | 11.0 | 15/12 | $355 / 4$ |
|  | 3 hour | 8.6 | 15/14 | $343 / 4$ |
|  | 24 hour | 4.9 | 15 |  |

Table 27 continued.

| Month | Averaging Interval | Maximum | Day / Hour | Wind Direction / Speed |
| :---: | :---: | :---: | :---: | :---: |
| January 1998 | 1 hour | 7.1 | 16/08 | $304 / 6$ |
|  | 3 hour | 5.6 | 16/11 | 296/4 |
|  | 24 hour | 4.1 | 28 |  |
| February 1998 | 1 hour | 9.6 | 8/02 | 002 / 5 |
|  | 3 hour | 7.8 | 8/11 | 035 / 2 |
|  | 24 hour | 4.5 | 8 |  |
| March 1998 | 1 hour | 9.8 | 23/07 | 324/3 |
|  | 3 hour | 7.1 | 23/08 | 325/3 |
|  | 24 hour | 2.9 | 12, 23 |  |
| April 1998 | 1 hour | 5.3 | 1/06 | 027/7 |
|  | 3 hour | 3.9 | 5/23 | 161/2 |
|  | 24 hour | 2.4 | 20 |  |
| May 1998 | 1 hour | 7.7 | $\begin{aligned} & 18 / 12 \\ & 19 / 22 \end{aligned}$ | $\begin{aligned} & 048 / 2 \\ & 275 / 1 \end{aligned}$ |
|  | 3 hour | 6.9 | 18/14 | 034/2 |
|  | 24 hour | 3.9 | 19 |  |
| June 1998 | 1 hour | 1.2 |  | $\begin{aligned} & 154 / 2 \\ & 153 / 3 \\ & 143 / 3 \end{aligned}$ |
|  | 3 hour | 1.1 | $\begin{aligned} & 17 / 21 \text { to } \\ & 18 / 05 \\ & 29 / 08 \end{aligned}$ | $\begin{aligned} & 145 / 3 \\ & 087 / 1 \end{aligned}$ |
|  | 24 hour | 0.9 | 17,27 |  |
| July 1998 | 1 hour | 1.7 | 6/08 | $330 / 2$ |
|  | 3 hour | 1.4 | 6/08 | 322 / 3 |
|  | 24 hour | 1.0 | 9,22 |  |

Table 28.
Breton Island $\mathrm{NO}_{2}$ Maximums (ppb)

| Month | Avg. Int. | Maximum | Day / Hour | Wind Dir. / Speed | $\mathrm{NO}_{2} / \mathrm{NO}_{\mathrm{x}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| June 1997 | 1 hour | 19.9 | 28/11 | 136/1 | 0.37 |
|  | 3 hour | 17.5 | 20/05 | 222 / 4 | 0.72 |
|  | 24 hour | 8.0 | 26 |  |  |
| July 1997 | 1 hour | 25.0 | 9/23 | $331 / 2$ | 0.94 |
|  | 3 hour | 16.7 | 10/05 | 299/2 | 0.98 |
|  | 24 hour | 10.3 | 10 |  |  |
| September 1997 | 1 hour | 42.1 | 16/17 | 164/3 | 0.38 |
|  | 3 hour | 31.2 | 16/17 | 164/3 | 0.40 |
|  | 24 hour | 9.4 | 26 |  |  |
| October 1997 | 1 hour | 52.9 | 21/16 | 156/2 | 0.55 |
|  | 3 hour | 44.8 | 21/17 | $154 / 3$ | 0.58 |
|  | 24 hour | 15.6 | 21 |  |  |
| November 1997 | 1 hour | 41.5 | 27/01 | 160/2 | 0.35 |
|  | 3 hour | 35.5 | 21/11 | 165 / 5 | 0.32 |
|  | 24 hour | 19.7 | 21 |  |  |
| December 1997 | 1 hour | 47.8 | 17/00 | 238/1 | 0.58 |
|  | 3 hour | 40.3 | 17/02 | 251/1 | 0.82 |
|  | 24 hour | 23.8 | 17 |  |  |
| January 1998 | 1 hour | 40.2 | $\begin{aligned} & 17 / 02 \\ & 30 / 02 \end{aligned}$ | $\begin{aligned} & 221 / 3 \\ & 246 / 2 \end{aligned}$ | $\begin{aligned} & 0.98 \\ & 0.95 \end{aligned}$ |
|  | 3 hour | 34.9 | 30/02 | 237/2 | 0.98 |
|  | 24 hour | 16.5 | 17,29 |  |  |

Table 28 continued.

| Month | Avg. Int. | Maximum | Day / Hour | Wind Dir. / Speed | $\mathrm{NO}_{2} / \mathrm{NO}_{\mathrm{x}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| February 1998 | 1 hour | 35.5 | 9/05 | 144/1 | 0.93 |
|  | 3 hour | 32.0 | 9/05 | 155/1 | 0.95 |
|  | 24 hour | 12.6 | 9 |  |  |
| March 1998 | 1 hour | 23.3 | 24/07 | 157/2 | 0.79 |
|  | 3 hour | 20.0 | $24 / 08$ | 157/3 | 0.82 |
|  | 24 hour | 10.1 | 24 |  |  |
| April 1998 | 1 hour | 59.9 | 25/07 | 167/3 | 0.45 |
|  | 3 hour | 49.0 | 25/11 | 161/5 | 0.53 |
|  | 24 hour | 28.8 | 25 |  |  |
| May 1998 | 1 hour | 51.6 | 14/07 | 161/2 | 0.52 |
|  | 3 hour | 43.9 | 14/05 | 158/2 | 0.54 |
|  | 24 hour | 29.7 | 14 |  |  |
| June 1998 | 1 hour | 39.3 | 23/21 | 155/3 | 0.57 |
|  | 3 hour | 30.6 | 23/23 | 156/2 | 0.62 |
|  | 24 hour | 12.7 | 28 |  |  |
| July 1998 | 1 hour | 35.0 | 2/22 | 156/4 | 0.42 |
|  | 3 hour | 28.0 | 3/11 | 161/3 | 0.47 |
|  | 24 hour | 17.6 | 3 |  |  |

Table 29.
Breton Island Top 10\% Frequency Distribution by Month and Direction

| Month | $\mathrm{NO}_{2}$ (710 samples) | $\mathrm{SO}_{2}$ (686 samples) |
| :---: | :---: | :---: |
| May 1997 | 184 | 9 |
| June 1997 | 22 | 0 |
| July 1997 | 24 | 7 |
| August 1997 | Missing | Missing |
| September 1997 | 34 | 45 |
| October 1997 | 43 | 182 |
| November 1997 | 65 | 125 |
| December 1997 | 124 | 121 |
| January 1998 | 69 | 59 |
| February 1998 | 27 | 83 |
| March 1998 | 29 | 30 |
| April 1998 | 89 | 25 |
| Direction |  |  |
| 0-45 | 9 | 239 |
| 46-90 | 4 | 94 |
| 91-135 | 41 | 18 |
| 136-180 | 402 | 22 |
| 181-225 | 124 | 29 |
| 226-270 | 47 | 37 |
| 271-315 | 44 | 83 |
| 315-360 | 33 | 143 |
| Missing | 6 | 21 |



Figure 70. A classification scheme for synoptic weather types affecting New Orleans, Louisiana and the northeast Gulf of Mexico (after Muller, 1977).

Table 30.
Frequency of Occurrence of Synoptic Weather Types Associated with Peak Pollutant Days at Breton Island

|  | Breton $\mathrm{SO}_{2}$ |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Synoptic Type | 1995 | 1996 | 1997 | 1998 | Total | $\%$ |
| PH | 0.5 | 0 | 0.5 | 1.5 | 2.5 | 3.1 |
| CH | 5.5 | 14 | 12 | 10.5 | 42 | 52.5 |
| FOR | 6 | 3.5 | 5.5 | 0 | 15 | 18.8 |
| CR | 0 | 0.5 | 0.5 | 3 | 4 | 5 |
| GR | 2 | 1 | 0 | 0.5 | 3.5 | 4.4 |
| FGR | 4.5 | 0 | 0.5 | 1 | 6 | 7.5 |
| GH | 0.5 | 1 | 1 | 3.5 | 6 | 7.5 |
| GTD | 1 | 0 | 0 | 0 | 1 | 1.3 |
|  | 1.5 |  | 0 | 0.5 | 0.5 | 2.5 |$| 3.19$

## C. Station Comparison

Monthly mean and maximum pollutant concentrations recorded at Breton and Dauphin Islands during the period of May 1997 through April 1998 are listed in Table 31 and graphed in Fig. 71. Mean $\mathrm{SO}_{2}$ values at Dauphin are almost twice those observed at Breton, particularly during the winter months; maximum values are also much higher. With the exception of April 1998, mean $\mathrm{NO}_{2}$ values are almost equivalent, while $\mathrm{NO}_{2}$ peaks at Breton are generally higher.

From Figure 72a-e, there is good agreement between stations in simultaneous trends of the 24-hour average $\mathrm{SO}_{2}$ data. Much less correlation is seen in the $\mathrm{NO}_{2}$ trends. This suggests that the $\mathrm{SO}_{2}$ maximums at both stations are often produced by the same air mass, while high $\mathrm{NO}_{2}$ may be produced by different, more localized, conditions.

Four episodes were selected in which near simultaneous peaks of $\mathrm{SO}_{2}$ and $\mathrm{NO}_{2}$ were recorded at both Breton and Dauphin Islands; one with higher concentrations at Breton than Dauphin and the other with Dauphin greater than Breton. Meteorological conditions associated with these peaks are discussed as follows.

Table 31.
Summary of Breton and Dauphin Islands Monthly Air Quality Values (ppb)

| Month | $\mathrm{SO}_{2}$ |  |  |  | $\mathrm{NO}_{2}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dauphin Island |  | Breton Island |  | Dauphin Island |  | Breton Island |  |
|  | Max | Avg | Max | Avg | Max | Avg | Max | Avg |
| $5 / 97$ | 16.3 | 1.1 | 5.6 | 0.4 | 22.1 | 3.3 | $10.3^{*}$ | $4.8^{*}$ |
| $6 / 97$ | 11.1 | 0.8 | 2.4 | 0.5 | 17.9 | 3.4 | $19.9^{*}$ | $5.7^{*}$ |
| $7 / 97$ | 42.5 | 2.0 | $6.0^{*}$ | $0.6^{*}$ | 27.4 | 5.1 | $25.0^{*}$ | $5.6^{*}$ |
| $8 / 97$ | 13.5 | 1.8 |  |  | 19.0 | 3.7 |  |  |
| $9 / 97$ | 38.0 | 3.3 | 10.9 | 1.1 | 22.4 | 4.3 | 42.1 | 4.8 |
| $10 / 97$ | 37.1 | 3.8 | 16.8 | 1.9 | 28.0 | 6.3 | 52.9 | 4.8 |
| $11 / 97$ | 29.3 | 3.2 | 11.8 | 1.7 | 28.7 | 6.1 | 41.5 | 6.3 |
| $12 / 97$ | 50.5 | 3.5 | 11.0 | 1.8 | 51.4 | 7.6 | 47.8 | 7.5 |
| $1 / 98$ | 22.4 | 2.4 | 7.1 | 1.4 | 33.5 | 5.8 | 40.2 | 4.9 |
| $2 / 98$ | 23.0 | 2.5 | 9.6 | 1.5 | $22.0^{*}$ | $4.1^{*}$ | 35.5 | 4.9 |
| $3 / 98$ | 17.0 | 1.5 | 9.8 | 0.9 | 19.6 | 1.8 | 23.3 | 3.8 |
| $4 / 98$ | 13.7 | 1.5 | 5.3 | 0.9 | 14.6 | 1.2 | 59.9 | 7.0 |
| Annual |  | 2.3 |  | 1.2 |  | 4.4 |  | 6.2 |

* boxes indicate less than $75 \%$ complete.


Figure 71. Comparison of monthly mean $\mathrm{SO}_{2}$ (top) and $\mathrm{NO}_{2}$ (bottom) values recorded at Breton and Dauphin Islands during the study period.


Figure 72a. Time series of 1996 24-hour block averaged $\mathrm{SO}_{2}$ at Breton and Dauphin Islands.


Figure 72b. Time series of 1996 24-hour block averaged $\mathrm{NO}_{2}$ at Breton and Dauphin Islands.


Figure 72c. Time series of 1997 24-hour block averaged $\mathrm{SO}_{2}$ at Breton and Dauphin Islands.


Figure 72d. Time series of 1997 24-hour block averaged $\mathrm{NO}_{2}$ at Breton and Dauphin Islands.


Figure 72e. Time series of 1998 24-hour block averaged $\mathrm{SO}_{2}$ (top) and $\mathrm{NO}_{2}$ (bottom) at Breton and Dauphin Islands.

CH conditions prevail on 28 September 1997 behind a cold front over the northeast Gulf of Mexico. A second front attempts to push through on 29 September but becomes nearly stationary, and then retreats on 30 September allowing GR weather along the Gulf coast. Pressure rises throughout the period at both Breton and Dauphin stations, while surface winds are generally westerly. $\mathrm{SO}_{2}$ rises rapidly on 29 September and peaks at about 14 ppb , with Breton maximum occurring slightly earlier than at Dauphin. A much higher peak is recorded at Dauphin on 30 September under westerly flow; Breton also peaks at about 8 ppb , and both decrease as the winds become more southwesterly.


Figure 73a. 0700 EST surface weather maps for 28-30 September 1997 from NOAA Daily Weather Map Series.


Figure 73b. Meteorological and air quality values observed at Breton and Dauphin Islands on 28 - 30 September 1997.

CH and northerly flow dominate during the period of 15-17 October 1997, although the pressure trend is falling. $\mathrm{A} \mathrm{SO}_{2}$ peak is seen at Dauphin on 15 October, but not at Breton. On the following day, Breton reaches a maximum of about 17 ppb almost four hours before a lesser peak at Dauphin. Note that multiple peaks are evident in the Dauphin record, whereas Breton often exhibits a single rise and fall.


Figure 74a. 0700 EST surface weather maps for 15-17 October 1997 from the NOAA Daily Weather Map Series.


Figure 74b. Meteorological and air quality values observed at Breton and Dauphin Islands on 15 - 17 October 1997.


14 December


16 December


15 December


17 December


18 December
Figure 75a. 0700 EST surface weather maps for 14-18 December 1997 from NOAA Daily Weather Map Series.

A cold frontal system has reached the Florida peninsula on 14 and 15 December 1997, however FOR conditions remain along the Gulf coast as overcast conditions are seen. By the end of the $15^{\text {th }}$, the high has moved far enough to the southeast to bring about CH weather. As the high center moves eastward on the $16^{\text {th }}$, the surface winds rotate from northwest clockwise to westerly. Another front washes out over northeast Louisiana on the $17^{\text {th }}$, and FOR weather returns on the $18^{\text {th }}$ as winds become more southerly along the coast. A gradual rise in $\mathrm{NO}_{2}$ occurs at both stations, reaching a near simultaneous peak of $30-40 \mathrm{ppb}$ early on the $16^{\text {th }}$ with northerly winds. Concentrations then fall, but a second higher peak is seen at Breton in the evening under mostly westerly flow. Breton $\mathrm{NO}_{2}$ generally remains higher (around 20 ppb ) than at Dauphin through the $18^{\text {th }} . \mathrm{NO}_{2} / \mathrm{NO}_{\mathrm{x}}$ ratios exhibit the expected minimums in the daytime hours, due to dissociation as described previously. The ratios are often lower at Breton, suggesting a nearer source, particularly the later peak on the $16^{\text {th }}$.


Figure 75b. Meteorological and air quality values observed at Breton and Dauphin Islands during 14-18 December 1997.

FGR weather precedes a front on 22 January 1998 as east-southeast winds are observed early in the day. A coastal low merges with the front and moves eastward, causing FOR (note overcast) on the $23^{\text {rd }}$ and clearing to CH on the $24^{\text {th }}$ with northerly flow and rising pressure. $\mathrm{NO}_{2}$ peaks at Dauphin at the end of the $22^{\text {nd }}$ are not observed at Breton; both stations show a gradual rise throughout the $23^{\text {rd }}$ under northerly winds. $\mathrm{NO}_{2} / \mathrm{NO}_{\mathrm{x}}$ ratios are similar, indicating a same-aged air mass at both locations.


Figure 76a. 0700 EST surface weather maps for 22-24 January 1998 from NOAA Daily Weather Map Series.

These examples further suggest that although similar synoptic meteorological conditions may be occurring at both stations, pollutant concentrations may be influenced more by localized sources.


Figure 76b. Meteorological and air quality values observed at Breton and Dauphin Island on 22 24 January 1998.

## D. Boundary Layer and Dispersion Meteorology Over Breton Island and Sound

1. Description of Key Processes in Pollutant Transport and Dispersion Over the Breton National Wilderness Area

## a. Topography

The study area is flat and composed of barrier islands in a chain from Breton Island in the southwest (see Fig. 77 and Fig. 1) to the Chandeleur Islands in the northeast. The size of the main Breton Island is approximately 1 km wide and 6 km long. It is a relatively flat island. Because the islands are so low in elevation, storm surges can change the topography overnight. In fact, the overwash generated by Hurricane Danny in July 1997 temporally submerged much of Breton and left new cuts across the island. From the vegetative type map of the Louisiana coastal marshes published by the Louisiana Department of Wildlife and Fisheries in New Orleans in 1978, the entire Breton Island is classified as a saline marsh. The typical vegetation is oystergrass (Spartina alterniflora), Salicornia sp., blackrush (Juncus roemerianus), Batis maritima, black mangrove (Avicennia nitida), and saltgrass (Distichlis spicata).

Even though the island terrain is very low, it can still exert some drag to retard the air flow. In addition, the internal boundary layer may develop over this sea-island-sound system (see Hsu, 1988). Therefore, the results of turbulence intensity measurements via uvw sensors may not be the same as those of open water or further inland. The difference between this barrier island environment and the open water will be compared with results obtained from inland environments.
b. Air-Sea Exchange

Air-sea exchange includes momentum, heat, and moisture across the air-sea interface.
Meteorological transport processes in coastal marine environments are important from several points of view. For example, the wind stress or momentum flux is one of the most essential driving forces in water circulation. Heat and convection are the origin of some localized coastal weather systems. Sensible heat and water vapor fluxes are necessary elements in radiation and heat budget considerations, including computation of salt flux for a given estuarine system.

In the atmospheric surface boundary layer, the vertical turbulent transports are customarily defined as

$$
\begin{aligned}
\text { Momentum flux } & =-\rho \overline{u^{\prime} w^{\prime}}=\tau \\
& =\rho K_{m}\left(\frac{\partial u}{\partial z}\right)=\rho C_{d} U_{z}^{2}
\end{aligned}
$$



Figure 77. Aerial photographs (color infrared) of the northernmost part of Breton Island taken on 9 December 1996 (top) and 11 January 1999 (bottom). The Kerr McGee facility is visible as the small circular object on the inside of the island. Top of photos is oriented approximately to the northeast.

$$
\begin{aligned}
& \text { Sensible heat flux } \begin{aligned}
& =-\rho c_{p} \overline{w^{\prime} T^{\prime}} \\
& =H_{s}=\rho c_{p} K_{H}\left(\frac{\partial \theta}{\partial z}\right) \\
& =\rho c_{p} C_{H} U_{2} \Delta T
\end{aligned} \\
& \begin{aligned}
\text { Moisture flux } & =-\rho \overline{w^{\prime} q^{\prime}}=E \\
& =-\rho K_{E}\left(\frac{\partial q}{\partial z}\right)=\rho C_{E} U_{z} \Delta q
\end{aligned} \\
& \text { Latent heat flux }=H_{L}=L_{v} E
\end{aligned}
$$

The primed values indicate deviations from mean values, which are designated by a horizontal bar; $\rho$ is the air density; $u$ and $w$ are horizontal and vertical components of the wind; $U_{z}$ is the mean horizontal wind at height z ; T is the temperature; q is the specific humidity; $\mathrm{c}_{\mathrm{p}}$ is specific heat at constant pressure; $\theta$ is the potential temperature; $\mathrm{K}_{\mathrm{M}}, \mathrm{K}_{\mathrm{H}}$, and $\mathrm{K}_{\mathrm{E}}$ are eddy diffusivities for momentum, heat, and water vapor, respectively; $\Delta \mathrm{T}$ is the difference between sea surface temperature and air temperature at a reference height (usually 10 m above the water surface); $\Delta \mathrm{q}$ is the corresponding mean moisture difference; $\mathrm{C}_{\mathrm{d}}$ is the drag coefficient (which equals $\left(\mathrm{u}_{*} / \mathrm{U}_{10}\right)^{2}$; where $u_{*}$ is the shear or friction velocity); $C_{H}$ and $C_{E}$ are bulk aerodynamic coefficients, and $L_{v}$ is the latent heat of vaporization. For practical reasons, averages over a 5 - to 20-min measuring period are used.

Under fair (normal) weather conditions when the wind speed is below 10 to $12 \mathrm{~m} / \mathrm{sec}$, the transfer coefficient across the air-sea interface may be treated approximately as

$$
C_{d}=C_{H}=C_{E}=1.2 \times 10^{-3}
$$

Although the variation of $\mathrm{C}_{\mathrm{H}}$ and $\mathrm{C}_{\mathrm{E}}$ with wind speed and stability parameters may be considered small, the gradual increase of $\mathrm{C}_{\mathrm{d}}$ with wind speed must be recognized, that is,

$$
C_{d}=\left(A+B U_{10}\right) \times 10^{-3}
$$

where $\mathrm{A}=0.80$ and $\mathrm{B}=0.065$ are commonly used values.

## c. Wind-Wave Interaction

Ocean surface waves are mainly generated by the wind. The relationship between nondimensionalized wind and wave parameters can be written as

$$
\frac{g H_{s}}{U_{10}^{2}}=A\left(\frac{g T_{p}}{U_{10}}\right)^{\frac{3}{2}}
$$

and

$$
\frac{g H_{s}}{u_{*}^{2}}=B\left(\frac{g T_{p}}{u_{*}}\right)^{\frac{3}{2}}
$$

where $g$ is the gravitational acceleration, $H_{s}$ is the significant wave height, and $T_{p}$ is its corresponding peak period.

For a given region, values of $A$ and $B$ may be considered in equilibrium as constants so that wind, waves, and momentum flux are all related through the drag coefficient via

$$
C_{d}=\left(\frac{A}{B}\right)^{4}
$$

For example, in the Gulf of Mexico, on the average, $\mathrm{A}=0.01155$ and $\mathrm{B}=0.062$, so that $\mathrm{C}_{\mathrm{d}}$ $=1.2 \times 10^{-3}$. For the North Sea, $A=0.01048$ and $B=0.054$; therefore, $C_{d}=1.4 \times 10^{-3}$.

For many air-sea interaction studies, e.g., oceanic current generation and Ekman pumping and the atmospheric mixing height for the overwater dispersion of pollutants, values of the wind stress $\tau\left(=\rho u_{*}{ }^{2}=\rho C_{d} U_{10}{ }^{2}\right)$ are needed. Since direct measurements of $u_{*}$ are not routinely available, $C_{d}$ is commonly employed. Since $\tau$ is directly proportional to $C_{d}$, it is crucial to get as accurate a formulation as possible. Published equations of $\mathrm{C}_{\mathrm{d}}$ vary greatly (see, e.g., Hsu, 1988, Fig. 6.11, p. 114). Most recently, Donelan et al. (1993) proposed a formulation in which the aerodynamic roughness, $Z_{0}$, is directly proportional to the wave height and inversely proportional to the wave age. These parameters are routinely available. Since $C_{d}$ is proportional to $Z_{0}$, younger waves produce larger $C_{d}$ values. Also, shorter fetch can generate younger seas and thus larger $C_{d}$.

At the air-sea interface the near-neutral stability may be assumed when the stability parameter $|Z / L|<0.4$ (where $Z$ is the reference height above the mean sea surface and $L$ is the Monin-Obukhov stability length) (see Hsu, 1992). Under these conditions, the logarithmic wind profile law may be applied that

$$
\begin{equation*}
U_{10}=\frac{u_{*}}{\kappa} \ln \left(\frac{Z}{Z_{0}}\right) \tag{1}
\end{equation*}
$$

Since $u_{*}$ is not usually measured, the drag coefficient is employed in which

$$
\begin{equation*}
C_{d}=\left(\frac{u_{*}}{U_{10}}\right)^{2} \tag{2}
\end{equation*}
$$

Because there are two unknowns (i.e., $\mathrm{u}_{*}$ and $\mathrm{Z}_{0}$ ) in Eq. (1) for a given wind speed, Donelan et al. (1993) proposed the following formula for operational applications

$$
\begin{equation*}
\frac{Z_{0}}{\sigma}=B_{1}\left(\frac{U_{10}}{C_{p}}\right)^{B_{2}} \tag{3}
\end{equation*}
$$

where $B_{1}=6.7 \times 10^{-4}, B_{2}=2.6, \sigma\left(=H_{s} / 4\right)$ in which $\sigma$ is the root mean square wave height (where $\mathrm{H}_{\mathrm{s}}$ is the significant wave height), and $\mathrm{C}_{\mathrm{p}}\left(=\mathrm{g} \mathrm{T}_{\mathrm{p}} / 2 \pi\right)$ is the phase speed of the waves at the spectral peak (where $T_{p}$ is the wave period at the spectral peak and $g$ is the gravitational acceleration). Since
$\mathrm{C}_{\mathrm{p}} / \mathrm{U}_{10}$ is defined as the wave age, $\mathrm{Z}_{0}$ is then directly proportional to $\mathrm{H}_{\mathrm{s}}$ and inversely proportional to the 2.6 power of the wave age. In other words, for a given $H_{s}$ and $\mathrm{U}_{10}, \mathrm{Z}_{0}$ is larger for younger seas (i.e., smaller magnitude of $\mathrm{C}_{\mathrm{p}} / \mathrm{U}_{10}$ or shorter wave period) and smaller for older seas (larger $\mathrm{C}_{\mathrm{p}} / \mathrm{U}_{10}$ or longer wave period).

From Eqs. (1) and (3) and by setting $\mathrm{Z}=10 \mathrm{~m}$ and $\kappa=0.4$, one gets

$$
\begin{equation*}
u_{*}=\frac{0.4 U_{10}}{11.0-\ln \left[\frac{H_{s}}{\left(\frac{C_{p}}{U_{10}}\right)^{2.6}}\right]} \tag{4}
\end{equation*}
$$

Therefore, we can estimate $u_{*}$ from the wind, $U_{10}$, and wave $\left(H_{s}\right.$ and $\left.C_{p}\right)$ information. Eq. (4) is referred to here as the wind-wave interaction method. Also, $\mathrm{C}_{\mathrm{d}}$ may be obtained from this equation and Eq. (2) so that

$$
\begin{equation*}
C_{d}=\left[\frac{0.4}{11.0-\ln \left[\frac{H_{s}}{\left(\frac{C_{p}}{U_{10}}\right)^{2.6}}\right]}\right]^{2} \tag{5}
\end{equation*}
$$

This is our recommended operational formula in which all parameters are routinely available from most data buoys. Verifications of Eqs. (4) and (5) in the Gulf of Mexico are provided in Hsu (1995a). It is shown that the agreement between these equations and the $\mathrm{C}_{\mathrm{d}}$ formulation suggested by Wu (1982) and the WAMDI Group (1988) is within $95 \%$ such that

$$
\begin{align*}
C_{d} & =1.2875 \times 10^{-3} & & U_{10}<7.5 \mathrm{~m} / \mathrm{s} \\
& =\left(0.8+0.065 U_{10}\right) \times 10^{-3} & & U_{10} \geq 7.5 \mathrm{~m} / \mathrm{s} \tag{6}
\end{align*}
$$

Since wave characteristics were not recorded at the Breton Island station, Eq. (6) is employed for determination of all drag coefficients in this analysis.

## d. Atmospheric Turbulence

For pollution dispersion studies, atmospheric turbulence intensities in the horizontal and vertical directions are used. They are defined as (see, e.g., Zannetti, 1990)

$$
\begin{align*}
& \sigma_{y}=\sigma_{v} t S_{y}\left(\frac{t}{T_{L}}\right)  \tag{7}\\
& \sigma_{z}=\sigma_{w} t S_{z}\left(\frac{t}{T_{L}}\right) \tag{8}
\end{align*}
$$

where $\sigma_{\mathrm{v}}$ and $\sigma_{\mathrm{w}}$ are the standard deviations of the crosswind and vertical wind vector components, and $\mathrm{S}_{\mathrm{y}}$ and $\mathrm{S}_{\mathrm{z}}$ are universal functions of the diffusion (or travel) time $t$ and the Lagrangian time scale $T_{L}$. Functions of $S_{y}$ and $S_{z}$ are provided in Zannetti (1990).

If we convert $t$ to the downwind distance $x$ with the wind speed $U$, we have

$$
\begin{align*}
& \sigma_{y}=\left(\frac{\sigma_{v}}{U_{10}}\right) x S_{y}\left(\frac{t}{T_{L}}\right)  \tag{9}\\
& \sigma_{z}=\left(\frac{\sigma_{w}}{U_{10}}\right) x S_{z}\left(\frac{t}{T_{L}}\right) \tag{10}
\end{align*}
$$

For overwater applications, the turbulence intensities are found to be (Geernaert et al., 1987)

$$
\begin{equation*}
\frac{\sigma_{v}}{U_{10}}=0.0586+0.0012 U_{10} \pm 0.015 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\sigma_{w}}{U_{10}}=0.0369+0.0010 U_{10} \pm 0.005 \tag{12}
\end{equation*}
$$

Because $\sigma_{v}$ and $\sigma_{w}$ also vary with the atmospheric stability, we need the stability classification. Commonly, the Pasquill's Stability Classification scheme is employed (see, e.g., Panofsky and Dutton, 1984). For offshore regions, this classification may be obtained through the parameterization of Hsu (1992) that

$$
\begin{equation*}
\frac{Z}{L}=\kappa C_{T} C_{d}^{-\frac{3}{2}} R_{b} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{b}=\frac{g Z\left(T_{\text {air }}-T_{\text {sea }}\right)}{U_{10}^{2}\left(T_{\text {sea }}+273\right)} \tag{14}
\end{equation*}
$$

where Z is the height above the sea surface (normally set to 10 m ), L is the Monin-Obukhov length, $\kappa(=0.4)$ is the von Kármán constant, $\mathrm{C}_{\mathrm{T}}$ is the heat flux coefficient, $\mathrm{C}_{\mathrm{d}}$ is the wind-stress drag coefficient, $\mathrm{R}_{\mathrm{b}}$ is the bulk Richardson number, $\mathrm{g}\left(9.8 \mathrm{~m} \mathrm{~s}^{-2}\right)$ is the gravitational acceleration, $\mathrm{T}_{\mathrm{air}}$ and $\mathrm{T}_{\text {sea }}$ are air and sea-surface temperatures in ${ }^{\circ} \mathrm{C}$, and $\mathrm{U}_{10}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ is the wind speed at 10 m height.

In Eq. (13), the heat flux coefficient, $\mathrm{C}_{\mathrm{T}}$, does not depend strongly on the wind speed, but is larger in unstable ( $\mathrm{C}_{\mathrm{T}}=1.10 \times 10^{-3}$ ) than in stable ( $\mathrm{C}_{\mathrm{T}}=0.83 \times 10^{-3}$ ) conditions (Smith, 1980). Garratt (1992, p. 102) suggests that under near-neutral conditions and for winds up to $25 \mathrm{~m} \mathrm{~s}^{-1}, \mathrm{C}_{\mathrm{T}}$ $=1.1 \times 10^{-3}( \pm 15 \%)$.

## e. Vertical Mixing

Vertical mixing includes eddy diffusivity and the mixing height.

1. The Vertical Eddy Diffusivity

In some K -diffusion models, the vertical eddy diffusivity, $\mathrm{K}_{2}$, is required, e.g. (Hanna, 1984)

$$
\begin{equation*}
K_{z}=c u_{*} Z\left(1-\frac{Z}{h}\right) \tag{15}
\end{equation*}
$$

where $u_{*}$ is the shear velocity defined above and $h$ is the mixing height. For example, the Urban Airshed Model (UAM), the preferred model of the EPA for ozone studies, has a meteorological preprocessing subroutine which employs the gradient transport (K) modeling (Zannetti, 1990, p. 234). Since in the K-theory, $\mathrm{u}_{*}$ is required for the computation of vertical diffusivity, $\mathrm{K}_{2}$, and concentration, $\chi$, it is recommended that proper formulas to reflect the overwater variations in aerodynamic roughness length $Z_{0}$, or the drag coefficient $C_{d}$, be made in light of recent advances in the air-sea interaction field as shown in Eq. (5).

Note that if proper $\mathrm{C}_{\mathrm{d}}$ values $\left(10^{3} \mathrm{C}_{\mathrm{d}}=1.090+0.094 \mathrm{U}_{10}\right)$ (obtained by buoy 42035 near Galveston, Texas using Eq. (5)) for the shallow water environment (such as Galveston Bay) are compared to those for the open Gulf of Mexico $\left(10^{3} \mathrm{C}_{\mathrm{d}}=1.14\right.$ based on open ocean conditions (Large and Pond, 1981) when $U_{10}$ ranges between 4 to $11 \mathrm{~m} \mathrm{~s}^{-1}$ ), the ratio of $\mathrm{K}_{2 \text { Bay }} / \mathrm{K}_{\text {zGulf }}$ as well as $\mathrm{H}_{\text {bay }} /$ $\mathrm{H}_{\text {gulf }}$ is 1.18 when $\mathrm{U}_{10}=5 \mathrm{~m} \mathrm{~s}^{-1}$. This ratio increases to 1.32 when $\mathrm{U}_{10}$ increases to $10 \mathrm{~m} \mathrm{~s}^{-1}$. On the other hand, the ratio of concentration $\chi_{\text {Bay }} / \chi_{\text {Gulf }}$ is 0.85 and 0.76 when $U_{10}$ is 5 and $10 \mathrm{~m} \mathrm{~s}^{-1}$, respectively.

## 2. The Mixing Height

Due to potential evaporation, the air over the water is usually moister than that over land, and the top of the marine boundary layer is oftentimes capped by clouds (see, e.g., Garratt, 1992). On the basis of analysis of vertical soundings by research aircraft, rawinsondings, and radar wind profilers and Radio Acoustic Sounding Systems (RASS), it has been shown by Garratt (1992) that the mixing height $\mathrm{h}=\mathrm{LCL}$, the lifting condensation level under cumulus cloud conditions (where LCL = cloud base). The height of the LCL may be estimated by (see Mcllveen, 1986, p. 126)

$$
\begin{equation*}
H_{\text {sea }}=125\left(T_{\text {air }}-T_{\text {dew }}\right) \tag{16}
\end{equation*}
$$

where $H_{\text {sea }}$ is the mixing height over the water surface, and $\mathrm{T}_{\text {air }}$ and $\mathrm{T}_{\text {dew }}$ are the air and dewpoint temperatures (both in ${ }^{\circ} \mathrm{C}$ ) over the water, respectively. However, if the clouds are stratiform (as is often the case over the U.S. west coast), the height of the cloud top rather than base is the mixing height (Garratt, 1992, p. 205). A method to obtain $\mathrm{H}_{\text {sea }}$ by using NOAA series or GOES satellite detection of cloud top temperature is shown in Fig. 78. Note that one may follow the saturation adiabat from the cloud top temperature downward and follow the dry adiabat from the surface air temperature upward. The point of intersection is the LCL. In this procedure, the height corresponding to the cloud top temperature must be determined beforehand from nearby routine rawinsonding station. If multi-layered stratus cloud, mid-level, or cirrus clouds are present, the
warmest cloud-top temperature (CTT), which represents the clouds in the lowest layer, will be applied. Because the sea-surface temperature can be determined in the cloud-free region, the CTT in the first cloud layer away from the sea surface can be identified by the nephanalysis (see, e.g., Kidder and Vonder Haar, 1995).


Figure 78. Determining overwater mixing height from the dewpoint depression at the surface or from surface and cloud-top temperatures based on atmospheric thermodynamics (see text for explanation).

Alternately, if we know the mixing height on land, $\mathrm{H}_{\text {land }}$ (in meters), and a barotropic boundary layer across the coastal zone exists, we may estimate the mixing height over the water, $\mathrm{H}_{\text {sea }}$ (in meters) by applying (Hsu, 1988, p. 183)

$$
\begin{equation*}
H_{\text {sea }}=H_{\text {land }}\left(\frac{C_{d s e a}}{C_{d l a n d}}\right)\left(\frac{U_{\text {sea }}}{U_{\text {land }}}\right)^{2} \tag{17}
\end{equation*}
$$

where $\mathrm{C}_{\text {dland }}$ is the drag coefficient over land, $\mathrm{C}_{\text {dsea }}$ is based on Eq. (5), $\mathrm{U}_{\text {sea }}$ and $\mathrm{U}_{\text {land }}$ (both in $\mathrm{m} \mathrm{s}^{-1}$ ) are the windspeeds at sea and over land, respectively.

If the planetary boundary layer is baroclinic across the coastal zone, i.e., under land and sea breeze effects, according to Hsu (1988, p. 204),

$$
\begin{equation*}
H_{\text {sea }}=H_{\text {land }}-123\left(T_{\text {land }}-T_{\text {sea }}\right) \tag{18}
\end{equation*}
$$

where $\mathrm{T}_{\text {land }}$ and $\mathrm{T}_{\text {sea }}$ (both in ${ }^{\circ} \mathrm{C}$ ) are the air temperatures over land and sea, respectively.
2. Use of Observations to Compare Methods that Evaluate Parameters Associated with Key Processes
a. Determining $\mathrm{Z} / \mathrm{L}$

Hourly values of Z/L were calculated for NOAA buoys 42007 and 42040 and C-MAN GDIL1 (Grand Isle, Louisiana, see Fig. 79 for locations) as well as at Breton using Eqs. (6), (14), and (13) and setting $\mathrm{C}_{\mathrm{T}}=1.1 \times 10^{-3}$. On first examination, stability was classified as unstable for $Z / L<-0.03$, neutral for $|Z / L|<0.03$, and stable for $Z / L>0.03$. Figure 80 shows the frequency of occurrence for each category. Breton Island stability characteristics most closely resemble those at buoy 42007; therefore this station's long-term record may be used to approximate conditions over the BNWA.

Investigation of the seasonal variations of meteorological and stability parameters over the study area was performed to further define their spatial and temporal characteristics. Monthly mean and standard deviation of Breton Island air and water temperatures are compared to the mean values at buoys 42007 and 42040 in Figure 81. Excellent agreement in air temperature amongst the three stations occurs throughout the year. As expected, sea surface temperatures at Breton and 42007 are well correlated, however wintertime (November - February) sea temperatures at buoy 42040 are considerably higher ( $4-6^{\circ} \mathrm{C}$ ). From Eqs. (13) and (14), it can be inferred that this most offshore location is more unstable, as verified by Fig. 80. Note that the water temperature sensor at Breton was located in shallow water at the end of a concrete pier extending from the Kerr-McGee facility. Diurnal and seasonal heating and chilling of this shallow water body is likely more pronounced at this location than at the open-water buoys.



Figure 80. Frequency of occurrence of stability classes for three NOAA stations and Breton Island during the period of May 1997 through July 1998.

Monthly statistics of computed $\mathrm{Z} / \mathrm{L}$ at all three offshore stations resulted in unrealistically large negative (unstable) mean values. This was found to be caused by a relatively small number of free convective cases (Stability Class B, Z/L<-1.0). A nomogram developed by Hsu (1992) to obtain Stability Class from routine measurements available at sea (Figure 82, proposed for use in air quality modeling, such as the OCS model (Hanna et al., 1985, Hsu, 1992)) was employed to identify hourly records which fell into Classes B and F. These records were then removed, since Monin-Obukhov theory is not applicable beyond $|Z / L|>1$ (see, e.g, Kaimal and Finnigan, 1994); and monthly statistics were re-computed. Figure 83 depicts these results. Unstable ( $\mathrm{Z} / \mathrm{L}<0$ ) conditions exist at all locations throughout the year. Mean stability approaches free convective during the summer months, with Class B observed approximately $10-20 \%$ of the time (greater frequency at 42040). During the winter season, 42007 and Breton become more near-neutral, buoy 42040 responds much slower due to the abundant supply of warmer water further offshore. Again, the trend toward more stable conditions at Breton in the fall may be partially due to the chilling of the shallow waters.

A more convenient method for obtaining $\mathrm{Z} / \mathrm{L}$ from readily available measurements is described as follows based on a comparative analysis of $Z / L$ and $R_{b}$ using data provided in Donelan et al. (1997). Parameters given in Donelan's extensive data set included $U_{10 N}, T_{\text {air }}, T_{\text {sea }}, L$, and $u_{*}$. By setting $Z=10 \mathrm{~m}$, the stability parameter $\mathrm{Z} / \mathrm{L}$ was obtained.

For the first run, all records with $\mathrm{Z} / \mathrm{L}<0$ were retained for a total of 96 samples. The bulk Richardson number, $\mathrm{R}_{\mathrm{b}}$, was given by Eq. (14). Values of $\mathrm{Z} / \mathrm{L}$ extended to about -8 , with 8 points being $<-3$. For these points, $U_{10 N}$ was $\leq 5 \mathrm{~m} \mathrm{~s}^{-1}$, and $T_{\text {air }}-T_{\text {sea }} \approx-8^{\circ} \mathrm{C}$. These values were obtained under light wind conditions blowing almost directly against the $2-2.5 \mathrm{~m}$ swell following a cold frontal passage. This is extremely unstable, and therefore Monin-Obukhov theory does not apply. Thus, these 8 records were removed from the analysis.

From Eq. (13) and for $Z / L<0, R_{b}$ must be $<0$. However, three points occurred where $R_{b}$ $>0$ and $\mathrm{Z} / \mathrm{L}<0$. These values were recorded following the passage of another cold front, when $\mathrm{T}_{\text {air }}$ was still slightly warmer than $\mathrm{T}_{\text {sea }}$ and the winds brisk. These stability values approach near-neutral conditions ( $|\mathrm{Z} / \mathrm{L}|<0.03$ ) and were also excluded.

85 samples remained comprising Stablility Classes C and D (for $\mathrm{Z} / \mathrm{L}<0$ ). For all samples, $\mathrm{Z} / \mathrm{L}=12.41 \mathrm{R}_{\mathrm{b}}$ with a correlation coefficient of 0.9 . If only stability class $\mathrm{D}(-0.4<\mathrm{Z} / \mathrm{L}<-0.03)$ is considered, 63 samples gives $Z / L=11.77 \mathrm{R}_{\mathrm{b}}$ with correlation of 0.93 . Good fit is also obtained for Class $D$ stable ( $Z / L>0$ ), however note that several points included in this regression fall into the near-neutral category. These results are summarized in Fig. 84. For those wind speed measurements taken a 5 m on NDBC buoys, correction to 10 m can be based on Hsu (1988, Table 8.5, p. 202).

## b. Turbulence Intensity

Turbulence intensities derived from measurements of $u, v$, and $w$ wind components under near-neutral conditions $(|\mathrm{Z} / \mathrm{L}|<1.0)$ at Breton Island were compared to the relationship found for the North Sea (Geernaert et al., 1987) (Eqs. (11) and (12)). Data observed under light wind
conditions ( $\mathrm{U}_{10}<5 \mathrm{~m} \mathrm{~s}^{-1}$ ) were excluded to ensure representation of stability class D conditions (see, e.g., Zannetti, 1990). In Fig. 85, good agreement is found for downwind ( $\sigma u$ ) and vertical ( $\sigma w$ ) intensities; however larger crosswind ( $\sigma v$ ) intensities are observed at Breton. As described previously, this may be partially due to topographical effects as well as the influence of man-made structures. Since the uvw sensor was fixed in the standard $u=90^{\circ}$ (east), $v=360^{\circ}$ (north) orientation, the dataset was narrowed down to only winds parallel to these directions for better delineation of the lateral variances. Closer agreement is achieved, as shown in Fig. 86. Note that westerly winds were excluded due to the presence of large structures in this direction. Further defining these relationships is essential for proper $\sigma_{y}$ and $\sigma_{z}$ calculations in dispersion modelling efforts over the BNWA.


Figure 81. Monthly statistics of air and water temperatures at Breton Island and two NOAA buoys. Vertical lines are standard deviation at Breton.


Figure 82. The stability classes as a function of wind speed and air-sea temperature difference (from Hsu, 1992).


Figure 83. Monthly statistics of stability characteristics and frequency of occurrence of free convective conditions at Breton Island and two NOAA buoys. Vertical lines are standard deviation at Breton.


Figure 84. A relationship between $\mathrm{Z} / \mathrm{L}$ and the bulk Richardson number, $\mathrm{R}_{\mathrm{b}}$, based on measurements from a continental shelf environment by Donelan et al. (1997).


Figure 85. Observed turbulence intensities at Breton Island compared to the relationship found for the North Sea (denoted by solid line from Geernaert et al., 1987).


Figure 86. Lateral (crosswind) turbulence intensities at Breton Island compared to the relationship for the North Sea (see text for explanation).

## c. The Mixing Height

New satellite systems scheduled to come online will provide accurate measurements of surface and cloud-top temperatures as well as heights of the cloud tops. Figure 87 shows an example for determining the mixed height from remotely-sensed data as described in Section III.D.1.e.2. and Figure 78. The computed LCL, or mixed height, from a radiosonde profile recorded at Breton Island on 4 August 1998 is shown to be in excellent agreement with that obtained from the satellite data.

While the Breton Island air quality station was being removed on 3-4 August 1998, several radiosondes were launched from the moored camp Chandeleur Islander nearby. Figures 88 through 96 display the standard Skew-T $\log \mathrm{P}$ thermodynamic profiles for each launch, along with boundary layer profiles of potential temperature $(\theta)$, virtual potential temperature $\left(\theta_{\mathrm{v}}\right)$, and mixing ratio ( q ). The latter profiles were used to estimate the mixing height as that point at which the lapse rate of both $\theta$ and $q$ change abruptly (see, e.g., Hsu, 1988).

As discussed previously (Sec. III.D.1.e.2.), the mixed height over the marine environment may be equivalent to the lifting condensation level (LCL). Figure 97 shows a one-to-one comparison of LCL heights obtained through Skew-T analysis of the Breton radiosondes versus mixed heights calculated by Eq. (16) and estimated from boundary-layer profile. Root mean square errors for both methods are within 90 m ; the error obtained from Eq. (16) is less than 20 m . Thus, Eq. (16) is recommended for operational use.

To visualize seasonal variations of the mixing height over the southeast Louisiana coast and eastward over the BNWA, Eq. (16) is applied to the records of C-MAN stations GDIL1 and BURL1, NOAA buoy 42040, and Breton Island. Dewpoint temperatures are recorded at the first three stations, for Breton dewpoints were calculated from air temperature and relative humidity by

$$
\begin{gather*}
E_{s}=6.1078 \times e^{\left(\frac{2.302 \times 7.5 \times T_{\text {air }}}{237.3+T_{\text {air }}}\right)}  \tag{19}\\
E=\left(\frac{R H}{100}\right) E_{s}  \tag{20}\\
T_{\text {dew }}=\frac{(237.2 \times Q)}{(7.5-Q)} \text { where } Q=\log _{10}\left(\frac{E}{6.1078}\right) \tag{21}
\end{gather*}
$$

where E and $\mathrm{E}_{\mathrm{s}}$ are the vapor pressure and saturation vapor pressure over water, respectivey; RH is the relative humidty; and $\mathrm{T}_{\text {air }}$ is the air temperature. Eq. (21) is valid for wet-bulb temperatures greater than zero. Since this parameter was not recorded, monthly minimum values of air temperature and relative humidity were input into psychometric tables; in no case was the corresponding wet-bulb temperature less than zero.

Figure 98 shows our results. Mean mixed heights range from about 250 m to 750 m , with peaks in August and April. Excellent agreement is found between Breton and GDIL1, while both BURL1 and 42040 generally are much lower. It is interesting to find the low mean heights at

BURL1 and 42040 from January through May 1998. A possible explanation may be localized effects caused by the discharge of cold Mississippi River water.

High concentrations of pollutants may be anticipated if a release were to occur during very stable conditions offshore. Stable mixed height may be approximated by (Panofsky and Dutton, 1984)

$$
\begin{equation*}
h_{\text {stable }}=0.4 \sqrt{\frac{u_{*} L}{f}} \tag{22}
\end{equation*}
$$

where $\mathrm{f}=2 \Omega \sin \varphi$. From Hsu (1998), when $\mathrm{T}_{\text {air }}>\mathrm{T}_{\text {sea }}$ (stable),

$$
\begin{equation*}
L=-\frac{u_{*}^{3} C_{p} \rho T_{a i r}}{\kappa g H_{s}} \tag{23}
\end{equation*}
$$

where $H_{s}$ (sensible heat flux) $=\rho C_{p} C_{T}\left(T_{\text {sea }}-T_{\text {air }}\right) U_{10}$. Substituting back into Eq. (22) and reducing

$$
\begin{equation*}
h_{\text {stable }}=0.4 C_{d} U_{10}^{2} \sqrt{\frac{T_{\text {air }}}{f \kappa g C_{T}\left(T_{\text {air }}-T_{\text {sea }}\right) U_{10}}} \tag{24}
\end{equation*}
$$

Employing the WAMDI (1988) formulation for $\mathrm{C}_{\mathrm{d}}$ (Eq. (6)), Figure 99 shows that an estimated mixed height of only 104 m was found under an episode of stable conditions at buoy 42007.

When the atmosphere is unstable, i.e., when $\mathrm{T}_{\text {sea }}>\mathrm{T}_{\text {air }}$, the formula proposed by Hsu (1997) may be applied that

$$
\begin{equation*}
Z_{i}=369+6004 \overline{\left(w^{\prime} \theta_{v}^{\prime}\right)_{0}} \tag{25}
\end{equation*}
$$

The Offshore and Coastal Dispersion (OCD) model proposed and evaluated by Hanna et al (1985) requires the Monin-Obukhov length to compute the stability class. Both wind shear and heat flux are needed for this computation. The previous discussions have presented several methods for estimating these parameters and others over the BNWA. According to Chang et al. (1998-see MMS 98-0050), these newer parameterizations need to be further tested.


Figure 87. A demonstration of LCL (mixed height) from cloud-top temperature using data obtained over Breton Island on 4 August, 1998 at approximately 1500 GMT (1000 LT).




Figure 88. Thermodynamic and boundary layer profiles of 3 August 1998, 1619 CDT radiosonde over Breton Island. -line is $\theta$, X -line is q , dashed line is $\theta_{\mathrm{v}}$.




Figure 89. Thermodynamic and boundary layer profiles of 3 August 1998, 1804 CDT radiosonde over Breton Island. Lines as in Fig. 88.




Figure 90. Thermodynamic and boundary layer profiles of 3 August 1998, 2002 CDT radiosonde over Breton Island. Lines as in Fig. 88.


Figure 91. Thermodynamic and boundary layer profiles of 3 August 1998, 2157 CDT radiosonde over Breton Island. Lines as in Fig. 88.


Figure 92. Thermodynamic and boundary layer profiles of 4 August 1998, 0541 CDT radiosonde over Breton Island. Lines as in Fig. 88.


Figure 93. Thermodynamic and boundary layer profiles of 4 August 1998, 0802 CDT radiosonde over Breton Island. Lines as in Fig. 88.


Figure 94. Thermodynamic and boundary layer profiles of 4 August 1998, 1000 CDT radiosonde over Breton Island. Lines as in Fig. 88.


Figure 95. Thermodynamic and boundary layer profiles of 4 August 1998, 1217 CDT radiosonde over Breton Island. Lines as in Fig. 88.


Figure 96. Thermodynamic and boundary layer profiles of 4 August 1998, 1415 CDT radiosonde over Breton Island. Lines as in Fig. 88.


Figure 97. One-to-one comparison of LCL heights versus mixed heights from profile and computed by Eq. (16).


Figure 98. Variations of monthly mean mixed heights computed from Eq. (16) over the southeastern Louisiana coast and eastward over the BNWA.


Figure 99. Stable mixed layer height nomogram for air temperature of $19^{\circ} \mathrm{C}$. Lines indicate temperature difference ( $\mathrm{T}_{\text {air }}-\mathrm{T}_{\text {sea }}$ ).

## IV. Summary

Analysis of meteorological and air quality data records obtained during the period of May 1997 through July 1998 at Breton and Dauphin Islands yields many significant findings.

- Hourly concentrations of $\mathrm{SO}_{2}$ and $\mathrm{NO}_{2}$ at both stations were less than 6 ppb for over half of the study period.
- Average and maximum concentrations obtained were well below the National Ambient Air Quality Standard for both monitored pollutants.
- Concentrations are higher on average in the fall and winter months at both locations.
- No significant variations in the median $\mathrm{SO}_{2}$ diurnal trends are evident at either location. Higher $\mathrm{NO}_{2}$ is more likely in the early morning and, to a lesser extent, in the evening. This is an expected characteristic of $\mathrm{NO}_{x}$, produced by chemical reactions fueled by solar radiation.
- Maximums of both pollutants are mostly associated with north-northeasterly winds at Dauphin Island.
- Breton $\mathrm{SO}_{2}$ maximums are primarily seen with northerly winds, while $\mathrm{NO}_{2}$ maximums are generally from the south-southwest.
- Continental High and Frontal Overrunning synoptic weather patterns are more likely to produce higher $\mathrm{SO}_{2}$ over the BNWA, while Gulf Return, Frontal Overrunning, and Continental High conditions are mostly associated with higher $\mathrm{NO}_{2}$.
- $\mathrm{SO}_{2}$ concentrations are higher at Dauphin Island than at Breton; average $\mathrm{NO}_{2}$ is nearly equivalent but higher maximums are observed at Breton.
- Short duration (about one day) high $\mathrm{NO}_{\mathrm{x}}$ episodes are evident in the Breton data record, usually occurring several times each month.
- Accurate estimation of the drag coefficient, $\mathrm{C}_{\mathrm{d}}$, is essential for many air-sea applications. The wind-wave formulation (Eq. (5)) proposed by Hsu (1995a) is recommended for use.
- Turbulence intensities measured at Breton are in reasonable agreement with those found in the literature. However, even the very low elevation terrain of the islands can increase the turbulence.
- In the marine environment, the mixed height is equivalent to the lifting condensation level (LCL) under unstable conditions in the presence of cumulus clouds. Methods for estimating the LCL from surface parameters and from remotely-sensed input (satellite) are provided for use in the absence of in situ data.
- A nomogram for determining the stability category from routinely observed surface parameters is provided.
- Free-convective (defined here as $\mathrm{Z} / \mathrm{L}<-1.0$ ) stability was observed at Breton Island from 4 to $15 \%$ of the study period. Monthly mean stability was unstable throughout the year.
- Under stable conditions, mixed heights as low as approximately 100 m were observed over the BNWA. Methods for determining the mixed height under both stable and unstable conditions are provided.

The relatively short-term and non-continuous nature of these datasets makes comparison of the annual air quality statistics difficult. However, no significant change in pollutant characteristics between this study period and previously published results is evident at either location (with the slight increase of $\mathrm{NO}_{2}$ at Breton attributed to station re-location). On the other hand, since the PSD Class I increments for $\mathrm{SO}_{2}$ and $\mathrm{NO}_{2}$ are only about 1 ppb (Boubel et al., 1994), continuous monitoring is strongly recommended to protect and preserve the environmental quality of these invaluable areas.

## V. References

Boubel, R. W., D. L. Fox, D. B. Turner, and A. C. Stern. 1994. Fundamentals Of Air Pollution. San Diego: Academic Press. 574 pp.

Code of Federal Regulations. 1994. Title 40, Protection of Environment, Part 58, Appendix B, Quality assurance requirements for prevention of significant deterioration (PSD) air monitoring.

Chang, J. C., M. E. Fernau, J. S. Sire, and D. G. Strimaitis. 1998. A critical review of four types of air quality models pertinent to MMS regulatory and environmental assessment missions. OCS Study MMS 98-0050. Available from Minerals Management Service, Gulf of Mexico Region, New Orleans, LA.

Donelan, M. A., Dobson, F. W., Smith, S. D., and R. J. Anderson. 1993. On the dependence of sea surface roughness on wave development. J. Phys. Oceanogr., 23:2143-2149.

Donelan, M. A., W. M. Drennan, and K. B. Katsaros. 1997. The air-sea momentum flux in conditions of wind sea and swell. J. Phys. Oceanogr., 27:2087-2099.

Garratt, J. R. 1992. The Atmospheric Boundary Layer. Cambridge University Press. 316 pp.
Geernaert, G. L., S. E. Larsen, and F. Hansen. 1987. Measurements of wind stress, heat flux, and turbulence intensity during storm conditions over the North Sea. J. Geophys. Res., 92(C12): 13127-13139.

Hanna, S. R. 1984. Applications in air pollution modeling. Atmospheric Turbulence and Air Pollution Modeling. F. T. M. Nieuwstadt and H. van Dop, Eds., D. Reidel Publishing Co., pp. 275-310.

Hanna, S. R., L. L. Schulman, R. J. Paine, J. E. Pleim, and M. Baer. 1985. Development and evaluation of the offshore and coastal dispersion model. J. Air Poll. Contr. Assoc., 35:10391047.

Hsu, S. A. 1988. Coastal Meteorology. Academic Press, 260 pp.
Hsu, S. A. 1992. An overwater stability criterion for the offshore and coastal dispersion model. Boundary-Layer Meteorol., 60:397-402.

Hsu, S. A. 1995a. A proper wind-stress drag coefficient formulation for computer modeling of seas and coastal regions. In Computer Modeling of Seas and Coastal Regions II, C. A. Brebbia, L. Traversoni, and L. C. Wrobel (Editors), Computational Mechanics Publications, Boston, pp. 413-420.

Hsu, S. A. 1995b. Measurements of $\mathrm{SO}_{2}$ concentration and atmospheric structure in Delta and Breton Wildlife Refuges. OCS Study MMS 95-0019. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. 74 pp.

Hsu, S. A. 1996. Analysis of ambient pollutant concentrations and meteorological conditions affecting EPA class I and II areas in southeastern Louisiana, Vol. 1: Technical Report. OCS Study MMS 96-0062. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. 156 pp.

Hsu, S. A. 1997. Estimating overwater convective boundary layer height from routine meteorological measurements for diffusion applications at sea. J. Appl. Meteor., 36:12451248.

Hsu, S. A. 1998. A relationship between the Bowen ratio and sea-air temperature difference under unstable conditions at sea. J. Phys. Oceanogr., 28:2222-2226.

Hsu, S. A., and B. W. Blanchard. 1998. Long-term measurements of $\mathrm{SO}_{2}$ and $\mathrm{NO}_{2}$ concentrations and related meteorological conditions in the northeastern Gulf of Mexico region. OCS Study MMS 98-0020. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. 308 pp.

Large, W. G., and S. Pond. 1981. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11:324-336.

Louisiana Office of State Climatology. 1995-1998. Louisiana Monthly Climate Review. Available from the Dept. of Geography and Anthropology, Louisiana State University, Baton Rouge, LA, 70803.

Kaimal, J. C. and J. J. Finnigan. 1994. Atmospheric Boundary Layer Flows. Oxford University Press, New York. 289 pp.

Kidder, S. Q., and T. H. Vonder Haar. 1995. Satellite Meteorology. Academic Press, San Diego, CA. 466 pp .

McIlveen, J. F. R. 1986. Basic Meteorology. Van Nostrand Reinhold (U.K.) Co., Ltd. 457 pp.
Muller, R. A. 1977. A synoptic climatology for environmental baseline analysis: New Orleans. J. Appl. Meteor., 16:20-33.

Panofsky, H. A. and J. A. Dutton. 1984. Atmospheric Turbulence. John Wiley. 397 pp.
Smith, S. D. 1980. Wind stress and heat flux over the ocean in gale force winds. J. Phys. Oceanogr., 10:709-726.

The WAMDI Group. 1988. The WAM model - a third generation ocean wave prediction model. J. Phys. Oceanogr., 18:1775-1810.

Wu, J. 1982. Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res., 87(C12):9704-9706.

Zannetti, P. 1990. Air Pollution Modeling. Van Nostrand Reinhold. 444 pp.


## The Department of the Interior Mission

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering sound use of our land and water resources; protecting our fish, wildlife, and biological diversity; preserving the environmental and cultural values of our national parks and historical places; and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to ensure that their development is in the best interests of all our people by encouraging stewardship and citizen participation in their care. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

## The Minerals Management Service Mission

As a bureau of the Department of the Interior, the Minerals Management Service's (MMS) primary responsibilities are to manage the mineral resources located on the Nation's Outer Continental Shelf (OCS), collect revenue from the Federal OCS and onshore Federal and Indian lands, and distribute those revenues.

Moreover, in working to meet its responsibilities, the Offshore Minerals Management Program administers the OCS competitive leasing program and oversees the safe and environmentally sound exploration and production of our Nation's offshore natural gas, oil and other mineral resources. The MMS Royalty Management Program meets its responsibilities by ensuring the efficient, timely and accurate collection and disbursement of revenue from mineral leasing and production due to Indian tribes and allottees, States and the U.S. Treasury.

The MMS strives to fulfill its responsibilities through the general guiding principles of: (1) being responsive to the public's concerns and interests by maintaining a dialogue with all potentially affected parties and (2) carrying out its programs with an emphasis on working to enhance the quality of life for all Americans by lending MMS assistance and expertise to economic development and environmental protection.

