Environmental Assessment of the Alaskan Continental Shelf

Final Reports of Principal Investigators Volume 7. Biological Studies

U.S. DEPARTMENT OF COMMERCE National Oceanic\& Atmospheric Administration Office of Marine Pollution Assessment

U.S. DEPARTMENT OF INTERIOR Bureau of Land Management

February 1981

The facts, concl usi ons and issues appearing in these reports are based on interimresults of an \mathbf{A} askan envi ronnental studi es program managed by the Outer Conti nental Shel f Envi ronment al Assessment Program (OCSEAP) of the National Oceani c and At nospheri c Admi ni stration (NOAA), U.S. Depart nent of Comerce, and primarily funded by the Bureau of Land Managenent (BLM), U.S. Department of Interior, through interagency agreement.

Mention of a commercial company or product does not constitute an endorsement by Nati onal Oceanic and At nospheric Administration. Use for publicity or advertising purposes of infornation fromthis publication concerning proprietary products or the tests of such products is not authorized.

Volume 7: Bi ol ogi cal Studi es

This is the first of a two vol une* final report for:

RU\#	I MESTI GATOR(S)	AGENCY	TOPI C
467	Steven R. J ohnson	LG. Ecol ogi cal	Beauf ort Sea-
	J.W. Ri chardson	Research Associ at es, I ncorporated	Barri er I sI and-
		Lagoon Ecol ogi cal	
		Processes Studi es:	
		Si nal Report,	

Table of Contents

SECTI ON	TI TLE		AUTHOR(S)	PAGE
	Abstract			2
	Acknow e	Igenents		7
PART 1	Program	Backgr ound and Pl anni ng	Joe C. Truett, Benny J. Gallaway, D. Al an Bi rdsal I	9
PART 2	Physi cal	Processes	Joe C. Truett	52
PART 3	Birds		Stephen R. Johnson W John Ri chardson	109
PART 4	Fi sh		P. C. Craig L. Haldorson	384

[^0]I nvertebrates
Pri mary Production and Nutrients
Synt hesi s, I mpact Anal ysis and a Monitoring Strategy

BEAUFORT SEA BARRI ER I SLAND. LAGOON ECOLOG CAL

 PROCESS STUDI ES: FI NAL REPORT, SI MPSON LAGOON
RESEARCH UN T 467

By
LG. Ecol ogi cal Research Associ ates, Inc.
and
LG. Ltd.
Envi ronnent al Research Associ ates
To
Arctic Project Office Geophysi cal Institute Uni versity of Alaska, Fai rbanks

For
Contract Nb. 03-6-022-35193
Nati onal Oceanic and At nospheric Admini stration, Outer Conti nent al Shel f Envi ronnent al Assessment Program(NOAA/OCSEAP); and, Bureau of Land Managenent

ABSTRACT

In 1976 LG Ecol ogi cal Research Associ ates (LGL) was anarded a contract by the Outer Continental Shel f Envi ronnental Assessment Program of the National Oceanic and At nospheric Admini stration (NOAA-OCSEAP) to plan and implement an integrated ecol ogical study of a barrier islandlagoon system in A aska's Beauf ort Sea. In conjunction with several uni versity scientists, incl uding a nodeling team from the Uni versity of British Col umbia, the study was planned in detailin mid- and late 1976. This report descri bes the planning, research, and results of that study in the $3 \frac{1}{2}$ years since it began.

The geographical location of the study was the Si mpson Lagoon-J ones Islands area and vicinity. The subject. focus was on geol ogi cal, oceanographic, and ecol ogi cal processes that supported vertebrate species of pri nary interest to humans, and that were specul ated to be vul nerable to petrol eum devel opnent activities. A number of findings of the study had i mportant implications to assessing the consequences of man's activities in the area.

Physi cal processes st udi ed incl uded formati ve nechani sns of coastal landforms, water circul ation and exchange patterns, and transport and del i very patterns of naterials carried by the water. Subnergence of coastal landforms and the consequent formation of lagoons fromlake beds, and $i s l a n d s$ from coast al ridges, appears to dominate in shaping the coastal substrates. The erosi onal forces of nater and ice, coupl ed with reI ati vel y sl ow longshore transport of sedi nents, further nol d and change the energent and submergent landforms. Circul ation and the associ ated transport of entrai ned nateri al is doni nated by rapid longshore water notion; exchange between nearshore and offshore water masses is nore restricted. However, the nature of the nearshore- offshore exchanges appears to be ecol ogi cally very important, in that these exchanges probabl y pronote the accumul ation of nutrients, detritus, and invertebrates in the nearshore zone.

I mportant bird species in the coastal envi ronment incl ude oldsquaw ducks and red and northern phalaropes. These feed mainly on crustaceans; oldsquaws eat nostly mysids, and phalaropes eat in addition Iarge anounts of copepods. The activities of these birds are largel y. restricted to
the shallow bays, lagooris, and beaches from mid-sumer to early fall (oldsquaw) and in August (phalaropes). These birds use the nearshore envi ronment nostly for resting, feeding, and (for oldsquaws) nol ting, but not for nesting. Their main vul nerability to man's activities would probably be to oil on the water and beaches in late summer or early fall. Additionally vul nerable to marı's activities would be islandnesting speci es (ei ders, brant, snow geese), that occur in the regi on in small numbers.

The nost important fish species are anadromous (arctic and least cisco, arctic char); of lesser di rect importarice to man but important ecol ogi cally, are sone marine speci es [arctic cod, fourhorn sculpin). Similarly to the birds, all these speci es feed largely on epi benthic crustaceans--primarily nysids and secondarily amphipods. The anadromous speci es, abundant in the nearshore only during the warmer season, concentrate in the shal l ows near the margins of the mai nl and and, to sone extent, near the islands. The narine species show less restriction in habitat preference; one of these species (arctic cod) is highly nobile and the other (fourhorn sculpin) is relatively sedentary. All the anadromous speci es are hi ghly nobile. None of the important fish appear to use the nearshore envi ronnent for spawning, but apparently cone there to feed and grow These fish would probably be relatively resistant to being adversel y affected by nost of the antici pated activities of man, except for possibly the construction of extensive solid-fill causeways and the effects of increased harvests by comercial or subsi stence fi sher nen.

Invertebrates were consi dered important in proportion to the extent that they were important as food for fish and birds. Thus, mysids and amphi pods becane the focus of interest. It appears that these epi benthic i nvertebrates acqui re nost of their nouri shment from nari ne-deri ved recent prinary production (as gpposed to terresiridl ly-derived recent production or the abundant peat detritus in the system). Amphi pods occupy both the I agoons and adj acent oceanic wałers year-round; mysids I eave the lagoons in late winter but repopulate them each summer. Mbst of the cropping of these invertebrates by fish and birds occurs in the shallow Iagoons and bays in sumer. There appears to be a superabundant
production and availability of these invertebrates rel ative to the dietary needs of the fish and birds. The effects of man's activities on invertebrates would probably be detrinental to birds and fish only if (1) mysi ds were prevented fromannually repopul ating shal low I agoons where birds and fish feed or (2) very large scale decreases in the productivity of the invertebrates were caused by oil spills or other pertur bations.

Primary production in lagoon and ocean waters, and not terrestriallyderi ved detritus, appears to be the naj or fuel of the food webs that support fish and birds in the nearshore envi ronnents. The major contribution to this primary production is thought to be by plankton (primarily diatons) in the water col um in summer, but a maj or secondary source of production is by epontic (under-ice) al gal commities. Benthic primary production is thought to contribute a snall portion of the total production to the food web. Primary production is highest per unit water vol une in the nearshore shallous, apparently because the limiting nutrients nitrogen and phosphor us are optimally available there. The naj ority of nitrogen appears to cone fromthe land and the naj or supplies of phosphorus are contributed by the ocean. The primary producers in general are suspected to be very resilient to oil spills and other perturbations, at least resilient to the extent that impacts nould not be felt by fish and birds at the top of the food web.

In general, the nearshore envi ronnent of the Beauf ort Sea appears to be highly productive (in terns of the biota of interest to man) rel ative to the adj acent ocean. Productivity is enhanced by (1) circulation that causes nutrients and biol ogical products to accumul ate in the nearshore, (2) shallow depths that pronote rapid utilization of nutrients and biota, (3) short food webs that pronote efficiency in net production, and (4) migrant populations of biota that popul ate the shallows during grouth and feeding stages of their lives.

Ecol ogi cal theory and data fromthis study suggest that the nearshore Beauf ort Sea ecosystem should be extrenel y resilient to nan-i nduced perturbations, especially when these perturbations resenble those caused by nat urally-occurring events. We suspect that direct impacts on fish
and birds (e. g., overharvests of fish, effects of oil spills on birds) will be nore likely to manifest thensel ves than will indirect impacts caused by perturbations to food webs and habitats. It is strongly suggested that monitoring prograns to be used to assess impacts as devel opnent proceeds be structured to neasure the heal th of sel ected organi sns and critical interactions bet ween organi sns and processes, rather than to measure the stat us of the species thensel ves.

ACKNONLEDGEMENTS

The following indi viduals are gratef ully acknow edged for thei r contribution to making this program possible. Special thanks go to Jean Erwin for her efforts in typing and in managing the report's production, and to Kathy Bruce for preparing many of the illustrations.

LG. Li mited

Eric Tull	Chip Welling
Kathy Bruce	Bill Adans
Brian Harvie	Scotty Roxborough
Di ane Hollingdale	J eff Clark
Jean Erwin	Howard McElderry
Debbie Whitford	Gary Searing
J oanne Bjornson	Laureen Lomas
Bill Gunn	Rick Dressier
Rolph Davis	Dyane Kurylowicz
Aar on Sekerak	Ti m Byers
Whyne Bennett	Hugh Bai n
Tom Wetmore	
LG. Ecol ogi cal Research Ass	soci ates, I nc.
Maya Spi es	Pam Snodgrass
J ohn Cole	Brad Adans
Randal I Howard	Bob Baden
J ean Erwin	
NOAA/OCSEAP	
Herb Curl	Doug Wblfe
R o y Overstreet	J ane Ludka
Rudy Engelmann	Peter Lent
Bureau of Land Mana	nagenent
Ed Hoff mann	Nancy Maynard
Gary Hufford	Bob Beauchamp
Gerhard Bi enek	Byron Morris
J erry Imm	JimSeidl
Uni versity of	Al aska
Doug Schamel	Stuart Rawlinson
Brian Mattheus	Di ane Tracy
Sat hy Naidu	Eric Tayl or
J an Cannon	
Uni versity of British	Col unbi a
Carl Walters	C. S. Helling
M ke Staley	Randal I Peterman
Sandra Buckingham	M ke J ones
Ray Hilborn	

Texas A\&M Uni versity

Arctic Project Office

Kate Persons	Ted Flescher
Dave Norton	Toni Johnson
Gunter Well ler	Donna Becker
Dan Brooks	

External Revi ew

John Hobbie	Taivo Laevastu
Grant Gross	Max Dunbar

Al aska Fi sh and Gane-State of Al aska
Terry Bendock Rick Smith

John Burns Lance Trasky Kathy Frost Al Carson Ll oyd Lowry
U.S. Fish and Wildife Service Gret chen Keiser Mke Spi ndl er Rosa Meehan Jake Jacobson Canadi an Vildilife Service John Kelsall

ARCO Oil and Gas
Tom Fi nk
Dee Chanberlain Lee Gaefvert

Other I ndi vi dual s
JimHelmericks
K. McInnis

PART 1. PROGRAM BACKGROUD AND RESEARCH PLANN NG

Joe C. Truett
LG. Ecol ogi cal Research Associ ates P.0. Box 1745 Grand Junction, Col or ado 81502
Benny J. Gallaway
LG. Ecol ogi cal Research Associ ates 103 Pl easant Street Bryan, Texas 77801
D. Alan Birdsall
LG Limited
Bordi gnon Pl ace 1200 West 73rd Avenue
Vancouver, B. C. V6P 6G

TABLE OF CONTENTS

Page
SUMARY 11
ACKNONLEDEAMENTS "."".""..""" 12
I NTRODUCTI ON 13
General Nature and Scope of Study 13
Objectives and Rationale 14
Rel evance to I mpact Assessment 15
STUDY AREA: SELECTI ON AND CHARACTERI STI CS 16
Sel ection 16
Characteristics 18
RESEARCH 20
Program Managenent and Pl anni ng 20
Chronol ogy of Events 20
"Function of Wbrkshops 22
Definition of Research Tasks 23
Use of Mbdeling 24
The Wbrkshop Si mul ation Model 26
Space and Ti ne Problens 26
Mbdel Description 29
APPENDX 38

The Barrier Isl and- Lagoon Ecol ogi cal Process St udi es Program nas initiated in spring 1976. Mbst of the first year of the program was al located to pl anni ng and desi gni ng the research to be perforned in the next three years of the program During this first-year planning period, the Si mpson Lagoon-J ones Islands area was sel ected as the study site, and bi ol ogi sts, chemists, oceanographers, and geol ogi sts were sel ected to carry out di sciplinary studi es. The studi es to be performed were to focus on the physical and biol ogi cal processes rather than on components al one.

The important feat ures of the research desi gn efforts were several :

1. The research needs were determined Iargel y by bi ol ogi sts because the focus of interest was on bi ol ogi cal components (speci es) that depended on sel ected processes.
2. The di rection of research was focused sharply by the mandate to examine onl y sel ected ani nal speci es and the processes and habitat components that regul ated these speci es in important ways.
3. The maj or integrative force of the program was the interactive planning that took place at semi-annual uorkshops where all princi pal investigators convened to pl an research and to eval uate existing data.
4. Ecosystem nodel ing exerci ses were used as the maj or tool during the workshops to identify existing data gaps and to guide research to fill these gaps.
5. The si mul ati on nodel that was used had as its main purpose the quantitati ve eval uation of the current concepts of the investigators as to how the system functioned. It was obliged to deal with an array of problens, incl udi ng congruence in space and time anong di sci plines and bet ween field sampling and nodel representation, and appropriate representations of the systems integrity in space.
6. Four submodels were constructed and periodically revi sed by assembl ing infornation fromfour di sci plinary panel s of workshop participants. A description of these subnodel s is presented, and a copy of the FORTRAN code of the I atest versi on of the ecol ogi cal portion of the si mul ation nodel is appended.

ACKNOWLEDGEMENTS

Many indi vidual splayed important rol es in the planning and desi gn of this program We wish particularly to acknow edge the following. The professi onal affiliation shown for each person is that through whi ch he or she contributed to the program In many cases indi viduals have since changed affiliations.

Bureau of Land Managenent
Nancy Maynard, Gary Hufford, Jerry Imm Edward Hoffnan
National Oceani c and At nospheric Admini stration (OCSEAP)
Herbert Curl, Rudy Engelmann, Doug Wblfe, Roy Overstreet Arctic Project Office, Fai rbanks

Gunter Weller, Dave Norton
Uni versity of Al aska
Brian Matthews, Sathy Naidu, Jan Cannon, Stuart Rawlinson, Don Schell

Texas ASM Uni versity
Chris Mungall
MEGII Uni versity
Max Dunbar, Grant Ingram
Uni versity of British Col unbia
Carl Walters, Sandra Bucki ngham M ke Staley, Ray Hilborn, Randal I Peternan

LG. Limited
John Ri chardson, Peter Crai g, Steve Johnson, Villiam Griffiths, William Gunn, Aaron Sekerak, Rolph Davi s

INTRODUCTICN

Early in 1976, the Research Plannirg Cormittee of NOAA's Outer Conti nental Shel f Envi ronmental Assessnent Program (NOAA-OCSEAP) sent sel ected research organizations a request for a proposal to devel op an interdi sci plinary ecologicai process study in a coastal area of the Al askan Beaufort Sea. The study was to be conducted in two di stinct stages: an in-depth information revi ew and research planning stage, which would be followed by an active research programto collect and integrate the existing data and to conduct. new fitield research. In May 1976 a contract was awarded to LG! Limited-U.S. : Inc. (row LGL Ecol ogi cal Research Associ ates [LGL]) to develop a research plan (Phase I), and subsequently to conduct the pl anned research (Phase II).

General Nature and Srope of Study

This program was desi gned to be a closel y-integrated research investigation of the physical and biological processes in a barrier islandlagoon system on the Alaskan Beaufort coast. (Processes, broadly defined as the patterns of change that are governed by natural laws and that recur in time and space, are exemplified by such phenonena as water circulation, I and-form erosi on, sedi ment transport, and migration and feeding activities of fish and birds.) The prograr! was to identify the processes that are sensitive to impacts and important to those ecosystem components (organisms; that are of particular concern to society; these processes were to be studied as a means of assessing the impacts of devel opnent upon these components. A significarit factor that affected the research prograry was the need to extrapoiate the approach and findings of the study to assist in the assessment of impacts in other areas of the Beaufort Sea continental shelf

At the out:et NOAA-OCSEAP idertified tho general types of processes in the barrier islard-lagoon envi ronnent that they viewed as important in the context of the objectives of the program and that they therefore required to be studied, These were processes that rel ated to (1) the bi ol ogy of the system (2) the oceanography and nearshore circul ation, and (3) the dynamics of the coast al I and-form feat ures (geol ogy). The
' di sci plinary limits of the program were thereby established, and this permitted the subsequent sel ection of qualified specialists as principal i nvestigators to desi gn and implempent the appropriate studi es. Subsequently during the course of research planning, specific processes which were to be studi ed within each di scipline were identified.

Objectives and Rationale
Because this program nas, in essence, an experinental undertaking, an implied objective of the program was to test the viability of the process anal ysis approach to impact assessment. Three nore specific research obj ectives of the program were stated by NOAA; these obj ecti ves and an amplification of each are as follous:

1. To identify and analyze those components and processes
that contribute significantly to the structure and productivity of the nearshore ecosystem.
It would be impossible to study all of the components and processes that occur in the barrier island-lagoon ecosystem The scope of this obj ective was accordingly narrowed during the course of the research planning to incl ude onl y the identification and anal ysis of those systens processes (and thei r associ ated components) that were essential to the life-support of the speci es that had been identified as "i mportant" and that were likely to be altered as a consequence of devel opment. "I mportant" speci es were defined to be those bi rds, fish and/ or nammal s that were a si gnificant constituent of the fauna of the area to be studied and that (1) had si gnificant commercial or recreational val ue, (2) were important to the subsi stence of local resi dents, and/ or (3) were ot herwise "hi gh profile" and therefore of maj or concern to soci ety and to deci si on- makers. Mbdifications to the list of important components and processes were nade as a consequence of findi ngs made as the study progressed.
2. To evol ve mechanisms whereby the "important" components and processescan be evaluated for their reaction to man's activities.

Msst i mpact assessments have been based on specul ation that is tied to established facts. The purpose of this objective was to make this process nore accurate. This obj ecti ve would be addressed by the generation of a series of hypotheses that woul d be capable of being tested, that would be rel evant to impact assessnent, that would be cost-effective fromthe point of vi ew of
i mpact assessment, and that could ultinately lead to nore accurate specul ation about the consequences of devel opment.
3. To determine the feasibility of detecting and quantifying the temporal changes in "important" ecosystem components and processes.

Testing of hypotheses about reactions of ecosystem com ponents and processes to man's activities usually requires quantification of change. Changes in val ues or level s of ecosystem components or in the rates at whi ch processes occur are normal, even in the absence of man's influence. Changes caused by human activities thus are often difficult to separate from nornal temporal variations. In order to determine whether a specific component or process can be used to measure impact, it is essential to determi ne the feasibility of measuring changes in the component or process with sufficient precision to quantify both the nornal range of variability and the perturbations of such normal variability that are caused by man.

Rel evance to Impact Assessment

System processes differ from components in two ways that rel ate to i mpact anal ysis; each of these ways offers an advant age over conventional nethods of impact assessment (i.e., assessment via baseline studies of components):

1. Man's activities sonetimes assert thensel ves as impacts through alteration of support processes rather than through di rect obliteration of components (populations). A characterization of process rates and mechani sns, rather than a compilation of baseline data about com ponents, will theref ore enable scientists to specul ate nore effectivel y about the manner in whi ch devel opment may alter the important components.
2. It has been hypothesized that the characteristics of processes are temporally and spatially nore conservative than are characteristics of components. As a result of this rel ati ve constancy the process inf ormation is more broadly applicable than is conventional basel ine data, and nay consequently be nore freely extrapol ated to answer questions about devel opnent impacts in other areas.

The NOAA OCSEAP pl anners desi red that the Barrier Isl and- Lagoon Study focus its attention on representative barier island-lagoon site on the Al askan Beauf ort Sea coast. Ideally this site nould have the following characteristics:

1. It shoul d, as much as possible, typify ot her barrier i sl and-I agoon systens so that dat a from other areas that applied to the processes under consi deration could be used in the study and so that research findings fromthis study could be extrapol ated to other areas.
2. It should have been comparativel y little di sturbed by past human activities, so that the processes to be studi ed noul d be representative of a rel ativel y "natural" situation.
3. It should be rel ativel y accessible in order to minime logistics support costs.
4. It shoul d have previ ously been the focus of research so that a partial data base nould al ready be availabie.

Four areas al ong the Al askan Beaufort Sea coast were initially eval uated as potential study sites. Considered as candidates mere Eilson Lagoon and the Plover Islands (in Naval Petrol eum Reserve No. 4), Si mpson Lagoon and the Jones Islands (about 30 km west of Prudhoe Bay), Chal I enge- FI axman Lagoon and the Maguire-Flaxman Islands (near the Canning River delta), and Kaktovik Lagoon and Barter Island (in the Arctic National Wildife Range).

The Si mpson Lagoon-J ones Islands area (Fig. 1) was sel ected over the other areas for several reasons, incl uding the variety of habi tat types that the area appeared to contain relative to the $\mathbf{d}-\mathrm{i}$ versity found at other sites, its nearness to efficient logistics support, and the anount of background data available for the site.

Because of the extrene variability among the physi cal paraneters fromplace to place along the $\mathbf{A l}$ askan Beaufort Sea coast, it became obvi ous that no system could be considered "typical". The sel ected area appeared to be rel atively heterogeneous with regard to its physical

Fi gure 1. Si mpson Lagoon st udy area on the Beauf ort Sea coast of Alaska.
characteristics. It contai ned el enents that seened representative of the variety that exi sts along the northern coastline of \mathbf{A} aska; in this respect it may be of nore val ue' than a rel ativel y honogeneous site. By addressing the di versity of physi cal habitats available for study at Si mpson Lagoon, greater potential existed for extrapol ation of the data to a variety of coastline situations.

Although the extensi ve installations of the Prudhoe Bay oil Field are only a short di stance (about 30 km) to the east of the area and a Di stant Early Whrning (DEW station and air strip are located at 0liktok Point, no maj or commities or settlements are in the imedi ate vicinity of Si mpson Lagoon. Several cabins (some seasonally occupied) and a I anding area are present al ong the nai nl and coast of Gyydyr Bay.

Logi stics problens for fiel studies appeared to be rel ativel minimal . The area is $\mathbf{3 0 - 4 0} \mathbf{k m}$ west of the Deadhorse j et port, which has both hel i copter and fixed-wing ai rcraft support arid schedul ed air services from Fai rbanks.

A consi derable anount of scientific data was available for the -Si mpson Lagoon area on both its physical and bi ol ogical parameters. A number of recent and on- goi ng st udi es have been funded through state and federal organizations and by private corporations.

Characteristics

The maj or research effort was carried out in the immedi ate vicinity of Si mpson Lagoon and the adj acent Gwydyr Bay; subsi di ary sampling efforts were made as deemed appropriate in ot her adj acent areas. One ri ver, the Ugnuravik River, di scharges into Si mpson Lagoon; two rivers, the Sakonowyak and the Kuparuk rivers (from west to east), di scharge into Gwydyr Bay. The Colville River, to the west of the study site, and the Sagavani rktok River to the east exert a nore peri pheral influence on the system Lagoon waters are up to approxi matel y 4 m deep, but nost are less than 2. 5m (Fig. 2). Prevailing currents are fromeast to west, but periodically reverse thei r course under strong winds from the west. Lagoon waters freeze to a depth of approximatel 2 m by late winter, at which time under-ice salinities are very hịg (up to 60 ppt); salinities
rapi dly decline to bracki sh during the course of breakup in early summer, then gradually increase during the open- water season. Lagoon bottons are silt or sand covered in deeper areas by a thin layer of detritus.

The nai nl and and the I arger i slands have a surface of tundra vegetation overlying peat deposits. Other islands are surfaced with sands and gravel s .

Fig. 2. Cross section of Simpon Lagoon.

Program Management and PI anni ng

The Barrier Island-Lagoon Program was nanaged by LGL, which, in conj unction with its Canadian affiliate (LGL Limited), was responsibe for the course and di rection of the programsince the award of the initial contract. As a first step in responding to the contractual requirenent of detailed program planning, LG. devel oped the program framenork and identified the general research needs.

Princi pal investigators for the various research fields that had been identified were sel ected fromthe staff of LG and, on the basis of proposal s submitted, from various uni versities (Table 1). With one exception, investigators with uni versity affiliations cane into the program under separate contracts with NOAA-OCSEAP; their annual reports are submitted separatel y according to the terns of their respective contracts. Dr. C.J. VAlters et al. were under subcontract with LGL. Despite the contractual segregation anong disciplines," however, the research data were shared anong investigators.

Chronol ogy of Events

Athough the planning and research phases of the program have been contracted separatel y, the two energed as one continuing effort. A discussi on of the sequence of programevents follows.

In June 1976 an initial background document was prepared; it outIined the proposed programwithin the context of a brief regional environmental description based on exi sting literature. This document was submitted to NOAA-OCSEAP and to other selectef scientists for their information and review In late July of that vear a meeting was convened for a di scussi on of the incipient research plan, Attending were representatives from OCSEAP and from LG, consulting scientists who had revi ewed the above background document, and a systens nodeler (Carl W\<ers) from the Uni versity of British Columbia. Foliowing this preliminary planning workshop, and partially in response to ideas that were generated therein, a draft research flan was submitted to NOAA in September 1976. The

Table 1. DCSEAP research unit numbers, disciplines and affiliations of principal investigators participating in the Barrier Island-Lagoon Program

Princi pal I nvesti gators	Ru No.	Discipline	Affiliation
J.C. Truett	467	Proj ect Di rector	LG. Ecol ogi cal Research Assoc.
S.R. J ohnson	467	Ecol ogy ($\mathrm{Bi}_{\text {r ds }}$)	LG. Ecol ogi cal Research Assoc.
P.C. Oraig	467	Ecol ogy (Fi sh)	LG. Limited
W.B. Griffiths	467	Ecol ogy (I nvertebrates)	LG. Limited
C.J. Valters et al.	467	Systens Mbdel ing	Uni v. of Br. Col.
J.B. Matthews	526	Oceanography	Uni v. of Al aska
J.C.H. Mungal 1	531	Oceanogr aphy	Texas ASM Uni v.
P.J. Cannon	530	Geol ogy	Uni v . of A aska
A.S. Naidu	529	Geol ogy	Uni v. of $\mathbf{A l}$ aska
D.M. Schell	527	Nutrient Dynamics/ Pri mary Production	Uni v. of Al aska

draft plan was followed in October by a second draft that had been revi sed in response to comments from OCSEAP.

A first nodeling and integration workshop was hel d on 2-4 December 1976 to assemble the princi pal investigators who had been identified prior to that time and to create a preliminary systens nodel on which to structure the forthconing research program As a result of that norkshop and the associated nodeling exercise, the research pl an was further revi sed and was submitted to OCSEAP on 17 J anuary 1977. Preparations were then begun for the research phase of the program Fi nal research pl ans for the first year's field work were compl et during the course of a second nodel ing and integration workshop in April 1977.

Fi eld research commenced in early May 1977 and extended to late Septenber. Fol lowing a preliminary anal ysis of the season's research data, a third nodel ing and integration uorkshop was hel d on 6-8 Decenber to revi se the exi sting nodel using 1977 field research data, and to begin coordi nated planning for 1978 research. Si milar nodel ing workshop sessi ons were hel d agai n in 1978 to $p l a n$ and eval uate the field research conducted in 1978. Wbrkshops and extensi ve field research were di scontinued in 1979, and preparation of this final report was begun.

Function of Workshops

Wbrkshops have served as focal points for continued research planni ng. The workshops have functioned specifically to accomplish the fol l owing:

1. the pronotion of general commini cation anong princi pal i nvesti gators, project managers, and NOAA and BLM pl anners and admini strators,
2. the provisi on of nechani smfor critical examination and revision of research task priorities,
3. the preparation and refinenent of the computer simlation of systens processes,
4. the assenbling of princi pal investigators prior to the field season to pl an an integrated field research effort, and
5. the assenbling of pri nci pal investigat ors following the field season to eval uate the research dat a collected.

Wbrkshops were usually hel d at the Uni versity of British Col unbia in Vancouver, B.C in Decenber and in Aprii of each year. The Decenber uorkshops emphasi zed the preparation and updating of the si mul ation nodel (see 'Wbrkshop Si mul ation Model' section to follow) and served to i ncrease the general understanding of the research program and the system under study. Emphasis in the April workshops was on continued general communi cation, on a re-examination of research priorities in light of the nost recently available infornation and on the planning of research activities for the coming field season.

Definition of Research Tasks

Definition of research tasks occurred largely at norkshops. Bi ologi sts assumed the responsibility for establishing the general objectives of all di sci plines, because sel ected organi sns were the ultinate focus of interest. The non-biol ogi cal di sci plines functioned as internal servi ce groups, and their research was desi gned to provi de infornation that was needed by the biol ogists. The bi ol ogi sts specified the types of physical and chemical process infornation that they required in order to clarify the bi ol ogical dependencies that thev were to investigate, The oceanographers, geol ogists, and chemists then esigned or nodified their research plans to provide the biol ogi sts with these data.

The primary consi deration in defining research tasks was to insure that the research efficiently addressed the ultimate goal of assessing the impacts on desi gnated resource components ("key" speci es of ani nal s). A structured approach for establishing research priorities at workshops was gui ded by the following concepts, sone of whi ch depart appreci ably from convention.

1. System componerits (oraanisms) of perticular interest to society were iclentified at an early stage. (These "components of interest" were found to be predators, which are situated ecol ogically near the top of the food chain.) Research efforts were thereafter directed sol el y toward cl arifying the environmental dependencies cf these or gani sns.
2. Food- chai \mathbf{n} and habi tat dependenci es of these predators were eval uated in a step-wise fashi on that began with the predators thensel ves and noved down the food chai n. (Conventional "ecosysten" studi es have usually "I ooked upward" fromthe presumed energy base in an attempt to trace the food chai n li nes within an extrenel y complicated array of energy transfers, few of which directly regul ate the vertebrate popul ations.) Because this method forced i nvesti gators to look at onl y those energy transfers and habitat-use factors that were necessary to the life-support of the "i mportant" organi sns, it pronoted research efficiency.
3. Processes importantly affecting the organi sns' food chai ns and habitats were identified. However, research was desi gned to address onl y those processes likely to be significantly affected by devel opment activities. The nost recently-avai lable infornation on present-day OCS devel opnent technol ogy was used to del i neate which processes were likely to be affected.

Use of Mdeling

A systens nodeling team at the Uni versity of British Col unbia provided a uni que service to the Barrier Island-Lagoon Program Through use of a computer si mulation nodel of the system they hel ped to establish an interdi sci plinary commication format within which research planning (and eval uation of results) were facilitated. The functions of the nodel ing exerci ses were as follows:

1. Construction of the simulation model.

The first function of the nodel ing workshops was to construct a si mul ation nodel. To do so, each di sci pl inary specialist expl ai ned to a nodel er how the processes within his di sci pline operated and what inf or nation he requi red from ot her di sciplines in order to predict the operations of processes within his discipline. The modeler then translated the description of these rel ationshi ps into a series of equations, which formed the simlation model. I mportant gaps in the understanding of the system were reveal ed when the "current concepts" of the disciplinary specialists proved to be incomplete. Thi s situation usually occurred when the nodel of the dynamics of a di sci pline requi red input that was not avai lable.
2. Organization of existing information and assessment of its completeness through operation of the simulation mode 1 .

Once the nodel ers had produced a functioning nodel that approxi natel y si mul ated the "current concept" of the operations of the system the existing data were organi zed and provided to the nodel ers and actual si mul ations of the system were run. The initial inability of the nodel to approxi nate the real systemindi cated to the disciplinary specialists and the nodelers the presence of additional errors in thei r "current concept" of the system and pi npoi nted areas where the exi sting data were i nadequate or inaccurate. On the first run of the nodel, for example, the I agoon quickly filled in with detritus and sedi nents. This process, whereby the nodel is repeat edl y used to test the evol ving "current concept" of the system is the primary value of the nodel ing workshops as a research planning tool.
3. Provi si on ofa common focus for determination of research priorities.
It becane evident at the outset that communi cation anong di sci plines was difficult because of differences anong the scientists in their perceptions of the roles of their research and hence in thei r opi ni ons concerni ng research priorities. The nodel forced the investigat ors to place all of the research needs in a common for nat that tended to reduce these differences.
4. Definition of appropriate temporal and spatial limits to research.
Consi derable effort was expended during the first two workshops to define the appropriate time scal es for the research and nodel ing efforts, and to define the Iimits of the study area. With respect to the time scal e, the effort was to determine the naximum time interval between samplings that nould result in an acceptably low probability that an important change or event would be missed. Such a determination was necessarily a subj ective determination; not surprisingly, different di sci plines were found to requi re different ti ne scal es.
It was important to define the study area so that the research could be applied to a system with sone integrity. That is, the limits to the study area should be chosen such that, to the extent possi ble, the area is a logical unit wherein a naximm number of processes occur sol el y within the system and a mi ni mum number and compl exity of input and output phenomena cross the study area boundari es.
5. Use of the simulation model to design research.

The sequence of steps followed to desi gn research was similar at each workshop sessi on. Following an initial exerci se to preci sel y define the program goals (problem definition) and to identify the interdi sciplinary information requirements, the devel opment of quantitative submodels was begun. Four submodels were created or (at Iater norkshops) refined; each si mul ated processes within a particul ar di sci pline (oceanography, geol ogy, aquatic bi ol ogy and ornithol ogy). Once the submodels were connected into an overall computer si mal ation, the si mul ation was used to expl ore the sensitivity of the systemto changes in the val ues and functional reI ationships that were assi gned to important processes. If it was found that a small change in a particular vari able or rel ationshi p resulted in a maj or impact on the way in which the nodel functioned, then that variable or process was consi dered to be of high priority in the research planning effort. Similarly, if it was found that the system did not respond over a wide range of values of a particular variable or over a variety of assumed functional rel ationshi ps, then that variable or process uas not considered to have a hi gh priority.

The Wbrkshop Si mul ation Mbdel
Mbdeling norkshops have filled a critical roleinthis project. At regul ar intervals, they have served as a focal point for quantitative eval uation of the current concepts of the investigators as to how the system uorks. Because those concepts have undergone substantial evol ution during the project, the nodel that has been produced during the uorkshops has al so changed several tines. This section is intended to summarize those changes in the nodel so that the reader can understand sone of the changes in understanding that have occurred during the project. A copy of the FORTRAN code of the latest versi on of the nodel is provi ded in Appendix 1.

Space and Tine Problens

The first two workshops (Novenber 1976 and April 1977) devoted consi derable effort to defining appropriate temperate and spatial scal es for the research and nodel ing efforts. Deci si ons were based on a variety of scientific and logistic criteria such as:

1. System Integrity. It was important to define the study area so that, to the extent possi ble, the area was a logi cal unit wherein a naxi mum number of processes occurred sol el y within the system and a mini mum number and compl exity of input and output phenonena crossed the study area boundaries.
2. Programing and Computer Capabilities. The size of the computer set an upper limit to the number of variables and the si mul ated time steps in the nodel. Trade- offs had to be made among the space and time di mensions of the nodel. For example, the nodel could si mul ate a spatially detailed vi ew of the systemfor a snall number of tine steps or a spatially aggregated view for a large number of time steps. But it was not generally possi ble to nodel many vari ables over a large number of spatial areas or many time steps.
3. Congruence Anong Disciplines. The time and space scal es of the processes being investigated were of ten so much different that compromses and conbi nations of different scal es were necessary. For example, it was difficult to capture the dynanics of plankton on a ti me step much larger than a day, but it was poi ntless to use a one-day tine step for geol ogi cal processes which evol ve over decades.
4. Congruence Between Fi el d and Mbdel. Because the nodel was used for field research planni ng and eval uation of results, it was necessary that the tine and space scal es in the nodel be similar to the time and space scal es for field sampling.

During the first workshop, three mutual ly excl usi ve options for space-tine resol ution of the initial nodel were identified:

1. IBP-style 'point' representation; representing a single onshore- offshore transect in great temporal detail.
2. An inter nedi ate-scal e representation of one short 5 - $\mathbf{k m}$ section of arctic shorel ine and associ ated I agoon and barrier island area.
Thi s approach nould have all owed sone representation of the spatial heterogeneity al ong the I agoon shoreline, but yould not have addressed I arge-scal e geophysi cal and bi ol ogi cal processes such as river runoff, erosion, and the migration of fish and birds. With this spatial scale, seasonal resol ution of processes could have been achi eved, but very short dynamic responses would have been poorly represented.
3. A large-scal e representation invol vi ng one or nore river nouth and Barrier Island compl exes. This approach could have handled broad policy options (facility sighting, I and and river impacts on migratory organi sns) and spatial processes but woul d have requi red a very crude representation of short-term snall spatial processes and events.

In the first norkshop, it was decided that option (2) might provide enough understanding of the seasonal and weekly processes to permit sensi ble devel opnent of a large-scale nodel in later workshops. It was deci ded to start with a nodel of a 5 - km band of shorel ine in the $\mathbf{~ S i m p s o n ~}$ Lagoon area. Late in the first workshop, it became apparent that we were trying to deal with too snall an area. hiter novenent similions and ani mal di spersal sindi cated that the ecol ogi cal dynamics of smal l areas in the Iagoon were likely to be dominated by inputs (currents, nigrations, sedi ment loads) from outside the nodel's boundaries. Wa te r novenents might transport planktonic commuities dozens of kiloneters per day al ong the Beauf ort Sea coast, and epi benthic organi sns might nove I arge di stances in short times. The first model al so indi cated that I agoon productivity might be dri ven by a small number of pulses of prinary production and detritus inputs (at ice break-up and late sumer). This assumption implied that long-term productivity and integrity of the I agoons might be determined by very short-termevents and interactions at the boundary of the nodel.

In the second workshop, it was decided that the nodel should consider the whole of Simpson Lagoon as one well-mixed water unit and should predi ct ecol ogi cal changes on a day-to-day basis over the summer icefree season. Spatial heterogeneity was represented only in terns of the overall anounts of gross habitat types present in the study area.

The nodel currently si mul ates a 'year' of one hundred days. The first ni nety days are di vi ded into ni ne ' weeks' of ten days each, representing the spring, summer, and fallice-free period. The final ' week' of ten days represents the winter.

There are thi rteen habitats defined within the study area: island t undra, deep I agoon, shal I ow I agoon (protected), shal I ow I agoon (open), shal I ow I agoon (st agnant), I ow shorel i ne (nai nl and), hi gh shorel ine
(mai inland), pond-freshwater habitat, pond shoreline, inland pol ygons, inter-island open ocean, low shoreline (island), and high shoreline (island). The island tundra, pond-freshuater habitat, and pond shoreline habitats are not used in the nost recent nodel s that have concentrated on the Iagoon and its shores.

Model Description

The I ogi cal structure of the nodel invol ves two computer prograns, one for physical water novenents (wind-dri ven currents) and one for ecosystem processes (transport of nutrients, organi sns, materials, and biological interactions). The structure of the interaction of the tho nodel s is depicted in Fig. 3. The water novenent simulation nodel is used to estimate the wid-dri ven currents in Si mpson Lagoon. These estimates are made under a vari ety of wind directions, speeds, and norphol ogi cal configurations of the Iagoon (causeways, artificial islands). The current vel ocity estimates fromthe physi cal si mul ation are used in the ecol ogi cal model to determine the flushing rate of the lagoon and to estinate the transport of organic and inorganic materials, epibenthic and planktonic organi sns into and out of the lagoon.

Subsystem Mbdel ing Approach. The ecol ogical nodel is di vided into four submodels. Originally, the arrangenent of disciplines into these submodels was desi gned to provide an even workl oad for the nodel er programing each submodel. However, the rel ative importance of the subnodel s has changed so that the aquatic bi ol ogy submodel now incl udes a maj ority of the interesting dynamics in the nodel.

The Physi cal Oceanography Model. Mbst of the physi cal data used in the ecosystem nodel are derived from the results of a two-dinensi onal numerical water circulation nodel written by Dr. J.C.H. Mungall and applied to the lagoon. This physi cal nodel predi cts depth nean currents that result fromthe application of surface stresses caused by a specified wind. Average nearshore and mid-lagoon currents and the rate of flow of water through the lagoon are al so generated. The grid intervals used in this physical nodel are $1 \mathbf{k m}$ (Fig. 4). To obtain these estinates quickly and cheapl y, the depth throughout the entire nodel regi on is

Figure 3. Structure of nodel inputs and internal computations.

Fi gure 4. Grid system map used in physi cal current si mul ation nodel.
assumed to be constant at 6 feet. Consequently, the predictions are very approxi mate. The nodel is run with a set of predetermined, steady wind using radiation conditions applied at the boundary, of the form
out ward current times depth = wave cel erity times surface el evation above nean sea level

The boundary conditions are applicable onl y for rel easing transi ent wave energy and cannot be used to obtain steady state currents. For reasons of econony, conputations were carried out for six hours onl y starting from rest conditions (0 currents, sea surface at mean sea level). As a result, the estimates of current and exchange rate in the Iagoon are likely conservative.

The physical factors initialization subroutine of the Iagoon ecosystem nodel does not actually si milate any dynamics. Instead, it assi gns val ues to variables used in other places in the nodel according to a pre-established sequence of weather conditions created fromtine series data on wind vel ocities for the Si mpson Lagoon area. This time series data on wind vel ocities was used to create a seasonal wi nd pattern for the area. The sequence invol ved three wi nd di rections (east-northeast, northwest, and west-southwest) and four different speeds for each di rection. The physi cal oceanography nodel was run for each of these t wel ve wi nd cases, generating water current patterns from which correspondi ng val ues for the following variables were cal cul ated by the physical factors initialization subroutine.
(a) daily vol une exchange of the 1 agoon
(b) nean current speed in center of lagoon
(c) mean shorel ine currents
(d) length of exposed shoreline
(e) length of protected shorel ine
(f) uave period

These variables, al ong with a time series of freshwater runoff and ice cover and the sequence of wind vel ocities, formed the nain set of dri ving variables for the rest of the ecosystem nodel. For each si mI ated day of the nodel, the physi cal submodel assi gned val ues to these variables corresponding to the sequence of wi nd vel ocities.

Geology Suhmodel. This submodel deal s with the inputs of organic and inorganic material into the lagoon from the terrestrial system The nodel considers terrestrial materials from two sources. The first source arises from erosion of the shoreline tundra material. It is assumed that wave action and currents create sluming of the tundra onto the beach. The slumped naterial is then washed into the lagoon as a consequence of both wave action and long-shore currents. When this material is noved away, an over hang is created and subsequent sl umping occurs. The number of slums is assuned to increase with increased wave action.

For the purpose of the geol ogy submode], the shoreline is di vided into four categories: low (1.5 m) and high (2.5 m), both exposed and shel tered. The vol une of naterial sl umped is a product of the hei ght of the tundra in the shorel ine type, the average width of a sl ump for that shorel ine type (depending on exposed versus shel tered), and the length of shoreline of that type. The naterial, once on the beach, is noved into the water-col um and subsequently the lagoon by two processes. The naterial is suspended due to wave action. Once suspended, it is carried away by long-shore currents. The composition of material is assumed to be $\mathbf{3 0 \%}$ organic in the high-profile shoreline and $\mathbf{2 0 \%}$ in the low profile shoreline.

The other source of terrestrial material that enters the Iagoon cones from the freshwater system The vast najority of this material is noved prior to break-up but after the freshuater flow begins. In the node 1, this material is assumed to sit on top of the ice and then enter the Iagoon during the first week of break-up. This material is assumed to be 75% organic by vol une.

There are three maj or indi cators that result fromthe cal cul ations in the geol ogy model :
(a) the total organic material added to the Iagoon;
(b) the total inorganic material added to the Iagoon; and
(c) the cumul ative di stance of shoreline eroded.

Aquatic Biol ogy Submodel. This submodel predicts the productivity of the Iagoon systemfor fish and birds in rel ation to physical and
chemical conditions. To accomplish this task, the whole aquatic food chai n from nutrients through primary productivity to grazers and fish was examined. The representation of the lagoon food chain is based on three types of primary productivity (ice al gae, phytoplankton, benthic al gae) and on detritus inputs from the terrestrial system (further subdi vided into freshuater runoff and shoreline erosion). The primary production and detritus is processed by zoopl ankton and benthos to generate food for birds and fish. Ice al gae is measured simply in terns of standing crop available for grazers and detritus fornation the time of ice breakup. The nodel does not si mul ate winter and spring grouth dynamics of ice al gae but assunes that a gi ven standing crop is available at ice break- up each year, at least in the absence of di rect poi soni ng due to oil or other pollutants.

Nitrogen, phytopl ankton, zoopl ankton dynamics were represented, as in nost nodel ing studies, as a bi onass compartnent flow system with novement rates of material bet ween compartments depending on "donor" and "recei ver" bi onass pool available. The FORTRAN code provi ded in Appendi x 1 incl udes det ailed coments on the aquatic system dynamics.

Terrestrial Biology Submodel. The initial norkshop considered both birds and nammal sin the terrestrial biol ogy submodel. The birds considered were oldsquaws, ei ders, shorebi rds, brant, loons, and terns. Each group of bi rds was di vi ded into breeding and non-breedi ng components for determination of the proportion feeding in each habitat. The anounts of food organi sns eaten by each speci es or group of birds were cal cul ated in 'ol dsquaw equi val ents' (i.e., the food consumption of indi vidual s of each speci es or group was expressed in terns of the proportion of estimated ol dsquaw consumption).

The namnal s consi dered in the first model were foxes and lemmings. Fox numbers were dependent on anount of fox food (lemmings, birds, and human refuse).

Later versi ons of the nodel progressi vel y de-emphasi zed the di versity of bird species and the nammals, resulting in a nodel which now consi ders onl y the effects of ol dsquaw feedi ing on benthos bi onass.

Transfers Between Submodels. Prior to submodel preparation, the exchanges of inf or mation bet ween submodels were defined by the workshop participants. The resulting matrix fromthe first workshop is shown in Table 2, and the matrix for the nost recent nodel is shown in Table 3. The differences represent changes in the focus of the nodeling effort during the project.

Table 2. Quantitative information transfers bet ween nodeling teans and internal team concerns necessary to generate transfers

	"Recei ved By" Submodel			
	Physi cal Oceanography	Aquatic Ecosystens	Geophysi cal Processes	Birds and Marmals
Physi cal oceanogr aphy and sedi mentation	(Internal) - currents	1. Vol une exchanqe rates (1 ongshore and of f shore, proportion/ 10	1. Freshwater di scharge $\mathrm{m}^{3} / \mathrm{sec}$, from 1 ocal sources	1. Number of storms/ 10 days 2. Turbi dity, ppm
	silt and detritus settling rates	2. Turbi dity, ppm	2. Lagoon current vel ocity map	3. Ice thi ckness, m 4. αi, present or absent
	wind and waves - oi 1 novenent	3. Detritus delivered to sedi nent $\mathrm{gC} / 10$ days	3. Mean wave period (m)	
		4. Ice thi ckness, m		

Aquatic ecosystem dynamics			(Internal) ni trogen dynamics - pri mary production - zoopl ankton, bent hos - fish popul ations			1.	Zoopl ankt on density, gC/m by aquatic habitat Benthos density, gC/m² by habitat Snall fish (larvae and j uveniles) density, $\mathrm{No} / \mathrm{m}^{2}$ by habitat
Geophysi cal processes	1. Tons silt flushed intolakes and estuaries, per 10 days 2. Tons of detrital \mathbf{C} added to waters/ 10 days		Sedi nent composition (1% gravel , \% sand, $\% \mathrm{cl}$ ay) Habitat si zes: kmio of water types, km of shorel ine		(Internal) 1 and forns erosion rates	1.	Habitat types: $\mathrm{km}^{\mathrm{l}} \mathrm{l}$ and area, km shorel ine Shoreline nean particle si ze (mm)
Terrestrial bi ol ogy: bi rds and nammal s			N trogen i nputs (9) per 10 days from land sources Consumption of zoopl ankton, benthos, fish $/ \mathrm{m}^{2} / 10$ days		Detritus added (tons C/10 days) by small mammal clipping		(Internal) - densities by habitat - migration patterns - vegetation responses to grazi ng, di sturbance

Table 3. Quanti tative information transfers between nodeling teans and internal team concerns necessary to generate transfers at last norkshop.

APPENDIX 1. The Barrier I sl and-Lagoon Computer Si milation Mbdel (as of 1 February 1980).

Fol lowing is a copy of the FORTRAN code of the latest versi on of the ecol ogi cal portion of the Barrier Island-Lagoon Computer Si milation Model. This nodel, as described earlier in this report, was devel oped for use as a heuristic tool for nodeling workshops and has changed substantially at intervals since the first workshop in Decenber 1976. It is primarily of use for investigation of trophic rel ationships in the Barrier Island-Lagoon system A maj or restructuring of the nodel will be required if it is to be used for investigation of many of the other sitespecific and regi onal issues that have been highlighted by this project.

The nodel is written for execution by SIMCON, an interactive simal ation control softuare package (Hilborn 1973). SIMCON provi des a great deal of flexibility in input of data and output of nodel predictions, so the reader will note that the nodel code has no $1 / 0$ capability.

The nodel code represents the instructions necessary for the execution of one time step (1 day, $1 / 100$ of a year). Comments in the program will expl ain the details of the cal cul ations invol ved; however, t wo unusual aspects of the programthat are rel ated to SIMCON should be nenti oned:

1. The subrouti nes UINIT and UMODEL are SIMCON conventions; UINIT passes requi red inf ornation to SIMCON, and UMODEL is the actual nodel that is executed each time step.
2. The common blockis large and is incl uded in all subroutines (except UINIT) in order to fit into the $\mathbf{1 / 0}$ system in SIMCON. SIMCON si mply 'dumps' the common block into a disc file each time step; all variables for all tine steps are thereby available for printed or plotted output after the si mulation is complete.

Thi s model uses the output (waterflow, wave period, current vel ocity) of the oceanographic computer si mul ation nodel provi ded by J.C.H. Mungall (Research Unit 531).

APPENDIX 1 (cent'd)

SUBROUTI NE UINIT

SUBROMTIN UINIT

c 'IHE SMBROUTINE UIMIT TELLS SIMCON THE MAMES Of THE DATA FILE AHD the c PILE containing the CO man block

CALL DFAULT (')=BBEAU.D
Call CM READ ('bBEAll. C)
RETURN
END

SUBROUTINE UMODEL

```
C
C the scbfootire umodel is the hctoal model that simcon erpcotes each
    TlME EEPIOD.
c
COAMON ASC(13), FISHE(13), IGAB(6), CALDAY(3),GBABPC
COMmO& 2OOPL, ERHTH(14), Algic (14), PHYTO,BEnalg(14), H(14)
COSEON 2COIN(2), PAYIN(2),AICE (14),DEPOL(14), DRTIN(14)
CCMMON NSTP,JPLTP,GPHN,CNIT,CNIK,GFATE,SINKB,VEG(13)
CCAMON FHOUT {10}, RZOO, RPHYT, REEY,OCNIT,FISHL{14}
CCMYON ZOOCX(10),PISHEB,A FAD (10.5),CHAR (YO],PLAEV (14),OPX
CCMMOM EENIR(14), OEXIN,FIFR, EENCR,BIRDS (6), PRES (6, 10), ZOO?!
COMMON AFEA(14), TVOLH,DETAL,TAREA,OIL,BERTE (13), \nablaEGE(13)
COMMOR YMIG(6), BREED(6), XMIG (6, 10), SHORE, IDAY,DICE[14) , JaDD(14)
CCMMON CURE,BAPE,GSHEFE(1Q), RMAX, PSERS,PONRAT, IYEAR,I#EEK
CCYMON GVOL(14),GLOST(14),GO(14),GI(14),GORG{14),GINOS(14)
CCMMON NANEEAS,J,I,GTHETA,GSPEED,GSLUMP,GSIOSL(3),SSLOMA(3)
CCPMON GA,GE,GC (4),GD(4),GEPCD,GPCRG(13),GKTORG,GKTIN,GABEA
CCッMON GVCIFS,GAEIOD,GS JMC I,GCM,GINH,TORG,TIMO,Q
COMMCN GININ,GiNE%(12),GUIDSL (13) GNTINO, IGMOPE,GDISTC
CCMYRN IK,I:T=(10,10),ODTFLO(12), EXPSHO(12). PBOSHO [12)
COMMSN GT,Q\1,&2,822,23,Q33, 人4,Q44,05,055,POOT,2OUT, COUT
CCMMON CVK,SR (2),CV 12), SUSP,DPPOS,SRATP, PRATE,CINPR,SLOSS
COMPCN CNEAF,DEFG,DPTCUT [15) ,DINPN, DETEC,SPHYT,SGAIN
CCSEON CCLONB (10} ,GCNAAT, SINREX,CHAFS,CVRL, DEYTER(12)
COMMOY DETNN,PFEYIN, BRRM, EXFMY , EXF13, XICE(13, 10),TUEB (13)
CC:MON XSTP,GPOATP,OCN(15),#SURV,SF IS H(14), SF IS HI (10,1U)
CCSMCN GEHAF,FISSZR,QK, QS, GTORG.GTING,GHIGH(13),GTIN,GTOR
CCMMON EEXAL[10), FISAEF,9APB, FYOSE, SATPH, DATPH,GBOG1
CCYMCS ECCNF(14),G5'IG2,BPOOD (14), ECHAR(14),ESFISH(14)
CCMMON FOSABD,PNUP,FESIH,GBEN(14),PGUDGE,DOMPY,CVELI (12)
```



```
c
2
5
c
CALL FGYS
C SEt OP EXtefral inogganic and obganic Infuts
8
    C
0
        IYSAF = [IT-1)/100 + 1
        IIT-IT - (KYEAR-1]*100
    IWEEK = (ITT-1)/10 + 1
    IDAY = HO9(ITT-1,10] + 1
    Call the physical factces initialization subboutine.
        DETOUT(IREER)= DEXTER(IM)
        OCNIT = OCN(IWERR)
        GIHIN = GINEX(IN)
    c CALL the GEOLOGY SUBROUTINE.
    c CALL GEC
    c CALL THP AQOatIC BIOLCGY SUBROUTINE.
```


APPEND X 1 (cent'd)

SUBROUTI NE UMODEL (cent' d)

SUBROUTI NE BIRDY

```
    THIS IS thz SUBROUTINE THAT DOES All the CALCULATIONS INVOLVING BIRD
    FEEDING.
    NOTE THAT ALL BIRDS DO In THIS MODEL Is EAT.
    COMMON ASC(13), FISHE{(13),IHAE (6), CALDAY(3),GRAYPC
    CCAEON ZOOPL, gENTH(14),ALGIC (14), PHYTO, EPYALG (14), H (14)
    COMMON ZOOIN(2), PHYIN(2),AICP(14),DEPOL(14),DETIN(14)
    COMMON NSTP,DELTP,GPHN,CNIT,CNIN,GEATD,SINKE,VEG(13)
    CCMgON FHOOT(10),BZOO,RPHYT, BERN,OCNIT,FISHL (14)
    CCMMON ZOOCN (IO),FISHBE, ANAD (10,5),CEAR (14), PLABY {14),OEX
    CCREON EENIN(14),OEXIY,FIFR, BENCR,BIRDS (6],PRES(6,10}, ZOOE
    COMACN AFEA(14), TPOLH,DETAL,TAREA,OIL, BESTE(13),VEGE(13)
    COMMON YHIG (6), BREED(6),x51G[6, 10),SHORE,IDAY, DICE(14),DADD(14)
    CC:MON COHE,HAYE,GSHEFF(14), Emax, ESEvS, PONMAT,IPEAR, INEEK
    COMYON GPOL (14),GLOST(14),GO (14), GI(10), GORG(14),GIYO2 (14)
    CCMMON NAREAS,J,I,GTHETA,GSPEED,GSLDSP,GSLUSL(3),GSLOMA(3)
    CCMMOS GA,GB,FC(4),GD (4),GERRD,GPDRG (13),GHTORG,GGTIN,GAREA
    COMPON GVOLPS,GHEFOD,GSOMDI,GCM,GINW,TORG,TINO,Q
    COMHON GININ,GINEI{(12),GHIDSL(13),GNIINO,IGHODE,GDISTC
    CCMMON IW,IHTE(10, 10),CUTFLO(12), EXPSHO(12), PROSHO(12)
    CCMSON Q1,011,02,022,03,033,04,Q44,05,855,POUT,20UT,COUT
    COB BON CVK,SE (2),CV (2),SOSF,DEPOS,SPATE, DRATE,CINPR,SLOSS
    CCMBON CNHAF,DETB,DETOUT (15), DIMFG, DETRC, SPAYT,SGAIN
    COMMON COLONB (IO),GCNRAT,SINKMX,CHSPS,CVEL,DEXIER(12)
    COMSCN DETRN,PREMIN, BRZM,EXFMX, EXFA,XICE(13,1 0). 'IURB(1 3)
    CCBSON XSTP,GPOPGP,OCN(I5), XSURV, SPISH(19),SFISHI (10,14)
    COMSON GAHAF,FISSQA,QR, 2S,GTOEG,GTING,GHIGH (13),GTIN,GTOB
    COMBON SENAL(14).PISERP, EAPH, ENUSE, EATPE,DATPG,GBUG1'
    CCMMON ECONP(14),GBUG2,BFOOD [10), ECRAB(14) ESFISH(14)
    COAMON FUSABD,PSOP,REMIN,GBEN(14),PRODGE,DUMNY,CVELI (12)
    COBMON HONGRY(2, 14),A,B,BTIEES, EATEN,CORENT (12), RAVEE (12)
    CO
    GIRD FEEDING IS CALCULATED ON THE FIRST DAY OF EACB 10 DAY `REEK'.
        IF (IDAY.NE. 1) GO TO 99
        INITIALIZE THE amOONT EATEN
        DC 20 I = 1,13
        BE NTE (I) = 0.
        FISHE (I) = 0.
        VEGEII]=0.
    20 CCNTINOE
    c
    put in taz Nugber of girds there
        BIRDS(1) = PEES(1,ITEEK)
C THIS SECTION FOR CLDSQUarS
```

SOEROUTIBR EIRDI

SUBROUTI NE BIRDY (cent'd)

```
c Calc. grams cabbon eateh per bibd
9
1 0
1 1
12
13
14
16
        11 CoNTISOE
        10 CCNTIMIE
    C
        99 CCNTINOE
        BETOSg
        ESD
```


FUNCTI ON SLP

```
        FUNCTIOR SLP(Y,XI,YY,E)
```

 c THEfunction SLP IS AIINEAB INTERPOLATOR. GIVEN AHAMSXXARDYYARD X,
 C
 TT RETUENS Y, INTPBPOLATED BETGEEN TWO NEABEST POINTS. N= MUMBEB OF POINTS.
 DIMENSICN XX(20), YY(20)
 SLP \(=Y\) (1)
 IF (X . L?. XX(1)) GO TO 99
 \(\mathrm{H}=\mathrm{N}-1\)
 DO 10 I = 1, M
 IF (X. ST. XI(I+1)) GO TO 10
 \(S L P=Y Z(I)+(Y Y(I+\mathbb{I})-Y Y(I)) /(X Y(I+I)-X X(I)) *(X-X X(I))\)
 GC TO 93
 10 CCNTINOE
 SLP \(=Y Y(\mathbb{R})\)
 99 RETURN
 END

SUBROTIIN AQU

SUBROUTINE Q0

NOTE THAT OXL IS OSED THBOUGHOUT THIS SUBROUTINE TO Reduce feeding and resuspension bates

COBBON ASC (13), PISHE (13), IGAB (6), CALDAY (3), GRAMPC
CCPMJN ZCOPL, BENTH (14), ALGIC (14), PHYTO, BENALG(14), H(14)
CCYMON 2OOIN(2), PHIIN(2),AICE (14), DEPOL (14), DETIN(14)
COEMOR NSTP, DELTP, GPHN,CNIT, CNIN, GRATE,SINKR, VPG (13)
CCYBY FHoUT (10), B2OO, BPKYT, REEN, OCRIT, PISHL (14)
CCynon ZCOCN(10), FISHBR,AXAD (10,5),CHAR (14), PLABV (14),0EX
CO: MON EENIN (14) , OEXIN,PIPR, BENCR,BIBDS (6), PRES (6, 10), ZOOE
CCASCM AFEA (14), TVOLY, Detal, tarea, oill, bente(13), VEGE (13)
CCMYJM YMIG (6), BERED(6), XHIG\{6, 1O), SHORE, IDAY, DICE(14), JADD (14)
COYMON CORE, HAVE, GSHEPF (14). EUAX, ESENS, PONRAT, IYEAR,IWEER
CCEMON GVOL (14), GLOST (14), GO (14), GI (14), GORG(14), GINOR (14)

CCumon Ga, GB, GC (4),GD(4),GEROD,GPORG (13), GETORG,GRTIN, GAREA

CCMOS GINIK,GINPX(12),GYIDSI (13), GUTINO, IGYOVE,GDISTC
CC:ON IH, IRTH (10,10), OUTPLO (12), FXPSHO (12), בROSHO (12)

COMMO CYR,SR [2) , CY(2), SUSF, DEPOS, SRATE, DRATR, CINFW, SLOSS
COMYOS CAHAF, [ETR, DETOOT [15], DINPW, DETBC, SPHYT, SSAIN
COEMON CCLONB (10) ,GCNRAT,SIMKMX,CHAFS,CVPL, DEXTER [12)

SUBROUTINE AQU (cent'd)

```
COMMON DETWN, FEEMIN, BAEM, EXFMX,EXFR, XICE(13,10),TURB(13)
COEMON XSTP,GPORGF,OCN(15),RSURV, SPISG(14),SPISHI (10,14)
CCHMON GBHAF,FISSBR,QR,QS,GTCEG,GTI FG,GHIGH [13),GTIN,GTOR
COMYONEENAL(14), FISHEEP,BAPH,ENUSE,BATPH,DATPH,GBOG1
COHMON ECONP(14),GBIG2,BFOOD (14), ECEAR (14), ESPISH (14)
CCBMON PUSABD,PNUP,8EMIN,GBEN(14), PGODGE, DOMAY,CDELI(1 2)
COMmON EONGBY(2,14), &, B, ETIMES,EATPA,CURENT(12), HAvEE(12)
c
        BAPOL=0.
        BNCSE=0.
        BatPb=0.
        DATFH=0.NE, 1)GO TO 209
    c IP 1? IS THE FIRST DAY OF 'THE PIRST PERIOD, ACCUMULATE ALL THE BENTHOS
    c IN iHE DEEP LAGOON AND APPLY A HINTER SURVIVAL BATE.
    C IF(IGERR.NE. 1) EENTH(2)=BENTH(2) + (BENTH (3) & BENTH(4) +BENTH(5))*&SOBV
    209 CCHTINOE
c Loop cVER LAGOON HABITATS
c DO 201 IH=2.5
C SET tBIS HEEK'S fiSH POPULATIONS TO THE DATA. SPISG Is SMALL PISB (I.E.
c SET TBIS HEEK'S FISH POPULATIONS TO THE DATA. SPISE Is SMALL PISB (I.E.
C A
            CHAR(IH)=ANAD(IMRER,IH)
            SFISH(IH)= SPISHI (IREER,IH)
C
C If THEBE IS ICE tr&BE ARE NO yISH.
            IF(DICE(IH).GT. O.)CHAR (IH)=0.
    c SET FISH LARVAE.
c
            FISHL(IH) = FLARV (IRERK)
            IP{DICE(IH)-GT.O.|FISHL{IH}=0.
            IF(ICAY.NE. I)GOTO 202
C SET INITIAL VALUES IF THIS IS PERIOD 1
            IF{IGEEK.NE.1}GO TO 202
c INITIAL VALUES FOR:
        FISCON--ZOOPLANKTON CONSUMED BY FISH
        ZOOPL--ZOOPLANKTCN IN THE WATER COLUMN
        DETR--DEIRITOSIN THE WATEB COLUMN
        CHAR--ARCTIC CHAR
        FISH L--FISH LARVAE
        pHyIO--PhYTOPLANKTON IN `IHE BATEE COLUHY
        ALGIC--ICE ALGAE
            PISCON=0.
        ZOCFL=ZOOIN(2)
        #ETK=DEIMN
        CHAR (I E)=0.
        PISHI(IH)=0.
        PHYIO=PHPI# (2)
        ALGIC(IH)=AICE(IB)*(1. -OIL)
        IF(IH.NE. 2; BENTH(IH)=0.
        the EETPITUS IN THE DEEP IAGOON HABITAT IS INCREASED BY BODNDARY
        INPOTS AND REDUCED BY OVEERINTER GRAZING BY BENTHOS. IT IS
    ASSOMED THAT THE BENTHOS EAT 2 TIMESTHEIB NEIGHT OVER THE WINTER.
        IF (IH.EQ. 2) DEPOL (IH)=DEFOL (IU) +DETIN(IH) - 2.*BENTH(2)
        IF DDEPOL(IH).LT.O.)DEPOT (IH)=0.
        IF(IH.NE. 2) DEPOL(IG)=. OI
C SET INItIAL values POB NItROGEN CONCENTRATIONS
        CNIT=CNIN
        BENAL(IB)=0.
        202 CONTIMUE
C PUT ICE algaE INTO DEtRITUS Ay{E& the fibSt period.
```


APPENDIX 1 (cent'd)

SUBROUTI NE AQU (cent'd)

If (IMEER.Eg. 1) GO то 203
BFNAL (IB) = ERNAL (IH) + \triangle LGGIC (IE)
$\operatorname{ALGIC}(1 \mathrm{~B})=0$.
203 CCHIINUE
$\stackrel{c}{C}$
C SGLVEDIFPEREBTIAL ECOATIOR FOR PEYTOPIABKTOR, ZOOPLANKTON, AND
Sitbogen cofceatbations poe deep lagoon habitai if the ice is gone.
DETAL=0.
$B A F H=0$.
IF(DICE (IR).GT. O.)G0 TO 205
IF (1H.NP. 2)GO TO 205
IF (OIL.GT. I. E-G)OIL=OII*EPP (-ORX)
c CALCULATE THE NUMEEB OF ITERATIONS AND THE TIMP STE? FOR THE SOLOTION TO

ExChange bate of the lagoci (opx).
NSTP=XSIF*ORX
1P (NSTP.LT. 3)NSTP=3
$\mathrm{X}=\mathrm{NST} \mathrm{F}$
DFLTE $=1 . / x$
00204 INS $=1$, NSTP
 CONCENIFATION.

FNOF=GP:ZA*PAYTO*CNIT/(CNHAF+CNIT) *(I.-OIL)

```
            GRAZ=GRATE*PHYTO*ZOOPL/ (GBHAP+PHYTO)*(1.-OIL)
```

 NET CHANGEIN PGYTOPLANKTON DENSITY IS A FUNCTION OF:
 FNOP-GFCRTH
 GFAZ--GRAZING
 हPHYT--PESPIBATICN
 SPHYT-SINRING (INDEPENDENT OF CUPRENT SPRED)
 OEX--以ATER EXCHANGE (EMIGRATION)
 PHODT--YATEA EXCHANGE (IMMIGFATION)
 DPHYT=PNDP-GRAZ-(RPAIT+SINKR+DEX) *PHYTO+OEX*PHODT(IHEEK)
 NET CHANGEIA NITROGEN CONCENTRATION IS A FUNCTION OF:
 PHYTOELANRTON GFCHTH
 ZOGPLAKKION RESPIRATION
 PAYTOPIASKTCA RESEIBATIOA
 BENIHOS RESPIEATICR
 EXCFAFGE IN AND OOT OF THE LAGOON
 PRESHIATFFIFPUTS

1-OEX*CNIT+OEX*OCNIT+.1*POSARD*(.5*DEPOL(2) +DETB)
C CONSUSPTION OP ZOOPLANKTCN BY PISE IS A PUNCTIOR OF ZOOPLAMKTON AND PISB
LABVAE LENSITIES.
EISCON=EIFE*2OOFL*PISHL(IH)
C NET CHANGE IE ZOOPLANKTON DENSITIES IS A PUHCTION OF:
PHETCELASKTCAGHAZIRG
FISH CONSUEPTION
GESPIEATIO\&
EXCHANGE (InMIGRATION ABD EMIGRATION)
D200=. 5*GEAZ-PISCON-RZCO*2OOPL-OEX* (ZOOPL-ZOOCN(IWEEK))
NET CHANBE IN THEDETFITOS IN THE WATEF COLJMA IS DEPENDENT ON:
ZOCELANKTON GFAZING AND EXCBETION
PHYTORIABKTCN SINKING
FEESHGATER OETRITUS
ExCHANGE LNTHE EATE日 COIOMN
SINRIES OF DETBITOS FROM THE TATEF COLOMN

APPENDIX 1 (cent'd)

SUBROUTIN AQU（cent＇d）

```
        IF(BEN&L(IH).LT.1.E-6) EENAL (IH)=1.E-6
        IF (D EPOI. (IR).LT. 1.E-6)DEPOL(I G)=1.E-6
```

 BENTHOS EATEN BY CHAP ANO SEALL PISB

HONGRY(1,IH) = ECHAR(I甘)/FISABR
ESPIS日(IH)=PISSEB*BEN(H)(IR) (FISHEF*BEVTH(IH)) *[1.-OIL)
HONGRY (2, IR) = ESPISR(IB) /PISSBE
BCONP (IH) = ECHAR(IH) *CHAF(IG) + ESPISH (IH) ©SFISH(I!i)
CHANGE IN BENTHOS IS A FUNCTION OF:
EATING DETRITOS
BEING EATEN BY FISK
BEING EAIEN BY FISK
BEING PAIEN BY BIADS
BESFIFATION
IMMIGBATION OF CCLONIZATION
BENTH (IG) $=\operatorname{CONB}-\mathrm{BCONF}(\mathrm{IH})-\mathrm{BPRTE}$ (IH)-RBEN*BENTH(I日)
$1+\operatorname{COLONB}$ (IWPER)*CEX+BENTE(IH) - 2*OIL*BERTH (IH)
IP\{BEHTH(IH). LT. . OOO1) EENTH $(I H\rangle=.0001$
EXRT=EMAX*BENTH(IH)/(1.+CONB/(BENTH(IH) *.0001)/ESENS)
EEYTH(IH)=BENTH(IB)-PYRT

IF(EENTH(IB) -LT. 1.E-6) BENTH(IK) $=1 . E \rightarrow 6$
EHD CP LOOP OVER AZUATIC RABITATS
201 CCNT I NUE
OPDATE DETRITOS AND PHYTOPLAHKTON IN THE WATER COLUMH
FOR EESOSFENSION
DETE = CDTR + DATPA/TVCL
PHYTO=PAYTO BATPH/TVOLT
OPCATE NITROGEN FOR JSEEPBENTHIC ALGAE
CBII=CNII-ENUSE/TVOLD
IF (CNIT.LR. 1.E-6)CYIT $=1 . E-6$
C
c
PCOT= PHCUT (IPEEK)
2GOT = ZOOCN (IHEEK)
COOT $=\mathrm{CCNIT}$
betorn
END

SUBROUII NE GOO

SUEBOUTINE GEO
C
COMMON ASC（13），PISHE（13），IHAB（6），CALDAY（3），GAAMPC COMMON ZOCPL，BEHTH（14），ALGIC（14），PHYTO，BENALG（14），H（14）
COMMON ZCOIN（2），PHYIN（2），AICE（14），DEPOL（14），DETIN（14）
COMAON NSTP，DEL＇P，GPHN，CNIT，CNIF，GRATE，SINKR，VEG［13\}
COM MON FHGOT（10），RZOO，RPAYT，PEPN，OCNIT，FISHL（14）
COMMON ZOOCN（10），PISHBG，ANAD $(10,5)$ ，CHAB（14），FLAP V（14），OPX
CCHMON EENIN（14），OEXIN，FIFB，BENCR，BIRDS（6），PEES $(6,10), 200$ P
CCS．DON AREA（T4），TVOLW，DETAL，TAPEA，OII，BENTE（13），YEGE（13）
COMMON YMIG（6），BREED（6），IMIG（6，10），SHORE，IDAY，DICE（14），DADD（14）
CCMMON CURE，NAYE，GSHEFF（14），EMAX，ESEYS，POSGAT，IYEAR，IWEPK
COMMON GVOL（14），GLOST（14），GO（14），GI（14），GORG（14），GINOR（14）
COMMON NARPAS，J，I，GTHETA，GSPRED，GSLUMP，GSLUSL（3），GSLUMA（3）
CCYMON GA，GR，GC（4），GD（4），GERCD，GPORG（13），GWTORG，GUTIV，GABEA
COMMON GVOLPS，GWEROD，GSUMDI，GCW，GINR，TORG，TINO，Q
COEMJN GINIK，GINEX（12），GWIDSL（13］，Gケ्रTINO，IGMOVE，GDISTC
CC：HON IU，IHTH $[10,10)$ ，OUTFLO（12）．EXPSKO（12），PROSHO（12）

SUBROUTI NE GEO (cent'd)

```
COBMON CVK,SR{2},CV(2),SOSP,DEPOS,SRATE,DRATE,CINFG,SLOSS
CCEMDN CNHAP, DETR,DETCUT (15) ,DINPH, DETBC, SPHYT,SGAIM
COMMON COLONB(10),GCNRAT,SINKEX,CRAFS,CVEL,DEXTER(12)
COMMON DETHR,PREMIN,BREM, EXFYX,EXPH,XICE(13, 10),TORB(13)
COMHON XSTP,GPORGF,OCN [15) ,HSURP,SPISH(14), SFISHI (10,1U)
CCSHON GFHAF,GISSBR,QK,QS,GTORG,GTING,GHIGH(13),GTIN,GTOR
COMMON EENAL(14),FISHEP,BAPH,ENUSE, BATPH, DATPH,GBOG1
COMgan ECOPP(14),GBUG2,BFOOD (14), ECBAB (14), ESPISH(14)
COMMON PUSABD,PNOP,REMIN,GBEN (14] ,PHODGE,DUMMY,CVELI (12)
COMMON HUNGRY (2,14),A,B, BTIMES,EATEN,CURENT (12), RAVEE(12)
no^nOO
C
c
C
C CALCULATE AMOUNT OF ORGANIC ANO INORGANIC MATERIAL ERODED
    TO FEI INIO ADJACENT AREAS.
    CALC. CU A. SATEEIALTIBESNEIGETIN G/CC TIMES 1 HILLION CC/CD.M.
    TIMES .729 ORSANIC CARBOH
        GO(J)= GLOST (J) * GFOEG(N)*GUTORG *1. E6
        GI (J) = GLOST{J} * (1. -G POBG {J)) * GWTINO *1. E6
    310 CCNTINOE
C
C CALC. EROSION PROA TATERSHED INTO POND
    CALC. AET: ORGANIC C AND INORG yATTER DPPOSITED INTO LAGOON
    FFOM WATERSHED
    GET GRAYS CARBON DJMPED INTO WATERSHED
    THIS IS WATER FLOE IN CU. M/DAY TIEES 1000 LITERS/CO. M TIMES 50 MG/L
    TIEPS 2.7XCAEBON
        GCS=0.
        GIKH=0.
        IF (ITEER.EQ. 2)GCH=GTOR/10.
        IF(IUEER.EQ.2)GINH=GTIN/10.
        GCT=GCR*GBOG1
        GINH=GINU*GBOG }
    POT ERODED MATERIAL INTO ADJACENT LAGOON, MATEBIAL I# GRABSC
    OR IN N/LAY/C0. 9. OF LAGOON WaTER
    DINFP = GRAMS C/DAX/CU. H. DATER
```

.
5

APPENDI X 1 (cent'd)

SUBROUTI NE GEO (cent' d)

DINP: $=(G O(7)+G O(6)+G O[12)+G 0(13)] * G B N G 2+G C D$
$G T C R G=G T C B G+D I N F E$
DINFU=DINPG/TAREA
c
ᄃ
c
c
TINO = GRAMS INORGANIC MATTER/DAY/CD. M. WATEE
TIFO $=(G I(6)+G I(7)+G I\{12)+G I(13)+G I N()$
GTING=6IING+TIRO
TIHO=TINO/IPOLY + GININ
GO TO 371
319 CCHTINDE
Do $370 \mathrm{JJ}=1$, BAREAS
DINF: $=0.0$
TINO $=0.0$
GSLOAP $=0.0$
370 CCNTINOE
371 CCATINUE
betora
END

SUBROUTI NE PHYS

SO E! boutine phys
C
C
C
C
C
C

APPENDIX 1 (cent' d)

SUBROUTINE PHSS (cent'cl)

```
\sim
    115
        Q=1.E5
    GO 10 118
        ID=ID+1
    X XD=XD+1.
    C CAlCulate the ropabuk biver plod, a fugction of the time of year
        IP(XD.LE. 100.)QR=Q1*EXP(Q11*XD)
        IF(XD.GT:100.) QR=Q2*EXP(Q22*XD)
        Calc sagapanirktor fiver input to lagoon (only If east mibd)
    c
        IF(IR.G1.4)GO TO 117
        IP(XD.LT.99.10S=Q3*EXP (Q33*XD)
        IF(XD.GE.99. AND_XD.LT. 108.) QS =G4+Q44*XD
        IF(xD.GE. 108.) QS=Q5*EXP(Q55*XD)
        CS=-015*QS
    17 CCNTI MUP
C
    CALC TOTAL FBESHMATER INPOT
        Q=QS+QK
    118 CC NTI #OE
        Lagcen &ater exchange fate (/Day)
        OJTFLO IS A PBCDUCT OF THE PHYSICAL OCEANOGRAPHY MODEL. IT IS THE VOLUME
        Of Gater fassing through the LAGOON per dAy. phodge is a pabameter for
        TESTING THE SENSITIVITY OF THE MODPL TO CHANGES IN ExCHarge RATE.
C
            OEX=(ONTFLO(IR) +C)/TVOLE
            OFX=OEX*PHODGE
    EXPOSED AND PROTECIED SHORELINES (KB
    T&E EXPOSED AND PRCTECTED SHORELINES CHANGE WITH WIND DIRECTION.
        AREA (6)=EYPSHO(IW)
        AREA (7) =PGCSHO (IM)
        #AVE PEBIOD (SEC.) AND LCNGSHORE VELOCITY (CM/SEC) (PRODOCTS OF THE
        PHYSICAL OCEANOGRAPHY MODEL).
            MAVE= पA VEE (IG)
            CORE=CORENT (IW)
            CVEL=CVELI (IM)
            IcE THICKNESS (M)
            DO 110 IA=1..13
        110 DICE(TA)=XICE(IA,IHEEK)
            IF(IMEER.GI. 1)GC TO 101
            IF (IEAY. RQ. 1)XTINO=0.
            XTINO=XIINO+TINO
            SDSP=0.
            DEPOS=0
            OER=O.
            GA PE=0.
            CURE=0.
            CVEL=0.
            GO TO 106
        101 CCRTINOE
C DEPOSITIOA גND BESOSPEHSIOM OF SILT
    IF(ID.G9. 1) XPIVO=TIMO
    SRATE=SLP(CDEL,CV,SB,2)
    DRATE=1./(CVK*CVEL+1.)
    SGAIN=XIINO*TVOLM
    DO 105 IA=1,10
    TSUSP=SUSP*TVOLT
    TEEPOS=DRPOS*ALAG
    SLOSS=TSUSP*OEX
    RSOSP=SGAIN-SLOSS* (SBATE*TDEPOS)-(DRATE*TSUSP)
    AAOEP=ORATE*TSOSP -SBATE*TDEPOS
    TSUSP=TSUSP+BSOSP*.1
    TDEPOS=TDEPOS*RDEP*. 1
```


SUBROUTI NE GEO (cent'd)

```
    IF (TSUSP. 2P.0.) TSUSP=. 1
    if(tDEPCS.le.0.)tdepos=.1
    SUSP=TSESD/IVOLW
    DEPOS=TJEPCS/alag
105 CONTINOE
106 CCNINNE
    betub%
    end
```


DATA INPUT FILE

```
S PEES(1,ALL)=0. 34. 497. 959. 25980. 51400.46000.41760.21935.106600.--OLDSQOAHAT 10-DAYT
S A=40.
S B=03
S BTMMBS=120. --FEACTION OF TOTAL DAILYINTAKE EEPEPSENTEDBEPUNCTIONAL RESPONSE DATA
SET PEES(2,ALL) = u*O. 280. 6800. 1467. 567. 526. 0 - PHALAROPES
SET PEES(3,ALL) = 31 2% 90 153 140 127 399 1000 125 3100 0 - GOLLS
```



```
MACRO
S PRES(1, AL L)=0. 22. 1200. 2482. 29500. 13340. 12372. 16683. 10153. 33500. M- OLDSQDAV
SET PRES (2,ALL) = 4*0. 140. 3400. 730. 285. 265. 0. 4-PEALABOPES
SPT GFASPC = g,
SET ASC (ALL) = 5*1.EG 2*1000. 1.E6 1000. 1.E6 1.E6 1000. 1000.
SET IBAB(ALL)=.9 1128121
SETABEA{ALL} = 38. 157. 56. 12. 1. 35.4 4. 20. 30. 100.8.54.2 10.1
SETEENTH(ALL\ = 0.
S BENTH(2)=.2
S BENTH(2)=.2
s ZOOIN (ALL) = O.005 .05 .05.05 0.
S AICE{AIL) = 0.1.1.1.1.1.0.
S BENIN (ALL) = O. 1. .1.1.1 0.
S DRTIN (ALL) = 0..1.1 . 1 . 1 0.
S DEFOL(ALL) = O. . 1 . 01 .01 .01 0.
S DEFOL(ALL)
CNIN=
S YSTP=3
S DELIPx.33
GBATE=.4
S SINKB=.07
S BPHYT=.2
S PHOOT (ALL) =.05
S OCNIT = .05
s & ZOO=.1
S FLARV (ALL) = 0. .02 .05 . 1 .05 .02 .01 0.
S REEN=.O15
S PIFF=1.& (2OOCN(ALL)=0..005.01.02.04.05.04.02.01.005
BENCB=.045
PISHQP=2.82
PISSRB=.09
S PISA EF=.022
S ANAD(ALL,ALL)=D.
S ANAE(AIL,2)=0. .00001 .00003 .00003 .00003 .00003 .00003 .00003 .00001
S AAAE(ALI, 3)=0. .00075 .00075 .0025 .0025 .0015 .0012 .001 .00075
SAMAD(ALL,4)=0. .0015 .0015 .005 .005 .003 .0025 .002 .0015
S ANAL{ALL,S)=0. .00001 .00003 .00003 .00003 .00003 .00003 .00003 .00001
S SFISAI(ALL,ALL)=0.
S SFISHI (ALL, 2) =0, .0001 .0001 .0001 .0001 .0001 .0003
S SPISHI(ALL, 3) = C. .002 .002 .002 .002 .002 .0064
S SFISNI (ALL,4) = C. .004.004.004 .004 .004 .00428
S SFISRI (ALL,5) = 0. .0001 .0001 .0001 .0001 .0001 .0003
S OEXIN=.O\
s BENTE{4LL} = O
s \nablaEG (ALL) = 5.
SET XMIG(1,ALL) = 200. 50. 7*0 900. - OLDSQOA贝 HIGRANTS
SET \MIG(2,ALL) = 10. 10. 6*O. 80. 120. - EIDER MIGS
SET XMIG(6,ALL) = .1 10. 7*O. 1.6-- IERN IIG
SET XGIG (5,ALL) = 50. 8*O 16. -- LOONS
SET YMIG(4,ALL) = 400. 1600. 6*O 1000. 1000.
SET X\IG (3, ALL) = 3.2 6.0 12.8 40.0.
```


APPEND X 1 (cent' d)

```
SEI SHORE = 5 -- KM OF SHOREIINE E/W DISTANCE
SET EMAX = .15
SET FONHAT = . }
S H{(AJL_)=0
S Qi=1.53EG -- CU.M./DAY FR RDNOFP PARAB
S 0 11=0.02 -- FN FUNOFP PARAE
S Q2 = 1.56E9 -- CO. M./DAYFG RUNOFF PARAG
S O&2--0.05 , FH RONOFF PARAM
S Q3=2.5E7
s Q33 = '0.02
s Q4=-2.3E&
s Q44=2.3BE6
S Q5 = 3.49E5
s Q55 = -0.05
S IHTH(1,ALL) = 1 -- WEATHER INDEX(INEER,IDAY)
SIHTH (2,ALL) = 10 9 63 1 1 1 2 2 3 4 4
S IPIE(3,ALL) = 344444423 9"1 2
S IHTH(4,AIL) = 10 11 2 234 3 1 2 2
```



```
S IXTH(7,ALL) = 2 171 1 16 1, 12
S IETR{8,ALL ) = 1 102 5 2 5 5 6 23 6
S IWIH{9,ALL} = 24 4 3 3 6 7 2 3 3
SIRTH(10,ALL)= 3 4 27 2 5 5 7 2 2 2 2
S XICE{ALL,ALL} = O. - ICE THICKNESS (AREA,IHEEK) .|.
\ICE(ALI,1) = 1.
s DACL{ALI)=0
S CVK = .07 --PABA& PO& SILT SIRKING EATE
S SB (ALL) = O. 0.8 -- PARAM FOB SILT RESOSPENSION RATE
SCV(ALL)=15. 100.
S SUSP = 0. -- GM. /CU.M. SUSPENDED SILT
S DPEOS = _ _- GM, TCTALDDPOSITED SILT
S OUT FLO(1. .4] = 0.33E& 1. 3EQ 3.EB 5. 2EQ -- ENE PLON THBO LAGOON (CH,M./DAY). INDEXED BYIE
S 00 TFLO(5...8)=.14EG.55EG1.EB2.2EQ -- WSN EIND 2.5,5.,10.,20. M/SEC
S OUTPLO (9... 12) = 0.14E8 . 55OEG 1.EB 2.2ES -- NW WIND
S EXPSHO (1. ..4) = 41. -- ENE FIND EXPOSED SHORE (KM). INDEXED BY IM
S EXPSHO(5. ..8) .= 48. -- NSW HIND
S E&ESHO(9... 12) = 21. -- NW WIND
S PGOSHO (l...4) = 86. `- EN?? RIND PROTECTED SHORE (KM), IND BY IT.
S PHOSHO (5...8) = 79. -- YSW WIND
S PFOSHO (9...12) = 106. -- NW RIND
S CUR PNT (1...4)=5. 10. 50. 100. , ENE WIND LONGSHORE COBPNT (CH/SEC)
SCORENT(E...8) = 5. 10. 50. 100. -- FS R WIND
S COAENT (9...12) = 5. 10. 50. 100. -- NW WIND
S MAVEE(1...4)=1. 2. U. 7. -- ENE WIND WAVE PERIOD [SEC)
S IVVEE(5....8)=1.2.4. 7. -- WSN HIND
S 許EE (9...12] = 1. 2. 4. 7. -- NH WIND
SCVELI(1...U) = 5. 10. 50. 100. -'ENE KIND - AVG CORGENT IN LAGOON (CH/SEC)
S cVELI (5...8) = 5. 10. 50. 100. -- WSNHIND
SCVELI (9\ldots.12)= 5. 10. 50. 100. -- NWMND
s TORE(ALL)=0
S DE ITER(I. ..4) = .1 -- GRAMS C/CU. il./DAY INTO LAGOON FROM BOUNDARY A
S DEXTER(5...12)=.1.2-4.6.8 - - SAME BUT FOR W-SM AND ND WINDS
s OCJA(1...1O)=0. .07 .05 - G N/CO. K AT BOUNDARY BY WEEK
S GINEX(1...4)=.0.8 1.2 1.6 , G INORGANIC MATTER/DAY/CU.M. #ATER INTO LAGOON AS P(VEATEER TYF
```



```
S GSLUMF=0.0 -- INITIAL DOMGY CCNDITION
S GEDGI=?.
s GEOG2=1.
S PAODGE=1.
S GEIGH (ALI,) = 0. -- HEIGHT OF AVERAGE SHORELINE SLUAP IN METEAS
G GHIGH (6)=1.5
s GBIGH(7)=2.5
S GHIGB(12)=1.5
SGBIGR(13)=2.5
S GWIDSL (ALL) = O. -- KMS INTO SHORE LOST PER SLUMP
EGGICSI (6)=1.3
S GOICSL. (7)=1.1
S GUIDSL (12)=1.3
S GHIDSL (12)=1.3
S GSLUBA (ALL) =.003 .006 .015
S GSLOSL (ALL)=0. . 5.7.
S GSEEPF (ALL) = 1.0
```


APPENDI X 1 (cent' d)

```
GA = .01 - EINIBOE PBOP DISPERSION DUE TO MAVE
S GE = 0.58 -- E PARAE. IN ABOVE Y=A*EIP(BX)
S GC(ALI)=0. 3. 15.
SGE(ALL)=.01.1 1. 1. -- RELATION OF DISPERSION TO CORRENT
S GVOL (ALL) = 0.0
S GYOL (6) = 3400
S GVOL (7) }=646
GVCL}(12)=40
S GOL {13)=1760
S GIORG=0.
RG=0.
S GIING=0.
S GPO RG {6}=.3
```


PART 2. PHYSI CAL PROCESSES

Joe C. Truett
LG. Ecol ogi cal Research Associ ates
P. O. Box 1745
Grand Junction, Col or ado 81501

March 1980

TABLE OF CONTENTS

Page
SUMMARY 55
ACKNOULEDGEMENTS 57
INRROUCTION 58
Perspective and Data Sources 58
Obj ectives and Rational e 58
Objective 1--To Characterize Whter Circulation and Exchange 59
Objective 2--To Docunent Detritus Sources and 60
Obj ective 3- To Determine the Origins and Evol ution of Nearshore Landforns 60
STUDY AREA AND THE REG ONLL EM RONENT 61
UATER C RCULATI ON AND EXCHANG 64
Seasonal Characterization 64
Winter Ice Season 64
Spring Thaw 65
Open-Vhter Season 67
Coastal Flushing 67
Lagoon- Offshore Vater Exchange 69
Magni tudes of Exchange 70
Mechani sns of Exchange 71
Effects of Topography on Circul ation 75
Currents Near the Bottom 77
DETRI TUS- - SORRCES AND TRANSPORT 78
Detritus Sources and Delivery Mechani sns 78
Detritus from Stream Di scharge 79
Detritus from Shoreline Erosi on 80
Mari ne- Deri ved Detritus 80
Rel ati ve Contri buti ons- - Ri verine, Coastal, Marine 82
Detritus Flux--Is the Nearshore Area a Trap? 82
Detritus vs Inorganic Sedi ments 82
Deposition of Terrigenous Detritus 83
Detritus Fl ux Between Marine and Nearshore Areas 85
Effects of Topography 86
Depositional Evi dence 86

TABLE OF CONTENTS (cent'd)

Page
GEOMORPH C FEATURES AND THEI R EVOLUTI ON 88
Fornative Processes 88
Barri er Islands, Lagoons and Estuari es--General Considerations 89
Barrier Islands and Lagoons--Beaufort Sea 92
Ti ne Scal es of Change 96
Barrier Islands 96
Lagoon Basi ns 97
Mai nl and Coasts 99
canausias 99
LI TERATURE C TED 101

Thi s report synt hesi zes and interprets, fromreports of Barrier Isl and- Lagoon Programparticipants and fromthe general literature, data about sel ected oceanographic and geol ogic processes in coastal regi ons. Processes di scussed are water circul ation and exchange; detritus sources, transport mechani sns and sinks; and the origin and evol ution of coastal landforms. The purpose of this synthesis is to provide infornation that pronotes a realistic assessment of the ecol ogical consequences of nan's alteration of these processes in the Beauf ort Sea.

Circulation regi nes change seasonally in the Beauf ort Sea. During winter, circulation is greatly restricted because of the ice cover, and exchange rates bet ween lagoons and adj acent envi ronments may be a snill fraction of what they are in summer. Spring thaw and break-up (late May-early July) freshen nearshore waters and clear them of ice. Whter exchange rates increase greatly in the open- water season that follous because there is no ice cover to hi nder the effects of wind in driving the ci rcul ation.

In summer, I agoon waters are freely exchanged with adj acent nearshore waters, but mix rel ativel less with offshore waters. Lagoon- offshore exchange where rivers di scharge is characterized by a net seavard novenent of surface waters and landward novenent of bottom waters, as is found in nost estuarine situations. Gircunstantial evidence suggests that coastal upwel ling, which is not dependent on stream discharge, nay al so augnent I agoon- marine exchange. Barrier islands retard rates of I agoon/ marine exchange. Barrier islands, subnerged bars, inl ets, and other topographic feat ures are both nol ded by and influence water novenent, and sone (e.g., inlets) devel op characteristic locations and features in response to the exi sting coastal circulation patterns.

Currents near the bottomin coastal areas nay be nore important than currents at other level s from an ecol ogi cal standpoint, because many of the biol ogi cally important materials and organisns (detritus, epibenthos) are concentrated on or near the bottom Vater novenent near the bottom is characteristically retarded by the friction imposed by the substrate. In shal low coastal areas, effects of this friction are overcone nost
effectivel y by oscillatory, wave-generated notion in the water-col um. Thi s turbulence tends to resuspend benthic materials, which then are easily transported by uni di rectional currents.

Two maj or documented sources of detritus to the nearshore Beauf ort Sea are terrestrial--del i vered by streans and eroded from coastlines--and these two sources are bel ieved to provide similar vol unes of organic detritus. Al nost nothing is known about the anount of detritus that cones from offshore waters, but this source nay be as important ecol ogically as terrestrial sources. What is generally known about sedi ments and detritus transport in coastal regi ons suggests that the nearshore regi on of the Beauf ort Sea nay serve as a trap for detritus fromal three sources. Processes acting to cause the nearshore area to sel ecti vel y accumal ate detritus are the slowing of currents as detritus-laden streans enter the lagoons, the probable presence of landward-flowing currents near the bottom and the effects of barrier islands in blocking seavard transport of detritus.

Most barrier islands of the norld are thought to have been forned during the currently-existing post-glacial rise in the sea level by one or nore of three nechani sns (1) sand thrown up by waves fromthe continental shelf, (2) el ongation of sand spits by longshore transport, and thei r subsequent separation from the mainland, and (3) subnergence of lowlying areas behind coastal ridges. Mbst Beaufort Sea barriers appear to have ori gi nated primarily through the third process (coastal submergence), but to have been extensi vel y modified by ice and wave action and by I ongshore transport of mai nl and- and island-derived sand.

The expected persistence of topographic features on the Beauf ort coast in their present formis short by geol ogi cal time standards. Islands and shorel ines nay change shape considerably and miate up to several meters annually. The tundra cover of most exi sting islands will probably persi st for a few centuries at nost. The barrier island-I agoon systens that exist, al though expected to last nore than several centuries, may naturally di sappear within tens of centuries and be repl aced by others as the sea advances onto the I and.

ACKNONLEDGEMENTS

Gratef ully acknow edged for their participation in and contributions to the Barri er Island- Lagoon Wbrkshop sessi ons, and for their enthusi astic adoption of field research prograns to support the ecol ogical di sciplines, are the following persons:

Dr. J an Cannon (Geonorphol ogy; Uni versity of Al aska)
M. Stuart Rawlinson (Geonorphol ogy; Uni versity of Alaska)

Dr. Chris Mungall (Oceanography; Ki nnetics Laboratories)
Dr. Brian Matthews (Oceanography; Uni versity of Al aska)
Dr. Sathy Naidu (Sedi nent ol ogy; Uni versity of Al aska)
Dr. Donal d Schell (Nutrients, Primary Production; Uni versity of Al aska)

VIt hout these indi vi duals the program coul d not have succeeded, and this report could not have been written. The extensi ve contributions they made toward devel oping an understanding of the physi cal processes operative in the \mathbf{A} askan Beauf ort Sea nearshore environment are referenced appropriately within this report. Their research is presented more fully in their own reports.

I NTRODUCTI ON

It is well known that oceanographic and geonorphic processes regulate ecol ogical processes in coastal areas in important ways. They should be investigated to understand how man's activities might affect the bi ota. However, all the ways in which physical processes influence the popul ation processes of ani nal s and plants are too numerous to study in a project of this sort. Fortunately for scientists trying to anal yze impacts, each species of organismis affected significantly by only a few of the many processes occurring in an area, and not all of these will be affected by devel opnent. And, si nce this study emphasizes onl y a few species of organisns, the array of processes with whi ch we must be concerned is very limited compared to the number that exists. Our purpose in this synthesis is to investigate physical processes that (1) strongly influence popul ations of sel ected key speci es of ani nal s in the coastal envi ronment, and (2) are affected by oil and gas expl oration and devel opnent activities on the continental shelf.

Perspective and Data Sources

Thi s section of the report synthesizes and interprets data from new oceanographic and geol ogi c research conducted under the auspices of the Barrier Island- Lagoon Program as wel I as from other studi es conducted in the Beauf ort Sea and el sewhere. The new research, conducted by the oceanographers and geol ogi sts participating in the Barrier Island-Lagoon Program was essential for this synthesis. But additionally, because the funds and tine available to these scientists were limited, information from other sources was used extensi vel y. Most of this new research is published by NOAA/OCSEAP, and will be referenced by conventional citation. The Principal Investigators who conducted the research are acknow edged at the first of this report.

Objecti ves and Rationale
Three general objectives for physical process studi es were estabIished during the early planning stages of the program These were

1. to characterize vertical and horizontal circulation patterns and water mass exchange characteristics in and near the barrier island-l agoon system
2. to determine the sources and si nks of detritus and describe its transport nechani sns in the nearshore regi on, and
3. to determine the origins and evol uti onary characteristics of the geonorphic feat ures (barrier islands, lagoon basi ns, etc.) of the coastal region.

Sone of these obj ectives were addressed by more than one of the Princi pal I nvestigators, In such cases, each investigator used a different research approach but coordinated his effort with his co-investigators.

Objective 1--To Characterize Whter Circulation and Exchange
Circulation and exchange of water are ecol ogically important in coastal systens as a transport nechani smfor detritus, dissol ved nutrients, and nany invertebrates. The ways in which these naterials and organi sns are suspended, carried, and deposited are governed by water circulation which, in turn, is a function of wind speed and direction, water depth and bottom topography. Li kewi se, coastal ci rcul ation and exchange patterns significantly influence the chenical and physical envi ronnents; during the open- vater season rel ativel y low salinities and hi gh temperatures are mai ntai ned in the coast al waters, rel ative to those in the open ocean. This phenonenon appears to provide a favorable envi ronnent for certain invertebrates and fish.

Devel opnent nay be accompani ed by extensi ve alterations of nearshore topography through construction of solid-fill causeways and shi pping channels, renoval and/ or connection of existing barrier islands, and in other ways that will affect circulation. Infornation about currents, water exchange characteristics (and associ ated patterns of naterial transport and temperature/ salinity regi nes), and how these are influenced by topography, is requi red for assessnent of the short- and long-term effects of such activities.

Objective 2--To Document Detritus Sources and Sinks and Describe Detrital Transport Mechani sns

Organic detritus is an important energy source in the nearshore envi ronment. It is repleni shed periodically from both terrestrial and marine sources. It is al so noved about in nearshore lagoons and bays from tine to tine, and is transported to and from nearshore systens. Because fish and birds habitually congregate in the nearshore waters (as opposed to the adj acent narine systen) to feed, it is important that the supply and mai ntenance of the detrital food base in these areas be conti nued.

Certain kinds of devel opment structures nay interfere with detritus transport to nearshore bays and lagoons. It becones important, therefore, to document which detritus sources are critical, and to isol ate whi ch feat ures of exi sting nearshore topography, circulation and water exchange are important factors in detritus accumlation. Vith such information, it would be possible to identify the kinds of devel opment activities that nould intercept vital sources of detritus or alter nearshore topography to adversel y affect detritus accumal ation.

Obj ective 3-- To Determine the Origins and Evol ution of Nearshore Landforms

A basic hypothesis being tested by this study is that lagoons and other nearshore areas provide important habitats for sel ected species and that these habitats are not replicated in adj acent narine waters. Evi dence collected to date supports this hypothesis, and indicates that the difference between lagoon and narine ecosystens is influenced by the topographic configurations of the nearshore regi on. Mai ntenance of barrier islands and Iagoon basins as topographic entities thus nay be important as an envi ronmental protection measure.

In order to determine the long-termimpacts of devel opnent activities (such as removal of island material, stabilization of islands, and construction of shi pping channel s and causeways) to the integrity of the I agoon- barrier isl and system the capabilities of the system to "mend" or regenerate itself must be known. Definition of the factors invol ved
in the origin and mai ntenance of the barrier islands, lagoons, and other nearshore feat ures has important implications with respect to the regenerative capability of these features. In other words, if historical evi dence indi cates that the magnitude of nat ural changes over short time periods exceeds and would obscure the changes to be caused by devel opment, then it is likely that the system can absorb the impacts of man's activities with only short-term consequences to the ecosystem

STUDY AREA AND THE REG ONAL EMM RONMENT

The field research of the Barrier Island-Lagoon Program has focused on a rel ati vel y short section of the Beauf ort Sea coast, Si mpson Lagoon and vicinity (Fig. 1). The nearshore waters are shallow, and irregular, discontinuous chai ns of barrier islands skirt about 50% of the coastline. The isl and chai ns, whi ch are generally parallel to the mai nl and, consist of islands that are characteristically low (1-1.5 mabove sea level) and narrow (0.1-2.0 km wide); the islands range in length froma few hundred neters to 15 km Offshore bars exi st on the seaward sides of the barrier islands and along some stretches of exposed mainl and coasts. The bottons of unprotected nearshore areas are roughened by the gougi ng action of ice floes and icebergs.

Freezing of coastal waters begins in late Septenber or October. Ice forns on lagoons first because they are nore shel tered and bracki sh, and cool faster than the nearby ocean. During late fall and early winter, surface ice is still rel atively thin and nay be noved about consi derably by wind; consequently, large areas of open water may peri odi cally appear during this time. Ice thickens by about 1 cmper day throughout wi nter so that by April it is about $2 \mathbf{m t h i c k}$. The ice begins to nelt in May, and its rate of melt is soon accel erated near river deltas by river di scharge.

In late May or early June waters from nel ting streans reach the coast; these streans carry large anounts of silt and detritus which they di scharge into the nearshore envi ronnent. Si xty to 80 percent of the annual discharge of nost streans occurs within several weeks after flooding begins, during which tine nearshore waters are still ice-covered.

Fi gure 1. Si mpson Lagoon study area on the Beauf ort Sea coast of Alaska.

The water that reaches the coast first is di scharged over the sea ice; nost of this water event ually drai ns through cracks and hol es to the water beneath. Within a few days, however, much of the ice adj acent to stream nout hs has nel ted, allowing the river water to flow di rectly into coastal waters and thence under the ice. Di scharges rapidly decrease during the course of the summer and are minimal by freeze-up.

During the open- water peri od the nearshore currents of the region are extrenel y variable and windependent; astronomical tides are of secondary importance in affecting currents. Complex current patterns occur in nearshore circul ation; these patterns are rel ated to bottom topography, coastal configuration and presence of islands. Current speeds decrease as the winter ice cover forns and thi ckens.

During severe summer storns, hi gh waters (storm surges) can inundate consi derable portions of both the barrier islands and the nearshore mainland. The barrier islands limit the wind and wave action in the lagoon system but the effects of wind and waves in exposed coastal waters are Iimited only by di stant points of land, by the di stance to the edge of the ice pack, or by concentrations of ice floes.

Because of wave, tidal and ice action and a gradual historical rise in sea level rel ative to the mainl and, the nainl and coastline retreats on an average of $\mathbf{1 - 2} \mathbf{m}$ annual ly , and $\mathbf{t h e} \mathbf{i s l}$ and margins are al so eroded away and reworked. This erosion is epi sodic in nature; nost occurs during intense storns. At such tines Iarge anounts of organic naterial (tundra nat and underlying peat) and inorganic sedi ments are transported from nai nl and and island shores to lagoon and marine envi ronnents.

Mbst inorganic sedi nent particles in the lagoons and ot her nearshore basins are the size of sand or silt; gravels occur sparingly. Sedi ments are poorly sorted because sedi ment resuspensi on and transport by currents and uave action is extrenel y variable. Sedi ments are continually being introduced to nearshore areas via river floodwaters and coastal erosi on. Vind-generated waves and currents produce a net westerly I ongshore sedi nent transport.

WATER CI RCULATI ON AND EXCHANGE

The important. questions rel ated to water circulation and exchange are listed bel ow the ecol ogical significance of each question is expl ored in the paragraphs that follow

1. What are the nature and timing of seasonal changes in the nearshore circul ation regi ne?
2. What are the flushing rates of a typical coastal lagoon system under a range of expected conditions?
3. What are the magni tude and nat ure of exchange bet neen coastal and marine waters?
4. How are circul ation and nater nass exchange affected by topographic features?
5. What are the nagni tudes of the currents affecting coastal benthic envi ronments?

Seasonal Char acterization
In hi gh-Iatitude envi ronnents, organi sns have life histories that are structured rigidly by seasonal environnental phenonena. Because circulation and water mass movenent strongly influence ani mal consumers and their supporting food chai ns in the nearshore Beaufort Sea, it is i mportant to accuratel y define the seasonal nature of these processes in order to assess the ecol ogi cal implications of oceanographic processes in general.

Winter Ice Season

Ice usually begi ns forming on the Iagoon surfaces in late Septenber or early October. Shel tered Iagoon waters begin to freeze earlier than the nearshore ocean because the shallow waters cool nore qui ckly and, because they are bracki sh, freeze at a hi gher temperature (Wiseman and Short 1976). Fromthis time until the following April, ice increases in thi ckness at an average rate of about 1 cm per day. During October, Novenber and Decenber, the nearshore circul ation beneath the ice is reI ati vel y uni mpeded. Severe storns that occur during this period can nove the ice about freel y, causing large ice-free leads to form and ice
to nove offshore or to pile up on the shore (Barnes and Rei mitz 1977; Weller et a1. 1978:60).

As the ice thickens, the effects of winds on the underlying waters are damped, but under-ice novenent othervi se renai ns rel atively unrestricted until channel s and passes begin to be blocked by ice. In Si mpson Lagoon this occurs when ice reaches 1.2-1.5 minthickness (Schell and Hall 1972). Even when uni mpeded by ice blockage, the rates of water novement and associ ated sedi ment suspensi on and transport under ice are much lower than during summer (Drake 1977).

During late winter (March, April, early May) when the ice is thickest, sub-ice nater flowis at a minim(Schell and Hall 1972; Weller et al. 1977:41). At this time lagoons and bays nay experience little or no flow, and currents in nearshore areas are generally less than $\mathbf{5} \mathbf{c m}$ per second. Circulation in the nearshore nay be enhanced at this time by thermohaline convection, a seaward-landward water exchange generated by the production of high-salinity water in shal low areas by salt exclusi on during freezing (Veller et al. 1977:151; Schell 1978). Under such conditions, the hi ghly saline water produced at the water-ice surface si nks and flows seavard at the bottom and is repl aced by a landuard flow of lower salinity water near the top of the water-col um.

Spring Thaw
The rel ativel y steady state of low to zero circulation in coastal waters from March to May is quickly and drastically altered by spring flooding of rivers, which usually begins during the last week in May or the first week in June. Although variable in magnitude, characteristics of spring thaw are similar anong North Sl ope rivers and coastal segnents; the following descriptions are from Barnes and Rei mitz (1972), Rei mitz and Bruder (1972), VAl ker (1974), Wiseman and Short (1976), and Veller et al. (1978:110).

Spring floodwaters from Al askan arctic rivers flow over the river delta and then onto the coastal ice if river delta channel s are shallow and frozen throughout. In rivers such as the Colville that have deep del ta channel s sone of the initial flow goes under the river delta ice and the sea ice.

As the initial di scharge noves seavard, it fans out rapidly over the nearshore ice, reaching depths of a neter or so and depositing much silt and detritus on the ice. This flood lasts for only a few days; much of the water finally drains through hol es and cracks intolagoon and nearshore marine waters. Al so, sea ice imedi atel y adj acent to the deltas is soon nelted, allowing the river water to flow di rectly into the sub-ice water.

The floodvater injected beneath the ice advances seaward as a freshwater wedge or lens between the ice and the nore saline waters beneath, to the approxi nate extent of the over-ice di scharge. (The subice lagoon and river del ta waters are highly saline imedi atel y preceding flooding because the sol utes have been excl uded and concentrated under the ice during the freezing process.) Little mixing of the fresh and sal ine waters occurs imedi atel y, al though sone of the naterial suspended in the river water settles through to the bottom

Typi cally the over-ice flooduaters qui ckly cover large portions of the surfaces of the lagoons or bays at the ri ver nouths, and a snall portion of the over-ice floodwaters extend beyond to the marine envi ronnent. The water on the ice generally flows west ward; the river water that flows under the ice presumably does likewise.

Intense flooding nornally lasts less than two weeks, after which the under-ice water in sone of the lagoons and bays is al nost completely fresh except for pockets of saline water in bottom depressions. As the surface ice melts in the following weeks, the fresh water gradually mixes with incoming col d marine water to create the bracki sh water systens that prevail al ong the coast throughout the summer.

During the nonth following initial over-ice flooding, bay and I agoon ice typically thins in place, melting first where deposits of silt and detritus have darkened the surface. Because of this differential melting, nost of these deposits are probably dropped in place rather than being rafted away (Reimnitz and Bruder 1972). In early June the thin ice finally begi ns to break apart and nove; by mid-July the ice remants have normally noved out with the wi nds and currents, leaving the Iagoons and bays open.

Open- Wht er Season
The open- water season is the peri od during which surface ice offers little obstruction to the action of wind on coastal waters. Alhough variable in length, this period normally lasts about three nonths, from early July to early October.

Nearshore currents in the open- water season are primarily winddri ven (Wiseman et al. 1974; Callaway and Kobl insky 1976; Dygas and Burrell 1976; Mattheus 1978; Mungall 1978; and others). Winds are predoni nantly fromthe northeast and secondarily fromthe west. Currents in the nearshore nove parallel to the coast and in the same general di rection as the wind.

The nost intense storns cone fromthe west, at irregul ar interval s, but primarily late in the open- water season (sonetimes well into the early winter). These I ate-season storns are responsible for the largest stormsurges and for the maj ority of coastal erosi on (Short et al. 1974; Veller et al. 1978).

Freshwater input from nost ri vers decreases by the begi nning of the open- water season, and remains rel atively low throughout the openwater season (Barnes and Rei mitz 1972; Rei mitz and Bruder 1972; Val ker 1974; and others), al though the flow pattern varies sonewhat among rivers (Fig. 2).

Coast al Fl ushing

The flushing rate of waters in lagoon and other nearshore envi ronments needs to be eval uated because it is an index of the integrity of the nearshore system If water and its entrai ned organi sns and materials are rapidly transported through a coastal segnent, then the integrity and distinctness of that area, interms of the water and its load, are low This is an important consideration when extrapol ating infornation from one part of the coastal systemto another and when predicting the persi stence of local anomalies in water quality. Effects of flushing rates and characteristics on the transport of suspended materials are especially important; the rate of supply of food-chain materials to sites where food may have been depl eted depends on the rates

Figure 2. Annual hydrographic regi mes of two rivers di scharging into the Al askan Beauf ort Sea. (Adapted from Carl son et al. 1977).
and nature of transport processes. Similarly, the rate of flushing determines the rapi dity with which coastal sites are exposed to changing arrays of physical and chemical water conditions.

In summer, currents in shallow coastal waters generally nove paralIel to the coast at about 3 to $\mathbf{4 \%}$ of the speed of $\mathbf{t h e} \mathbf{w i n d}$ and in the same di rection as the wi (Callaway and Koblinsky 1976; Mungall 1978). Sumer winds are usually from the northeast and average about 5 m per s. The coastal waters will nove westward under these conditions at about 15 cm s, causing a coastal area the size of Si mpson Lagoon (about $35 \mathbf{k m}$ long) to flush in about five days. Under the influence of strong winds, the same system could flush in one day (Mungall 1978). Si nce winddri ven currents in such shallow waters are nornally uniformthroughout the water-col um except very near the bottom (Komar 1976a), such flushing nay be virtually compl ete except for bottom waters and those affected by coastline irregularities. However, as I will describe later, the ecol ogi cally important currents nay be those at the bottomthat are resi stant to flushing.

Currents under ice apparently al so nove parallel to the coast, but at rates mach reduced from those of summer (Schell and Hall 1972; Barnes and Reimnitz 1977). Fl ushing rates for winter have not been cal cul ated, except that they are presumbly reduced to essentially zero in lagoons when inl ets becone seal ed by ice (e.g., Schell and Hall 1972).

Lagoon- Offshore Vater Exchange

It is implied above that rapid coastal flushing is caused mainly by water mass exchange parallel to the coast. However, it has not been established what proportion of the water that flushes coastal systens cones from adj acent of fshore marine areas. The following di scussion addresses the ecol ogi cal importance of the difference between novenent of water al ong the coast and coast al - mari ne exchanges, and documents what is known about water exchange bet ween nearshore lagoon and offshore narine areas.

Whter exchange bet ween coastal and marine envi ronments appears to be extremel y i mportant to ani mal sin the coastal region; whether the exchange is ecol ogi cally beneficial or harnful nay depend Iargely on its
nature and rate. First, for selected speci es, the nearshore water nay offer beneficial conditions (presumably rel ated at least partly to water qual $i t y$ or entrai ned naterials) in comparison with waters in the narine system (Truett 1980).- Therefore, for the benefit of these species, exchange rates between nearshore and nari ne water needs to be low enough to prevent excessive dilution of coastal waters by marine waters. Second, exchanges of transported naterials (invertebrates, detritus, nutrients) bet ween the coastal and narine envi ronments nay be vital to the well-being of coastal biota. Fromthis point of view water exchanges need to remain sufficiently great to nai ntain these vita"l transport processes. It is important, then, that the magnitudes and nechani sns of coastal-offshore water exchange be exam ned, especialy si nce proposed devel opment activities (construction of causenays, etc.) may affect exchange characteristics in ecol ogi cally important ways.

Magni tudes of Exchange

Partially encl osed bays and I agoons al ong the Beauf ort Sea coast becone progressi vel y nore isol ated and different fromthe marine envi ronnent as the surface ice thickens in winter (Schell and Hall 1972; Weller et al. 1978). The waters of the two envi ronments may actually become physi cally separated by ice barriers, and salinities in the lagoons and bays may approach or exceed the physiol ogi cal tol erances of sone of the ani mals that utilize the lagoons in summer (Griffiths and Dillinger 1980).

The exchange rate (and the resulting integrity of the nearshore system) during the summer appears to be a nore critical issue. Bi ol ogi sts participating in this study (P. Craig, W Griffiths) report that during summer lagoon water temperat ures are higher and salinities lower than they are in the adj acent ocean. Mattheus (1978) shous that the temperatures of the coastal waters remain distinctly hi gher in summer than do the temperat ures of the adj acent marine system Mungall (1978) docunented that salinities and temperat ures within the Iagoon, al though variable, remai n generally lower and hi gher, respectivel y, than those in offshore areas. These temperature and salinity differences have al so
been reported by Hufford (1974), Wiseman et al. (1974), Herlinveaux and de Lange Boom (1975), Schell (1975), and others. Mattheus (1978) and Mungall (1978) thought that they could trace the coastwise novement of water boluses. Mat theus concl uded that mining bet ween the nearshore and narine water nasses was minimal, since the temperature and salinity differences between the two areas persi sted throughout the open- water season. Callaway and Koblinsky (1976) al so impled that exchange between the nearshore and mari ne systens was very much less than exchange bet ween nearshore subsystens.

Mechani sns of Exchange
The evi dence cited above indi cates that coastal waters normally do not mix with offshore narine waters to a great extent. However, some exchange between the two systens does occur. The mechani sns of exchange are important to the transport of entrai ned naterials (to be di scussed Iater) as well as to the mai ntenance of the characteristic warm brackish waters in nearshore areas.

Exchange processes characteristic of shallow lagoons and estuaries in nore temperate zones presumably al so occur al ong the Beauf ort coast in summer when waters are ice-free. It should be noted that nost lagoons and bays in northern \mathbf{A} aska are by definition estuaries, i.e., "semiencl osed coastal bodies of water whi ch have free connections with the open sea and within which seater is measurably diluted with fresh uater deri ved from land drai nage" (Caner on and Pritchard 1963). The fol lowing paragraphs di scuss important aspects of estuari ne- marine exchanges.

The domi nant node of exchange between estuarine and marine envi ronments, even in the case of partially- to well-mixed estuaries (as are nost of the Beauf ort I agoons and bays), invol ves seaward flow of bracki sh water in the surface layers and landward flow of saline water in lower I ayers (Conomos and Peterson 1976; Dyer 1978; Officer 1978; Pritchard 1978; Conomos 1979; and others) (Fig. 3). In the Beauf ort Sea this phenomenon apparently occurs even under the nearshore ice during spring runoff, as described earlier. However, during and for sone time
following the peak runoff period the interface between the overlying freshwater wedge and the underlying sal t water wedge nay be seavard of sone of the very shal low lagoons, judgi ng from under-ice salinity measurenents made in Si mpson Lagoon in June 1978 (W. Griffiths, pers. conm.). Consequently, waters of some Beaufort Sea lagoons at this tine nay be al nost compl etel y fresh because of the trenendous under-ice fl ushing action from maj or rivers. During the open- water season in the nearshore Beauf ort Sea, the mixing effect of winds obscures this twodi rectional stratified flow in the shallow lagoons. However, sensors noni tored by Barnes et al. (1977a) showed that under prevailing easterly winds in Stefansson Sound, cold saline waters entered the sound on the bottom of passes as the warm brackish water exited at the surface. Similarly, Schell (1975) found that pronounced stratification devel oped in Si mpson Lagoon during cal meather in late summer, apparently because of the intrusi on of sea water at the bottom Herlinveaux and de Lange Boom (1975) noted characteristic intrusi ons of high-salinity waters in summer at the bottons of southern Beaufort Sea Iagoons in Canada. Furthernore, steep salinity gradi ents (differences of $\mathbf{6 \%}$ per mdepth) have been noted at rel ativel y deep entrances to Si mpson Lagoon at the same time that the lagoon waters thensel ves are fairly well mixed (Veller et al. 1978:67). Stratification caused by surface freshuater outflowis nore evi dent in the deeper maters outside the Iagoons than within the I agoons (Hufford 1974).

Fi gure 3. Characteristic estuarine circulation patterns cause brackish water to nove seaward at the surface and saline water to nove I andward at the bottom Particulate tend to settle and exhi bit a net I andward novenent.

Rel ated to this layering phenonenon is the process of coastal upwelling, whereby deep, cold narine waters are brought to the surface near the land margin. Upwelling is a common occurrence in many coastal areas of the world (Johnson 1957; Segerstrale 1957; Cononos and Peterson 1976; and others) and nay occur si multaneously with the estuarine-narine \mathbf{m} xing processes described above. Upwelling is probably comon along the southern Beauf ort Sea coast; the postul ated causes and characteristics are descri bed bel ow from Hufford (1974), Wiseman et al. (1974), Herlinveaux and de Lange Boom (1975), Barnes et al. (1977a, b), and Drake (1977).

Upwelling al ong the Beauf ort coast typi cally occurs when winds are from the east during the open- water period. Under these conditions, the sea level is lowered, and the warm brackish coastal waters tend to be pulled seaward as a surface lens, and the cold, saline narine waters intrude I andward at the bottom (Fig. 4). This type of circulation pattern should be expected to occur commonly si nce the summer winds are predominantly from the east (Barnes et al. 1977b). (lt should be noted that winds from the west typically raise coastal water levels by pushing water into the coastal bays and lagoons; the warm brackish coastal waters under these westerly wi nd conditions are hel d agai nst the coast where they are warned by the sun and freshened by runoff [Wiseman et al. 1974].)

It is likely that the presence of barrier islands tends to retard both the seaward transport of the coastal waters and the landward transport of marine waters, and that nearshore- offshore exchange would be nore rapid al ong exposed coasts. The fact that the coastal bay and lagoon waters tend to renai n rel ativel y warm and brackish throughout the open- vater season indi cates that the exchange processes are not sufficient to thoroughly mix lagoon waters with marine waters. However, as di scussed Iater, both the typical estuarine flows and upwelling may cause si gnificant shoreward transport of materials entrai ned in the water near the bottom

In winter, nornal advective exchange between narine and nearshore areas is assuned to be slow, although there is little concl usi ve information. However, Schell has postulated (in Veller et al. 1977:151; Schell 1978) a sub-ice convective exchange nechani sm the nagnitude of

Fi gure 4. Virnds from the east al ong the southern Beaufort Sea coast tend to depress sea level and cause upwelling near the I and margi n ; those from the west hol d bracki sh water agai nst the shore and rai se the sea level.
whi ch is uncertain but the importance of which in suppl ying nutrients nay be si gnificant.

Effects of Topography on Circulation
Topography appears to affect nearshore water notion in several ways that are potentially important to biota. As indicated above, the presence of barrier islands nay be important to the mai ntenance of physically warm brackish waters in biologically active coastal regions. Sone water birds (e.g., phalaropes and arctic terns) appear to congregate to feed in the I agoon near I agoon entrances (J ohnson and Richardson 1980); it is hypothesi zed that currents nay sel ectivel y del iver and/ or affect availability of entrai ned food organi sns to birds, as well as other organisns, at these sites. The configuration of the nearshore bottom and energent landforms may determine the effectiveness of coastal areas as detritus and sedi ment traps.

It is well known that all anomalies in the topography of the nearshore bot tom and of the coastline have an influence on nearshore circuI ation (Mooers 1976). I slands, coastal capes, and subnarine banks form barriers to flow Coastal enbaynents, depressions and subnarine canyons may form channels for flow Since the interactions of flow with topography are governed by predi ctable physi cal laws, extrapol ations and comparisons anong coastal regi ons are possible (Mooers 1976).

Barrier isl and chai ns have characteristic inl et feat ures, or passes, that are mai nt ai ned by water novenent, and that, in turn, control water novenent (Enery and Stevenson 1957; Ri ggs 1976). These passes form or change in direct response to the basic hydraulic pressures within the coastal system they open by erosion and close by shoal ing of sedi ments to fit the hydraulic pressures at any gi ven time. Passes in the vicinity of rivers are generally larger and nore stable than other passes because they carry much of the freshuater di scharge. Inl ets that are predominantly tidal tend to be nore epheneral; they are generally forned by storm uaves, kept open by tidal currents, and closed or noved by storns or longshore currents. If closed, they will tend to recur within the sane general area, when needed to accommodate di scharge. Because inl ets
must peri odi cally accommodate rapid water di scharge, they are usually the deepest part of a lagoon or estuary area.

Inlets in the barrier isl and chain skirting Si mpson Lagoon and Gyydyr Bay appear similar in structure and function to those reported for other systens. The tidal inlets are generally shal low compared to the maj or inl et (Egg Isl and Channel) whi ch accomodates the Kuparuk Ri ver di scharge (Mattheus 1978; Mungall 1978). Sone of these tidal inIets have been observed to cl ose and reopen (Cannon and Rawlinson 1978; W Griffiths, pers. comm.). Inl et depth in the Si mpson Lagoon area, particularly of the maj or inlets, is usually greater than that of the adj acent lagoon, and water flow through the inl ets is often rapid.

It has been found that inlet position and shape are critical to the circulation and the ecol ogy of I agoon systens in temperate regi ons (Copeland 1974; Mooers 1976; Warme et al. 1976; and others); the sane has been implied for the Al askan arctic coast (Schell and Hall 1972; Faas 1974; Mattheus 1978; Mungall 1978; and others). The nat ure and magni tude of lagoon flushing in winter depends on the locations and depths of maj or inlets; under-ice flows decrease or cease as inlets are seal ed by thickeni ng ice, and water salinities in lagoons increase rapidly thereafter (Schell and Hall 1972; Weller et al. 1978:110). Introduction of cold, saline marine water tolagoons in summer by landward intrusi on and upwelling processes may be regulated by inl et depth, si nce marine waters normally must enter at the bottombeneath the exiting brackish water. Longshore flushing rates of lagoons in summer al so depend on the flow capacities of lagoon entrances, and the effectiveness of transport of entrai ned organic and inorganic naterials into and out of lagoons may depend on inl et location and depth, as will be di scussed I ater.

The barrier islands have both di rect and indirect effects on circulation. They physi cally obstruct water novenent and exchange so that the di screteness of the I agoon from the sea is enhanced. They al so obstruct wind notion so that the effect of wind on adj acent waters is altered, although the changes in general circulation patterns as a consequence of such effects is not well known (Bowden 1978; Hamilton and Rattray 1978; Hsu 1978).

Wind-dri ven currents in shal low waters behave similarly regardless of depth except imediately above the bottom Here gradients in current speeds are very sharp because of frictional drag that retards the water notion (Carriker 1967; Komar 1976a, b; and others). The theoretical consi derations and consequences rel ated to currents in benthic envi ronments are di scussed in the next section.

Currents Near the Bottom

Whter notion near the bottomis biol ogi cally important for several reasons. Bottom currents erode important sites (e.g., inlets). The resuspensi on and deposition of organic detritus, and perhaps di ssol ved nutrients, depends on bottom currents. Sone of the important epibenthic organi sns (e.g., mysi ds, amphipods) may make behavi oral adj ust nents to bot tom currents in order to accomplish critical movements to, from and within the nearshore I agoons.

Because of friction-caused retardation of flow near the bottom consi der able notion mist be present in the mid-water zone bef ore there will be novenent of benthic particles or organi sns. Three kinds of processes result in significant water notion near the bottom-uni di rectional currents, oscillatory notion associ ated with waves, and localized scouring (caused by a focusing of uni di rectional flow). There is some di sagreenent as to whether uni di rectional currents or wave notions are nost important to resuspensi on and transport of naterials (Komar 1976b). However, there is general agreement that in shallow shelf waters under a gi ven wi nd regi ne, the shear stress exerted on the bottomby oscillatory wave notion is several tines larger than the shear stress associated with the uni di rectional current (Komar 1976b; Madesn 1976). It appears that wave action is nost important in resuspending bot tom naterials, whereas uni di rectional currents are nore important in causing net transport of al ready-suspended materials (Komar 1976b). Focused bottom scouring is a local phenomenon; in the Beaufort Sea it is associated with rapid water notion through hol es or cracks in ice (Reimnitz and Bruder 1972) and, as el sewhere (Enery and Stevenson 1957; Ri ggs 1976; and others) at narrowinl ets or passes. The importance of scouring
appears to be morein shaping Zocal benthic envi ronnents than in contributing to the total resuspension and transport over a large area.

Because of the extrene difficulty in measuring currents at the bottom (Carriker 1967), few enpirical data are available about the reIationshi ps between winds, waves and surface currents, and bottom currents. The effects of these interactions on the vertical resuspension of bottom material s are especialy poorly known (Komar 1976b; Kjerfve et al. 1978; Schubel et al. 1978). During storns on \mathbf{A} aska's arctic coast, high sedi ment and detrital loads suspended in the water indi cate that consi derable water notion occurs on lagoon bottons, but there is no know edge of the magnitude of this notion at varying bottom depths, current speeds, wave periods, and wi nd speeds.

DETRI TUS- - SOURCES AND TRANSPORT

From the vieupoint of ecosystem functioning, there are two important questions about dynamics of detritus novenent in the nearshore envi ronnent:

1. What are the sources and nechani sns of del i very of detritus to the nearshore?
2. Is the nearshore envi ronnent a detritus trap, and if so, what physical processes and envi ronmental features are invol ved?

Detritus Sources and Delivery Mechani sns
Detritus appears to be a primary nutrient source and a secondary energy source for nearshore food webs (Schell 1979). Mbst of the detritus found in the nearshore area is not produced in situ but del ivered there from external sources. It is important, therefore, to document where the detritus cones from and what processes del iver it to the coast al regions.

Three potentially important detritus sources and delivery mechani sns have been identified:

1. terrestrially-deri ved detritus fromthe drai nage systens of the larger streans that di scharge into nearshore areas,
2. terrestrially-deri ved detritus from coastal erosion, and
3. nari ne-derived detritus transported I andward.

Detritus from Stream Di scharge

Ri ver di scharge has been found to be a maj or source of detritus to nearshore lagoons and estuari es in nany temperate areas (Fox 1957; Hedgpeth 1957; Segerstrale 1957; Copel and 1974; and others); it has al so been reported to contribute large anounts of organic materials to the nearshore Beauf ort Sea (Rei mitz and Bruder 1972; Wal ker 1974; Pelletier 1975; Cannon and Rawlinson 1978; and others). The general characteristics of the di scharge of stream borne detritus and sedi ment into the A askan Beauf ort Sea have been docunented (Barnes and Rei mitz 1972; Rei mitz and Bruder 1972; Val ker 1974; Pelletier 1975; Cannon and Rawlinson 1978). Al nost the entire annual increnent is brought to the coast in June, carried by the rivers during the peak runoff period. The organic and inorganic suspended materials are mixed; the organics range in size from very snall particles to peat shreds to drifthood. The percentage of organic naterial in the suspended Ioad is estimated (for the Kuparuk River) to be about 1\% (Cannon and Rawl inson 1978, quoting D. Schell, pers. comm.). The suspended load is deposited in part on the nearshore ice surface and di scharged in part beneath the ice (VAl ker 1974); Cannon and Rawl inson (1978) bel ieve that the maj ority of the organic fraction is carried in the early overflow and deposited on top of the ice.

It appears likely that the maj ority of the detritus, even though a large portion is initially discharged above the ice, reaches the water-col um in or near the coastal lagoons and bays. Mbst of, the water which initially flows over the ice quickly finds its way, via cracks and hol es, to the underice envi ronnent within and near the bays and lagoons (Barnes and Rei mitz 1972; Cannon and Rawl inson 1978). The sedi ments remai ning on the ice in the lagoons are not noved appreciable di stances until the ice breaks up and leaves the lagoons in late June and early

July. By this time most of the ice underlying the deposits of detritus (whi ch are darker than exposed ice and thus heat nore rapidly) has nel ted in place, rel easing the detrital materials to the water beneath.

Detritus from Shoreline Erosion

It has been known for many years that coastal erosi on accounts for Iarge anounts of detritus in nearshore waters of the $\mathbf{A l}$ askan arctic. MacGinitie (1955) reported that tundra vegetation and peat were eroded into the nearshore Beaufort Sea at Barrow Mre recently, Short et al. (1974), Schell (1975, 1978), Lewi s and Forbes (1975), and Cannon and Rawlinson (1978) have described coastal erosion as detritus sources el sewhere in the southern Beauf ort Sea.

The organic naterial rel eased to nearshore waters by coastal erosion is largely peat, which underlies the tundra vegetation in thicknesses up to a meter or nore. This peat is eroded primarily during storns, when wave action reaches across the beaches to the peat-capped blfs on the mainl and and islands. The naj or inputs probably occur in late summer and early fall under the action of winds fromthe west.

I ndi rect evi dence indi cates that seaward transport of detritus from coastal erosion is rel atively slow Large lump of tundra nat are commonly encountered on the beaches fronting bl ufs and in shallow waters near these beaches, but not in deeper waters in mid-lagoon. Naidu (1978) found organic carbon level sin sedi ments to decrease with di stance from mai n and shores. Westerly storns, which cause the nost severe coastal erosi on, al so tend to hol d the coastal water nasses agai nst the shore, thereby impedi ng seaward transport of suspended particul ate.

Marine- Derived Detritus

Whet her a si gnificant portion of marine-produced detritus (e.g., dead plant and animal renai ns) finds its way to the coastal estuaries and Iagoons al ong the Beauf ort coast is unknown. Schell (1978) inplied that nearshore mari ne sources of detritus (si nking plankton, etc.) may
be ecol ogi cally si gnificant, but indicates that data supporting that vi ew are not yet available.

The maj or components of detritus produced within coastal and marine waters are sinking phytopl ankton, dead ani mals, ani mal parts, and netabol ic products. The importance of sinking plankton in shallow turbulent coastal waters is uncertain; the plankton nay remai \mathbf{n} suspended because of their low specific gravity (Bellis 1974; Kremer and Nixon 1978:56). However, in winter, settling under ice, even in shallow water, should not be affected by excessi ve turbulence. Setting rates al so becone si gnificant in the open ocean where waters are deeper and, bel ow the surface layer, less turbul ent (Krener and Nixon 1978:56).

Little information about the I andward-seaward flux of organic detritus is available; descriptions of how inorganic sedi ments behave in coastal waters are nore comon. Bellis (1974), Hatcher and Segar (1976) and Naidu (1978) have assuned that organic detritus is similar to inorganic fines (clay, silt) in response to current action. If this is true, then we may gain insi ght about detritus transport by examining information about interactions bet ween inorganic sedi ments and water aI ong coasts. Johnson (1957) and Drake (1976) noted that current patterns over the inner continental shel ves of the world typi cally concentrate resuspended sedi nent in the nearshore zone. Dyer (1978) showed that the mechani smthat drives sea water toward land near the bottomin typical estuarine circulation systens al so returns the sedi nents to the coastal waters; he found a net I andward di spersi on of sedi nents in two well- to partially-mixed estuaries in France and the United Kingdom In San Franci sco Bay, Cononos and Peterson (1976) found that significant portions of sedi ments di spersed seaward in the water-col umn were ret urned to the bay in bottom landward-flowing currents.

To concl ude, it is not known if much marine-deri ved detrital material is transported to the nearshore lagoons and estuaries of the Beauf ort Sea. However, evi dence from other coasts suggest that coastal ci rcul ation and transport processes nay generate such a landward transport of marine organic detritus. The likelihood that the nearshore will act as a sink for such naterial will be di scussed Iater.

Rel ative Contributions--Ri verine, Coastal, Marine
It is important to know the rel ative anounts of detritus supplied to the nearshore from each of the three potential sources. As indicated above, no estimates of the anounts of marine-derived material supplied to the Iagoons and bays are available. In terns of terrestrial sources, Schell (1978) and Cannon and Rawlinson (1978) have estimated that riverine and coastal erosi onal inputs are of the same order of magnitude.

Detritus Flux--Is the Nearshore Area a Trap?
We want to determine if and why shal low coastal envi ronments are i mportant for the nai ntenance of fish and bird popul ations that have been found to sel ectively use them Because detritus is an important source of energy and nutrients fuel ing the food webs of fish and birds, it is important to determine whet her the nearshore area sel ectivel y accumal ates it (to the presuned advantage of fish and birds).

Coastal estuaries and lagoons function as detritus traps in many parts of the world. Meade (1969, 1972) bel ieves that, at nost, only about 10% of the riverborne suspended solids entering estuaries ever reach the sea. Drake (1976) states that the evi dence for nearly perfect retention of fluvial suspensoids in many estuaries is incontestable. Hedgpeth (1957) mai ntains that the rate of deposition of I and-derived detritus is far greater in lagoons and estuaries than in the open sea. Conomos and Peterson (1976) and Conomos (1979) found San Franci sco Bay to be an effective sedi nent (and al so presumably detritus) trap during normal river di scharge conditions. The processes that regulate the behavi or of detritus in coastal areas are revi ened bel ow, with particular reference to the southern Beauf ort Sea coast, to examine if and how the nearshore Beauf ort is likely to collect detritus.

Detritus vs I norgani c Sedi ments

The behavi oral rel ationshi ps bet neen organic suspensoids (detritus) and inorganic particles (sedi ments) are gernane to this di scussi on for several interrel ated reasons. First, a great deal nore is known about
sedi nent resuspensi on, transport and deposition than is known about detritus behavi or. Second, organic materials appear to behave similarly to sone inorganic sedi ments. Thi rd, certai \mathbf{n} organi c and inorgani \mathbf{c} materials may, by the process of flocculation, be bound together and thereby forced to share the same depositional fate.

Organic naterials in the water are reported to have transport properties similar to those of inorganic fines (clay, silt). Generally, organic matter is associ ated with fines in depositional envi ronments (Bordovskiiy 1965; Froelich et al. 1971). High organi c carbon concentrations on continental shel ves are generally encountered in mad (as opposed to sand) bottons (Hatcher and Segar 1976). The reason for the co-deposition of organics with fines is presumed to be that the tho behave similarly in water (Naidu 1978).

Suspended clay and organic particles nay adhere to each other to formlarger particles via the process of flocculation (Copeland et al. 1974; Pelletier 1975; Krone 1978). Co-deposition of the two thus becones obl igatory; floccul ation may theref ore augment the extent to which organics are to be found with inorganic fines in depositional sites. The influence of flocculation in determining the sites of deposition of detritus is di scussed at greater length bel ow

Deposition of Terrigenous Detritus

The maj ority of eroded coastline materials and organic and inorgani c materials carried by rivers are deposited in nearshore areas. It has been a common observation that particles suspended in streans di scharging into coastal basins tend to settle there due to the sudden reduction of current speed (Hedgpeth 1957). The same is true for the Beauf ort Coast. The larger, denser particl es are dropped fromsuspensi on first, near the river nouths, and silt and clay are deposited farther away (Burrell et al. 1975). Mbst organic materials, similar to the inorganic fines, are probably not deposited imedi ately, but carried sone di stance prior to setting out. However, it is likely that the process of floccuI ation affects the depositional behavi or of these clays and organics.

Floccul ation is the physi ochemical process whereby fine silt, clay, and organic particles in the water formaggregations because of the mutually attractive forces of their charged surfaces. Flocculation is mini mal in waters having low salt concentrations (such as nost streans), but increases markedly with salinity (Copel and and Dickens 1974; Krone 1978). For this reason its effects are nost dranatic where particulaterich fresh waters impinge upon high-salinity coastal waters. At present the data suggest that floccul ation increases the setting rate in marine waters by up to one order of magnitude (Drake 1976).

Conditions under whi ch rivers di scharge the naj or portions of their organics into the nearshore Beauf ort are ideal for extensi ve flocculation. The first several days of flood di scharge in the spring may carry nost of the annual detritus load (Cannon and Rawlinson 1978). At this time the nearshore lagoons are highly saline because of salt excl usi on during the freezing of I agoon water. As the river waters spread seavard under the ice, with the highly saline waters beneath, the freshwater/sal tuater interf ace becones extensi ve. Walker (1974) notes that, although little mixing occurs initially across this interface, suspended naterial neverthel ess settles through to the bottom In the Canadian Beauf ort, Pelletier (1975) noted that flocculation of clay and organic particl es occurred extensi vel y within and on the peri phery of the Mackenzie River plume.

Fl occul ation al so causes aggregation of organics introduced via coastal erosion, which occurs al nost entirely during late summer and autum storns. Although salinities of coastal waters at this time are normally lower than when ri ver di scharge begins, the turbul ent ming accompanying the storns acts to pronote increased particle collision, whi ch pronotes flocculation (Krone 1978).

Although it is clear that there are hi gher deposition rates of terrigenous detritus in nearshore lagoons and bays than in offshore waters, a portion of the detritus is undoubtedly deposited seaward of I agoons and embayments. MacGinitie (1955) mai ntai ned that fresh vegetation and peat fromfreshwater di scharge were deposited as far out to sea as 40 km (near Elson Lagoon). Barnes and Reimnitz (1972) and S. Johnson (pers. comm.) noted that sone of the over-ice di scharge from
the Kupar uk Ri ver in spring proceeded seaward of Si mpson Lagoon to di scharge through the ice into narine waters.

Detritus Fl ux Between Marine and Nearshore Areas

Is the detritus that is preferentially deposited in nearshore areas fromterrestrial sources gradually lost to the ocean, or is it suppl enented by net landward transport of narine- and/ or terrestriallyderived organics from the narine environment? The transport of organic matter under ice on the Beauf ort Shelf is probably inconsequential (Drake 1977), so the nai n consi deration is detritus novenent during the open- wat er peri od.

Current patterns over the inner conti nental shel ves of nost areas of the world tend to concentrate resuspended shelf sedi nent (and presunably al so detritus) in the nearshore zone; if estuaries are present, much of this material will be funnel ed into estuaries and deposited (Drake 1976). There is evi dence that a naj or force contributing to this landward transport is the characteristic landward-flowing bottom currents (Conomos and Peterson 1976; Schubel and Carter 1976; Conomos 1979). Dyer (1978) shows that well-mixed estuaries have a turbi dity naxi nam near the I andward nargi n of the salt water intrusion at the bot tom thi i indicates that the mechani sm driving salt water I andward must al so affect suspended sedi ment. Dyer found a net I andward di spersion of sedi ment and correspondi ngly nore sedi ment entrai ned during the flood (landward-moving) tide than on the ebb (seaward-novi ng) tide.

Whet her Beauf ort Sea narine sedi nents that are resuspended have a net landward transport is not known, but circunstantial evidence suggests that they do. Landward-flowing bottom currents (and probably associ ated sedi nent transport) caused by the predomi nant easterly wind and/ or by char acteristic est uari ne- nari ne water exchange should be common, based on evi dence provi ded by Hufford (1974), Herlinveaux and de Lange Boom (1975), Schell (1975), Wiseman and Short (1976), Barnes and Rei mitz (1977), and Barnes et al. (1977a). Shoreward-flowing bottom currents nay not exi st when wins are westerly, but coastal waters are generalify hel d agai nst the coast at these tines (Wiseman and Short 1976) and
extensi ve seaward transport is thereby prevented. However, C. Mungal1 (pers. comm.) cautions that westerly winds migt al cause down-wel 1 ing in nearshore areas, with a consequent seaward transport of bottom water and naterials.

In summary, available evi dence suggests that the coastal lagoons and bays may be sites to which mari ne-derived detritus (as well as terrestrially-derived organics) is del ivered and deposited.

Effects of Topography

The topographic characteristics of nearshore envi ronments may locally affect the ability of these envi ronments to catch and hold detritus, Studi es al ong the northeastern U.S. coast indicate that organi c matter accumul ates in depressions in the bottom (Hatcher and Segar 1976). Hedgpeth (1957) notes that troughs between subnerged bars parallel to the shore nay serve as traps for silt (and presumably detritus as wel). Mbdel s show an entrapnent of suspended naterial within shoreline irregularities, because of the predicted effects of these irregularities on current speed (Dyer 1978). It is presuned that topographic troughs and shoreline irregul arities in the nearshore Beauf ort nould al so cause detritus accumul ation. E. Rei mitz (pers. comm.) found detritus accumuIated landward (but not seavard) of terraces plowed parallel to shore by i ce gougi ng. The I agoons thensel ves are troughs behi nd the barrier islands and spits; submerged spits and bars parallel to shore are characteristic feat ures of the shallow coastal waters (Faas 1974; Short et al. 1974; Burrell et a1. 1975). These energent and subnerged feat ures undoubt edly enhance the effectiveness of the nearshore Beauf ort as a detritus trap.

Depositional Evi dence

The quantities of organic materials in sedi ment samples taken in vari ous locations on the shelf may indicate recent as well as historical patterns of detritus deposition, since the non-living (detrital) organi c material in such samples is likely to be the predominant portion of the
total organic matter (Fox 1957). Unfortunatel y, nornal methods of col lecting sedi nents for anal ysis (grab, dredge, etc.) do not accurately measure recent deposits of detritus, which normally rest on top of the substrate. However, sampling effectiveness should be roughly comparable anong sites where the same sampling devi ceis used. Naidu and Mbwatt (1975b) found the levels of organic carbonin sediments to be similar in Si mpson Lagoon and adj acent Harrison Bay (0.79% and 0.77% respecti vel y), but lower (0.58) in the nearby marine envi ronnent. In the Canadi an Beauf ort, Pelletier (1975) found higher organic carbon level sin sediments of deltaic and coastal areas than in the narine envi ronnent. Within the nearshore, Naidu (1978) found that organic carbon in sedi ments decreased in Si mpson Lagoon fromthe nai $n l$ and to the barrier islands. (The hi gh level s near the nai nl and were post ul at ed to be rel ated to the nearness of these samples to the source of input., i.e., coastal erosion.) Because dredges were used for sampling in this case, it is not definite that these seaward decreases in carbon content reflect corresponding decreases in the surface deposits of detritus, although such is suspected.

Other depositional evi dence for sites of detritus accumal ation is based on the assumption that organic natter normally co-deposits with inorganic fines. Several investigators have described deposition sites for fine silts and clays in the nearshore Beauf ort Sea; some have noted the co-deposition of these sedi ment sizes with organics. Naidu and Mbuatt (1975b) point out that the sorting of sedi nents (and presumably al so resuspensi on and transport of detritus) in the coastal waters of the Beauf ort Sea occurs during storns. The ultinate depositional sites of fines are, therefore, the rel atively "quiet" localities partially protected from wave action by a conbi nation of topographic features and water depth. Enery and Stevenson (1957) note that mud substrates are usually characteristic of the qui et reaches of estuaries, where turbuIence and current action are reduced. Burrell et al. (1975) and Naidu (1978) found an inverse correl ation bet ween nean particle size and water depth in Si mpson Lagoon despite the fact that the Beaufort coastal sediments in general are poorly sorted (Naidu and Mowatt 1975a, b; Weller et al. 1978:106). This indi cates that the central lagoon basin acts to
sel ecti vel y accumul ate fine sedi ments (Naidu 1978), and perhaps (by inference) detritus.

Lewis and MtDonal d (1974) nai nt ai \mathbf{n} that in the Canadi an Beauf ort Sea, three nai \mathbf{n} sedi nent si nks exi st al ong the southern coast--bet ween Herschel Island and the mai nl and, in Phillips Bay, and in Shoal water Bay. They present no evi dence to imply that these are al so detritus sinks, but the possibility nay be presuned. No data docunenting specific sites in the Alaskan Beauf ort Sea as sedi ment or detritus sinks have been publ i shed.

GEOMORPH C FEATURES AND THEI R EVOUUTI ON

The ecol ogi cally important geonorphic feat ures al ong the Al askan coast of the Beauf ort Sea incl ude:

1. The barrier islands which provide nesting sites for certain birds.
2. The island chai ns, which act as barriers to winds and waves and restrict water exchange bet ween coastal and marine systens.
3. The inl ets and passes, which connect lagoons with the ocean and with other I agoons, and al I ow transport of suspended materials and migration of aquatic or gani sns.
4. The shal I ow basi ns of I agoons, whi ch pronote rapid uarming of coastal waters and provi de ready access by birds to bottom dwelling prey.

Two questions about these features must be answered before it will be possi be to assess long-term consequences to fish and birds of sone of man's activities.

1. What are the formative processes of the ecol ogically i mportant features?
2. What time scal es are invol ved in the nat ural formation and di sappearance of these feat ures?

Formative Processes
As noted above, sone of the geonorphic feat ures al ong the Beauf ort Sea coast are directly or indirectly important to fish and birds.

The processes that have gi ven rise to these features must be understood in order to eval uate the long-term consequences of devel opment activities that would change these feat ures. Onl y by eval uating these fornative processes can we predi ct whether the changes wrought by devel opnent are likely to be nat urally nended. For example, if island materials are now supplied by processes that will no longer function after some development activity, or if islands were orginally formed by processes that are not now functioning, then renoval of islands or portions of islands may be an irreversible change.

Barrier Islands, Lagoons and Est uaries--General Consi derations
The formative nechanisns for coast al barrier islands and their associ ated estuaries and lagoons have been the focus of controversy over the past century (Schuartz 1973; Wanless 1976). Recent evi dence suggests that several processes may act jointly or independently to generate barrier islands in various areas of the world (Zeigler 1959; Otovos 1970; Schuartz 1971). These processes are closely tied to sea level fluctuations ($\mathrm{G} \| \mathrm{I}$ 1967).

Mbst coastal geol ogi sts agree that there has been a general worldwide rise in sea level si nce the last glaciation (LeBlanc and Hodgson 1959; Shepard 1960; Schwartz 1965; Godfrey 1976; Ri ggs 1976; Wanless 1976). Many of these uorkers thi nk that the general rise is continuing, al though some (Leontyev 1965; Leontyev and Nikiforov 1965) maintain that a drop in sea level occurred during a bri ef interlude several thousand years ago. A few investigators (LeBlanc and Hodgson 1959) have found local evi dence that the post-glaci al rise stopped a few thousand years ago and that the sea level has si nce renai ned constant.

Assuming a continued gradual rise in sea level, we will consider three nechani sns that have been proposed for the for nation of presentday barriers and the shal low I agoons behi nd them (1) the building of barriers by sand thrown up fromthe continental shelf, (2) the el ongation of sand spits built fromheadl ands by longshore drift, and their eventual breaching by tidal action, and (3) the gradual subnergence of I ow I yi ng coastal areas behi nd topographichigh (Schwartz 1971; Wanless 1976).

Evi dence from sone coasts indi cates that barrier isl ands have been formed and/ or enl arged by the accretion of subnerged shel faterials onto nearshore submarine or energent feat ures (Fig. 5). LeBlanc and Hodgson (1959) and Shepard (1960) found evi dence that materials for many of the barriers al ong the Gulf of Mexi co were deri ved fromshelf sedinents that presumably built upon existing energent islands, or upon subnerged bars. The latter are characteristic of shallows imediatel \mathbf{y} off sandy beaches (Hedgpeth 1957). Otvos (1970), working in the same area, and Leontyev (1965), studying barriers in the U.S.S.R. , reached similar concl usi ons about barrier island formation.

Pi erce and Colquhoun (1971) doubted that energent barriers could be built by wave action fromsubnerged bars, particularly at a time when the sea level is rising. They quote Kuelegan (1948), King (1960:337) and MKKee and Sterrett (1960) to the effect that breaking orbital waves have questionable ability, in nost circunstances, to build an energent barrier upon a subnerged feature. Subnarine bars are built by waves but, instead of energing, the bars usual ly migrate I andward and eventually becone part of a pre-existing feature. Under these assumptions, the generation of a barrier by shelf sedi ments thrown up by waves appears to depend on the exi stence of an al ready-energent feat ure upon which to build. Regar dl ess of whether subnerged bars can energe during a rise in sea level, once energent barri ers exi st, they conmonl y grow by upward aggravation and renai n energent in spite of a rise in sealevel (Shepard 1960).

The generation of sand spits from the mai nl and or fromexi sting islands is sonetimes implicated in barrier island and lagoon formation (Fig. 5). These barrier spits are nouri shed by longshore transport of naterials (usually sand) deri ved fromerosion of headl ands or from river di scharge (Pierce and Colquhoun 1970; Whnl ess 1976). Eventual ly, segnents of the spits becone $i s l$ ands as the spits are breached by uave action during storns. Examples of barriers forned in this way nay be seen in such locations as the Atlantic coast of the United States (Pierce and Colquhoun 1970) and coastal Australia (Bird 1973).

Fi gure 5. Three general nechani sns have been proposed as fornative processes for barrier islands: inundation of coastal low ands behi nd beach ridges (top); breaching of spits built by longshore drift (middle); and deposition of sand thrown up from the continental shel f (bot ton).

I sol ation of coastal headl ands by i nundation of coastal low ands behi nd the headl ands may be an important fornative mechani smfor barrier systens in sone areas (Fig. 5). Coastal subsidence as a consequence of the rising sea level is the ultinate causative phenomenon. That sea I evel rise caused coastal low and submergence was noted early (MtGee 1890) al ong the east coast of the United States. Zeigler (1959) postuI ated that barrier isl ands and associ ated est uari es al ong the southeastern United States ori gi nated by coastal submergence. Hoyt (1967) preci pi tated more recent controversy in proposing that barrier islands form by gradual subnergence of coastal I ow ands behi nd beach- dune ridges (Wanless 1976). Si nce then, coastal submergence and consequent isol ation of mai nl and feat ures have been commonly postul ated as generating mechanisns for island-I agoon systens al ong the coast of the southeastern United States (Pierce and Colquhoun 1970; Godfrey 1976).

It is now conceded that a conbi nation of mechani sns can formand nai nt ai n barrier/lagoon systens (Ziegler 1959; Schwartz 1971). Pi erce and Colquhoun (1970) propose that both primary barriers (built on or derived fromrelict mainl and feat ures) and secondary barriers (built fromspit extensi ons of mai $n l$ and or primary barriers) are common al ong the North Carolina coast. They mai ntain that the two different formati ve processes are not matually excl usi ve, but commonly interact. Zeigler (1959) al so recogni zed al ong the South Carolina coast both mai inl and- deri ved energent feat ures ("erosi on remnant" islands) and barriers forned fromspit accretion of headl ands and islands ("beachridge" islands). He proposed that the former were built upon relict features and the latter accreted over subnarine deposits by Iongshore transport and deposition of sedi ments.

Barrier Isl ands and Lagoons--Beauf ort Sea

There al so appears to be a continuing rise in sealevel rel ative to coastal substrates al ong the southern coast of the Beaufort Sea. Wéller et al. (1978: 103, 105), usi ng data compiled by D.M. Hopki ns, showed that 20, 000 years ago the surface of the Beaufort Sea was about 80 m bel ow its present level. The increase in sea level, then, has
averaged about 40 cm century for this period. Because of this rise in sea level, the process dominating the formation of barrier island-lagoon systens is probably marine impingenent into coastal regions. Two types of barriers (relict and constructional) appear to have been forned as a consequence.

Relict Barriers. It is generally accepted that those Beaufort Sea coastal islands capped with tundra vegetation and peat are remnant mai nl and feat ures (Cannon and Rawlinson 1978; Weller et al. 1978:127). The biol ogical evidence of this is clear--islands have a vegetative covering that is identical with that of the mainland and that overlies undi sturbed peat deposits several thousand years old. The geol ogi cal evi dence is al so unmistakable; Cannon and Rawl inson (1978) show that the lake basins on the islands are similar in form and orientation to nai nl and I ake basins and that nainland and i and substrates have simiar stratigraphies and lithologies.

A feature that has pronoted the isol ation of coastal bl ufs and the associ ated formation of lagoons is the abundance of lakes in the reIativel y flat Iandscape of the coastal plain. Evi dence that these I akes have coal esced behi nd coast al hi ghs, thus hastening the fornation of Iagoons, has been presented by Faas (1974) and Cannon and Rawlinson (1978) for the Al askan Beauf ort and by Lewis and Forbes (1975:4) for the Canadi an Beauf ort.

Constructional Barriers. Mbst of the coastal barrier islands are surfaced with sand and gravel and are, according to conventional definition, constructional (Weller et al. 1978:127), notwithstanding that their constituent gravel and sand may have cone from relict features (Naidu 1978). The know edge that they are constructional (at least in part) is insufficient for eval uation of the potential consequences of devel opment; the constructional processes and source naterials must al so be known.

Particles I arger than sand (gravel s, boul ders) comprise a large portion of the constructional materials of Beaufort Sea barrier islands. These gravels are thought to have been very local in origin, because wave and current energi es capable of transporting themfromel sewhere
do not presently exi st al ong the Beaufort coast (Naidu and Mowatt 1975a; Cannon and Rawlinson 1978). Naidu and Mowatt (1974) postul ated that some of the I arge boulders found sparingly on these barriers might have been ice-rafted from el sewhere, but Cannon and Rawlinson (1978) and Weller et al. (1978:111) di sagreed with that vi ew Cannon and Rawlinson (1978) believed the gravel and boulders to be deposits from eroded remant islands.

The specific nechani sns and magnitudes of transport of the gravel are not compl etely known. Faas (1974), Reimnitz et al. (1977), Cannon and Rawlinson (1978), and Veller et al. (1978:124) think that they are transported very short di stances, and are only locally reworked by ice shove and wave action. Wéller et al. (1978:124, 129) imply that transport of gravel nay be restricted to the island where the gravel origi nated, especialy if islands are separated by rel atively deep inlets. Rex (1964) working in the western Beaufort near Barrow, and Lewis and Forbes (1975) working in the eastern Beauf ort, found that gravels may be transported consi derable di stances al ong spits. Neverthel ess there is general agreenent that present-day transport of gravel on the Beaufort Sea shelf by nat ural processes is very limited (Reimnitz et al. 1977; Keller et al. 1978:129; and others).

Sand- si zed and finer sedi nents may be noved through the nearshore system by longshore transport and thereby supplied to barrier islands and spitsfrom rel atively di stant sources (Lewis and Forbes 1975:3; Cannon and Rawlinson 1978; Naidu 1978). (Of these sub-gravel-sized particles, those comprising constructional spits and barriers are nostly sand, so silts and clays are not of si gnificant concern.) The primary sources of sand for barrier and spit accretion al ong the coast of the Beauf ort Sea are presumed to be river di scharge and erosi on of coastal headl ands; I andward transport of continent al shel f sands has not been postul ated to be si gnificant. As might be suspected, sand di scharged into the nearshore by rivers appears to settle near the del tas, whereas clays and silts tend to travel farther (Burrell et al. 1975). Si milarly, sand rel eased fromeroded coastal headl ands is initially deposited near its source (Schwartz 1965).

Once the sand is deposited, it is not easily resuspended by waves and transported by currents unl ess it remai ns in very shal low uater (Burrell et al. 1975; Swift 1976; Naidu 1978). The fact that sand at depth is not readily resuspended and transported suggests that a shal I ow vater "corridor" must exi st bet ween a sand source (e.g., river depositional site, mainl and or isl and depot) and an energent feature in order for the feature to be significantly nourished by sand fromsuch sources. Maxi mum depths at which sand is readily resuspended and transported al ong low energy coasts such as al ong the southern Beauf ort Sea are not known. However, sedimentologists working al ong the Beauf ort Sea coast (e.g., Burrell et al. 1975; Nai du 1978) have found that lagoons with depths of only a few meters sel ectivel y accumul ate finegrai ned (silt, clay) particles, suggesting that sand from terrestrial sources is not readily transported into and across such depths to the barriers beyond. This is supported by observations that nost sand transport from nai nl ands and barriers seens to be al ong energent or slightly subnerged spits extending from headl ands or existing islands (cf. Pi erce and Colquhoun 1970; Burrell et al. 1975; Wanless 1976), or al ong the beaches of chai ns of energent barriers. Even the transport of sand al ong barrier chai ns may be hi ndered by the presence of inl ets between islands (Veller et al. 1978:129).

In the final anal ysis, then, nost constructional barrier islands al ong the Beauf ort Sea coast are probably relict features that have been eroded and reshaped by wave action and ice push. Their large particles were probably dropped in place as the islands eroded, and are not bei ng currently suppl enented from el sewhere. The islands may be nouri shed by sands from nore di stant river di scharges or erosi on of coast al headl ands if they are separated fromsuch sand sources by rel atively shallow depths, but deep lagoons and inlets nay partially or completely block such supplies of sand.

Whether sand fromthe deeper narine areas of the continental shelf al so accretes in si gnificant quantities to the nearshore barriers is not known, but such has not been postul ated to be the case.

Ti ne Scal es of Change

The impacts of devel opment activities on biol ogical commities persist onl y when the habitat changes exceed the capacities of organi sns within the commities to adjust. If the devel opnent activities do not persist, nost (but not all, see Helling 1978:30-32) ecol ogi cal impacts are temporary in the sense that popul ations can resune their original status and function once the habitat is "repai red". Thus an important question in assessing long-termecol ogical impacts is "Howlong will habitat changes caused by man persist?"

This question is especially important in assessing the impacts of I andscape changes in coastal regi ons of the Beauf ort Sea because the effectiveness of physical processes in nol ding sone geonorphic substrates suggests that sone changes in these substrates nould eventually be nended by natural forces. The critical questions rel ate to how fast the natural changes will obscure the man-caused changes.

In this section we will address rates of natural geonorphic change in the barrier islands, the lagoon basi ns, and the mai nl and coasts, with a vi ew to estimating the permanence of man- caused changes in these features. It should be renenbered that nat ural changes in all these feat ures will be influenced greatly by coastal subsidence.

Barrier Islands
Stormsurge events rapidly erode the tundra and peat covers of mainl and relict islands. Cannon and Rawlinson (1978) estimated that the nargins of tundra caps on isl ands encl osing Si mpson Lagoon erode at an average rate of 1.6 m per year. They al so estimated that these isI ands will retain their tundra/ peat caps for lengths of tine varying between 35 and 270 years (depending on $\mathbf{i} s l$ and size), gi ven the present rates of erosion.

Li kewi se, both sand-and- gravel islands and the sand- and- gravel portions of tundra-capped islands change shape and nove rapidly. Sand and gravel fromthe eastward and seaward extrenes of islands appear to be eroded and transported to accrete to the westward and I andward portions of the islands; consequently the direction of island mination is
predomi nantly west ward (in the di rection of the domi nant longshore transport) and southward (landward). Islands migrate at annual rates estimated variously to be 6-25 m(Short et al 1974), 6-72 m(Reimnitz et al. 1977), and 13-30 mestward and $3-7 \mathrm{ml}$ andward (Veller et al. 1978:12).

The tenure of Beauf ort Sea barrier islands as emergent features is not known. Presumably it must be a matter of centuries, since all the maj or islands in exi stence at the time the arctic coastal islands were first mapped in the early 20th century are still in existence, and no naj or new islands have formed si nce then. Reimnitz et al. (1977) state that Cross Island northeast of Prudhoe Bay has apparently not changed greatly in energent area since it was mapped by the U.S. Geol ogi cal Survey in the early 1900's (Leffingwell 1919). Considering that nost of the islands presently extend at least $\mathbf{1 - 2} \mathbf{m}$ above sea level, it nould take several centuries for themto be subnerged at the estimated present rate of sea level rise if no erosi onal degradation in hei ght occurred in the interim Evi dence from other areas suggests that such degradation would not occur, for energent feat ures frequently tend to build upon thensel ves to remai \mathbf{n} energent as the sea rises (Shepard 1960).

Lagoon Basi ns

Si nce the lagoons depend on the exi stence of barriers, a I agoon and its barrier islands have similar durations. However, during the lifetime of a barrier island-I agoon system the geonorphic boundaries of lagoons nay change in important ways. Lagoon depth, inl et characteristics, and Iateral extent are all ecol ogically significant attributes that nay change with time.

Change in depth of nearshore waters is a function of the bal ance bet ween sedi ment deposition (which causes shoal ing) and subsi dence and/ or sedi ment renoval (which deepens coastal basi ns). Enery and Stevenson (1957) and Hedgpeth (1957) observed that deposition (largel y of stream deri ved sedi ments) caused depths of Texas bays to decrease by about 23 cm in 65 years, despite a general coastal subsidence of about 30 cm during the same peri od. Schwartz (1965), in a laboratory study
of rise in sea level and shore erosi on, suggested that the rise of nearshore bottons simply as result of deposition of beach-eroded materials should equal the rise in sea level, thus mai ntaining a constant nearshore water depth despite regi onal subsi dence.

In shel tered waters al ong the Beauf ort coast of Al aska, neasured net sedi mentation rates are $5 \mathbf{c m}$ cent ury of the Colville del ta, 10 cnicent ury in many nearshore areas (both inside and outside barrier islands), and as much as 60 cnicentury in Prudhoe Bay (Veller et al. 1978:106). These sedi nentation rates are of the sane order of magni tude as the average 40 cm century rate of increase in sea level estinated for the last several thousand years (cal cul ated from data of Veller et al. 1978:105). The implications are that regi onal subsidence nay compensate for much or all of the potential shoaling caused' by deposition, and that, as a consequence, lagoon depths nay remain fairly constant for long periods. However, si nce the estimates of both subsi dence and deposition rates are very imprecise, the rate of change in water depths in coastal regi ons of the Beauf ort Sea is uncertain.

Inl et characteristics and locations, as we have seen, are primarily a function of the hydraulic forces impinging on a barrier island chain (Enery and Stevenson 1957; Riggs 1976). Short-term changes, particularly in inlet shape and size, may be very rapidin direct response to hydraulic pressures, but over the long term inl ets with the sane general characteristics will recur to accommodate discharge forced by the regional oceanographic circul ation patterns. Therefore, as the depth and Iateral conformity of a lagoon change with time, inl ets will correspondingly change in size and location. Weller et al. (1978:129) imply that inlets in Beauf ort Sea barrier isl and chai ns migrate westward with the indi vidual islands. However, inlets opposite river nouths (f or example, Egg Isl and Channel of f the Kuparuk Ri ver del ta) must remain in the sane general locality to accommodate the annual river di scharge.

Weller et al. (1978:127) report that constructional islands al ong the Beauf ort coast migrate landward at an annual rate of about 3-7 m Thi s rate is similar to, and in the sane direction as, the coastal
erosion rates estimated by various researchers (see following section). G ven, then, that both the island/lagoon margi ns and the mai nl and/ I agoon nargins are noving southward at si milar rates, lagoon width should remain fairly constant for long periods.

Mai nl and Coasts
As noted earlier, the mai $n^{\prime \prime}$ and al ong the Beauf ort Sea coast is receding, eroded nostly by storm surge action. There is extrene shortterm variability in erosion rates because erosion is significant only during storns. Estimates of annual rates of coastal recession vary. Schell (1975) cal cul ated annual rates of 1.4 ndyear over 22-23 years for a stretch of mai nl and bordering Si mpson Lagoon, and Cannon and Rawlinson (1978) estimated retreat rates of about 1.2 myear for the nainI and in the Si mpson Lagoon area. Hume and Schalk (1967) reported a beach retreat of about $9 \mathbf{m d u r i n g}$ the course of one stormnear Barrow, and Leffingwell (1919) reported short-term erosion rates of up to $\mathbf{3 0} \mathbf{~ m i}$ year at Drew Point and Cape Si mpson. Lewis and Forbes (1975:3) report sea cliff retreat of up to $\mathbf{9 0} \mathbf{m i n} \mathbf{1 6 - 1 8}$ years al ong the Canadian Beaufort coast. Weller et al. (1978:126) estimate that coastal retreat averages 1 m year in the Canadi an Beauf ort west of the MacKenzie Del ta, 1.6 my year in the Al askan Beauf ort east of the Colville Delta, and 4. 7 my year in the \mathbf{A} askan Beauf ort west of the Colville Delta.

CONCLUSI ONS

A summary of important concl usi ons follows.
In summer al ong the Beauf ort Sea coast, prevailing wind regi nes cause water to rapidly exchange between adj acent coast al water bodi es. Exchange bet ween coast al and offshore waters is, on the other hand, sufficiently restricted that the tuo systens remain measurably different in their temperatures and salinities, and presumaly in other attributes as well. In winter, coastal circulation and exchange rates are much reduced from those of summer.

The water exchange that occurs bet ween the rel ati vel y warm and bracki sh nearshore waters and the col der, nore sal ine ocean waters is probabl y domi nated near river mouths by an exchange pattern characteristic of many estuarine areas--landward intrusi on of ocean uater near the bottom and seaward novenent of nearshore water at the surface. This process may commonly be augmented by coastal upwelling al ong the coast. The rates of these exchanges are retarded by barrier isl and chai ns and by the natural tendency for the wind-driven currents to nove parallel, rather than perpendi cular, to the coast.

Currents near the bottom are nore important in transporting ecologically significant naterials than are currents higher in the water col um. Exi sting data suggest that there is a dominant I andward component in the bottom currents in summer that may pronote net landward del i very of naterials and organi sns entrai ned in the lower part of the water-col um.

The anounts of detritus del ivered to the nearshore waters by river di scharge and by coastal erosi on appears to be similar; anounts del ivered from offshore envi ronments have not been quantified. Several I i nes of evi dence strongly suggest that nearshore basi ns behi nd barrier islands, subnerged bars, and other prominences are traps for detritus from all three sources.

Maj or barrier islands al ong the Beauf ort Sea coast are of two rel ated kinds--relict nai nl and feat ures and constructional barriers built upon or from relict features. They were originally forned as the sea rose and inundated areas behi nd coastal highs. Mbst of these islands are apparently not presently being nourished significantly by materials transported from distant sources.

Lateral shifts in coastal landforms are rapid-nargins of coasts, islands, and I agoon basi ns annually nove several neters I andward and/ or westward. Large-scale vertical changes in topographic feat ures are much sl ower, and seemto be controlled over the long-term by the tendency of the rising sea to inundate features and the opposing tendency of bottons of lagoon basins and surfaces of islands to rise because sand and silt accrete to them Tens of centuries may pass before the sea drowns the exi sting barrier island-lagoon systens and intrudes landward to form new systens fromlake beds and other low pl aces behi nd coast al ridges.

LI TERATURE CI TED

Barnes, P. and R. Garlow. Undated. Surface current observations-Beauf ort Sea, 1972. USDI Geol ogi cal Survey Open- File Rep. No. 75-619.
Barnes, P.W. and E. Reimnitz. 1972. Ri ver overflow onto the sea ice of the northern coast of Al aska, spring 1972. Abstract. In: Trans. Aner. Geophys. Uni on. 53:1020.
Barnes, P. and E. Reimnitz. 1977. Marine envi ronmental problens in the ice-covered Beaufort Sea shel f and coastal regi ons. In: Envir. Assess. Al askan Cont. Shelf, Annu. Rep. Prin. Invest. BLM NOAA, OCSEAP. Boul der, Colo.
Barnes, P., E. Reimnitz and D. MEDowel I. 1977a. Current meter and water level observations in Stefansson Sound, summer 1976. Part B. I n: M scel I aneous Hydrol ogic and Geol ogic Observations on the I nner Beauf ort Sea Shel f, Al aska. USDI Geol ogi cal Survey Open-File Rep. No. 77-477.
Barnes, P.E. Reimnitz and G Snith. 1977b. Sone coastal oceanographic observati ons-- Beauf ort Sea, Al aska. Part A. In: Mscel I aneous Hydrol ogic and Geol ogic Observations on the I nner Beauf ort Sea Shel f, Al aska. USDI Geol ogi cal Survey Open- File Rep. No. 77-477.

Bellis, V. 1974. Medi umsalinity plankton systens. P. 358-396. In: H Odum B. Copeland, and F. McMahan (Eds.). Coastal Ecol ogi cal Systens of the United States, Vol. II. The Conservation Foundation, Whshi ngton, D.C. 521 p.
Bird, E.C.F. 1973. Australian coastal barriers. P. 410-426. In: M.L. Schwartz (Eds.). Barri er Islands. Douden, Hutchinson, and Ross, Inc. 451 p.
Bordovskiiy, O.K. 1965. Accuml ation of organic natter in bottom sedi ments. Mar. Geol. 3:33-82.
Bonden, K.F. 1978. Mxing processes in estuaries. P. 11-36. In: B. Kjerfve [Ed.). Estuarine Transport Processes. Uni v. South CaroIina Press, Col unbia. 331 p.
Burrel1, D. C., J.A. Dygas and R.W. Tucker. 1975. Beach norphol ogy and sedimentology of Si mpson Lagoon. P. 45-135. In: Envi ronnental Studies of an Arctic Estuarine System - Final Report. U. S. Envi ronment al Protection Agency, Ecol ogi cal Res. Ser. EPA 6601-3-75-026,
Callaway, R. and C. Koblinsky. 1976. Transport of pollutants in the vicinity of Prudhoe Bay, Alaska. Res. Unit 335. In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. Invest. BLM/NOAA, OCSEAP. Boul der, Colo.

Camer on, W.M. and D.W. Pritchard. 1963. Estuari es. P. 306-324. In: M.N. HII (Ed.). The Sea, Vol. II. Interscience.

Cannon, P.J. and S.E. Rawlinson. 1978. The envi ronment al geol ogy and geomorphology of the barrier island-I agoon system al ong the Beaufort Sea coastal pl ain fromPrudhoe Bay to the Colville River. Res. Unit 530. In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. Invest. BLM NOAA, OCSEAP. Boul der, Colo.
Carlson, R.F., R. Seifert and D. Kane. 1977. Effects of seasonality and variability of stream flow on nearshore coastal areas. Res. Unit III. In: Envir. Assess. Al askan Cont. Shelf, Annu. Rep. Prin. Invest. BLM NOA, OCSEAP. Boul der, Colo.

Carriker, M.R. 1967. Ecol ogy of estuarine benthic invertebrates: a perspective. P. 442-487. I n: G.H. Lauff (Ed.). Est uaries. Aner. Assoc. for the Advancenent of Science Publ. No. 83. 752 p.

Conomos, T.J. 1979. Properties and circulation of San Franci sco Bay Vhters. P. 47-84. In: T.J. Conomos (Ed.) San Franci sco Bay, the urbani zed estuary. Amer. Assoc. Advancement of Sci ence, Pacific Div., San Franci sco. 493 p.
Conomos, T.J. and D.H. Peterson. 1976. Suspended-particle transport and circul ation in San Franci sco Bay: an overvi ew P. 82-97. In: M Wiley (Ed.). Estuarine Processes, Vol. II. Academic Press, New York. 428 p.

Copel and, B.J. 1974. I mpoundment systens. P. 169-179. In: H Odum, B. Copel and, and E. McMahon (Eds.). Coastal Ecol ogi cal Systens of the United States, Vol. 111. The Conservation Foundation, Whshington, D.C. 453 p.
Copel and, B.J. and F. Dickens. 1974. Systens resulting from dredging spoil. P. 151-167. In: H Odum B. Copel and, and E. McMahon (Eds.). Coastal Ecol ogi cal Systens of the United States, Vol. III. The Conservation Foundation, Wishi ngton, D.C. 453 p.

Copel and, B.J., K.R. Tenore and D.B. Horton. 1974. Oligohaline regi me. P. 315-357. In: H Odum B. Copel and, and E. McMahon (Eds.). Coastal Ecol ogi cal Systens of the United States, Vol. 11. The Conservation Foundation, Whshi ngton, D.C. 521 p.

Drake, D.E. 1976. Suspended sedi ment transport and need deposition on continental shel ves. P. 127-158. In: D.J. Stanl ey and D.J.P. Swift (Eds.). Marine Sedi ment Transport and Envi ronmental Managenent. John Villey and Sons, New York. 602 p.
Drake, D.E. 1977. Suspended natter in nearshore waters of the Beaufort Sea, 1976. Part C. In: M scel I aneous Hydrol ogic and Geol ogi c Observations on the Inner Beauf ort Sea Shel f, Al aska. USDI Geol ogi cal Survey Open-File Rep. No. 77-477.

Dyer, J.A. and D.C. Burrell. 1976. Response of waves and currents to wind patterns in an Al askan I agoon. P. 263-285. In: D.W. Hood and D.C. Burrell (Eds.). Assessment of the Arctic Marine Envi ronnent: Sel ected Topics. Uni v. Al aska Institute of Mari ne Sci ence Occas. Publ. No. 4.

Enery, K.O. and R.E. Stevenson. 1957. Estuaries and I agoons: I. Physi cal and chemi cal properties. P. 673-693. In: J.W. Hedgpeth (Ed.). Treatise on Marine Ecol ogy and Paleoecology, Vol. I. Geol. Sot. Aner. Menoi r 67. 1296 p.
Faas, R.W. 1974. Inshore arctic ecosystens with ice stress. P. 37-54. In: H Odum B. Copel and, and E. McMahon (Eds.). Coast al Ecol ogi cal Systens of the United States, Vol. III. The Conservation Foundation, Whshi ngton, D.C. 453 p.
Fox, D.L. 1957. Particul ate organic detritus. P. 383-390. In: J.W. Hedgpeth (Ed.). Treatise on Marine Ecol ogy and Paleoecology, Vol. I. Geol. Sot. Aner. Menoi r 67. 1296 p.

Froelich, P., B. Gol den and 0.H. Pilkey. 1971. Organi c carbon in sedi nents of the North Carolina Continental Rise. Southeast. Geol. 13:91-97.

GII, E.D. 1967. Evol ution of shorel ine barriers. Vict. Nat. 84: 282283.

Godf rey, P.J. 1976. Comparative ecol ogy of East Coast barrier islands: hydrol ogy, soil, vegetation. P. 5-34. I n: J. Cl ark (Ed.). Barrier Isl ands and Beaches: Techni cal Proceedi ngs of the 1976 Barrier Isl ands Wbrkshop, Annapolis, Meryl and. The Conservation Foundation, Whshi ngt on, D.C. 149 p.

Griffiths, W and R. Dillinger. 1980. Beauf ort Sea barrier islandI agoon ecol ogi cal process st udi es: Fi nal report, Si mpson Lagoon. Part 5. Invertebrates. Res. Unit 467. In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. Invest. (this vol.) BLM/NOAA, OCSEAP. Boul der, Colo.
Hamilton, P. and M Rattray, Jr. 1978. Theoretical aspects of estuarine circulation. P. 37-74. In: B. Kjerfve (Ed.). Estuarine Transport Processes. Uni v. South Carol ina Press, Col umbia. 331 p.
Hatcher, P.G. and D.A Segar. 1976. Chemistry and continental nargi n sedi mentation. P. 461-477. In: D.J. St anl ey and D.J.P. Swi ft (Eds.). Marine Sedi nent Transport and Envi ronnental Managenent. John Wiley and Sons, New York, 602 p.

Hedgpeth, J.W. 1957. Estuari es and I agoons: II. Bi ol ogi cal aspects. P. 693-729. I n: J.W. Hedgpeth (Ed.). Treatise on Marine Ecol ogy and Paleoecology, Vol. II. Geol. Sot. Aner. of Menoir 67. 1296 p.
Herlinveaux, R.H. and B.R. de Lange Boom 1975. The physi cal oceanography of the southeastern Beauf ort Sea. Canadi an Beauf ort Sea Techni cal Rep. No. 18. 97 p.
Helling, C.S. (Ed.). 1978. Adaptive envi ronnent al assessment and management. J ohn Vifley and Sons, New York. 377 p.
Hoyt, J.H. 1967. Barrier isl and formation. Geol. Sot. Aner. Bul I. 78:1125-1135.

Hsu, S.A. 1978. Micrometeorological fluxes in est uari es. P. 125-134. In: B. Kjerfve (Ed.). Estuarine Transport Processes. Uni v. South Carolina Press, Col unbia. 331 p.

Hufford, G.L. 1974. Di ssol ved oxygen and nutrients al ong the north Al askan shel f. P. 567-588. In: J.C. Reed and J.E. Sater (Eds.). The Coast and Shelf of the Beaufort Sea. The Arctic Institute of North Anerica, Arlington, Virginia.
Hume, J.D. and M Schalke. 1967. Shoreline processes near Barrow Al aska: comparison of the nornal and the catastrophic. Arctic 20(2):86-103.

J ohnson, M.W. 1957. Pl ankt on. P. 443-460. I n: J.W. Hedgpeth (Ed.). Treatise on Marine Ecol ogy and Paleoecology, Vol. I. Geol. Sot. Aner. , Menoi r 67. 1296 p.

J ohnson, S.R. and J.W. Ri chardson. 1980. Beaufort Sea barrier islandI agoon ecol ogi cal process studi es: Fi nal report, Si mpson Lagoon. Part 3. Bi rds. Res. Unit 467. In: Envir. Assess. Al askan Cont. Shelf, Annu. Rep. Prin. Invest. (this vol.). BLM/NOAA, OCSEAP. Boul der, Colo.

Ki ng, C. A. M 1960. Beaches and coasts. E. Arnol d, Li mited, London. 403 p.
Kjerfve, B., K.R. Dyer and J.R. Schube1. 1978. Epilogue: where do we go from here? P. 319-324. I n: B. Kjerfve (Ed.). Estuari ne Transport Processes. Univ. South Carolina Press, Col unbia. 331 p.

Komar, P.D. 1976a. Boundary layer flow under steady uni di rectional currents. P. 91-106. In: D.J. Stanl ey and D.J.P. Swift (Eds.). Mari ne Sedi ment Transport and Envi ronnental Managenent. John Wiley and Sons, New York. 602 p.
Konar, P.D. 1976b. The transport of cohesionless sedi ments on continental shel ves. P. 107-125. In: D.J. Stanl ey and D.J.P. Swift (Eds.). Mari ne Sedi nent Transport and Envi ronment al Managenent. John Wiley and Sons, New York. 602 p.

Kremer, J.N. and S.W. Nixon. 1978. A coast al nari ne ecosystem simulation and anal ysis. Spri nger-Ver"lag, New York. 217 p.

Krone, R.B. 1978. Aggregation of suspended particles in estuaries. P. 177-190. In: B. Kjerfve (Ed.). Estuarine Transport Processes. Uni v. South Carol ina Press, Col unbi a. 331 p.

Kuelegan, G.H. 1948. An experimental study of submarine sand bars. U. S. Beach Erosi on Board Tech. Rep. 3, Whshi ngton, D.C. 40 p.

LeBl anc, J. and W.D. Hodgson. 1959. Ori gi n and devel opnent of the Texas shoreline. Gulf Coast Assn. Geol. Sot. Trans. 9:197-220.
Leffingwell, E. de K. 1919. The Canni ng Ri ver regi on, northern Al aska. USDI Geol. Survey Prof. Paper 109. 251 p.

Leontyev, OK 1965. On the cause of the present-day erosion of barrier bars. Coastal Research Notes. 12:5-7.

Leontyev, O.K. and L.G. Nikiforov. 1965. Reasons for the worldwide occurrence of barrier beaches. Oceanol ogy. 5:61-67.

Lewi s, C.P. and B. C. MEDonal d. 1974. Sedi ments and sedi mentary processes of the western Canadi an Beauf ort Sea coast. (Abstract). P. 489. In: J.C. Reed and J.E. Sater (Eds.). The Coast and Shel f of the Beauf ort Sea. Arctic Institute of North Anerica. 750 p.
Lewi s, C.P. and D.L. Forbes. 1975. Coastal sedi mentary processes and sedi nents, southern Canadi an Beauf ort Sea. Canadi an Beauf ort Sea Techni cal Rep. No. 24. 68 p.
MacGinitie, G 1955. Distribution and ecol ogy of the narine invertebrates of Poi nt Barrow Al aska. Snithsoni an Mscellaneous Collections. 128(9):1-201.
Madsen, O.S. 1976. V解ve climate of the continental nargin: el enents of its nathematical description. P. 65-87. In: D.J. Stanl ey and D.J.P. Swift (Eds.). Marine Sedi ment Transport and Envi ronmental Management. John Wiley and Sons, New York. 602 p.
Mat thews, J.B. 1978. Char acterization of the nearshore hydrodynamics of an arctic barrier island-I agoon system Res. Unit 526. In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. I nvest. BLM NOAA OCSEAP. Boul der, Colo.
MtGee, W.J. 1890. Encr oachnents of the sea. P. 437-449. In: L.S. Met cal f (Ed.). The For um The For um Publishing Co., New York.
MEKee, E.D. and T.S. Sterrett. 1960. Laboratory experi nents on form and structure of longshore bars and beaches. P. 13-28. In: J.A. Peterson and J.C. Osmond (Eds.). Geometry of Sandstone Bodi es. Am Assoc. Petrol eum Geol ogi sts.

Meade, R.H. 1969. Landvard transport of bottom sedi ments in estuaries of the Atlantic coastal plain. J. Sedi ment. Petrol. 39:222-234.
Meade, R.H. 1972. Transport and deposition of sedi ments in estuari es. P. 91-120. In: B. Nel son (Ed.). Envi ronnental Framework of Coastal Pl ain Estuaries. Geol. Sot. Aner. Menoir. 133 p.
Mooers, C.N.K. 1976. Introduction to the physi cal oceanography and filuid dynamics of conti nent al margi ns. P. 7-21. In: D.J. Stanl ey and D.J.P. Swift (Eds.). Marine Sedi nent Transport and Envi ronnental Managenent. J ohn Wiley and Sons, New York. 602 p.
Munga11, C. 1978. Oceanographic processes in a Beaufort Sea barrier island-lagoon system - numerical nodeling and current measurenents. Res. Unit 531. In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. I nvest. BLM NOAA OCSEAP. Boul der, Colo.
Nai du, A.S. 1978. Sedi ment characteristics, stability, and origin of the barrier island-lagoon complex, north arctic Al aska. Res. Unit 529. In: Envir. Assess. Al askan Cont. Shelf, Annu. Rep. Prin. BLM NOA, OCSEAP. Boul der, Colo.
Naidu, A.S. and T.C. Mowatt. 1974. Aspects of size di stributions, nineral ogy, and geochemistry of deltaic and adj acent shal low marine sedi nents, north arctic Al aska. $P, 238$-262. In: An ecol ogi cal survey in the Beauf ort Sea. U.S. Coast Guard Oceanographic Unit. Rep. CG373-64. Whshi ngt on, D.C.

Naidu, A.S. and T.C. Mowatt. 1975a. Aspects of size di stributions, mineral ogy, and geochemistry of deltaic and adj acent shal low mari ne sedi ments, north arctic Al aska. P. 143-224. In: Envi ronment al Studies of an Arctic Estuarine System - Fi nal Report. U.S. Envi ronment al Protection Agency, Ecol ogi cal Research Series EPA 660/ 3- 75- 026.
Naidu, A.S. and T.C. Mowatt. 1975b. Depositional envi ronnents and sedi ment characteristics of the Colville and adj acent del tas, northern Arctic Al aska. P. 283-309. In: M.L.S. Broussard (Ed.). Del ta Model s for Expl oration. Houston Geol. Sot., Houston, Texas.

Officer, C.B. 1978. Sone si mplified tidal mixing and circulation flux effects in estuaries. P. 75-94. In: B. Kjerfve (Ed.). Estuarine Transport Processes. Uni v. South Carolina Press, Col unbia. 331 p.
Otvos, E. G, Jr. 1970. Devel opnent and migration of barrier islands, northern Gulf of Mexico. Geo1. Sot. Aner. Bull. 81:241-246.
Pelletier, B.R. 1975. Sedi nent di spersal in the southern Beauf ort Sea. Canadi an Beauf ort Sea Tech. Rep. 25a. 80 p.
Pi erce, J.W. and D.J. Colquhoun. 1970. Hol ocene evol ution of a portion of the North Carolina coast. Geol. Sot. Aner. Bul I. 87:3697-3714.

Pi erce, J.W. and D.J. Colquhoun. 1971. Hol ocene evol ution of a portion of the North Carolina coast: reply. Geol. Sot. Aner. Bull. 82:2371.

Pritchard, D.W. 1978. What have recent observations obtai ned for adj ust ment and verification of numerical nodel s reveal ed about the dynamics and ki netics of estuaries? P. 1-10. In: B. Kjerfve (Ed.). Estuarine Transport Processes. Uni v. South Carolina Press, Col unbi a. $\quad 331$ p.
Rei mitz, E., P.W. Barnes and J. Melchior. 1977. Changes in barrier i sl and norphol ogy - 1949 to 1975. Cross I sl and, Beauf ort Sea, Al aska. Part F. In: M scel I aneous Hydrol ogic and Geol ogi c Coservations on the I nner Beauf ort Sea Shel f , Al aska. USD Geol ogi cal Survey Open- File Reo. 77-477.

Reimnitz, E. and K.F. Bruder. 1972. Ri ver di scharge into an icecovered ocean and rel at ed sedi ment di spersal, Beauf ort Sea, coast of Alaska. Ecol. Soci ety of Amer. Bull. 83:861-866.
Rex, R.W. 1964. Arctic beaches, Barrow, Al aska. P. 384-400. I n: R.L. Miller (Ed.). Papers in Marine Geol ogy. MacMIIan, New York.

Riggs, S.R. 1976. Barrier islands as natural stormdependent systens. P. 58-75. In: J. Clark (Ed.). Barrier Islands and Beaches: Techni cal Proceedi ngs of the 1976 Barrier Islands Wbrkshop, Annapolis, Maryland. The Conservation Foundation. Washi ngton, D.C. 149 p.
Schel1, D.M. 1975. Seasonal variation in the nutrient chemistry and conservative constituents in coastal Al askan Beaufort Sea waters. P. 233-298. In: Envi ronmental Studi es of an Arctic Estuarine System-Fi nal Report. U. S. Envi ronment al Protection Agency Ecol ogi cal Research Seri es EPA 660/ 3-75-026.

Schell, D.M. 1978. Nutrient dynamics in nearshore under-ice waters. Res. Unit 537. In: Envir. Assess. Al askan Cont. Shelf, Annu. Rep. Prin. I nvest. BLM/NOAA, OCSEAP. Boul der, Colo.
Schell, D.M. and G Hall. 1972. Witer chemistry and nutrient regeneration studi es. P. 3-28. In: Ki nney et al. Basel ine Data St udy of the Al askan Arctic Aquatic Envi ronment. Uni v. Al aska Institute of Mari ne Sci ence Rep. R 72-3, Fai rbanks.
Schubel, J.R. and H.H. Carter. 1976. Suspended sedi nent budget for Chesapeake Bay. P. 48-62. In: M Viley (Ed.). Estuarine Processes, Vol. II. Academic Press, New York. 428 p.
Schubel, J.R., R.E. Wilson and A. Okubo. 1978. Vertical transport of suspended sedi ment in upper Chesapeake Bay. P. 161-176. In: B. Kjerfve (Ed.). Estuarine Transport Processes. Uni v. South Carol ina Press, Col umbia. 331 p.
Schwartz, M 1965. Laboratory study of sea-l evel rise as a cause of shore erosi on. J. Geol. 73(3):528-534.
Schwartz, M.L. 1971. The multiple causality of barrier islands. J. Geol. 79:91-94.

Schwartz, M.L. (Ed.). 1973. Barrier isl ands. Douden, Hutchi nson, and Ross, Inc., Stroudsburg, Pennsyl vani a. 451 p.
Segerstrale, S.G. 1957. Baltic sea. P. 751-800. In: J.W. Hedgpeth (Ed.). Treatise on Marine Ecol ogy and Paleoecology, Vol. I. Geol. Sot. Aner. Menoir 67. 1296 p.
Shepar d, F.P. 1960. Gulf coast barriers. P. 197-220, 368-381. In: F.P. Shepard et al. (Eds.). Recent Sedi nents, Northwest Gulf of Mexi co. Aner. Assoc. Petrol eum Geol ogi sts, Tul sa, Okl ahona.

Short, A. D., J.M. Col enan and L.D. Wi ght. 1974. Beach dynamics and nearshore norphol ogy of the Beauf ort Sea coast, Al aska. P. 477-488. In: J.C. Reed and J.E. Sater (Eds.). The Coast and Shel f of the Beauf ort Sea. Arctic Institute of North Anerica, Arlington, VA 750 p.
Suift, D.J.P. 1976. Coastal sedi mentation. P. 255-310. In: D.J. St anl ey and D.J.P. Swift (Eds.). Marine Sedi ment Transport and Envi ronmental Managenent. John Wiley and Sons, New York. 602 p.
Truett, J.C. 1980. Beauf ort Sea barrier island-I agoon ecol ogi cal process studi es: Fi nal report, Si mpson Lagoon. Part 7. Synthesi s, I mpact anal ysis, and nonitoring strategy. Res. Unit 467. In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. I nvest. (this vol.). BLM/NOAA, OCSEAP. Boul der, Colo.
Wal ker, H.J. 1974. The Colville River and the Beauf ort Sea: sone interactions. P. 513-540. In: J.C. Reed and J.E. Sater (Eds.). The Coast and Shelf of the Beaufort Sea. Arctic Institute of North Anerica. 750 p.

Wanless, H.R. 1976. Intracoastal sedi nent ation. P. 221-239. In: D.J. Stanley and D.J.P.Swift (Eds.). Mari ne Sedi ment Transport and Envi ronmental Management. John Wiley and Sons, New York. 602 p.

Warme, J. E., L.A. Sanchez-Barrenda and K.T. Biddle. 1976. Sedi mentary patterns and processes in West Coast Iagoons. P. 167-181. In: M Villey (Ed.). Estuarine Processes, Vol. II. Academic Press, New York. 428 p.
Weller, G. D. Norton and T. Johnson (Eds.). 1977. Envi ronnent al im pacts of OCS devel opnent in northern Al aska. Proc. Beauf ort Sea Synthesi s Meeting, Barrow Al aska, 7-11 February 1977. BLM/NOAA, OCSEAP. Boul der, Colo.

Weller, G, D. Norton and T. Johnson. (Eds.). 1978. Interim synthesi s: Beaufort/Chukchi. In: Envir. Assess. Al askan Cont. Shelf, BLM NOAA, OCSEAP. Boul der, Colo.
Wiseman, WJ., Jr. et al. 1973. Al askan arctic coastal processes and nor phol ogy. Tech. Rep. No. 149, Coastal St udi es Inst., Loui si ana State Uni v., Baton Rouge. 171 p.

Wiseman, WJ., Jr. and A.D. Short. 1976. Arctic coastal processes: An overvi ew Naval Research Revi ews. 29(5):35-47.
Wiseman, WJ., Jr., J.N. Suhayda and S.A. Hsu. 1974. Characteri stics of the nearshore oceanographic envi ronnent of arctic Alaska. P. 49-64. In: J.C. Reed and J.E. Sater (Eds.). The Coast and Shelf of the Beauf ort Sea. The Arctic Institute of North Anerica, Arlington, Virginia.

Zeigler, J.M. 1959. Origin of the sea isl ands of the southeastern United States. Geograph. Rev. 49:222-237.

PART 3. BI RDS

Stephen R. Johnson
 LG. Limited
 10110124 Street
 Edmont on, Al berta
 Canada T5N 1P6

W John Ri chardson
 LG. Li mited

Ste. 41444 Eglinton Avenue, W
Toront o, Ontario
Canada M4R 1A1

March 1980

TABLE OF CONTENTS

Page
SUMMARY 113
Migration Studi es 113
Nesting Studi es 114
Moling and Staging Studi es 114
Feedi ng Studi es 115
Di sturbance Studi es 116
Concl usi ons 116
ACKNOWLEDGEMENTS 117
SPECI AL NOTE 117
INRROUCTION 118
General Nature and Scope of Study 119
Specific Objectives 119
Rel evance to I mpact Assessment 120
CURRENT STATE OF KNOVLEDGE IN THE BEAUFORT SEA AREA 121
STUDY AREA 123
METHODS AND RATI ONALE OF DATA COLLECTI ON 129
Mgration Studi es 129
Spring Mgration 130
Md-Sumer Ml \mathbf{t} Mgration 133 133
Fall Mgration 134 134
Nesting Studi es 134
Survey Methods 135
Moting and Pre-M gratory Staging Studi es 136
Aerial Surveys During 1977 and 1978 137
Shorel ine Transects 140
Feedi ng Studi es 141
Collections of Bi rds and Habi tat Samples 142
Laboratory Techni ques 145
M GRATI ON STUDI ES 148
Result ts 148
Spring Mgration 148
Mbl \mathbf{t} Mration 182 182
Fall Mgration 192

TABLE OF CONTENTS (cent 'd)

Page
Discussi on 205
Spring Mgration 205
Nolt Mgration 215
Fall Mgration 220
NEST NG STUD ES 224
Results 224
Di scussion 230
MOLTI NG 236
Results 236
01dsquaw Pre-Molt Peri od 236
01dsquaw Mot Period- Mal es 139
01dsquaw Mblt Period-Fenal es 256
01dsquaw Post-Nol t Period 260
Di scussi on 268
Pre-Molt Period 268
Molt Period 270
Post-Molt Period 276
0ldsquaws in Areas Other Than Si mpson Lagoon 279
PREMIGRRTORY STAGIN 286
Result ts 236
Shorebirds 286
Arctic Tern 293
G aucous Gul 1 299
Discussion 302
Phalaropes 305
G aucous Gul! 309
Arctic Tern and Sabine's Gull 310
FEED NG ECOLOGY 311
Resul ts 311
Oldsquaw 311
Phalaropes 320
G aucous Gul I 327
Dis scussi on 329
0ldsquaw Feeding Ecol ogy 329
Phalarope Feedi ng Ecol ogy 336
Gul I and Tern Feeding Ecol ogy 339
The Trophic Role of Birds in an Arctic Marine Lagoon System 341

TABLE OF CONTENTS (cent'd)

Page
346
ECOSYSTEM SI GN FI CANCE AND I MPACT PRED CTI ONS
353
CONCLUSI ONS
355
LITERATURE CITED
374
APPENDI CES

SUMMARY

In 1976, LG initiated an interdi sciplinary, process-oriented study of a barrier island-I agoon ecosystem on Al aska's Beauf ort Sea coast. The general scope of the ornithol ogical components of this study, which was sited pri marily in the Si mpson Lagoon area, was to characterize the use of nearshore habitats by birds and to clarify those critical feeding and habitat dependencies that devel opment is likely to affect either directly, or indi rectly via alteration of ecosystem processes.

The research program addresses four ecosystem uses/dependenci es of birds--for migation, breeding, feeding and staging-nolting. These uses are eval uated as they rel ate to barrier island-lagoon habitats and predi cted devel opnent al terations of habitats.

Mgration Studi es

Spring migration during 1977 and 1978 (I ate May to mid-June) was east ward over a broad front; maj or bird groups invol ved were loons, brant, pintails, oldsquaws, eiders, glaucous gulls and jaegers. After ri ver water had overflowed onto the lagoon ice in early June, a fewloons and some waterfow I anded on the overflow water.

The nestuard nolt migration by male seaducks incl uded tno peaks--novement of ol dsquaws during late June and early July, prior to breakup in the I agoon or in the sea, and a nodest novement of common and king ei ders through the study area, nostly during the third and fourth weeks of July after the Iagoon and sea ice had retreated. In addition, nale surf scoters flew west through the Si mpson Lagoon area in July 1978. Oldsquavs nade noderate use of shorel eads in lagoons and light use of leads in the ice in mid-lagoon during the course of their molt migration; eiders made light use of I agoon habitats during the west ward mol t migration.

The fall migration by birds out of the Si mpson Lagoon area was nore protracted than either the spring or molt migration. Mbst oldsquaws and glaucous guls had not begun their fall migration out of the study area when the field season was terminated on 25 Septenber 1977 and 1978. A west ward novenent of adult and $j u v e n i l e$ arctic terns occurred al ong the barrier islands during the third and fourth weeks of August, at which time
they congregated at gaps between the islands and along the spits and sandbars where food was nore readily available to this species. A maj or novenent of black brant occurred along the mainland coast in the last days of August and the early days of September during 1977 and in the second and third weeks of August during 1978. A westward novenent of Ioons through the I agoon occurred in I ate August and early Septenber of 1977 and 1978.

Nesting Studi es

During 1977, arctic foxes preyed heavily on eggs of bi rds which nested on the barrier islands, and (presumally because of the predation) densities of successful nests were rel ativel y low Indications were that in the absence of arctic foxes on gravel islands, the nesting potential for traditionally island-nesting species was high.

During 1978, arctic foxes were absent fromthe barier islands. Al though the density of tundra nesting birds renai ned low those speci es associated with the gravel islands were nore productive than during the precedi ng year when foxes were present.

Mbling and Stagi ng Studi es

An estimated 30,000 to $51,000 \mathrm{male}$ oldsquaws nay concentrate in the I agoon bet ween mid-July and mid-August to nolt. Few nol ting oldsquaws occur seaward of the barrier islands; however, post nol ting male ol dsquaws nay nove to offshore locations during late August and early Septenber. An estinated 33,000 to 106,000 ol dsquans, prinarily femal es and j uveniles, nay occur in the Si mpson Lagoon study area during late Septenber after tundra wetlands freeze and are unavailable to these bi rds.

Juvenile northern and red phalaropes arrived to feed al ong the shoreI ines of the barrier islands and mai nl and both in 1977 and 1978 during August; thousands of indi vi dual s concentrated al ong the beaches of the barrier islands during the mid and I ate parts of August.

G aucous gulls in the study area were nost intensi vely studi ed during 1977; they were associ ated with shorel ines and their distribution appeared to be rel ated to the availability of food. During Septenber 7977 and 1978
the number of glacous gulls increased dranatically in the area; during 1977 they were nost abundant al ong the seaward beaches of the barrier isI ands, where food (hyperiid amphipods) was concentrated al ong sections of the shorel ine.

Feedi ng St udi es

During both 1977 and 1978 ol dsquaus ate primarily mysids and amphipods, and to a lesser extent, bi val ves. They ate largel y the ki nds of foods that were nost available; during 1977 their diet was very similar to that of the arctic cisco, the nost common coregonid fish in the Iagoon.

During both 1977 and 1978 oldsquaws were fattest frommid-July to mid-August, the period of nolt. Their fat reserves declined thereafter, which suggests that subcutaneous fat may play an important role during the nol t period (e.g., for insul ation and/ or to satisfy maintenance energy requi rements) and that this fat may be utilized after the molt to help neet the energy denands associ ated with feather repl acement. Throughout the summers of both 1977 and 1978 the standi ng stocks of epibenthos used as food by ol dsquaus remai ned at least one order of magni tude greater than the esti nated per-day food requi renent of the bi rds.

During 1977, glaucous gulls in the study area fed excl usi vel y al ong shorelines and ate mainly isopods, amphi pods, snall fish and snall birds. The rel ative proportions of these organisns in the di et bore little resem blance to their proportions at the locations where glaucous gulis were col lected. Feedi ng overlap st udi es indi cated that the di et of glaucous gulls was nore similar to that of the four-horned sculpin than to that of any other common vertebrate studied. The hi ghest densities of glaucous gulis were recorded al ong the beaches of the barrier islands during the third neek of Septenber in both 1977 and 1978. At this time during 1977, gl aucous gulls were feeding on hyperiid amphi pods that were concentrated al ong sections of the seaward shorel i nes of the barrier $i s l a n d s$.

Both northern and red phalaropes are specialized shoreline feeders. Phalaropes concentrating on coastal shorelines in August of 1977 and 1978 ate primarily copepods, snall amphipods and snall mysids. The proportions of these organi sns in the diet of phalaropes during $\mathbf{1 9 7 7}$ were similar to the proportions of these taxa found in their feeding habitats al ong
shorelines. During 1978, phalaropes sel ectively preyed on snall amphipods which in shoreline feeding habitats were mach less abundant than mysids and slightly less abundant than copepods. During 1977 and 1978, the diets of red and northern phalaropes were very similar to each other. During 1977, the diets of phalaropes collectively were similar to diets of arctic char and least cisco.

Distur bance Studi es
Data from other studies coupl ed with observations made during the course of this study showed that the vul nerability of bi rds to di sturbance varies among species, habitats, and type of bird activity.

Table $\mathbf{6 0}$ gives a sensitivity/ vul nerability natrix of important avian species and their habitats, with notes about the periods when each species is nost vul nerable to devel opnent-rel ated activities affecting each habitat.

Concl usi ons

General concl usi ons were that

1. Bird utilization of lagoon areas was negligible while these areas renai ned frozen in spring and early summer; potential impacts of devel opment are, theref ore, probably low at this ti ne except for those activities that would create open water attractive to birds.
2. Shoreleads were used noderatel y by bi rds bef ore the nearshore area becane ice-free.
3. Speci es that nest nai nl y on barrier i slands nested at hi gher densities on the gravel/sand islands than on the tundra-covered barrier islands. Speci es nesting on the latter are al so widespread on the nai nl and tundra. If devel opnent activities are restricted to tundra sites on the barrier islands, then di sturbance to island-speci alist species should be minimal.
4. Shorebi rds (primarily phalaropes) that stage in barrier islandlagoon habitats during August are nost heavily concentrated al ong the seaward shorelines of the barrier islands.
5. Mbling and post-nolting oldsquaus are abundant and are highly concentrated at several barrier island-lagoon sites in and to the east of Si mpson Lagoon. In general, the shallow and/ or turbid waters di rectly under the influence of the Colville Ri ver, west of Si mpson Lagoon in Harri son Bay, supported primarily glaucous gulls and only a few ol dsquaws.
6. Feedi ng studi es indi cated that ol dsquaws preyed nost heavily on I arger indi vi dual s of the three naj or taxa of invertebrates that were nost abundant in lagoon epibenthic habitats, and that oldsquans preyed nost effectivel y in areas where densities of i nvertebrates were hi ghest.
7. Heavi est use of neashore barrier island-I agoon areas by birds occurred during the open- water season-l ate July through August and Septenber. Primary use of the area at this ti ne was by postbreeding oldsquaws and staging shorebirds. Feeding activity in the area was intensive by all these birds. Potential impacts of devel opment, theref ore, would be nost serious during this openwater season.

ACKNOMLEDGEMENTS

Special thanks go to Chip Welling, JimHelmericks and Gary Searing. Chip enthusi astically and competently carried out much of the field work during 1978. Gary hel ped to pland conduct the field program during 1977. Jim hel ped with the field st udies and provi ded inval uable advice and Iogistic support. Doug Schamel, Bob Baden and Bill Adans al so hel ped in the field. Mke Spindler (U.S. Fish and Wildife Service, Arctic National Wildife Range) cooperated in a variety of ways during 1978 and 1979. We thank ARCO Oil and Gas Co. for providing funds for our 1979 aerial survey program Acknow edgenents to additional indi vi dual s who assi sted with the ornithol ogi cal studi es appear in the general acknow edgenents near the begi nning of this vol une.

SPECI AL NOTE
This is the third and final report of our investigations of the Jones Islands-Simpson Lagoon system Many of the data presentedinthis report al so have been presented in tuo earlier reports (Johnson 1978, 1979). Because of refinements and revisions in the anal ytical procedures, numbers presented in the text, tables and figures of this final report nay differ from (and supersede) those in the earlier two versi ons.

I NIRODUCTI ON

The Al askan Beauf ort Sea, especially its coastal lagoons and barrier islands, is an important area to many species of water-associ ated birds. During portions of the year, significant fractions of the total North Aneri can popul ations of a number of species are present in the nearshore waters of the Beauf ort Sea (Johnson et al. 1975). These incl ude the folI owing: yellow billed loon, brant (<105)*, ol dsquaw (10^{6}), common ($>10^{5}$) and king (10^{6}) eiders; glacous, Sabine's and Ross' gulls; arctic terns; and red and northern phalaropes. Sone of these birds occur in the coastal Beauf ort Sea area onl y during migration, but others al so nest, nol t, feed and accumul ate fat reserves there (J ohnson et al. 1975).

In 1976, LG. scientists initiated an interdi sciplinary processoriented study of a barrier island-lagoon ecosystem on Al aska's Beauf ort Sea coast. The general scope of the ornithol ogi cal portion of this study, which was sited largel \mathbf{y} in the Si mpson Lagoon area, was to

1. assess the importance to bi rds of barrier island-lagoon habitats in the Beauf ort Sea,
2. determine the degree and nature of dependencies by birds on these habitats, and
3. clarify those critical feeding and habitat dependencies that devel opment is likely to affect either directly or indirectly via alterations of ecosystem processes.

Specific Objectives

The research program addresses each of four ecosystem uses or dependencies of birds--migration, breeding, nol ting and staging, and feedi ng. These uses are eval uated as they rel ate to barrier island-lagoon habitats and predicted devel opment al terations of habitats with these objectives:

1. Determine the timing, routes, numbers and maj or speci es invol ved in the spring migration, mol migration and fall migration of bi rds through a barrier island-lagoon system
2. Identify the economically or aesthetically important (key) species of birds in the maj or habitat types present in the barrier island-I agoon system obtai n quantitative estimates of their seasonal abundance in each habi tat type, and determine the nat ure of their utilization of these habitats.
3. Obtai n quantitative estimates of the density, nesting success, and maj or predators of birds in the typical barrier island-lagoon habitats.
4. Determi ne the maj or food organi sns consumed by the key bi rd species during periods of their peak abundance in a barrier island-I agoon system
5. Determine the trophic rel ationshi ps between the key species of birds, thei \mathbf{r} food organisns and their feeding habitats: e.g., Do key bi rd speci es sel ect particular food organi sns or do they sim ply eat in accordance with the rel ative availability of the food organi sns? Does cropping by bi rds have a significant effect on food availability? Do different species of birds (and fish) depend on the same food organi sns?
[^1]Pl ans for the devel opment of petrol eum resources in the coastal area of the Al askan Beauf ort Sea are proceeding rapidly. Activities affecting the coastal barrier islands and accompanyinglagoon systens play a prominent role in the various devel opment scenarios presented by the petroleum industry (Véler et al. 1978). Federal and state authorities have expressed the desire that devel opment proceed with mi mum di st urbance to bi rd popul ations that are of concern to society because of their aesthetic, sport or subsi stence val ue.

Industrial activity following petroleumleasing of nearshore waters nay potentially affect birds in two maj or ways:

1. By imposing di rect nortality or stress (e.g., oiling of birds, di sturbance caused by human acti vities such as aircraft overflights, destruction of nesting habitat, introduction or attraction of predators).
2. By interrupting key physi cal and bi ol ogi cal processes (e.g., coastal erosi on, water circul ation, nutrient and invertebrate production and cycling, etc.) that currently enable bi rds to successfully use the area during migration and for breeding, feeding, staging and/ or nol ting.

CURRENT STATE OF KNOWLEDGE IN THE BEAUFORT SEA AREA

In general, prior to the initiation of the present barrier islandI agoon st udies, little information was available regarding the spatial and tempera" 1 patterns of abundance and di stribution of birds in the various barrier island-I agoon habitats. No infornation exi sted regarding the feeding ecol ogy of key bird species in rel ation to their prey in barrier island-" 1 agoon habitats, nor regarding the effects of predation (by foxes) on birds nesting on barrier islands. Prior to this study little quantitative inf or nation exi sted regarding the densities on the barrier islands of tundra-nesting birds, rel ati ve to densities of birds that typically nest on gravel / sand substrates and on the adj acent mai nl and tundra.

Know edge, as of 1975, of bi rds found in the Beauf ort Sea area was revi ewed by Johnson et al. (1975). Searing et al. (1975) and Richardson et al. (1975) present results of aerial surveys of sea-associated birds in the Canadi an Beauf ort Sea during 1972 and 1974, and in 1975, respecti vel y. Barry (1976a.) has presented a brief summary of all available infornation on seabi rds found in the Canadi an Beauf ort Sea. Ri chardson et al. (1975) and Johnson et al. (1975) presented detailed information on the spring migration of birds al ong a portion of the Beauf ort Sea coastline in the Yukon Territory and northeastern Al aska.

Several published accounts describe the birds in the imediate vicinity of the Jones Islands-Si mpson Lagoon area. Hall (1975; unpublished 1972 data) has provi ded an annotated list of the birds seen near 01iktok Point and in Si mpson Lagoon from 12 June to 23 August 1971 and intermittently from 11 May to 27 Novenber 1972. Gavin (1976) reported on water bi rd production al ong nost of the barrier islands in the vicinity of Prudhoe Bay, incl uding the Jones Islands, for the 6-year peri od 1970 through 1975. Divoky (1978b) conducted ground and aerial surveys of nesting birds al ong all of the barrier islands in the \mathbf{A} askan Beaufort Sea duri ng 1976, incl uding the Jones Islands; he al so conducted two aerial surveys of the Si mpson Lagoon area during 1976. During 1977, Di voky (1978a) conducted opportuni stic shi pboard surveys of birds in Si mpson Lagoon and at this location collected a snall sample of oldsquavs for st onach anal yses. Schamel (1974, 1978) descri bed sone aspects of the spring migration, the mol migration of seaducks, and the densities of
shorebirds, gulls, terns, jaegers and seaducks in a portion of Gwydyr Bay near Egg I sl and, approxi natel y 15 km east of Si mpson Lagoon. Bergnan et al. (1977) report the results of a 5 - year study of waterbirds and wetI and resources on the mai nl and coastal tundra near Storkersen Point, which is approxi nately $\mathbf{2 5} \mathbf{~ k m e a s t ~ o f ~ t h e ~ S i ~ m p s o n ~ L a g o o n ~ s t u d y ~ a r e a . ~ S i m i - ~}$ larly, Norton et al. (1975) and Hanson and Eberhardt (1976, 1977) report on the ecol ogical rel ationships of the inland tundra avifauna near Prudhoe Bay, approxi natel y 40 km east of Si mpson Lagoon.

Mgration in the Poi nt Barrow area has been studi ed by Thompson and Person (1963), Johnson (1971) and Timson (1976), and Fl ock (1973) used DEWradars to obtain a broader perspective of migation in the North SI ope area. Martin (Univ. of Alaska, pers. comm., 1980) conducted coastal bird migration watches during spring 1979 and has recorded the density of nesting bi rds on tundra pl ots during summer 1979 near Brownl ow Point, Al aska.

Derksen et al. (1977) conducted habitat anal yses during 1977 and reported on waterbird popul ations at tundra locations in National PetroI eum Reserve-A, nest of the Colville River, Al aska. King (1977) has reported on aerial surveys of birds on tundra habitats in National PetroI eum Reserve-A Duri ng July to Septenber 1978 and 1979, Spi ndl er (1978a, b, 1979) conducted aerial surveys of snow geese and other terrestrial birds on the coastal plain of northeastern Al aska and conducted aerial surveys of waterbirds associ ated with the coastal lagoons adjacent to the Arctic National Wildife Range, northeastern Alaska.

Bartels (1973) conducted aerial surveys and presented estimates of densities of ol dsquaus and other waterfow al ong a series of nearshore nari ne transects in the Prudhoe Bay area of Al aska. Gollop and Richardson (1974) and LG. (unpubl ished 1973 data) summarized the results of aerial surveys of the bays, spits, I agoons and barrier islands located between Shi ngle Point, Yukon Territory, and Prudhoe Bay, Al aska, during June through August 1973. Harri son (1977) conducted aerial surveys of fshore and al ong the coast of the \mathbf{A} askan Beauf ort Sea during July and August 1976; he presented densities of oldsquaws at several coastal locations between Barrow and the U. S. - Canada border.

STUDY AREA

The study area chosen for intensive ornithol ogi cal investigations was the Jones Islands-Si mpson Lagoon system For comparative purposes, intermittent investigations were al so conducted in adj acent areas during 1977. During 1978, systenatic and nore extensi ve ornithol ogi cal investigations were conducted as far west as Atigaru Point and as far east as the U.S.Canada border; a less intensi ve program of similar extent was conducted during 1979.

The Jones Islands have been defined as allislands, spits and reefs from Spy Isl and to Cottle Isl and ($6.4 \mathrm{~km}^{2}$, Fig. 1). During 1978, Thetis Island, a 1.6 kmigravel and sand island of f the Colville Delta and west of Spy I sl and, was al so incl uded in the study area. The tundra-covered portions of Pingok, Peat, Bertoncini, Bodfish and Cottle Islands occupy an area of approxi nately 3.8 kmand are characterized by poor soils (Everett 1975) and tundra vegetation of low grouth form (Spetzman 1959; Wigins and Thonas 1962; Nieland and Hok 1975; Webber and Wkl ker 1975). The remai ning 2.6 kmiof isl and habitat on the Jones Islands, I ocated principally on Spy, Leavitt and Cottle islands, consi sts of unvegetated gravel, sand and silt.

Si mpson Lagoon has been defined as that area east of a line fromthe west end of Spy Island to 0liktok Point, and west of a line fromthe east end of Cottle Island to Beechey Point (Fig. 1). This area occupi es approxi mately 160 km, of which approxi mately 102 kmis at least 1.82 m (6 ft) deep. The deepest known point in the lagoon, located imedi atel y off the east end of Spy Island, is 4 m deep. A trough, varying in width from 0.3 km at the east end of the lagoon to 5 km at the west end of the I agoon, and varying in depth from 2 to 3 m runs the Iength of Simpson Lagoon. The remai ning 58 km of lagoon area is shal lower than 1.82 m al nost two-thi rds of these shallow waters lie al ong the south shore of Si mpson Lagoon. (Planimetry conducted on U.S. Dept. Commerce, Coast and Geodetic Survey, Chart No. 9471, 4th edition, May, 1973.)

A so incl uded within the study area is a $32 \mathrm{~km} \times 20 \mathrm{~m}$ (0.64 km) strip of coastline that incl udes beaches, adj oining spits and adjacent sand bars al ong the nai nl and shoreline between Oliktok Point and Beechey

Figure 1. Jones I slands- Si mpson Lagoon Study Area.

Point. This strip incl udes nost of the drifthood and debris al ong this portion of the Beaufort Sea coast.

In order to compare avian use of the barrier island-I agoon study area with that of imedi atel y adjscent marine and mainland areas, regul ar surveys were conducted seaward and landward of the intensi ve study area. The marine area was sampled al ong a $35 \mathrm{~km} \times 0.4 \mathrm{~km}$ transect parallel to and about $2 \mathbf{k m}$ seaward from the contiguous Jones Islands (Cottle Island to Spy Island). The mai nl and area was sampled al ong a $35 \mathrm{~km} \times 0.4 \mathrm{~km}$ transect located about $4 \mathbf{k m i n l}$ and from the shoreline bet ween 0liktok Point and Beechey Point (Fig. 1).

During surveys conducted in 1978, 17 additional transects were established: 6 were in the shal low waters adj acent to the Colville River delta, west of Si mpson Lagoon; 11 were al ong the barrier islands and I agoon systens east of Si mpson Lagoon as far as the U. S. - Canada border (Fig. 2).

Fi gure 2. Locations of aerial survey transects in areas west (naps A and B) and east (maps C through G) of the Jones IslandsSimpson Lagcon study area.

Fi gure 2 (cent'd)

Fi gure 2 (cent' d)

METHODS AND RATI ONALE OF DATA COLLECTI ON

Mgration Studi es

Three maj or migrations of mari ne-associ ated bi rds occur al ong the coast of the Beauf ort Sea: spring migration, mid-sumer nol t migration, and fall migration. During these migrations, birds usually occur in flocks and nay be both spatially and temporally concentrated in certain I agoon habitats.

Spring migration in the Beauf ort Sea area occurs during a critical period because at this time there is little open water in nornal years. In nearshore regi ons the onl y areas of open water consist of river and stream water that has flowed out over the landfast ice. Under certain ci rcunstances, high nortality of marine-associ ated bi rds can occur from nat ural causes during spring (Barry 1968). A visual and radar study in the northern Yukon during 1975 has shown that spring migration there is hi ghly concentrated al ong the Beauf ort Sea coast (Johnson et al. 1975; Richardson et al. 1975). An oil spill at this time into a natural or nan- made area of open water might kill large numbers of waterbirds. Hence, we studi ed spring migration intensi vel y. We monitored migration by radar in 1977 and by vi sual nethods in both 1977 and 1978. For comparati ve purposes, we have incl uded some of our 1975 observations al ong the Yukon coast in this report.

The westward nol tigration by male seaducks generally occurs during I ate June and July. Fewer species and indi vidual sare invol ved in this migration than in the spring migration. The numbers of migrants that use (i.e., land in) nearshore waters around barrier islands and in lagoons are larger during nolt migration than in spring, but nonethel ess are still small. Mbst coastal lagoon habitats renai n predoni nantly ice-covered until early to mid-July, and until that tine the main areas of open water available to molt migrants in nearshore areas are narrow shorel eads and nore extensi ve areas of f the nouths of rivers.

The westward fall migration out of the Beauf ort Sea generally invol ves nore speci es than does the nolt migration, and novenents normally occur on a broader temporal and spatial scale within the coastal Beaufort Sea area than during either the spring or nol migration. All coastal habitats are available to nost fall migrants.

Radar Monitoring During Spring 1977. Radar data were obtained from the 0liktok Point, Alaska, DEW surveillance radar ($\mathbf{7 0}^{\circ} \mathbf{3 0 ^ { \prime }} \mathbf{N} \quad 149^{\circ} 53^{\prime} \mathrm{W}$). Thi s radar is located at the southwest corner of Si mpson Lagoon, and was known (Fl ock 1973) to be suitable for monitoring bird migration. Radar data were obtai ned on 18 May and from 26 May to 17 J une 1977. The methods used were virtual ly identical to those used by Richardson et al. (1975) to study spring bi rd migration al ong part of the Canadi an Beauf ort Sea coast.

Tine-I apse film of the Plan Position Indi cator (PPI) di splay was obtai ned al nost conti nuousl y on 18 May and from 26 May to 17 J une 1977 at a rate of one 35 mm frame every antenna revol ution. During tine-lapse filming, the PPI di splayed an area of radi us $74 \mathbf{k m}(40 \mathrm{n}$. mi.).

Pol aroid photographs of the PPI were obtai ned during the sane dates, usually three ti mes per day at about 08:00, 16:00 and 22:00 AST. Di spl ay radi i of both 74 and 37 km were photographed, and for each of these radi i separate photos of one antenna sweep and 6 sweeps were obtai ned. When 6-sweep photos were made, the shutter was cl osed during the fifth sweep. On these photos each bird echo appeared as a streak, and the polarity of novenent was often evi dent fromthe absence of an echo for the fifth sweep. The main purposes of these photos were to provi de 'real-ti ne' radar data and to ensure agai nst total loss of data from any nal functions of the tine-lapse canera.

Prel iminary examination of filns indi cated that well-defined east ward and west ward spring migrations were detected consi stently, and that these migrations were evident far inland and far offshore as well as near the coast. Very few bird echoes noved south (ef. Flock 1973) or north. Hence, characteristics of east and west novenent were recorded separatel y from each of five parts of the radar di splay: (1,2)50 and 20 kminl and, (3) over the coast and adj acent Si mpson Lagoon, and (4, 5) 20 and 50 km north of 0liktok over the frozen Beauf ort Sea. Data were recorded from the tine-I apse filns at 3-h intervals (00:00, 03:00, 21: 00 AST).

For each 3-n interval, the anounts (densities) of east and west nigration in each area were assessed by eye. Mgration density was recorded on the \mathbf{O} to 8 ordi nal scale (Richardson 1972) used in numerous
previ ous radar studies. Reanal ysis of data obtai ned from the Komakuk, Y. T., DEW radar by Richardson et al. (1975:124) provi des calibration for l evel s 0.6 of the ordi nal scal e:

Level \mathbf{O} corresponds to \mathbf{O} bird echoes per 10 km of front (neasured perpendi cul ar to nean flight di rection) per hour

1	$\mathbf{5} \pm \mathbf{3}$ echoes $/ 10 \mathrm{~km} \cdot \mathrm{~h}($ nean $\pm \mathrm{SD})$
2	14 ± 3
3	22 ± 4
4	35 ± 10
5	$\mathbf{8 3} \pm \mathbf{3 2}$
$\mathbf{6}$	$\mathbf{2 0 4} \pm \mathbf{1 3}$

Densities 7 and 8 were never encountered during either this or the Konakuk study. Al filmanal ysis in both studi es was done by one indi vidual (W.J. Ri chardson), thereby maxi mizing comparability of the results.

Mbdal flight di rections (tracks) of birds noving generally east or west were estimated (separatel y) by eye to the nearest 10° for each 3 -h interval . In addition, flight paths of indi vidual echoes were occasionally traced from the tine-lapse filmfor detailed anal ysis of flight directions and routes,

Visual Mgration Vatches During Spring 1977. Daily visual migration wat ches were conducted from 17 May to 15 J une 1977 at Oliktok Point, and from 6 to 14 J une at tho sites on Pi ngok Island, both Iocated 12 km NE of 01iktok. At each site, one observer conducted watches on a regul ar schedule. On nost days, watches were conducted for three 2-h periods, usual ly 09:00-11:00, 13:00-15:00 and 19:00-21:00 AST. Fi eld procedures are descri bed by Johnson et al. (1975). Bri efly, for each indi vidual or group seen, we recorded the number, time, age and sex composition (if determinable), di rection, hei ght, di stance fromshore, behavi or (flying, sitting, circling, I anding, etc.), habitat, and 'migrant status'. The I ast of these variables was our assessment of whet her the bird was activel y migrating, possi bly migating, or engaged in alocal activity (sitting, local flying, etc.). Al data were dictated into tape recorders in the field and I ater transcri bed onto coding forns for computer processing.

At 0liktok Point, the migration watch was conducted fromthe top of a fuel storage tank fromalevel about 7 m above sea level (ASL). This I ocation afforded good visibility on all azi muths except $205^{\circ} \mathbf{- 2 2 5 0}$ where
buil di ngs and radar apparat us about 1.6 km anay partially obstructed visibility. The Iagoon surface was frozen and snooth, but after 8 J une much of the Iagoon ice was covered by runoff water fromstreans to the east. To facilitate estination of di stances of bi rds, stakes were positioned at 500 yard (457 m) interval s from 500 to 3000 yd north of the end of 01 iktok Point. Bi nocul ars (9 x or 10x) and spotting tel escopes ($\mathbf{2 0} \mathbf{- 4 5} \times$ Zoon) were used. On clear days flying birds could often be detected and cl assified at least to maj or taxonomic category (i.e., Ioon, waterfow, gull, etc.) at di stances as great as $6 \mathbf{k m}$ which is the di stance from 01iktok Poi nt north to Spy Isl and.

The tuo mi gration watch stations on Pi ngok Island were located at the extreme western end of the tundra-covered portion of the island. One post was situated on the southwest shore and the ot her about $6 \mathbf{m A S L}$ atop a building located sone 40 m south fromthe north shore. The observer at the northern post recorded novenents seaward of the barrier islands. Rough ice and pressure ridges obstructed visibility of lowflying birds beyond about 3 km seaward. The observer at the southern post recorded novements lagoonward of the $\mathbf{i s l}$ and. The southern post was approxi natel y 300 msouth of the northern post, and al though this post was not el evated, the I agoon surface was snooth and visi bility was unobstructed to the mai n I and coast, approxi matel y 7 km to the south.

Visual M gration Vatches During Spring 1978. A twice-daily schedule of watches was established during the period 6 to 25 J une 1978. The wat ches were conducted from a platorm approxi matel y 6 m ASL at op a building I ocated approxi mately 1.5 km southeast of the tip of Milne Pt. and 50 m inl and- - ni dway al ong the south shore of Si mpson Lagoon. Procedures were the sane as those in spring 1977.

During both years, for purposes of anal ysis, active migrants were separated fromlocal residents and 'status uncertai n ' bi rds on the basis of the 'migrant status' and behavi or codes recorded in the field. In general, only birds that were in sustai ned flight and that nai ntai ned an east ward ($30^{\circ}-1500$) or west ward ($210^{\circ}-3300$) course were treated as migrants.

Md-Summer Mbl Mgration
Data concerning the mid-summer nol migration of male seaducks (oldsquaws, scoters, common and king ei ders) were collected visually on nany of the days from 26 J une to $28 \mathrm{Jul} y$ during both 1977 and 1978. Radar was not used.

During 1977, it was not possible to mai ntain a rigid daily schedule of migration watches. The anount of time devoted to systenatic migration watches depended on the weather (if fog was present throughout the study area, no watches were conducted), other duties of hi gher priority, and the apparent vol une of bird migration. One observer used the el evated north post on Pi ngok Island (as descri bed above). He recorded all bi rds seen regardl ess of whether they flew over the islands, lagoon or sea. Whtches were nost commonly conducted bet ween 08:00 and 10:00 AST and bet ween 20:00 and 22:00 AST. When weather permitted and especialy when the vol une of migration was high, longer and nore frequent watches were conducted. Peri ods when watches were conducted are listed bel ow

Date	Number of Hours	Ti me (AST)
June 26	2. 5	09:30-11:00; 19:30-20:30*
July 2	3. 75	$\begin{aligned} & 14: 00-15: 00^{*} ; 16: 00-17: 00^{*} ; 18: 15-19: 00 ; \\ & 20: 00-21: 10 \end{aligned}$
3	6	$\begin{aligned} & 08: 00-09: 00 ; 10: 00-11: 00 ; 12: 00-13: 00 ; \\ & 14: 00-15: 00 ; 17: 00-18: 00 ; 20: 00-21: 00^{*} \end{aligned}$
4	5	$\begin{aligned} & 08: 00-09: 00 ; 10: 00-11: 00 ; 12: 00-13: 00 ; \\ & 14: 00-15: 00 ; 17: 00-18: 00^{*} \end{aligned}$
7	1	08:45-09:45
12	2	20:15-22:15
13	2	08:15-10:15
14	2	08:15-10:15
15	4	08:00-10:00; 20:00-22:00
20	2	20:00-22:00
21	2	08:20-10:20
22	2	20:45-22:45
23	3	08:35-10:35; 20:30-21:30
24	2. 5	09:00-10:00; 20:30-22:00
25	1	08:50-10:50

[^2]During 1978, the systematic schedule of visual watches established during spring was maintai ned until 28 J uly except during the peak of the nolt migration. During this peak period (3 to 7 Jul) , watches were conducted during fog free periods on alternate hours from 07:00 to 23:00 AST.

During the mid-summer period in both 1977 and 1978, all flocks or aggregations of birds seen during other research activities were recorded and incl uded in sone anal yses of nol migration. Observations during systematic watches were recorded on tape recorders; additional observations were recorded in notebooks and al so coded for keypunching. Definite or probable migrants were separated fromlocal residents on the basis of the same behavioral criteria as in spring.

Certain observations of molt migation along the Yukon coast have been summarized, for comparative purposes, in this report. These data were obtai ned during previ ous studies by Gollop and Davis (1974) in 1972 and by Johnson et al. (1975) in 1975.

Fal I M gration
During 1977, data concerning 'fall' migration were collected from 21 August to 22 Septenber. Radar was not used. Watches were conducted by one observer fromthe el evated north post on Pi ngok Isl and using the same procedures as used during molt migration. Mgration watches were usually conducted within the periods 07:00 to 11:00 and/ or 15:00 to 17:00 AST.

During 1978, incidental observations concerning 'fall' migration were collected intermittently from 1 August to 15 October. Radar was not used and systenatic migration watches were not conducted. All flocks of birds and ot her apparent migrants observed during the course of other research activities were recorded in notebooks, coded for keypunching, and incl uded in the anal ysis of fall migration.

Nesting Studi es

Both Gavi n (1976) and Di voky (1978b) have presented estimates, based on primarily non-quantitative methods, of the numbers of waterbirds nesting on the Jones Islands. An accurate assessment of numbers of birds nesting on barrier isl and habitats can only be nade by establishing and
thor oughly searching plots or bystematically searching allavalable aver nesting habitats. Because of the large anount of tundra habitat available on Pingok Island (see "Study Area"), two Iarge plots were established during 1977 on tundra portions of this island. The total area of all the other barrier islands was compl etel y surveyed during 1977. One of these plots on Pi ngok Isl and was re-established during 1978 and a comparative plot on the mai nl and tundra was established. In general, nesting surveys on barrier islands during 1978 were less extensive than during \$977, and were desi gned to nonitor specific barrierisland habitats at specific locations.

Survey Methods
On 16-20 June 1977 two tundra pl ots, one covering $0.63 \mathrm{~km}^{2}$ (Pl ot 1) and anot her covering 0.30 km (Pl ot 2), were established on Pi ngok I sl and (Fig. 1). A compass and 100 m steel tape were used to neasure and stake 100 m interval s within the pl ots. Between 20 J une and 20 July 1977, these two island tundra plots were surveyed for nesting birds twice, and all tundra habitats on Peat, Bertoncini, Bodfish and Cottle Islands (total area 0.87 km) were surveyed for nesting bi rds once. During surveys, two or three observers flushed birds fromtheir nests by draging a 50 m I ength of rope perpendicular to the di rection of thei r novenent across the tundra. Host bi rds flushed in advance of the oncoming rope, al though some did not flush until the rope passed over them

On 24 to 27 June 1978, Pl ot $2(0,30 \mathrm{~km}$) on Pi ngok Island was reestablished and an additional comparative plot covering $0.25 \mathbf{k m}^{\mathbf{2}}(\mathbf{P l}$ ot 3) was established on the nai nl and tundra near Milne Pt. (Fig. 1). Bet ween 24 J une and 12 July 1978, both of these pl ots were surveyed twice by three observers using a rope drag as descri bed above. Pl ot 1 on Pingok Isl and and the tundra portions of the other barrier islands were not surveyed during 1978.

From 21 to 24 June 1977, the locations and numbers of all territorial males ($1 O^{\circ} O^{\prime}$) of al species of birds seen on Pl ots 1 and 2 on Pingok Island were recorded. Si milar data concerning territorial majes on Pl ots 2 and 3 during 1978 were not recorded.

During 1 to 7 July 1977, the 2.6 kmiof barrier island habitat covered by gravel, sand and silt was surveyed by searching all the driftnood rous and piles of debris where, in the Beaufort Sea area,
species such as common eiders, glacous gulls and arctic terns nay nest (Schamel 1974; Divoky 1978 b). During 1978, such surveys of gravel and sand i slands were conducted during 1 to 3 July and were restricted to Spy Island ($1.5 \mathrm{~km}^{2}$) and adj acent Thetis Island (1.6 km${ }^{2}$). Thetis Island was not surveyed in 1977. Birds nesting on Spy Island traditionally have suffered predation by Arctic foxes (J.W. Helmericks, pers. comm. 1977; Divoky 1978b; Johnson 1978). In contrast, Arctic foxes have sel dom been recorded on Thetis Island.

When an active nest (a nest with at least one egg or young) was di scovered, its position was mapped and a stake was placed at a gi ven di stance and di rection from the nest. The stake was labelled, col ored flagging tape was attached, and the following infornation was recorded:

1. The presence or absence and behavi or of any adul t bi rds near the nest.
2. The number of eggs and/ or young present in or near the nest.
3. A description of the substrate, nest naterial and cover near the nest.
4. Any evi dence of predation or recent activity or predators near the nest site.

Nests constructed during previ ous years, destroyed nests and partially compl et ned (i ncl udi ng nest scrapes) were al so recorded, and their positions mapped.

Mlting and Pre-Migratory Staging Studi es

Mbst waterfow undergo a summer nol t during which they gradual ly replace thei r contour feathers and simltaneously lose all of their flight feathers. Seaducks (primarily post-breeding nal es and sone fenal es) migrate al ong specific traditional routes to specific locations where they concentrate into flocks and undergo this nolt (Salomonsen 1968). Hal I (1975) and Gavin (1976) have previ ously suggested that Simpson Lagoon may be an important sumer nol ting area for ol dsquaws, and Bartonek (1969), Bartels (1973), Schweinsburg (1974a) and Divoky (1978b) have suggested that the barrier island-I agoon systens al ong the Alaskan Beauf ort Sea coast are important summer nolting and post-breeding concentration areas for seaducks--primarily ol dsquaws.

After they leave their tundra rearing areas and before they migrate out of the Beau fort Sea area, immatures of certain species of shorebi rds al so concentrate intolarge feeding flocks al ong the coastline. Connors and Risebrough (1976, 1977) and Connors et al. (1978) have indi cated that coastal locations in the western portion of the Beauf ort Sea are inportant concentration areas for imature phalaropes. This process of pre-migratory concentration is called "staging". Any species (inthis study, primarily oldsquaws, phalaropes, glaucous gulls and arctic terns) that was not molting and that was concentrated for a significant period of time in the Jones I sl ands- Si mpson Lagoon study area and in the adj acent barrier islandI agoon systens was consi dered to be stagi ng.

Specific survey prograns and methods were desi gned to quantify efficiently and accuratel y the abundance and distribution of noling and stagi ng bi rds in the study area.

Aerial surveys provide a method for rapidly and systenatically recording numbers and di stributions of medi umsized and large birds, such as ol dsquaws, gulls, terns and loons, in a wide area. The aerial net hod is applicable over land, water and ice.

Shoreline surveys fromsmall boats were used to record nunbers and di stributions of snall shoreline-associ ated birds such as phalaropes, sandpi pers and plovers. Gulls and terns, which al so may associ ate with shorel ines, especially when feedi ng, were al so recorded during boat surveys. Hence, large species of shoreline-associ at ed bi rds such as gulls and terrs were surveyed equally well fromboth aircraft and boats. Those large birds associated with open water areas away fromshorelines were surveyed best from ai rcraft.

Aeri al Surveys During 1977 and 1978
Aerial surveys were conducted on seven occasi ons during 1977 (5 J une to 22 September; Appendix I), on ten occasi ons during 1978 (23 J une to 23 Septenber; Appendi x 11) and on four occasi ons during 1979 (22 J une to 23 Septenber; Appendix III). Each survey consisted of one flight al ong each of five to 22 pernanent transect strips, each located in a specific type of habitat (Table 1). During 1977, only transects located in the Jones I sl ands-Si mpson Lagoon area (transects 1-5) were surveyed. In order

Table 1. Aerial survey transect descriptions, Beaufort Sea, Al aska, 1977-1979*.

Transect Nunber	Transect Length (km)	Habi tat Type	Location
1	35.4	Offshore Marine	1. 6 km seaward of the Jones Islands, E to W
2	37.0	Lagoon - south shore\} ine of Barrier Islands	From Wend Spy Is. , E to E end Cottle Is.
3	30.6	M d-I agoon	From Beechey Pt., Wto 01 iktok Pt.
\wedge	32.2	Lagoon - Mai nl and Shorel ine	From 0liktok Pt. , E to Beechey Pt.
5	33.8	Mai nl and tundra	4 km inl and from Si mpson Lagoon, E to W.
6	13.8	M d-I agoon	Harrison Bay from 6 km S of 01 iktok Pt., NW to Thetis Is.
7	16. 1	M d-I agoon	Harrison Bay, from Thetis Is. , SWto Anachlik 1s.
8	56.3	Unprotected 8ay	Harrison 8ay, from Thetis Is., Wto Ati garu Pt.
9	30.3	Unprotected Bay	Harri son Bay, f rom Atigaru Pt., SE to E side of Colville R. delta.
10	35. 1	River Delta	Frome side of Colville R. delta to Wide of mouth of Kupi gruak channel .
11	12. 1	Md-1 agoon	From Wside of nouth of Kupiquaak channel , NE to Thetis Is.
12	34.8	Lagoon - south shorel ine of Barrier Islands and Protected Bay	From E end Cottle Is. to E end Stump Is., E across Prudhoe Bay to Heald Pt.
13. 1	16.4	Semi -protected Sound	From Heald Pt., MWacross Stefansson Sound to Rei ndeer Is.
13.2	123. 9	Lagoon - south shoreline of 8arrier Islands	From Wend Rei ndeer Is. , ESE to Brownl ow Pt.
14	87.7	Lagoon - south shoreline of Barrier Islands	From BrownTow Pt., ENE to Wend Arey Is.
15	152. 1	Lagoon - south shoreline of Barrier Islands	From Wend Arey Is., ESE to E end Demarcation Bay or to US-Canada Border.
16	144.7	M d-I agoon	From US-Canada Border or E end Denarcation Bay WWh to Wend Arey Is.
17	86.1	M d-I agoon	From W end Arey Is., W WN to Brownlow Pt.
18	81.3	M d-I agoon	From Brown ow Pt., Wto Pt. Brewer.
19	17.4	River Del ta	From Pt. Brower, W to Heal d Pt.
20	6.4	Mai nl and Shorel ine	From Heald Pt., S to East Dock Prudhoe 8ay.
21	37.9	M d-I agoon	From East Oock Prudhoe Bay, Wto Beechey Pt.

*Transects 1-5 1 ie within the Jones Islands- Si mpson Lagoon intensive study area and these transects were surveyed during 1977, 1978 and 1979. The renai ni ng transects 1 ie to the east and west of the intensi ve study area and were surveyed onl y during 1978 and 1979 (see Fig. 2A-G).
to assess the validity of classifying the Jones Islands-Si mpson Lagoon study area as a representative of the extensive barrier island-lagoon systens al ong the Al askan Beauf ort Sea coast, 16 additional transects were established during 1978 at locations both east and west of Si mpson Lagoon and they were systematically surveyed. In 1978 and 1979, each single aerial survey consi sted of flights al ong $\mathbf{1 2}$ to 22 and 12 to 20 , respectivel y, different transects.

During the survey of the barrier island transects (Transect 2) in 1977, the ai rcraft was positioned di rectly over the center of the $\mathbf{i s l}$ ands where they were narrower than the 400 m-wide transect strip. Al ong those portions of the $i s l a n d s$ that were wider than 400 m the aircraft was maneuvered to a position 100 m lagoonward (south) of the south shoreline of the island. When surveying the mai nl and coast the aircraft was positioned $100 \mathbf{m l}$ agoonward (north) of the nai nl and shorel i ne (see Appendi \mathbf{x} IV).

During the surveys of barrier islands and mainland coasts in 1978 and 1979, the ai rcraft was positioned $\mathbf{2 0 0} \mathbf{~ m l a g o o n w a r d ~ o f ~ t h e ~ s h o r e l i n e s . ~}$ The descriptions of all aerial survey transects are given in Table 1.

Aircraft flight procedures were standardized to the greatest extent possible. However, because it was necessary to use three different types of ai rcraft during 1977 and two different types during 1978, incl udi ng both fixed- and rotary-wing aircraft, variations in flight speed, observer visibility and ai rcraft seating positions were unavoi dable. All surveys in 1979 were conducted froma Cessna 206 fixed-wing ai rcraft.

Except for the 28-29 July 1977 survey, each survey during 1977 was conducted using a single ai rcraft on a single day (Appendi x F). The 28-29 July 1977 survey was conducted over a two-day period and two different types of aircraft were used. A float-equi pped aircraft was unavailable on 15 August 1977, so transects over open water were not surveyed on that date. During 1978, a fixed-wing aircraft was used for all aerial surveys except the survey on 15 July when a hel i copter was used. During 1978, onl y the extensi ve surveys conducted on 5-6 August and 5-6 Septenber requi red nore than one day for compl etion (Appendi x II). During 1979, two surveys were compl eted in a single day and two were compl et ed over a 2-day period (see Appendix III). During all surveys, both observers recorded into portable tape recorders all birds seen on-transect
(<200 mfromaircraft) and off-transect (>200 mfromaircraft). The inf ormation recorded was of four types: (1) systenatic infornation about the transect, (2) systenatic inf ornation about each bi rd sighting, (3) systematic information about the habitats bel ow the aircraft at 2-rein intervals, and (4) general remarks. Allinfornation except general remarks was numerically coded when transcribed later onto data forns. Al transects were di vided into 2-rein intervals using a timing device. The timer was reset to zero at the start of each transect and it produced a sound audible to both observers at 2-rein intervals. The general habitat type found within each $\mathbf{2}$-rein interval was recorded by both observers, and the interval-number in whi ch each bi rd was seen was recorded.

When counts by both observers were combi ned, it was possible to cal cul ate an estimate of the density of birds per square kiloneter.

Shoreline Transects
Shoreline transects were desi gned primarily to measure the di stribution and abundance of shorebirds, gulls and terns al ong the three types of beaches common in the study area. During the third week of July 1977 15 shoreline transects were established. Fi ve transects were located al ong seaward shorelines of the barrier islands, five al ong lagoonward shorel i nes of the $i s l a n d s$, and $f i$ ve al ong mai $n l$ and shorel i nes (see Fig. 1). Each transect was 1.0 km long and 20 m wide ($0.02 \mathrm{~km}^{2}$). The start and end points of each transect were permanently marked by driving 2.5 mpi pes approxi mately 0.5 minto the beach substrate approximatel 10 mfrom the shorel ine.

During 1977, each of these shorel i ne transects was surveyed on 1,16 and 24 August, and on 1 and 14 Septenber. During 1978, these 15 shoreline transects were surveyed at 5 - day intervals from 31 Jul y to 3 Septenber. Another shoreline transect, established al ong a lagoonward beach on the west end of Pingok Island (Fig. 1), was $1.2 \mathrm{~km} / \mathrm{ong}$ by approxi matel y 20 m wide and was surveyed nore frequently--18 times from 2 August to 18 Sept enber 1977 and 16 ti mes from 2 August to 3 Septenber 1978.

During each survey, all 15 permanent transects were surveyed within one 8 - h period with the aid of bi noculars froma boat noving parallel to the transect. The boat was positioned approxi mately 50 m fromthe outer
edge of the transect, and did not appear to disturb shorebi rds al ong the shoreline. During the 1977 surveys, one observer operated the boat while a second systematically recorded data into a portable tape recorder, During 1978, a single observer conducted nost of the shorel ine surveys. The following infornation was recorded about each transect and any bi rds si ghted:

1. The date, transect number, observers, start and end time of the survey, weat her and water conditions, and direction of travel.
2. The number of indi vi dual s of each bi rd speci es present on-transect (within 10 m of the shoreline) or off-transect (greater than 10 m from the shoreline).
3. The estimated di stance of each bird or group of bi rds from the shorel ine, and whether the bi rds were si ghted on the beach or in the water.
4. The behavi or of each bi rd or group of bi rds si ghted ontransect or off-transect.

Feeding St udi es
Studies of the feeding ecol ogy of marine birds provide a key link in the interpretation of rel ationships anong physical parameters, biol ogical productivity, and distribution and abundance of marine birds in barrier island-I agoon systens. Specific questions regarding the age, sex, stage of molt, physi cal condition and identity of food organisns consumed by bi rds during the various stages of bird abundance and Iagoon productivity can be answered onl y by collecting birds.

The primary purpose of the avian feeding ecol ogy studies was to determine which food organi sns comprised the important proportions of the di ets of those speci es of bi rds nost widel y di stributed and nost abundant in the study area. During 1977 the key avian species were (1) ol dsquaus, (2) red and northern phalaropes (generally treated as a single group), and (3) glaucous gulls. During 1978, only oldsquaus and the phalaropes were treated as key species. Ue chose a qualitative nethod (see Hynes 1950 and Griffiths et al . 1975) for assessing the rel ati ve importance of food taxa found in bird stonachs and in bird feedi ng habitats during 1977 and 1978 because this method conbi ned the following advantages:

1. It is efficient and rel ativel y accurate in estinating the rel ative importance of particular food taxa.
2. It is easily used under field conditions and requires no speci al apparatus for neasurement of organi sns.
3. It does not gi ve the potentially misleading impressi on of accuracy gi ven by sone ot her methods that measure stomach contents more preci sel y but make no better allowance for sampling problens and differential di gestion rates.
During both 1977 and 1978, compari sons were made of the di et of ol dsquaus as determined by the qualitative Hynes point nethod and by more quantitative nethods of measurenent.

Collections of Birds and Habitat Samples
From 17 June to 19 Septenber 1977, 210 speci mens of four avian species (oldsquaw, red and northern phal aropes, and glaucous gul 1) were obtai ned in the Si mpson Lagoon-J ones Islands area. During the last two weeks of June 1977, seven ol dsquaus were acci dentally caught in gill nets set as part of the aquatic biology investigations; the stomach contents of these bi rds were retai ned. The renai ning 203 speci nens were collected with a shot gun during the 11 July to 19 Septenber 1977 period.

Samples of potential food organisns, hereafter referred to as habitat samples, were collected fromthe precise habitats in which bi rds were feedi ng when they were shot. These habitat samples were collected im nedi ately after we collected the bi rds.

Bet ween 28 J une and 23 Septenber 1978, 168 additional speci nens of three avian species (ol dsquaus and red and northern phalaropes) were collected in the Simpson Lagoon-Jones Islands area (glaucous gulls were not collected during 1978). On 28 June 1978, one ol dsquaw was acci dentally caught in a gill net; the stomach contents of this bird were retai ned. The remai ni ng $\mathbf{1 6 7}$ speci mens were collected with shot guns during the 10 daly to 23 Septenber 1978 period.

During 1979, 12 oldsquaws were collected opportunistically in association with the aerial survey program On 1 Septenber an imature nale was collected froma brood of five accompanied by a flightless female on a lake 16 km inl and from Simpson Lagoon. On that sane date five flightless adult fenal es were collected on another large tundra lake approxi mately

24 km inland from Si mpson Lagoon. On 2 Septenber five adult male ol dsquaus were collected in the embayment al ong the south shoreline of Thetis Island; on 23 Septenber an adult female was collected at this same location.

Oldsquaw During 1977, 31 col lections (excl udi ng those caught in gill nets) of ol dsquavs (mean=2.6 bi rds/collection) were made in Simpson Lagoon during the period 11 J uly to 14 Septenber; the average depth where 77 of the 90 ol dsquaus were collected was $2.09 \mathrm{~m} \pm 1.55 \mathrm{~m}$ * During 1978, 45 collections of oldsquans (mean=2.4 birds/collection) were made in Si mpson Lagoon during the peri od 10 Jul y to 27 Septenber; the average depth where 108 of the 109 ol dsquans were collected was $2.05 \pm 1.60 \mathrm{~m}$

The general procedures followed for collecting ol dsquans and ol dsquaw feedi ng habi tat samples during 1977 were the following:

1. A flock of ol dsquans was located and watched briefly to determine whet her sone bi rds appeared to be feeding (di ving). An esti mate was made of the size of the flock.
2. Observers then sped into the flock, dropped an anchored buoy as the boat sl oned, and collected as many bi rds as possi ble.
3. Birds were retrieved and labelled. To mitigate postnortem di gestion of any food itens, the gut (proventriculus and ventriculus) and esophagus of each dead bird were injected with absol ute isopropyl alchohol. The esophagus of each bi rd was then pl ugged with a paper wad.
4. Habitat sampling was initiated after the collecting party returned to the buoy.
a. For each set of birds collected, two quantitative sampl es were obtai ned, one from the surface- water and another fromthe mid- water portions of the Iagoon. This was accomplished by towing both a surf ace-supported neust on net and a subnerged (1 m deep) macroplankton net (see Griffiths and Craig [1978] and Griffiths and Dillinger [1980] for more details).
b. For each set of birds collected, one qualitative sample from the Iagoon epibenthos was collected. Froma stationary boat in the area of the buoy, a macroplankton net was manually towed across the bottom of the I agoon for a di stance of approxi natel y 10 m and at a speed of approxi matel y $0.5-1.0 \mathrm{~m} / \mathrm{s}$.

[^3]c. Habi tat sampl es were imedi atel y washed from the sampl ing net s into doubl e-l abel led 227-m (8 oz) bottles and preserved in 10\% neutral formalin.
During 1978, the same general procedures as during 1977 were followed for collecting oldsquaws except that, prior to making collections, sone flocks of birds were watched nore caref ully and over a longer period of ti ne than during 1977 to determine whether they appeared to be feeding (di vi ng),

Al so during 1978, habitat sampling procedures were different from those followed in 1977. No samples were taken fromeither the surface water or midwater I ayers of the I agoon at locations where ol dsquaws were collected, but a quantitative nethod of sampling invertebrates fromthe epi benthos using a drop net was adopted (see Griffiths and Dillinger [1980] for nore details).

Phalaropes and G aucous Gull. Visual observations made during shoreIine and aerial surveys indicated that during 1977 and 1978 phalaropes and glaucous gulls fed al nost excl usi vel \mathbf{y} in shallow areas ($<1 \mathbf{m}$ deep) al ong shorelines and in bays. Therefore phalaropes (during 1977 and 1978) and glaucous gulls (during 1977), and associ ated feedi ng habitat samples, were collected in these shal low areas.

Phalaropes are very tane bi rds and Iarge flocks were easily approached on foot as they fed al ong shorelines. They were collected while they fed and the post-nortem handling procedures were the same as those described for ol dsquaws.

The glaucous gulls were initially considered to be a key species; theref ore glaucous gulls and their feeding habitats were systenatically sampl ed during 1977--28 glaucous gulls mere collected during 1977. However, the 1977 studi es indi cated that glaucous gulls, by criteria established during the course of the Barrier Island-Lagoon Program were not key species and that further collections and associ ated habitat sampling during 1978 were not justified. G aucous guls fed either singly or in loose aggregations during 1977; they were not easily approached on foot. We watched from a boat offshore to ascertain whether they appeared to be feeding-if they were, we approached as quickly as possible from a speeding boat. The exact location where the bird was feeding was
vi sually noted as we approached. If a bird was collected, the same procedures descri bed for the post-nortem handling of ol dsquavs were applied.

During 1977, a singlequantitative habitat sample was collected with a surface-supported neust on net at each shallow location where phalaropes or glaucous gulls were collected. The net was attached by a line to a 3-mpole and was towed manually fromshore for approxi nately 50 m at an approxi mate speed of 1 to 1.5 mm through waters about 1.5 m fromshore and that varied in depth from 10 cmto 1 m During 1978, identical equi pnent was used to sample phalarope feeding habitats; however, slightly different procedures were followed. Rather than take one sample al ong a 50 mstretch of shoreline, we took three samples, each of length 10 m al ong three stretches of shoreline where the birds were feeding. Habitat sampl es were treated as described for oldsquaws.

Laboratory Techni ques

W'thin 24 hours of collection all bi rds were di ssected and food itens found in the esophagi and guts (proventriculi and ventriculi) were preserved. The following procedures for neasurenent and di ssection of bi rds were followed:

1. The flattened length of the right wing of each bird was measured (accurate within $\pm 0.5 \mathrm{~mm}$) and the wei ght of each bird (accurate within 1 g) was determined using a Pesola spring bal ance.
2. The condition of the pl unage and the stage of nol were recorded.
3. The anounts of subcutaneous and abdominal mesenteric fat were subj ectivel y cl assified according to the OCS fat code: 1=none; 2=1ight; 3=moderate; 4=heavy; 5=excessi vel y heavy. The thi ckness of subcutaneous fat present at a standard I ocation on the right si de of the breast of each bird was neasured to the nearest 0.5 mm
4. The sex organs of each bi rd were renoved, neasured and stored in Bouin's fixative sol ution. In fenal es, the di ameter of the I argest ovum was measured to the nearest 0.5 mm In males, the length and width of each testis were neasured to the nearest 0.5 mm
5. The esophagus and gut were renoved as a single unit from each bird. During 1978, this unit was slit lengt hwi se, an arbitrary measure of full ness (Hynes 1950 and Griffiths et al. 1975; see bel ou) was assigned to the total unit in
the field, and a cursory and tentative description of the contents was recorded. These contents were then washed with $\mathbf{1 0 \%}$ neutral formalin into a 227-m double-labelled bottle. During 1977, no measure of full ness was assi gned in the field, but al il other procedures were the sane. Because of the small size of food itens consumed by phalaropes and because sone food itens were difficult to wash fromtheir esophagi and guts, these organs were preserved al so.

To assess and compare the importances of various food taxa in the di et of each of the key bird speci es during both 1977 and 1978, I aboratory anal ysi s of the stonach contents of each bi rd was necessary. During both years the preserved stomach contents and feedi ng habi tat samples were sorted and an estimate was made of the rel ative vol une of each maj or taxon (e.g., amphi pod, mysid, copepod, i sopod, etc.) by assi gni ng poi nts (Hynes 1950; Griffiths et al. 1975). Our I aboratory method for assi gni ng points differed in one maj or respect fromthe nodified Hynes poi nt nethod used in the field during 1978 and described by Griffiths et al. (1975). In the I aboratory we assessed the total vol une of the stonach contents after instead of before they had been renoved fromthe stonach and bottled.

Twenty poi nts were assi gned to the fullest stonach anal yzed of a particular species of bird. The full ness of each additional stonach from that speci es was subsequently gauged agai nst the fullest stonach and a correspondi ng number of points was assi gned. After the sample had been sorted, and after each major taxon had been bottled, the total number of poi nts thus assi gned to each stonach was partitioned anong the naj or i nvertebrate taxa present according to the rel ative vol une of each. No di stinction was made between whole organi sns and fractions thereof. Pi eces of uni dentified organisns were classified as such.

As noted above, feeding habi tat samples for ol dsquaus during 1977 were collected using three different types of sampling techniques, each desi gned to sample a different stratum of lagoon water. Tvo of these techniques used during 1977 were quantitative and the third (the epibenthic tow) was qual itative. In 1978 onl y epi benthic sampling was conducted and a quantitative method was adopted. Habitat samples for gulls and phalaropes during 1977 and for phalaropes during 1978 were collected by yet another nethod. Therefore, vol unes of naterials sampled using the vari ous nethods were not di rectly comparable either bet ween
years or bet ween speci es, and only rel ative vol unes of different taxa were consi dered.

Each habitat sample was sorted and bottled by maj or taxon. Twenty poi nts were assi gned to the total vol une of each sample and then appropriate proportions of the total 20 points were assi gned to the various maj or taxa in the sample. During 1977, the two nost important taxa (mysids and amphipods) present in the stonachs and habitat samples of key bird species were further sorted, identified to the species level and wei ghed (formalin wet wei ght). For a size comparison, mysids and amphipods (20 indi viduals each) were randonty sel ected from each oldsquaw st onach, and from each ol dsquaw habi tat sample taken during 1977; these indi vidual s were measured to the nearest milimeter. During 1978, a much more detailed system of sorting and measuring was adopted; all taxa present in the stomachs and habitat samples of key bird speci es were sorted to maj or taxa, identified to the speci es level, counted and wei ghed. (Length of the telson pl us first urosome was al so measured.) Further details of the sorting, counting, wei ghing and neasuring procedures followed during 1977 and 1978 are described in Griffiths and Dillinger (1980).

M GRATI ON STUDI ES

Results

Spring Mgration
Seasonal Tining. Previ ous observations in the Beauf ort Sea area have shown that a few species of waterbirds (nost notably common and king ei ders pl us glaucous gulls) minate east uard through the area throughout much of May and into June (J ohnson et al. 1975; Searing et al. 1975). However, peak spring migration of nost species is fromlate May to mid June.

The 01iktok radar showed a few westbound but no eastbound migrants on 18 May 1977. Nb radar data were available on 19-25 May. Mgration in both di rections becane increasingly promi nent in the last week of May, and from 1 to 17 June the radar showed much migration in both directions (Fig. 3, 4). At least a few eastbound migrants were evident on the radar during every half-day interval from 26 May to $17 \mathrm{~J} u n e$, and at least a few west bound migrants on al nost all occasi ons. Both east bound and westbound migrants were evi dent far inl and and offshore, as well as near the coast, throughout the late May to mid-June period (Fig. 3, 4). Despite the fact that less migration was visibe to ground observers in mid-J une than during 1-10 June (see bel ow), radar showed only a slight reduction in eastuard migration and no obvi ous reduction in west uard migration. Mbst of these results are very similar to those obtai ned $375 \mathbf{~ k m}$ to the ESE al ong the Yukon coast in spring 1975 (Richardson et al. 1975). There both eastward and westward novenents were conspicuous on radar until the study ended in early July.

For each speci es seen during the spring migrations of 1977 and 1978, dates of first observation (1977) and peak abundance (both years) are listed in Table 2. The results from 1977 are nore comprehensi ve because observations began earlier (17 May 1977, 6 June 1978) and because observations were made from Pi ngok I sl and as wel I as the mai $n l$ and shore during 6-14 J une 1978. Hourly rates of eastward and westward migration of the cormon waterbird species are shown for each 5-day period in Fi gures 5-7.

East bound glaucous gulls were the only migrant waterbirds that were comon in the Si mpson Lagoon area in mid-May 1977, al though a few whitefronted geese had arri ved by then. No ei ders were seen until 30 May

Fi gure 3. Density of eastward migration detected by 0liktok radar in rel ation to date, May-June 1977. Densities at 09:00 and 21:00 AST each day are shown.

Fi gure 4. Density of west ward migration detected by 01 iktok radar in rel ati on to date, May-June 1977. Densities at 09:00 and 21:00 AST each day are shown.

Table 2. Birds recorded during migration watches In spring 1977 at 01 iktok Point and Pingok Island and in spring 1978 at Milne Point, Al aska. (Revi sed; supersedes Table 5 of Johnson 1979).

Spec 1 es	F\| rst Observed ${ }^{\text {a }}$ (1977)	Approxi mate Number Seen ${ }^{\text {b }}$			Peri ods of Peak Abundance		Predomi nant Mgration Direction		Peak Mgration Rate (\#Birds/h) ${ }^{\text {d }}$	
		(1977)		(1978)	(1977)	(1978)	(1977)	(1978)	(1977)	(1978)
Yell ow billed Loon	3 Ju	26 (32)		(2)	3-9 Ju		E		0.8	
Arctic Loon	9 Ju	39 (52)	21	(80)	$9-13$ Ju	16-18 Ju	E	E	1.5	2.3
Red-throated Loon	9 Ju	25 (28)	2	(9)	9-13 ju	21 Ju	E	E	0.9	0.4
Uni dentifi ed Loons	2 Ju	289 (313)	32	(67)	3-13 Ju	16-19 Ju	E	E	4.5	4.0
Whistling Swan	31 Ma	(16)		(6)						
Brant	31 Ma	592 (1018)	329	(2707)	$9-14$ Ju	11 Ju	E	E	14.8	164.5
Lesser Snow Goose	10 Ju	19 (4)		$(14)^{\text {f }}$	10-11 Ju		E		0.7	
White-fronted coose	17 Ma	- (208)	7	(45)		18-19 Ju	L	w		1.0
Canada goose	5 Ju	(-)	85	(85)		18 Ju		w		21.3
Uni dentifi ed Dark Goose	3 Ju	256 (284)		(126)	5-10 Ju	20 Ju	E	w	14.3	15.0
Unidentified Geese	3 Ju	322 (353)		(-)	11-13 Ju					
Mat Iard	2 Ju	(5)		(-)						
Pintall	1 Ju	(1608)	37	(89)	5-12 Ju	9-15 Ju	L?			
Aneri can wigeon	7 Ju	(8)		(-)	7-10 Ju					
Green-winged Teal	1 Ju	(3)		(-)						
Shovel er	5 Ju	(8)		(-)						
Oldsquaw	28 Ma	2409 (3627)	396	(2252)	2-10 Ju	19-20 Ju	E	E	178.3	69. 8
Steller's Eider	4 Ju	(2)		(-)						
Spectacl e Eider	6 Ju	18 (28)	2	(7)	$9-10$ Ju	9 Ju	E		0.7	0.5
conmon Ei der	30 Ma	740 (979)	12	(74)	4-10 Ju	24 J uf	E	w^{\oplus}	27.0	$4.0{ }^{\text {e }}$
King Elder	30 Ma	490 (943)		(117)	7.13 Ju	21 J ט゚	E	w^{e}	13.4	$3.3{ }^{\text {e }}$
Uni dentifi ed Eiders	2 Ju	286 (404)		(252)	9-14 Јu	19-20 Ju	E	-	6.8	10.0
Red-br. + Unid. Mergansers	10 Ju	(1)		(3)		20 Ju				

Page 2. .

Spec les	First Observed ${ }^{\text {² }}$ (1977)	Approxi mate Number Seen ${ }^{\text {b }}$		Periods of Peak Abundance		Predominant Mgration Di rection		Peak Mgration Rate (\#Birds/h) ${ }^{\text {d }}$	
		(1977)	(1978)	(1977)	(1978)	(1977)	(1978)	(1977)	(1978)
Uni dentified Diving Ducks	1 Ju	530 (708)	60 (80)	1-11 Ju	24 Ju	E	w	27.8	20.0
Uni dentified Ducks	31 Ma	i 032 (1535)	50 (89)	1-11 Ju	22 Ju	E	w	$84 * 5$	8.3
Unidentified Waterfow	5 du	i 66 (295)	- (-)	5-9 Ju		E		14.1	
Rough-I egged Hawk	6 Ju	(2)	- (-)						
Vill ow Ptarni gan	18 Ma	(1)	- (-)			1			
Rock Ptarmigan	28 Ma	(7)	- (-)			L			
Black-bellied Plover	1 Ju	6 (7)	- (-)	1 Ju		L			
Aneri can Gol den Pl over	29 Ma	12 (19)	4 (7)	$29 \mathrm{Ma}-3 \mathrm{Ju}$	19 Ju	L	E		1.0
KIlldeer	12 Ju	(i)	- (-)						
Uni denti ifi ed Pl overs	2 Ju	i (2)	- (-)						
Ruddy Turnstone	24 Ma	32 (48)	- (6)	$29 \mathrm{MA}-9 \mathrm{Ju}$	-	L	L		
Comon Snipe	24 Ma	(3)	- (-)						
Ruf ous- necked Sandpi per	2 Ju	(1)	- (-)						
Pectoral Sandpi per	6 Ju	13 (37)	- (2)	7-12 Ju		L	L		
Batrd's Sandpi per	31 Me	26 (934)	- (3)	3-7 Ju		L	L		
Buff-breasted Sandpi per		(-)	- (27)				L		
Dunl in	29 Ma	18 (22)	- (4)	3-12 Ju		L	L		
Sanderling		$(-)$	- (7)				L		
Semipalmated Sandpi per	1 Ju	8 (8)	- (3)	3 Ju		L	L		
Red Phalarope	3 Ju	48 (103)	4 (17)	8-12 Ju	16-19 Ju	E	w	1.7	0.7
Northern Phalarope	5 Ju	(5)	2 (5)	12-14 Ju	18 Ju				
Uni dentifi ed Phalaropes	12 Ju	(4)	- (12)						
Uni dentified Shorebirds	29 Ma	84 (136)	- (19)	$29 \mathrm{Ma}-\mathrm{li} \mathrm{Ju}$		E	L	2.6	

Page 3...

Speci es	\qquad	Approxi mate Nunber Seen ${ }^{\text {b }}$		Peri ods of Peak Abundance		Predomi nant Mgration Direction ${ }^{\text {c }}$		Peak Mgration Rate (\# Birds/h)	
		(1977)	(1978)	(1977)	(1978)	(1977)	(1978)	(1977)	(1978)
Pomarine J aeger	28 Ma	233 (323)	21 (39)	$28 \mathrm{Ma}-6 \mathrm{Ju}$	6.7 Ju	E	E	18.7	25.4
Parasitic J aeger	29 Ma	76 (106)	2 (15)	29 Ma	11 Ju	E	E	38.3	1.0
Long-tai l ed J aeger	5 Ju	5 (11)	(2)	11-14 Јu		E		0.2	
Uni dentified Jaegers	28 Ma	96 (155)	4 (15)	$29 \mathrm{Ma}-10 \mathrm{Ju}$	22 Ju	E	we	13.1	0. 7
Glaucous Gul I	17 Ma	280 (1162)	90 (733)	9-13 Јu	9-22 Ju	E	E	4.3	6.5
Herring/Thayer's Gull	2 Ju	(9)	(1)						
Mew Gull	13 Ju	(2)	(-)						
Sabine's Gull	7 Ju	4 (6)	13 (41)	7-12 Ju	7.20 Ju	E	$w^{\text {e }}$	0.1	$1.5^{\text {e }}$
Bl ack-I egged Kittiwake	9 Ju	3 (3)	(1)	9 Ju		E	-	0.2	
Uni dentified Gulls	1 Ju	14 (19)	(-)	9-13 Ju		E		0.7	
Arctic Tern	6 Ju	18 (60)	15 (46)	10-13 Ju	16-21 Ju	E	E	0.4	0.9
Snowy Ow	11 Ju	(1)	(1)						
Short-eared Ow	31 Ma	(4)	(-)						
Horned Lark	6 Ju	(2)	(-)						
Uni dentified Suall ous	1 Ju	3 (3)	(-)	1-12 Ju		E			
Black-billed Magpie	27 Ma	(3)	(-)	27-28 Ма		L			
Common Raven	25 Ma	(9)	(-)			L			
Savannah Sparrow	2 Ju	(3)	(-)			L			
White-crowned Sparrow	24 Ma	(2)	(-)	$24 \mathrm{Ma-3} \mathrm{Ju}$		L			
Dark-eyed Junco	29 Ma	(1)	(-)			L			
Uni dentifi ed Redpol Is	31 Ma	(15)	(-)			L			
Snow Bunting	17 Ma	- (102)	(5)			L	L		
Lapl and Longspur	27 Ma	- (100)	(1)			L	L		

Page 4...

a Dates of first observation during 1977 incl ude incidental records as well as records during migration watches. During 1978, systenatic migration watches were not begun until 6 June; hence many dates of first arrival were not recorded. During 1977 there were no systenatic wat ches after 15 J une.
${ }^{\text {b Numbers }}$ to I eft of parentheses are total birds seen migrating in the predominant direction during the period of peak abundance. Numbers In parentheses are total birds seen (migrants and others) during ail spring migration watches and during casual observations (up to 25 June). Numbers are approxi nate because some casual observations nere not recorded and because of difficulties with repeated sight ings of local bi rds.
$C_{E}=$ East, $W=$ Vest, $L=$ Local .
' Peak migration rate is number of migrants seen per hour during the date of peak novement.
'Unexpected di rection, perhaps attributable to snall sample size and/ or late date of initiation of study in 1978.
'On 27 June, 50 additional snow geese flew west.

Fi gure 5. Rates of eastward (right of basel ine) and westward (left of base1 inel migration of brant, 01 dsquavs and ei ders by 5 -day peri od i in spring. Bi rds nore than 3 km of fshore or 1 km inl and not consi dered. Letters mean 'seen but rate too low to be plotted'. Sti ppl ed areas indicate dates with no observations. The nunber of hours of observations in each 5 -day period is given in the 'eider' secti on (peri ods with visibility lesss than 3 km miitted) Yukon data (1975) recal cul ated from data of Johnson et al. (1975) and Ri chardson et al. (1975).

Fi gure 6. Rates of eastuard (right of basel ine) and westuard (left of baseline) migration of pintails, jaegers, glaucous gulls and arctic terns by 5-day period in spring. Pl otted as in previ ous di agram but with expanded horizontal scale.

Fi gure 7. Rates of eastward (right of basel ine) and westuard (I ef t of basel ine) migration of loons, whistling swans and white-fronted geese by 5-day periodin spring. Pl otted as in previ ous diagram but with further expansi on of horizontal scale.
(Table 2). Results frommigration watches al ong the Yukon coast in 1975 (9 May-9 July) were similar to those from Si mpson Lagoon in 1977 (Fig. 5-7). The first glaucous gulls were noving east by 11 May 1975 and the first white-fronted geese and whisting swans were seen in mid-May. The only ei ders seen al ong the Yukon coast in May 1975 were four king ei ders flying east on 13 May. Thus our data are consi stent with the opi ni on (Brooks 1915; Flock 1973; Johnson et al. 1975) that many common and king eiders that migrate east past Poi nt Barrow and appear of f Banks Islandin May fly far offshore rather than al ong the coast.

The period of peak visiblemigration through the Si mpson Lagoon area in the spring of 1977 was the first two weeks of June. The nost abundant species of migrants at this time were brant, oldsquaw and eiders (common and king), all of which migrate east ward through the Beauf ort Sea area in spring. These speci es were first seen on 31, 28, 30 and 30 May, respectivel y; peak eastward migration occurred in the third, first, second and second 5 - day periods of June, respectivel y ($F i g$. 5). The timing of these migrations was generally similar to that in 1975 al ong the Yukon coast, but in 1975 peak brant migration was slightly earlier whereas peak ol dsquaw and ei der migration was slighty later (Fig. 5). Interpretation of the 1978 migration is hindered by the fact that observations in Simpson Lagoon did not begin until 6 June, but the migrations of both brant and oldsquaw seened I ater than in 1975 and 1977, and few migrating ei ders were seen. By midJune in both 1977 and 1978, numbers of eiders noving west becane similar to numbers flying east; we assume that many of these mid-June sightings represented local novenents of eiders.

The timing of spring migration of other common (but not abundant) waterbird speci es is shown in Fig. 6 and 7; note the expanded scal es in rel ation to the scale of Fig. 5. Loons (3 species), jaegers (3 species), glaucous gulis and arctic terns were the nain eastbound migrants in this group. Mbst jaegers nove east fromlate May to midJune, and nost glacous gulls (despite the early first arrival dates) al so migrate in this period. Most of the loons, arctic terns and red phalaropes seen migrating east al ong the coast pass in early and-mid June, al ong with various less numerous migrants such as Thayer's guls and Sabine's gulls.

The onl y common waterbird speci es that appeared to migrate westward in si gnificant numbers over Si mpson Lagoon in the spring of 1977 were pintails and white-fronted geese. Both of these speci es commonly engaged in local flights, and it was often impossibe to separatelocal flights from migration. This conf usi on no doubt accounts for the apparent simiIarity in rates of west bound and eastbound 'migration' of these species during 1977 (Fig. 6, 7). Al ong the Yukon coast in 1975, these tuo speci es and al so whi sting swans were nore consi stently westbound. Little westward return novenent of pomarine or parasitic jaegers was evident at Simpson Lagoon in midtolate June of 1977 or 1978, unlike the situation al ong the Yukon coast in 1975 (Fig. 6).

The total amount of visible westuard migration al ong both Si mpson Lagoon and the Yukon coast was much less than the anount of visi ble eastward migration. We have no definite expl anation for the large numbers of westward migrants detected by radar, but we suspect that shorebi r ds were often invol ved. Shorebi rds are abundant summer residents of the North Sl ope, but few are seen migrating al ong the coast. It is known that during migration they often fly at high altitudes and on a broad front, and thus are vi rtuallyinvisible to field observers (Richardson 1979).

Flight Paths. The 01iktok radar showed that nei ther eastward nor west ward migration was restricted to the coastal area; instead, both occurred across a broad front. Mgrations in both di rections were detected almost conti nuously throughout the peak of the spring migration season not only near the coast, but al so as far as 20 kminl and and 20 km offshore (Fig. 3, 4). In fact, on most occasi ons at least a few east bound and west bound migrants were detectable as far as 50 kminl and and offshore (Fig. 8). The nodal di rection of 'eastbound' migrants was often slightly north of east (080°) far inland and slightly south of east (100°) offshore (Fig. 8). The nodal direction of 'west bound' migrants was usually slightly north of nest ($\mathbf{2 8 0}^{\circ}$) in all areas. Figures 9 and 10 show examples of the actual paths of indi vidual birds and flocks across the radar coverage area.

Even though eastward migration occurred conti nuously and west ward migration occurred nearly continuously throughout the peak migration period, the anount of migration varied fromtime to time (Fig. 3, 4). These variations were nore or less synchronous overland south of 0liktok, in and

Fi gure 8. Frequency of migratory movenents in various di rections, based on radar data from 0liktok, Al aska (1977), and Komakuk, Y.T. (1975), 9 May- 20 J une.

Fi gure 9. Flight paths of samples of the birds migrating east over the North SI ope and Beauf ort Sea on 2 and 5 June 1977. Outer circle has radi us 75 km centered at 01iktok radar. On 2 June , ol dsquaus uere by far the nost abundant migrants seen fly ing east. On 5 June, brant, pintails, ol dsquaus and jaegers were the main east bound speci es.

Fi gure 10. Flight paths of a sample of the bi rds migrating west over the North Sl ope and Beauf ort Sea on 15 J une 1977. A few brant and king ei ders were the only species seen to fly west on this date.
near Si mpson Lagoon, and offshore. Mgration densities in each of these three areas were closel y correl ated with densities in the other areas (Fig. 11, 12).
 several ways fromresults obtai ned farther east, al ong the Yukon coast, by Richardson et al. (1975):

1. In the Yukon, numer ous migrants were detected flying northeast. These birds approached frominterior Al aska, crossed the North Sl ope (which is only a few kiloneters wide here), and departed seavard (Fig. 8). Si milar flights were not evident in the 0liktok area.
2. In the Yukon, few migrants were detected $\mathbf{2 0 - 5 0} \mathbf{~ k m}$ i nl and, and densiti es there were not cl osel y correl ated with densities near the coast and offshore (Fig. 11, 12). The area $20-50 \mathrm{~km}$ inl and fromthe Yukon coast is nountai nous, whereas the area $20-50 \mathrm{kminl}$ and from 0liktok is within the North SI ope.
3. The mai n axis of 'east-west' migration al ong and north of the Yukon coast was ESE-WNW, whereas that al ong and north of the Al askan coast near 01 iktok was closer to east-mest (Fig. 8).
The 01iktok radar indi cated that spring migrants did not concentrate to any maj or degree al ong the coast, al ong the barrier islands, or anywhere else within the radar coverage area. Sone bi rds observed on radar changed course to follow nai nl and or island shorel ines, and radar of ten showed nore bi rds over the barrier island-I agoon systemthan inl and or of fshore. However, radar never showed an intense, narrow stream of birds al ong the nai nl and coast, lagoon, islands or el sewhere, This situation contrasts with that found al ong the coast of the northern Yukon in the spring of 1975 (Richardson et al. 1975), where the Komakuk radar often showed a narrow, concentrated stream al ong the coast, and where coastal vi sual observations recorded nore spring migrants than were seen in this study. For both eastuard and westward migration, the degree of coastal concentration was si gnificantly greater near Komakuk, Y. T., than near 0liktok (Table 3),

We suspect that there are three main reasons for the nore diffuse spring migration in the Si mpson Lagoon area:

1. The North Sl ope is broad south of Si mpson Lagoon, but becones narrower to the east and is narrowest south of Komakuk. Bi rds migrating east (or west) al ong the North Sl ope would be channel ed toward the coast as they approached the Komakuk area.

Fi gure 11. Rel ati ve anounts of east ward migration detected by radar offshore, near the coast, and inl and, 25 May - 20 J une.

Mgration rates neasured on the 0 to 8 ordi nal scale twice each day 109:00 and 21:00 LST). Spearman rank correl ation coefficients and I-sided si gnificance levels are gi ven.

OFFSHORE vs COAST

INLAND vs OFFSHORE

Fi gure 12. Rel ative anounts of west ward migration detected by radar of fshore, near the coast, and inl and, 25 May - 20 June. Pl ot ted as in previ ous figure.

Table 3. Compari son of tendency of spring migrants to concentrate al ong the coast near Komakuk Y.T. (1975), and 0liktok, Al aska (1977). Based on radar observations at 12-h interval's (09:00 and 21:00 LST), 25 May- 20 J une.

Density near Coast ${ }^{\text {a }}$	Medi an OensityInland or Offshore		No. 12 h Peri ods			$z^{\text {c }}$
	1975	1977	1975	1977	$\begin{gathered} \mathrm{pb} \\ \text { (} 2 \mathrm{sided} \text {) } \end{gathered}$	

COAST VS. I NLAND Eastward Mgration						
2	$\frac{1}{2}$	2	4	2	0. 134	1*50
3	i	3	8	8	8.001	23. 30
4	$\frac{1}{2}$	4	22	22	<10-5	5.89
5	1	5	8	10	<0.002	>3.09
2-5					$<10^{-5} e$	>7. 39d
Vest ward M gration						
West ${ }_{2}$,			4	0. 266	1.11
3	1	3	5	5	0.008	2.65
4	1	4	18	21	<10-5	5. 68
5	1	5	20	8	$<10^{-4}$	4.16
2.5			-		$<10^{-5 \mathrm{e}}$	7.46 d

adensities 0,1 and 6 occurred too rarely to permit statistical analysis. bMann-Whitney' U test of null hypothesi s that, with a gi ven density near the coast, the density inl and (or of fshore)' was the same at 0liktok in 1977 as at Konakuk in 1975.
c_{2} score ${ }^{\text {at }}$ from normal. $(0,1)$ di stribution] correspond $n g$ to p val ue. A1
z-scores were positive or zero.
dpooled Z-score, based on wei ghted z method (Rosenthal 1978):
Pooled $\mathbf{Z}=\Sigma d f_{i} z_{i} /\left[\Sigma\left(d f_{j}\right)^{2}\right]^{\frac{1}{2}}, \quad$ where $d f_{j}=N_{1975}+N_{1977}-2$.
eoverall p val ue for test of null hypothes is that the degree of coastal concentration was the same at 01iktok in 1977 as at Komakuk in 1975; based on the pooled z-score.
2. The coast in the Si mpson Lagoon area is probably less effective as a 'leading line' for migrants. The coast near Konakuk, Y. T., is an al nost linear feature, whereas the coast in the Si mpson Lagoon area is nore irregul ar because of the presence of bays and points. Furthernore, the coast near Komakuk is the only prominent leading line, whereas near 0liktok the barrier islands may form a second I eadi ng II ne.
3. There is no open water al ong the coast in the simpon Lagoon area during May or early June. Even after river nater overflows onto the ice in early June, access to food resources bel ow the landf ast ice remai ns blocked.

Visual observations during the 6-14 June 1977 period provided infornation about routes of particul ar speci es across the Si mpson Lagoon area. During that period migration was observed from

1. the mai nl and looki ng north over the ice and river runoff to mid-lagoon,
2. Pi ngok I sl and I ooki ng south to mid-I agoon, and
3. Pi ngok I sl and looking north over the frozen Beauf ort Sea.

These observations showed that al nost all brant flying east over the Si mpson Lagoon area were over the southern hal f of the lagoon or the mainI and (Table 4, col ums E-G). Odsquaws and eiders were al so nost numerous over the southern part of the lagoon, but these seaducks, unlike brant, al so flew in consi derable numbers over the northern side of the Iagoon and the Beauf ort Sea. Anong the less abundant species, eastbound red phalaropes, ponari ne jaegers and arctic terns were comonly seen over both the south and north si de of the lagoon, but not over the sea. Eastbound loons and gl aucous gulls were di stributed on a broad front across the Iagoon and al so the nearshore Beauf ort Sea (Table 4). These results, in conbi nation with the I ow numbers of nost waterbird species seen migrating over the Si mpson Lagoon area in spring (see bel ow), suggest that a variety of species may partici pate in the broad front eastward migration detected by radar of fshore over the Beauf ort Sea and inl and over the North SI ope.

Numbers. In this sect"ion we estimate numbers of waterbirds that migrate at low altitudes (i.e., visibe to field observers) al ong the south coast of the Beaufort Sea in spring. Esti nates for the spring of 1977 are derived in Table 4. Observations at Simpson Lagoon in spring 1978 began too late to permit meani ngful estinates. However, the table does incl ude estimates of numbers migrating al ong the Yukon coast during
 1977. The main estimates are in col ums D and 1 . ${ }^{\text {a }}$ Table includes all loons, jaegers and terns, specifically Identified phalaropes, and all species of waterfow for which the net number of migrants seen from the main and (col um B) exceeded 10 in ei ther year.

		Net Nb. Seen from Mai inl and at Dist. from Shore (km)		Esti mated Nat No. Passing, -1 to +3 km from Shore		Nat Rate (birds/h) on 6-14 June 1977 over			Est. Nat No. Passi ng, 9May25 June 1977	
Speci es (Main di rection of migration)	Year	$\begin{aligned} & -1 \text { to } \\ & +3 \text { (A) } \end{aligned}$	$\begin{aligned} & \text { A I } \\ & \text { (B) } \end{aligned}$	16 t4ay 15 J une (c)	9 t4ay25 J une (D)	S hal Lagoon (E)	N hal Lagoon (F)	Sedge of Sea (G)	$\begin{aligned} & \text { Lagoon + } \\ & \text { Pingok Is. } \\ & \text { (H) } \end{aligned}$	$\begin{aligned} & \text { Lagoon + } \\ & \text { Is. }+ \text { Sea } \end{aligned}$ (I)
Yel.-bil. Loon (E)	$\begin{aligned} & 1975 \\ & 1977 \end{aligned}$	$\begin{aligned} & 15 \\ & 18 \end{aligned}$	$\begin{aligned} & 15 \\ & 18 \end{aligned}$	$\begin{aligned} & 46 \\ & \% \end{aligned}$	$\begin{array}{r} 52 \\ 109 \end{array}$	0.32	0.15	0.07	161	187
Arctic Loon (E)	$\begin{aligned} & 1975 \\ & 1977 \end{aligned}$	$\begin{aligned} & 77 \\ & 11 \end{aligned}$	$\begin{aligned} & 77 \\ & 11 \end{aligned}$	$\begin{array}{r} 286 \\ 65 \end{array}$	$\begin{array}{r} 295 \\ 67 \end{array}$	0. 29	0.38	0*20	155	200
Red-thr. Leon (E)	$\begin{aligned} & 1975 \\ & 1977 \end{aligned}$	$\begin{array}{r} \mathrm{t} 03 \\ 6 \end{array}$	$\begin{array}{r} 104 \\ 6 \end{array}$	$\begin{array}{r} 362 \\ 43 \end{array}$	$\begin{array}{r} 402 \\ 48 \end{array}$	0.16	0.10	0*12	79	116
Unid. Loons (E)	$\begin{aligned} & 1975 \\ & 1977 \end{aligned}$	$\begin{array}{r} 187 \\ 45 \end{array}$	$\begin{aligned} & \mathbf{1 \%} \\ & 157 \end{aligned}$	$\begin{aligned} & 479 \\ & 282 \end{aligned}$	$\begin{aligned} & 546 \\ & 321 \end{aligned}$	0. \%	1. 53	0.92	834	1,140
All Loons (ε	$\begin{aligned} & 1975 \\ & 1977 \end{aligned}$	$\begin{array}{r} 382 \\ 80 \end{array}$	$\begin{gathered} 392 \\ 192 \end{gathered}$	$\begin{array}{r} 1,173 \\ 486 \end{array}$	$\begin{array}{r} 1,295 \\ 537 \end{array}$	1.73	2. 17	1.31	1,210	1,617
Whistling Swan (w)	$\begin{aligned} & 1975 \\ & 1977 \end{aligned}$	$\begin{aligned} & 291 \\ & (-2)^{b} \end{aligned}$	$\begin{aligned} & 313 \\ & (\cdot 2) \end{aligned}$	$\begin{gathered} 458 \\ (-11) \end{gathered}$	$\begin{gathered} 512 \\ (-12) \end{gathered}$	0*05	0	0	(-12)	(-12)
Canada Goose (w)	$\begin{aligned} & 1975 \\ & 1977 \end{aligned}$	$\begin{array}{r} 30 \\ 0 \end{array}$	$\begin{array}{r} 30 \\ 0 \end{array}$	$\begin{array}{r} 51 \\ 0 \end{array}$	$\begin{array}{r} 51 \\ 0 \end{array}$	0	0	0	0	0

Page 2...

Spec I es (Main direction)	Year	Net Seen, Mai il and		Net Estim., Mai nl and		Bi rds/h, 6-14 J une 1977			Net Estim., 9 May-25 June	
		$\begin{aligned} & -1 \text { to }+3 \\ & \mathrm{~km}(A) \end{aligned}$	$\begin{aligned} & A_{1} \\ & \text { (B) } \end{aligned}$	$\begin{aligned} & 16 \text { May- } 15 \\ & \text { June (C) } \end{aligned}$	$\begin{aligned} & 5 \text { May-25 } \\ & \text { June (D) } \end{aligned}$	$\begin{aligned} & \text { S half } \\ & \text { Lag. (E) } \end{aligned}$	N hal f Lag. (F)	Sea (G)	$\begin{aligned} & \text { Lag. }+ \\ & \text { Is. (H) } \end{aligned}$	$\begin{aligned} & \text { Lag. + I s. } \\ & + \text { Sea (1) } \end{aligned}$
Brant	1975	12,546	14,517	25,953	25,946					
(E)	1977	334	424	2, 141	2, 140	9. 14	(-0. 10$)$	(-0.17)	2,116	2,076
Wh. -fr. Goose	1975	103	166	178	184					
(w)	1977	$28^{\text {c }}$	$15 C$	146	151	0.32	0.08	(-0.02)	187	176
Snow Goose (W)	1975	19 C	$27^{\text {c }}$	36	36					
(E)	1977	2	10	11	11	0.05	0.31	0	74	74
Pintail	1975	532	528	637	1,318					
(W)	1977	$(-183)^{\text {c }}$	$(-195)^{\text {c }}$	(-1092)	(-2259)	(-4.05)	5. 95	1. 66	1,061	1,985
Ofdsquaw	1975	4,416	4,778	13,026	12,998					
(E)	1977	1,323	2, 059	7,078	7, 063	15. 16	6.21	3. 39	9, 955	11,534
Common Ei der	1975	124	209	577	562					
(E)	1977	426	611	2,335	2, 274	9. 67	2. 89	2. 55	2,953	3, 552
K ng Eider	1975	21	21	84	101					
(E)	1977	$168{ }^{\text {c }}$	$191^{\text {c }}$	904	1,087	3*54	2. 43	1. 29	1,831	2,226
Unid. Ei der	1975	300	302	1, 626	1, 595					
(E)	1977	$9^{\text {c }}$	101	32	31	0.21	1.07	1.31	187	378
Al Ei ders ${ }^{\text {d }}$	1975	445	532	2,287	2, 258					
(E)	1977	599	899	3, 250	3, 209	13. 37	6. 54	5. 34	4,779	6,060

Page 3...

Speci es (Main di rection)		Year	Net Seen, Mai il and		Net Estim., Mai nl and		Birds/h, 6-14 J une 1977			Net Estim., 9May-25 June	
			$\begin{aligned} & -1 \text { +o }+3 \\ & k \pi(A) \end{aligned}$	A 1 (B)	$\begin{aligned} & 16 \text { May-15 } \\ & \text { I une (C) } \end{aligned}$	9May- 25 June (D)	Shalf Lag. (E)	N hal f Lag. (F)	Sea (G)	$\begin{aligned} & \text { Lag. }+ \\ & \text { Is. (H) } \end{aligned}$	$\begin{aligned} & \text { Lag. + I s. } \\ & + \text { Sea (1) } \end{aligned}$
Al Scoters		1975	482	482	(-42)	1,326					
(w)		1977	0	0	0	0	0	0	0	0	0
Red-br. Merganser (E)		1975	12	12	11	22					
		1977	0	0	0	0	0	0	0	0	0
Red Phalarope (E)		1975	118	118	250	254					
		1977	$10=$	1 0^{c}	76	77	O*45	0.36	(-0.02)	138	134
Nor. Phalarope (E)		1975	24 C	24 C	43	79					
		1977	0	0	0	0	0	(-0.03)	0.02	e	e
Pomarine J aeger	(E) ${ }^{\text {f }}$	1975	1,262	1,441	3,597	3,632					
	(w) ${ }^{\text {c }}$	1975	1,011	1, 190	417	2,001					
	(E)	1977	140	200	677	6849	(-0.11)	0.61	(-0.12)	> 684 ${ }^{\text {b }}$	$>684{ }^{\text {h }}$
Parasitic J aeger	(E) ${ }^{t}$	1975	30	31	62	66					
	(w) ${ }^{\prime}$	1975	23	27	2	38					
	(E)	1977	5	82	30	32^{9}	0.08	(-0.03)	0. 10	22	61
Long-t. Jaeger (E)		1975	29	44	47	53					
		1977	1	1	7	8	O'@	0.03	0.02	16	23
Unid. J aeger	(E) ${ }^{\text {t }}$	1975	96	184	222	235					
	$(w){ }^{\text {f }}$	1975	161	370	10	292					
	(E)	1977	32	82	169	1799	0.13	0.26	(-0.02)	522	489
Al Jaegers	(E) ${ }^{\text {t }}$	1975	1,428	1,711	3,952	4, 015					
	(w) ${ }^{\text {f }}$	1975	1, 206	1, 598	453	2,361					
	(E)	1977	178	365	883	8979	0.13	0.87	(-0.02)	>1, 244 ${ }^{\text {n }}$	>1, $257{ }^{\prime \prime}$

Page 4...

Spec I es (Main di rection)	Year	Net Seen, Mai nl and		Net Estim., Mai nl and		Bi rds/h, 6-14 J une 1977			Not Estim., 9 May- 25 June	
		$\begin{aligned} & -1 \text { to }+3 \\ & k \pi(A) \end{aligned}$	Al (B)	$\begin{aligned} & 16 \text { May- } 15 \\ & \text { June (C) } \end{aligned}$	9 May- 25 J une (D)	$\begin{aligned} & \text { S half } \\ & \text { Lag. (E) } \end{aligned}$	\mathbf{N} hal f Lag. (F)	$\begin{gathered} \text { Sea } \\ \text { (G) } \end{gathered}$	$\begin{aligned} & \text { Lag. }+ \\ & \text { Is. (H) } \end{aligned}$	$\begin{aligned} & \text { Lag. + is. } \\ & + \text { Sea (1) } \end{aligned}$
G aucous Gull	1975	1, 170	1,213	2, 075	2,466					
(E)	1977	202	239	1,210	1,438	2. 48	1. 25	1.98	2, 164	3,313
Thayer's + Herring	1975	19	19	42	37					
Gull (E)	1977	$1^{\text {c }}$	$1^{\text {c }}$	6	5	0.03	0	0	5	5
Sabine's Gull	1975	35	35	72	73					
(E)	1977	2	2	11	11	0.05	0	0	11	11
Arctic Tern	1975	236	250	664	787					
(E)	1977	10	11	65	77	0.27	0. 18	0	129	129

${ }^{\text {a }}$ Explanation of c"I umns:

A,B. Number of migrants seen noving in main direction, less number seen noving In opposite direction, during systenatic watches from Komakuk and Cl arence Lagoon (1975) or Oliktok (1977) considering only the periods when the visibility was at least 3 km Birds flying 030-150" were consi dered east bound; 210-330 westbound. In 1975, nany bi rds were undoubtedly counted twice, once at C arence Lagoon and once at Konakuk. The few cases In which (B) $\langle\mathrm{A})$ are those in which the majority of birds di stant from the observer were flying In the 'opposite' di rection.
c. Net 'birds/hour' val ues In each 5 to 7 day period (Figures 5, 6, 7) multipl led by durations of those periods and then summed.
D. For 1975, same nethod as (C). For 1977, when there were no observations during the 9-15 May and $\mathbf{1 6 - 2 5} \mathbf{J}$ une periods, estimated as $\left(C_{77}\right)\left(D_{75}\right) / C_{75^{\circ}}$
E. Based on 37.5 h of observation at 0liktok, considering birds between 1 I an Inland and 3 km offshore (mid-lagoon).
 behind the observer (roughly the north side of Pingok Island).
G. Based on 40.4 h of observation from the north side of Pi ngok Island, considering birds from 0.1 kminl and to $\mathbf{3} \mathrm{km}$ seaward over the Beaufort Sea.
H Cal cul ated as (D) $(E+F) / E$.

1. Cal cul ated as (D) $(E+F+G) / E$.

Page 5...

${ }^{\text {b }}$ Parenthetical negative val ues represent net migration in direction opposite to the 'main' direction stated beside species nane.
${ }^{\text {c }}$ Number seen migrating In predominant direction was less than $3 X$ number in opposite direction.
''All eiders' I ncl udes the few Spectacle and Steller's Ei ders seen in 1977.
${ }^{e}$ Not cal culable but near zero.
${ }^{\mathrm{f}}$ In 1975, eastward and westward migrations of these jaegers were treated separately -- not converted into net figures. 9 Cal cul ated from col um (C) using only the eastbound totals from 1975.
${ }^{\text {h }}$ Not cal cul able because nost east vard migration of Pomarine Jaegers took pl ace before 6 June in 1977.
spring 1975, based on reanal ysis of the original data of Johnson et al. (1975) and Richardson et al. (1975). The approach used was to (1) cal cul ate migration rates (birds per hour) for each species within each 5 - day period of the spring (Fig. 5-7), (2) extrapol ate these rates to all hours in the respective periods, and (3) sum the estimates across all periods. Only the data collected during watches with visibility at least 3 km were used, and bi rds nore than 3 km offshore or 1 kminl and were not considered. Numbers flying over Si mpson Lagoon in the 9-15 May and 16-25 J une 1977 periods, when we nade no observations, were esti mated usi ng the 1975 Yukon data (see Table 4, footnote for col um D).

Brant, ol dsquaus, common ei ders and king ei ders were the nost abundant east bound waterbird migrants at Simpson Lagoon in 1977. However, thei \mathbf{r} esti nated numbers were very low (2116, 9955, 2953 and 1831, respecti vel y) rel ative to approxi nate numbers occurring in the Beauf ort Sea area $\left(<10^{5}, 10^{6},>10^{5}\right.$ and 10^{6}, respecti vel y--Thompson and Person 1963; Johnson 1971; Bel I rose 1976; Timson 1976). Esti mated numbers migrating al ong the Yukon coast in spring 1975 were much hi gher in the case of brant (25,946), similar in the case of ol dsquaw (12,998), and even lower in the case of ei ders (562 common, 101 king, 2258 total). Al of these val ues are imprecise because of (1) our undoubted failure to detect sone birds that flew by during migration watches, (2) the fact that birds cl assed as 'possible migrants' were not consi dered, and (3) the various extrapol ations used. Nonethel ess, it is clear that only small proportions of the brant, ol dsquaus and eiders that occur in the Beauf ort Sea area migrated at low altitude through Si mpson Lagoon in the spring of 1977. Incomplete data from 1978 (Fig. 5) suggest that somewhat more brant may have passed over the I agoon that year, but there was no evi dence of Iarger numbers of oldsquaws or ei ders in spring 1978.

Many brant are known to migrate north or northeast through interior Al aska rather than around the coast (Cade 1955; Irving 1960). Few ei ders appear to migrate through the interior of Alaska, and the number of oldsquavs doi ng so is unknown. Mbst common and king ei ders and perhaps nost ol dsquavs appear to migrate east across offshore portions of the Beaufort Sea rather than al ong the coast of northern Al aska or through the interior.

Numbers of loons migrating through Si mpson Lagoon in spring are of special interest because it is possibe that nost of the arctic and yellowbilled loons nesting in the North Anerican arctic migrate around the \mathbf{A} askan coast (Pal ner 1962) and thus through the Si mpson Lagoon area. However, onl y 1210 loons were estimated to have flown through Si mpson Lagoon in spring 1977, and the estimate for the Yukon coast in spring 1975 was similar (1295). Estimates for the indi vidual loon species are unreliable because of the large number of loons not identified to species. Total numbers of arctic and yellow billed loons nesting in the North Anerican arctic are unknown, but it is clear that only small proportions of these bi rds migrate at Iow altitude through Si mpson Lagoon in spring. In contrast to our estimate of only 1210 loons passing through Si mpson Lagoon in spring, Timson (1976) estinated that about 50, 000 flew west past Point Barrow during the 27 August to 16 Septenber 1975 period.

Many pomarine jaegers migrate al ong the coast in spring, but few parasitic or long-tailed jaegers do so (Table 4). Long-tailed jaegers and apparently al so sone pomarine jaegers migrate north through interior Al aska (Kessel and Cade 1958; I rving 1960; Dean et al. 1976), but the route of nost parasitic jaegers to the North Sl ope is unknown. Our figures may underestimate the anount of eastward migration of parasitic jaegers near the coast; we saw flocks of 39 and 37 novi ng east overland $\mathbf{2 - 4} \mathbf{~ k m}$ south of Qiktok Poi nt on 29 May 1977.

G aucous gulls migrate al ong the coast at only low to noderate rates, but for a prol onged period (Fig. 6). Total numbers noving east through Si mpson Lagoon in spring 1977 were estimated as 2164; the estimate for the Yukon in spring 1975 was similar (2466).

No other gulls migrate in large numbers through Si mpson Lagoon. Numbers of Thayer's gulls migrating east al ong the coast in spring are extrenely low Clearly this speci es does not migrate al ong the north coast of A aska while en route fromits Pacific wintering grounds to its breeding areas in the Canadian Arctic. Estimated numbers of Sabine's gulls were only slightly higher. Arctic terns were not abundant at Simpson Lagoon in the spring of 1977 (129 estinated) but were nore numerous al ong the Yukon coast in 1975 (787 estimated).

The above estimates and the 0liktok radar data are consistent with one another in suggesting that the north coast of Al aska forns the spring migration route of onl y a mority of the waterbirds using the Beaufort Sea. Farther east, where the North SI ope is narrower, the spring migration routes of certain species such as brant and arctic terns appear to be narrower and nore closel y concentrated al ong the coast.

Utilization of Study Area. Mst waterbirds that migrate through the Si mpson Lagoon area during spring appear to fly over the area without stopping. However, sone waterfowland at meltwater pools on the mai nl and near the lagoon, and sone gl aucous gul Is land al ong mai $\mathbf{n l}$ and and i sland beaches. After river water overflows onto the Iagoon ice in early June, a fewloons and sone waterfoul land on the overflow water. Thus there is the potential for some spring migrants to be affected by oilspills in and near lagoons. In this section we summarize our observations of waterbirds I anding in or near the lagoon during spring migration.

Loons migrate eastward through Si mpson Lagoon in early and mid June. Previ ous studi es near Prudhoe Bay (Bergnan et al. 1977; Schamel 1978) have indicated that during June loons concentrate in early-nelting areas off the deltas of the Sagavani rktok and Kuparuk Ri vers; Schamel recorded a peak of 3.9 loons $/ \mathrm{km}^{2}$ near Egg $I \mathrm{sl}$ and on 16 J une 1972 . In the $\mathbf{S i}$ mpson Lagoon area, 111 loons of all four species were seen primarily in shorelead habitat during four aerial surveys of the Iagoon area in June. Two yel low billed loons were seen swiming and even di ving in runoff waters on top of the Iagoon ice of $f 01$ iktok Point on 8 J une 1977, and single uni dentified loons were seen on the runoff water in that area on each of 10,11 and 12 J une 1977. Numbers of loons usi ng Si mpson Lagoon in spring were apparently lower than numbers off ri ver nouths to the east.

White-fronted geese were present on the mai nl and tundra and ponds during spring migration (e.g., Table 5), but rarely flew over the I agoon; none were seen toland on the lagoon ice or runof f water.

Some brant Ianded at ponds on the mai nl and near 0liktok Point, and in addi $t i$ on sone of those $\mathbf{f l y i n g}$ al ong the I agoon on 10 and $\mathbf{1 2 ~ J}$ une $1977 \mathbf{I}$ anded in the runoff water present on top of the lagoon ice. A total of 68 of the $\mathbf{5 8 6} \mathbf{~ m i g r a t i n g ~ b r a n t ~ r e c o r d e d ~ f r o m ~ 0 l i k t o k ~ P o i n t ~ i n ~ t h e ~ 8 - 1 5 ~ J u n e ~} 1977$ period were seen to l and at least briefly in the river runoff. These 68

Table 5. Densities of common waterbird species recorded on aerial transects al ong and near Si mpson Lagoon during spring 1977-79.*

*See Fig. 1 for transect locations.
bi rds incl uded flocks of 23, 18 and $\mathbf{1 5} \mathbf{i}$ ndi vidual seen on $\mathbf{1 2} \mathbf{J}$ une. In addition a total of 68 additional uni dentified waterfow, including a flock of 45, were seen sitting on the runoff water in mid-lagoon on 12-13 J une. Most of these were probably brant. Because only a short stretch of one Iagoon was in view, these results suggest that a hi gh proportion of the brant migrating during the period after river water flows onto the I andf ast ice nay land sonewhere in the series of lagoons al ong the northern coast of Alaska. However, no brant were recorded during aerial surveys in J une.

Dabbling ducks, including mainly pintails but a fewindidual of other speci es (Table 2), were present on mel water ponds on the nai nl and in early to mid-June. During watches at 0liktok in spring 1977 only five pintails and three green-winged teal were seen to land (very briefly in each case) on the runoff water in the lagoon.

Odsquaus began to appear on neltuater ponds on the mai nl and in early J une, and were al so seen in snall numbers on shorel eads al ong the shores of the barrier islands by 20-23 June (Table 5). Only a few migrants were seen Ianding in the runoff water on the Iagoon ice off 0liktok (total of 11 birds, allon 7-10 June 1977); an additional flock of ni ne were sitting on the water on 10 J une. Thus there was no significant build-up of oldsquavs in the lagoon prior to occupation of nai nl and nesting habitat.

Common and king ei ders congregate on runof fater and newly-forned leads of f river nouths near Prudhoe Bay in June (Bergnan et al . 1977; Schamel 1978), but we saw little evidence of this phenonenon in Si mpson Lagoon. During aerial surveys of the Si mpson Lagoon area in spring, Iow densities ($0.2-0.6 \mathrm{birds} / \mathrm{km}^{2}$) of eiders were seen on the shorel eads al ong the barrier islands and somewhat hi gher densities were seen on ponds and I akes on the mai nl and tundra (0.6 -2.7 birds $/ \mathrm{km}^{2}$). During migration watches from 0liktok Point conducted up to 15 June in 1977, totals of only five common, 26 king, two spectacle and 10 unidentified eiders were seen landing on, sitting on, or taking off from runof f water on the lagoon ice (10-13 J une).

No jaegers, Sabine's guls or arctic terns were seen to land on runoff water on the lagoon ice. All 10 arctic terns seen during the survey of transect 2 in spring 1977 and 1978 were flying over shoreleads south of Spy and Leavitt islands (Table 5).

G aucous gulls were commonly seen al ong island and mainland shorelines in spring (e. g., Table 5). However, during watches from 0liktok in spring 1977 we saw glacous gulls on the runoff water onl y three times (total of si x birds).

Flight Behavior. The visual observations of spring migration in the Si mpson Lagoon area in 1977-78 provi de infornation about the hei ghts and flock sizes of the migrants. The radar data from 1977 provide information about hourly timing.

Al nost all of the birds seen migrating over the Simpson Lagoon area during the spring in 1977-78 were at estinated altitudes bel ow $\mathbf{1 0 0} \mathbf{m}$ (Fig. 13). Loons, brant, oldsquaws and especialy ei ders often flew very cl ose to the ice ($<2 \mathrm{mASL}$). The proportion of brant estinated to be above $10 \mathrm{mASL}(40 \%$ was much Iarger than the corresponding proportion al ong the Yukon coast in 1975 (5\%). A consi derable number of jaegers and glaucous gulls al so flew very low, but these species often flew as high as 50 to 100 mASL . Pintails and white-fronted geese rarel y flew very low over the ice or tundra; nost of those seen were 5 to 50 mASL .

Fl ock sizes of bi rds seen migrating through Si mpson Lagoon during the springs of 1977-78 ranged up to 150; only brant, ol dsquans and common eiders were ever seen in flocks larger than 40 (Fig. 14). Pligr'sting jaegers, glaucous gulls and pintails were occasi onally seen in flocks as large as 30 or 40, but migrating loons, white-fronted geese and arctic terns were never seen in flocks larger than 10.

Visual observations of numbers migrating over Si mpson Lagoon in rel ation to tine of day have not been anal yzed yet, but the 01iktok radar showed very simiar medi an densities of migration at allimes of the day (Fig. 15). Al species are grouped together in the radar data, but there are two a priori reasons for suspecting that, for nost species, there nould be little diel variation in the rate of spring migration: (1) There is conti nuous daylight in northern Al aska during spring migration; (2) Many birds are apparently engaged in long-distance non-stop migrations when they pass through Si mpson Lagoon in spring; during such migrations any diel pattern in take- of f times from di stant take- of f areas tends to be obscured by variations in flight speeds and di stances travel ed.

Figure 13. Estimated hei ghts (m) of spring migrants in the Simpon Lagoon area, 1977-78. Observations from 01iktok, Pi ngok Isl and and Milne Point are pool ed. Only birds that flew continuousl y and east ward (or, in the case of white-fronted geese and pintails, westward) during systematic migration watches are considered. Bi rds $>3 \mathbf{k m}$ of fshore or >1 kminl and excl uded. Si ghtings during periods with vi si bility <3 km excl uded.

Fi gure 14. Fl ock sizes of spring migrants in the Simpson Lagoon area, 1977-78. The total numbers of migrants seen in flocks of various si zes are shown. M xed-speci es flocks are each tabul ated as 2 or nore flocks (e.g., a flock of 5 ki ng and 3 common eiders is tabul ated as 2 flocks of sizes of 5 and 3). Criteria for inclusi on same as in previ ous di agram

Fi gure 15. Density of eastward (left) and westuard (right) migration detected by 0liktok radar in relation to time of day, 25 May - 20 June 1977. The line shous the median density at each time of day. Each col um of data points shows the distribution of densities (0 to 8 ordinal scale) recorded at one tine of day, with areas proporti onal to the nunber of days represented.

Molt Mgration
The nost conspi cuous novenents of birds through the Si mpson Lagoon area during Iate June and July of 1977 and 1978 were westward novements of nale seaducks--oldsquaws, eiders and scoters (Table 6). These birds were presumably-migrating to molting areas in or west of the study area. Large numbers of eiders (mainly king ei ders) fly west around Point Barrow in mid and late July (Thompson and Person 1963; Johnson 1971). Rel atively few ol dsquans or eiders fly west immediately al ong the Yukon coast during the nolt migration, but there is a significant westward migration of scoters al ong the Yukon coast toward Alaska (Table 6).

Seasonal Timing. During both 1977 and 1978 the westuard molt migration of male ol dsquaus was first noted on 26 J une. This was the only day with systematic watches in late June of 1977, but nol migration had not been obvi ous during casual observations on previ ous days. In 1978 there were daily watches in late June. Peak numbers of oldsquaws noved west from 2 to 4 July in 1977and from 3to 7 July in 1978 \{Fig. 16, Table 7). Thereafter, west ward novenent continued sporadically until late July. In both ? 977 and 1978 there was a second, snaller peak of westward novenent just bef ore the molt migration ceased (24-25 July 1977 and 23-25 July 1978).

The west ward mol \mathbf{t} migration of mal e common and king eiders was first noted on 2 July 1977 and 24 J une 1978 and continued until approxi matel y 31 July 1977 and 12 August 1978. During the Iatter parts of these periods the only data obtai ned were from casual observations. Most westuard novement by ei ders occurred after the lagoon ice had broken up and had been flushed westward, out of the study area (Si mpson Lagoon began breaki ng up on 9 July 1977 and 5 July 1978 and was virtually ice-free within one or two days). Peak numbers of ei ders were seen noving west from 21 to 25 July 1977 and from 3 to ?1 and 27 to 30 July 1978 (Fig. 16, Table 7). A few female and/ or immature male ei ders accompani ed the nest bound adult nal es.

During 1978, a west ward molt migration by scoters, primarily male surf scoters and to a lesser extent male white-winged scoters, coincided with that of oldsquaws. Three white-wi nged scoters flying NNE were seen on 28 J une,

Table 6. Total numbers of ducks seen flying east and west near the Beauf ort Sea coast during systematic watches in the nolt migration period.a

Speci es	Yukon Coast ${ }^{\text {b }}$				Si mpson Lagoon Area					
	1972		1975		Pi ngok Is1. Milne Pt. 19771978					
	bl est	East	West	East	West	East	West	East		
Pi nt ai I	13	0	47	12	11	0	15	0		
Scaup	19	113	0	0	0	0	18	84		
01 dsquaw	484	295	157	183	1659	88	8379	643		
Ei ders	96	42	3	8	1471	8	725	57		
Common	-c	.	3	8	289	6	349	31		
King		-	0	0	977	2	65	21		
Spect acl e	0	0	0	0	6	0	6	0		
Uni dentified			0	0	199	0	305	5		
Scoters	953	263	869d	37d	0	0	893	23		
White- wi nged	-C	-	71	3	0	0	19	0		
surf			423	25	0	0	720	22		
Uni dentifi ed			375	9	0	0	154	1		
Red-breast ed Merganser	49	26	18	30	0	0	13	17		
Dates with data	$\begin{aligned} & 10 \mathrm{Jul} \mathrm{y}- \\ & 31 \mathrm{~J} \text { ul } \end{aligned}$		26 June9 July		26 June-		26 J une-			
			25	July		July				
Hours of observation	72.4				123. 4		33.5		90.3	

[^4]

Fi gure 16. Rates of mestward (1 eft of basel ine) and eastward (right of baseline) migration of oldsquaws, eiders and scoters by 5 day periods during the molt migration perl od. Includes birds at all di stances from shore. Letters mean' seen but ' ate too l' w to be pl otted'. For periods in which there were observations on onlyl or 2 days, rates are shown by ' x ' (westward) and ' \square ' (eastward]. Stippled areas indicate dates with no observations. The number of hours of observati ons in each 5-dav peri od is gi ven in the 1975-78) . Yukon data are those of Johnson et al. (1975) for 1975 and coilop and Davis (1974) for 1972.

Table 7. Numbers of oldsquaws, eiders, scoters and unidentified diving ducks si ghted flying in various directions through simpson Lagoon during the mid-sumer molt migration in 1977 and 1978. Includes casual observations as well as sightings during systematic migration matches.

	1977								1978							
	J une	July						Total	June26-30	Jul y						Total
	26-30	1-5	6-10	11-15	16-20	21-25	26-31			1-5	6-10	11-15	16-20	21-25	26-31	
Oldsquaws																
Eastbound	3	61	20	2	0	6	0	92	97	209	363	5	0	11	0	685
Westbound	240	1373	4	$571{ }_{+}$	135	451	0	2774	1064	3122,	3127	447	11	1133	168	9072
Other*	140	264	126	1722^{+}						2472	$32505{ }^{+}$		6709	628	66	44668
Ei ders																
East bound																
Common Eider	0	0	0	0	0	6	0	6	23	8	4	0	0	0	0	35
King Eider	0	2	0	0	0	6	0	8	9	9	3	0	0	0	0	21
Uni dentifi ed Ei ders	0	0	0	0	0	0	0	0	0	1	4	0	0	0	0	5
Vest bound																
Common Ei der	0	16	12	12	618	1002	250	1910	6	152	164	3	40	54	386	805
King Ei der	0	51	0	86	115	1679	0	1931	14	33	18	0	0	0	0	65
Uni dentified Eiders	1	53	0	5	7	166	0	232	3	226	124	37	15	26	42	473
Other*																
Common Ei der	4	1	0	5	0	20	0	30	0	38	30	0	0	0	0	68
King Ei der	0	2	0	0	0	2	0	4	37	52	30	4	0	5	0	128
Uni dentifi ed Ei ders	0	7	2	12	41	61	0	123	4	8	19	2	0	41	71	145
Scoters																
East bound																
Surf Scoter	0	0	0	0	0	0	0	0	0	3	19	0	0	0	0	22
White-winged Scoter	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Uni dentified Scoters	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
Vest bound																
Surf Scoter	0	0	0	0	0	0	0	0	0	384			0	161	0	906
White-wi nged Scoter	0	0	0	0	0	0	0	0	0	3	1	15	0	0	0	19
Uni dentified Scoters	0	0	0	0	0	0	0	0	0	121	33	0	0	0	0	154
Other*																
Surf Scoter	0	0	0	0	0	0	0	0	0	13	41	1	0	0	0	55
White- winged	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3
Unidentified Scoters	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Uni dentified Oiving Duck:																
East bound	0	0	0	0	0	0	0	0	0	142	27	0	0	0	0	169
West bound	0	0	0	0	0	600	0	600	8	637	164	0	43	55	20	927
Other*	0	0	0	12	45	20	0	77	1	64	43	6	2	4	49	169

- 'Other' includes sitting birds, birds flying north or south and flying birds that were considered not to be migrants or whose migrant status was unknow

but the first westbound surf and white-wi nged scoters were recorded on 1 July . The peak of west ward novenent by scoters occurred during the 4 through 12 July period. A second peak of novement by surf scoters occurred on 24 and 25 July 1978 (Fi g. 16). $\quad \mathbf{N o}$ migrating scoters were seen during the corresponding period of 1977, and only one scoter was seen during aerial surveys of Simpson Lagoon in July 1977. Al nost all scoters seen during the 1978 nol t migration were males; of those whose sex was recorded, onl y four were fenal es (surf scoters on 7 Jul y 1978).

In the northern Yukon, surf scoters began migrating west on $\mathbf{1 8} \mathbf{J}$ une in 1975, and white-winged scoters began by 26 J une. Many scoters flew west al ong the Yukon coast in mid July of 1972, and a few flew west as late as 30 July in 1972 ($\mathbf{F i}$ g. 16). Al nost all scoters seen during the 1975 molt migration were males; the only fenal es identified were six surf scoters seen on 3-5 July.

Flight Paths and Behavi or. Radar was not used during the molt migration periods of 1977 or 1978, so we have onl y local observations of migration routes. During 1977, the only migration watch station used in summer was I ocated on Pi ngok Island; consequently novenents were detectable al ong the lagoon shoreleads and over the fractured lagoon ice, as well as over the frozen Beauf ort Sea seaward of the barrier islands. The migration watch station during 1978 was located on the mainland shoreline at Milne Point and many novenents by migrating birds seavard of the barrier islands were undoubtedly undetected.

Most oldsquaws seen flying west before the ice left Si mpson Lagoon were $\mathbf{f l y i} \mathrm{ng}$ al ong shorel eads near the nai nl and or i sland shores, or over the Iagoon ice. After the ice cleared fromthe lagoon, nost of those seen from both Pi ngok Isl and (1977) and the mai nl and (1978) were flying al ong the lagoon. Only a few of those seen in 1978 flew west over the mainland south of Milne Point. Mgrating oldsquaw flewin flocks of widely varying sizes, including one flock estimated to contain 1000 birds. Al nost half (46%) of those seen $\mathbf{f l e w}$ at estinated altitudes of only \mathbf{O} to $\mathbf{2 m a b o v e}$ the water or ice; the others flew at a variety of hei ghts, with nany up to at least 250 m (Fi g. 17).

Bef ore breakup, nost ei ders seen flying west were noving al ong shoreleads and over the lagoon ice. After breakup of the lagoon ice, nost of those seen were over the I agoon. However, there was al so west ward novenent

Fi gure 17. Fl ock sizes and estimated hei ghts (m) of ducks migrating west over the Si mpson Lagoon area during the nol t migration period, 25 June - 31 July 1977-78. Criteria for incl usi on same as in Figures 13 and 14.
over the Beauf ort Sea north of the barrier islands during late July 1977, following breakup of the sea ice. Eiders flew in flocks of a wide variety of sizes (Fig. 17). Mbst flew at estimated altitudes bel ow $\mathbf{1 0} \mathbf{m}$

The great naj ority of the westbound scoters seen from Milne Point were flying over shoreleads, ice or open water in Si mpson Lagoon. However, sone were flying over the mainland south of Milne Point. Similarly, in the Yukon in 1975 nost westbound scoters seen were over the sea, but a minority were fl yi ng west overland. Sone of those seen 'rem Milne Poi nt were over the central part of the lagoon, so it is doubtful that the paucity of scoters in 1977 was due sol ely to the fact that the observation site in 1977 was on Pi ngok Island. Flocks of migrating scoters ranged in size up to 75 birds at Si mpson Lagoon in 1978 (Fi g. 17) and 175 birds in the Yukon in 1975. The largest flocks in both areas consi sted of surf scoters.

Numbers. We cannot make reliable estimates of total numbers of seaducks migrating through Si mpson Lagoon during the nol migration period, partly because watches were conducted on only sone of the days, partly because watches were nost frequent on days with much nolt migration, and partly because only one watch site was used each year. Table 7 presents the total numbers actually seen to migrate west through the Si mpson Lagoon area during the 26 June- 31 J uly period: ol dsquaw- 2774 in 1977 and 9072 in 1978; eiders-- 4073 and 1343; scoters--0 and 1079. These total include casual observations, but nonethel ess represent only a fraction of the total migration through the area.

More realistic minimestimates are possible for 1978 because during the $\mathbf{2 6} \mathrm{J}$ une- $\mathbf{1 0} \mathrm{J} u l y 1978$ period there were daily systenatic watches totalling 72.9 \mathbf{h} of observation. If the observed migration rates for these three 5-day periods (Fig. 16) are assumed to apply to all hours in those periods, and the actual numbers seen during the 11-31 July period are added, the following minimestimates are obtai ned:

	Esti nate, 26 J une- 10 J ul y	Nb. Seen, 11-31 July	Minimum Esti nate of Total
07dsquaw	32, 210	1, 743	33,953
Cormon Ei der	1, 416	483	1,899
King Ei der	228	0	228

	Esti mate, 26 June- 10 July	No. Seen, 11-31 J ul y	M ni mum Esti mate of Total
Spectacle Eider	32	0	32
Uni dent. Ei ders	1,323	120	1,443
Al Ei ders	2,999	603	3, 602
Al Scoters	3,239	426	3, 665

These figures are net val ues (i.e., west ward minus eastward novenent), and are undoubtedly underestinates because the val ues for $11-31 \mathrm{Jul} y$ are incomplete and because observers at Milne Point could not detect all ducks migrating over the northern side of the lagoon (3-5 km away).

Numbers of ol dsquaws and ei ders migrating nest al ong the Yukon coast during the nol \mathbf{t} migration period were mach lower than numbers migrating through Si mpson Lagoon (Fig. 16). Rates of scoter migration al ong the Yukon coast in 1972/75 and through Si mpson Lagoon in 1978 were nore similar (Fig. 16). If the net rates of west ward migration al ong the Yukon coast shown in Fig. 16 are applied to all hours in the 16 J une- 31 J uly period, an estimated 8129 scoters flew west within sight of coastal observers toward Al aska. The 8129 estimate is tentative because it is based on i ncompl ete but compl enentary results from tho years; it could be biased if migration timing were different in the two years.

Utilization of Study Area. Observations during migration watches and other activities in 1977 and 1978 indicated that during the nolt migration, ol dsquaws and a few scoters made noderate use of water-filled cracks in the I agoon ice and of the shorel eads around the perimeters of the barrier islands and al ong the mai nl and shoreline. Ei ders made only light use of lagoon and nearshore narine habitats during nol tigration. We do not know what proportion of the seaducks that flew west al ong the I agoon I anded sonewhere in the lagoon, but aerial surveys provided information about densities and numbers of ducks in the I agoon area on vari ous dates.

Odsquaws nade onl y noderate use of the lagoon during the period of peak west ward nol $\mathbf{t} \mathbf{m}$ gration in early $\mathrm{Jul} y$, but large numbers of nolting ol dsquaw concentrated in the lagoon Iater in the nonth (Table 8). Only shoreleads were present throughout the period of peak novenent in 1977 (2-4 July), but general breakup of the Iagoon ice occurred during the peak

Table 8. Densities of oldsquaws, eiders and scoters recorded on aerial transects al ong and near Simpson Lágoon during the nolt migration period, 1977-79.*

Date	Density ($\mathrm{birds} / \mathrm{km} \mathrm{m}^{2}$) on Transect				
	$\begin{gathered} 1 \\ \text { Beaufort } \\ \text { Sea } \end{gathered}$	2 S shore isl ands		4 Mai nl and shore	5 Mai nl and
01dsquaw					
1977 J ul 5	2. 2	25. 2	2.9	21.6	1.9
" " 28/ 29	0.1	401.7	501.1	516.4	1.2
1978 Jul 5	0.1	160.4	5.4	2.2	1.4
" " 15	2.5	1344.8	39.0	70.8	0.2
" 25	17.7	284.7	73.0	19.1	0
" Aug 5/ 6	0.2	324.7	62.5	6.4	0
1979 Jul 28/29	4. 2	520.5	132.6	31.2	8.6

Ei dersa

1977 Jul 5			0	0.3	0	1.2	1.8
				(0.1c)	-		
"	"	28/29	1.5	1.2	0	0.9	0.8
			(1.0c)	(0.2c)	-		-
1978	Jul	5	0	0.3	0	0.6	0
			-	-	-	(0.ik)	
"	"	15	0	0.4	0	0	0.7
				(0.1c)	-	-	
"	"	25	1.1	1.5	0	0.1	0.4
			(0.7c)	-	-	-	(0.4k)
		5/6	0	0	0	0	1.2
			-	-	-	-	-
1979	Jul	28/29	0.4	1.6	0	0.9	0

Surf Scoter ${ }^{b}$

1977 Jul 5	0	0.2	$1)$	0	0
1978 Jul 5	0	2.7	0	0	0
" 15	0	1.0	0.7	0	0
" 25	0	50.4	0.7	0	0

[^5]period in 1978 (3-7 July). In both years the nearshore Beaufort Sea north of the barrier islands renai ned frozen (except for shorel eads) throughout the period of peak westward nol t migration. The estimated numbers of oldsquaws in Si mpson Lagoon on 5 July in 1977 and 1978 were only about 1000 and 2500, respectively (see later section on 'MOLTING for details). By 15 July 1978 about 29, 000 were estimated to be present, and in late July the estimates for 1977-79 were about 51, 000 ($28 / 29$ July 1977), 13, 000 ($25 \mathrm{Ju} \mathrm{u}^{\prime \prime} \mathrm{y}$ 1978) and 23,000 (28 Jul y 1979). These results suggest that during the peak of nol \mathbf{t} migration in early $\mathbf{J u l} y$ nost ol dsquaws that pass over Simpson Lagoon do so without stopping for any significant period (if at all). Later in July, after the lagoon ice breaks up and leaves the Iagoons, I arge numbers of nolting oldsquaw concentrate in the Iagoon.

Few ei ders were present in or near Simpson Lagoon during the nol t migration period (Table8). During aerial surveys in July, only smail numbers of ei ders were seen near the barrier islands (where common ei ders nest) and the mainland shore, and none were seen in midiagoon. In late July of each year, during breakup of icein the nearshore Beauf ort Sea, a few eiders (nost if not all common ei ders) were seen along the transect several kiloneters seamard of the barrier islands.

During nost aerial surveys of Simpson Lagoon scoters were seen in only snall numbers if at all (Table 8). However, on 25 July 1978, around the end of the nolt migration period of scoters, about 750 surf scoters (nostly nal es) were seen near the south shore of Pi ngok Island. In addition, scoters were seen during our aerial surveys of eastern Harrison Bay on 5 and 15 July 1978 and in late summer of 1978. In 1971, Hall (1975) observed 200-300 surf scoters in Harrison Bay during August, and Gavin (1976) indicates that scoters occur in the Si mpson Lagoon area in 'fall' (dates not stated). Thus, it appears that nale scoters not only migrate west through Si mpson Lagoon, but that a few hundred remain in the area to nol.

Snall number of greater scaup were seen flying through the Simpson Lagoon area, nainly eastward, during the nolt migration period (Table 6). They were never recorded during aerial surveys of the lagoon injuly, but small numbers were seen in Harrison Bay just west of Si mpson Lagoon (2.7/km ${ }^{2}$ on transect 6 on 5 July 1978; $2.3 / \mathrm{km}^{2}$ on transect 7 on 15 July 1978).

In summary, during late June and July male oldsquaws migrated west through Si mpson Lagoon in large numbers (over 30,000), and male eiders and scoters did so in snaller numbers. In addition, large numbers of oldsquaw and very small numbers of surf scoters concentrated in Simpson Lagoon to nolt. Snall numbers of scaup nay nol tin Harrison Bay.

Fall Mgration
Fall migration of waterbirds through and from the coastal Beauf ort Sea area begi ns in mid-August and continues not only during Septenber (when systematic observations have been nade) but also during October and even early November (Gabri el son and Li ncoln 1959; Flock 1973). Our system atic observations ended around 22 Septenber, and earlier migration studies at Poi nt Barrow (Thompson and Person 1963; Johnson 1971; Timson 1976) and in the northern Yukon (Gollop and Davis 1974; Schweinsburg 1974a) ended earlier in Septenber. Waterbirds still present in the Si mpson Lagoon area in late Septenber include many oldsquaws and glaucous gulls as well as some loons, eiders and scoters (Table9). Thus, systenatic data are available for only the earlier portion of the fall migration season.

A further limitation is that our systenatic watches in 1977 were from only one site, Pi ngok Island, and totalled only 38.6 h on 27 days (uatches with visibility <3 km excluded) in the 21 August-22 September period. In 1978, incidental observations of fall migration were recorded daily until 5 Septenber, but systematic migration watches were not possible.

Because data concerning fall migration in the Simpson lagoon area are limited, we have summarized rel evant data from other parts of the Beaufort Sea, as well as our own results, in the following sections.

Loons. West ward migration of loons through the Si mpson Lagoon area began in late August (Table 10). In 1977 it apparently peaked in the 26-31 August and 1-5 Septenber periods (4.4 and 5.0 loons/h, respectively). A few loons were still present on 22-23 Septenber in 1977-79 (Table 9). Previ ous studi es at Point Barrow indicate that very few loons pass that site in late August; peak loon migration there is if the first half of September (Scal e 1898; Timson 1976; Divoky 1078a:480) or perhaps even I ater.

Table 9. Jensities of common watarbi rd species recorded on aeriaf transects along and near simpson Lagoon dur Ing August and September 1977-79. ${ }^{\circ}$

Species	Date	Sensity (birds/kmi) on Transect						
		Seautor: Sea		$\begin{gathered} 3 \\ \text { Mid- } \\ \text { Iagoon } \end{gathered}$	Mai inl and shore		$\underset{\text { say SE }}{\text { Harríson }}$	$\begin{gathered} \text { Horr }{ }^{7} \text { is son } \\ \text { Boy } \end{gathered}$
Al	$\begin{array}{cc} 1977 & \text { Aug } \\ " 15 \\ " 1 & " 30 \\ " & \text { sep } \end{array} 22$	-b 0.2 0.1	0.1 0.3 0	0 0.2	0.4 0.1 0	1.3 1.8 0		
	1978 Aug 5/6	0	0	0	0	0	0	0
	" " 15	0	0	0	0	0	0	0
	" 225	0	0.1	0	0.2	0.1	0	
	" Sep 5/6	0.1	\bigcirc	0	0.4	0.4	0	0.2
	" $\quad 15$	0.1	0.1	0.1	0.2	0	0	0
	" " 23	0	\bigcirc	0.2	0	0	0	0
	$1979 \text { Avg } 31$	0	0.1	0	0.3	0.6	0.2	0
		0	-	0	0	0	0.2	0
$\begin{aligned} & \text { wi ie- } \\ & \text { f ronted } \\ & \text { Gcose } \end{aligned}$	$\begin{array}{cc} 1977 & \text { acg } \\ " 15 \\ " & " 30 \\ " & \text { sep } \end{array} 22$	0	0	0	0	2.9 2.4		
		0	0	0	0	0		
	1978 Avg 5/6	0	0	0	0	\bigcirc	0	0
	$\begin{array}{ccc} " & " 1 & 15 \\ " & 25 \\ " & \text { sep } & 5 / 6 \\ \prime & " & 15 \\ \hline & " & 23 \end{array}$	0	0	0	0	0. b	0	0
		0	0	0	0	4.4	'2.7	
		0	0	0	0	1.8	0	
		0	0	0	0	0	0	0
		0	0	0	0	,	0	0
	$\begin{aligned} & 1979 \text { Aug } 31 \\ & " \quad \text { Sop } 23 \end{aligned}$	0	0	2.4	0	3.1	0	0
		0	0	0	0	0	0	0
Oldsquaw	1977 Aug 15i,	811.3			161.9	5.8		-
		3.3	73. I	184.6	68.0	0		
	" sap Z?	3.4	21.6	928.1	220.0	0		
	$\begin{array}{cc} 1978 & \text { Aug } \\ 5 / 6 \\ " 1 & n \\ " 15 & 15 \\ " 1 & 25 \\ " & \text { sep } \\ " 1 & 15 \\ " & " 23 \end{array}$	0.2	324.7	62.3	6.4	0	$\begin{aligned} & 215, ~ i \\ & 679.6 \end{aligned}$	20.9
		0	994.2	7.3	0	0		106.7
		543.2	337.4	33.3	0.8	2.0	287.6	
		20.2	150.2	12.3	0. I	0. I	246.4	30.1
		193.3	47.0	29.6	7.1	0	6.9	11.4
		1.6	9.9	231.8	158. s	-	3.1	0
	$\begin{array}{r} 1979 \text { Aug } 31 \\ \text { " Sep } 23 \end{array}$	24.7	70.9	330.3	0	0	239.0	23.6
		15.8	231.6	3.4	113.7	0	1.6	30.6

Pofge 26:6

page 3., .

Spocios	Date	Density (birds/kn) on Transect						
		$\begin{gathered} 1 \\ \begin{array}{c} \text { Bonytort } \\ \text { Sea } \end{array} \end{gathered}$	$\begin{gathered} 2 \\ \text { s snore } \\ \text { islands } \end{gathered}$	$\mathbf{I}_{\text {apgon }}^{3}$	$\begin{aligned} & 4 \\ & \text { main land } \\ & \text { shore } \end{aligned}$	5^{5}	$\underset{\text { Bay }}{\substack{6 \\ S E \\ S E}}$	$\begin{gathered} 1 \\ \begin{array}{c} \text { morrit son } \\ \text { Bay } 5 \end{array} \end{gathered}$
$\begin{aligned} & \text { Arctic } \\ & \text { Teri: } \end{aligned}$		0.4	$\begin{array}{r} 24,0 \\ 7,4 \\ \hline \end{array}$	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\%$		
		$\begin{gathered} 0 \\ 0 \\ 0,6 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 0.1 \\ & 2.4 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0	0 0 0
	$\begin{gathered} 1979 \operatorname{covec}^{S 1} \\ n \\ \text { Sep } \\ 23 \end{gathered}$	0	0	0	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	0
Transect	angt (kn)	35.4	37.0	30.6	32.2	33.8	13.8	16.1

ase Fig. I, 2 for transect locations.
b ${ }^{-1}$ magnstransect not surveryedon this date.
${ }_{31} 3_{\text {co }}$ s.toter.

Table 10. Bi rds recorded during fall migration (August-Septenber) in 1977 and 1978, Si mpson Lagoon, Al aska. Most 1977 data are from watches at Pingok Island; 1978 data are from inci dent al observations at Milne Point and in the I agoon area.

Speci es	Number Seen*				Period of Peak Abundance		Predoni nant Mgration Di rection		Peak Mgration Rate (\# bi rds per day)	
	(1977)			(1978)	(1977)	(1978)	(1977)	(1978)	(1977)	(1978)
Yell ow bill ed Loon	2	(5)	0	14)	1 Se	29 Au	W		2	
Arctic Loon	0	(25)	0	(1)	$24 \mathrm{Au}-14 \mathrm{Se}$	5 Se	L			
Red-throated Loon	9	(17)	0	(2)	$30 \mathrm{Au-1} \mathrm{Se}$	5 Se	w		7	
Uni dentified Loons	88	(332)	39	(65)	$25 \mathrm{Au}-6 \mathrm{Se}$	9se	w	w	20	39
Brant	4638	(4686)	10885	(11148)	$22 \mathrm{Au}-6 \mathrm{Se}$	17-31 Au	w	w	2261	2605
White-fronted Goose	280	(288)		(12)	19-24 Au		w	L	270	
Uni dentified Geese	852	(908)	656	(696)	24-29 Au	24 Au	w	w	800	650
Pintai I	11	(60)	6	(17)	24 Au	5 Se	E	E	11	6
Greater Scaup Uni dentified Scaup	0	(0) (2)	8	(8) (0)	18 Se	21 Au		E		8
Oldsquaw	1730	(114266)		(21032)	$27 \mathrm{Au}-21 \mathrm{Se}$	14-29 Au	w	L	1000	
Common Ei der Ki ng Ei der	57	(57) (0)	$13^{\prime} 3$	(185) (5)	24-26 Au	12 Au	w	w	47	135
Unidentified Eiders	600	(600)	180	(202)	23-28 Au	5-13 Au	w	W	425	90
Uni dentified Mergansers	300	(300)		(0)	23 Se		w		300	
Uni dentified Diving Ducks	35	(110)	20	(24)	$22 \mathrm{Au}-6 \mathrm{se}$	13 Au	w	w	20	211
Uni dentified Ducks	373	(409)	700	(2184)	27-29 Au	13 Au	w	w	233	700
Peregrine Fal con	0	(1)		(0)	$22 \mathrm{Au}$					
Aneri can Gol den Pl over	0	(27)		(0)	22-27 Au		L			
Bl ack- bel li ed Pl over	6	(181)		(0)	28-30 Au		w		4	
Uni dentified Pl overs	7	(11)		(0)	22 Au		w		7	
Ruddy Turnst one	0	(30)		(0)	22-31 Au		L			
Whimbrel	0	(1)		(0)	17 Au					
Pectoral Sandpi per	0	(6)	0	(6)	$24 \mathrm{Au}-2 \mathrm{Se}$	18 Au	L	L		

Page 2...

Speci es	Nunber Seen*				Period of Peak Abundance		Predominant	ant ection	Peak Mgration Rate (\# bi rds per day)	
	(1977)			(1978)	(1977)	(1978)	(1977)	(1978)	(1977)	(1978)
Dunlin	3	(310)	0	(39)	28 Au	17 Au	W	L	3	
Sanderling	0	(8)		(0)	$30 \mathrm{Au}-2 \mathrm{Se}$		L			
Semipalmated Sandpi per	0	(18)		(0)	19 Au					
Long-billed Dowitcher	13	(78)	0	(47)	19Au	25 Au	w	L	13	
Uni dentified Dowitchers	0	(12)	0	(9)	31 Au	29 Av	L	L		
Red Phalarope	0	(27)	0	(108)	22-28 Au	12 Au	L	L		
Northern Phalarope		(0)	0	(160)		12 Au		L		
Unidentified Phalaropes	28	(1143)	0	(1307)	25 Au	23 Au	w	L	28	
Uni dentified Shorebirds	29	(581)		(0)	21-28 Au		w		6	
Pomari ne J aeger	1	(5)		(0)	1 Se		w		1	
Parasitic J aeger	0	(3)		(0)	$22 \mathrm{Au}-1 \mathrm{Se}$		L			
Long-tail ed J aeger	0	(13)		(0)	24. 31 Au		L			
Uni dentifi ed Jaegers	1	(5)		(0)	30 Au		w		1	
G aucous Gull	275	(1044)		(12)	$28 \mathrm{Au}-15 \mathrm{Se}$		W	L	200	
Sabine's Gull	0	(2)	0	(3)	22 Au	14 Au				
Black-I egged Kittiwake	0	(1)		(0)	19 Se					
Arctic Tern	100	(380)	20	(85)	15-28 Av	12 Au	w	w	32	21
Thi ck-bill ed Marre		(0)	0	(1)		17 Au		L		
Vari ed Thrush	0	(1)		(0)	7 Se					
Yellow Whrbler	0	(1)		(0)	5 Se					
Snow Bunting	0	(64)		(0)	$21 \mathrm{Au}-2 \mathrm{Se}$		L			
Lapl and Longspur	0	(2)	8	(16)	22-24 Au	4 Se	L	W		8

*Numbers inside parentheses represent the tot al number of birds seen during migration watches and during incidental observations (incl udes birds that were not acti vel y migrating).
Numbers to the left of those in parentheses represent the number of birds seen migrating during the period of peak abundance. There were no systenatic watches in 1978.

The total number of loons seen migrating through Si mpson Lagoon was I ow both in 1977 (86 west bound bi rds seen during 38.6 h of systenatic observations--Table 11) and in 1978 (Table 10). Even if the migration rates shown in Table 11 are extrapol ated to the entire 21 August- 22 September 1977 period, only about 1600 loons are estimated to have flown west within sight of an observer on Pingok Island. This estimate is very imprecise because it is based on a snall sample and assumes that loons migrated at the same rate by night as by day. The rates of loon migration al ong the Yukon coast in 1972 were even Iower; indeed, nore loons were seen to fly east than to fly west (Table 11). In contrast, numbers of I oons passing Point Barrow in the peri ods 27 August-2 Septenber, 3-9 September and 10-16 Septenber 1975 were esti nated as 347, 7087 and 43, 359, respectively (Timson 1976). These estimates al so assume similar migration rates during the night as during the day. Apparently nost loons bypass both the Yukon coast and Si mpson Lagoon during the fall exodus from the Beauf ort Sea. Offshore surveys indi cate that many loons are widel y distributed in offshore waters of the Beaufort Sea in August and early Septenber (Searing et al. 1975; Di voky 1978a).

Brant. Brant migrated west through the Si mpson Lagoon area in large numbers during the 22 August-6 Septenber 1977 and 17-31 August 1978 periods (Table 10). In 1978, a few straggl ers were present as late as 20 September. The timing was similar to that recorded during previ ous migration watches at Point Barrow in 1970 (Johnson 1971) and 1975 (Timson 1976); at Beaufort Lagoon, NE Al aska, in 1970 (22 August- 10 September; peak on 1 Septenber-Schmidt 1973); and along the Yukon coast in 1971 (nost on 25 August3 September--Schweinsburg 1974a:84) and in 1972 (nost on 17 August3 September--Gollop and Davis 1974).

Numbers of brant passing through Si mpson Lagoon appeared to be at least as high as numbers passing Poi nt Barrow In 1977, 4231 brant were seen to fly west within sight of observer on Pi ngok Island, despite the fact that there were only 22.8 h of systenatic observations in the 21 August-5 Septenber period and the fact that nost of those seen were flying near the nai nl and shoreline near the limit of visibility from Pi ngok Island. In 1978, a total of $\mathbf{1 0}, 885 \mathbf{m}$ grating brant were tallied during incidental observations, nostly from Milne Point on the nai nl and shore, during the

Table 11. Rates of eastuard and west ward 'fall' migration near the Beaufort Sea coast during three peri ods in late sumer.

Speci es	Flight Di rection	Yukon Coast, 1972 ${ }^{\text {d }}$				Pi ngok 1s1., 1977 ${ }^{\text {b }}$		
		Rate (bi rds/h)			Total \# Seen	Rate (bi rds/h)		Total \# Seen
		$\begin{aligned} & \text { 1-15 } \\ & \text { Aug } \end{aligned}$	$\begin{gathered} \text { 16- } 31 \\ \text { Aug } \end{gathered}$	$\begin{aligned} & 1-17 \\ & \text { Sept } \end{aligned}$		$\begin{gathered} \text { 21-31 } \\ \text { Aug } \end{gathered}$	$\begin{aligned} & \hline 1-22 \\ & \text { Sept } \end{aligned}$	
All Loons	E	1. 15	0.86	0. 40	282	0	0	0
	w	0.66	0.67	0. 22	190	3. 0	1.5	86
Brant	E	0	1. 73	0. 54	325	0	0	0
	w	0	19. 21	4. 92	3,526	66.4	151.0	4,231
White-fronted	E	0. 26	0	16. 55	1,405	0	0	0
Goose	w	0	0. 10	0	16	14.3	0	270
Snow Goose	E	0	3. 86	4. 86	1, 031	0	0	0
	w	0	174.83	2. 14	28, 532	0	0	0
Pintail	E	3.83	14. 03	7.98	3,306	0.6	0	11
	w	3. 40	0. 32	0.50	419	0	0	0
O dsquaw	E	0.81	1. 02	0. 17	256	0	0	0
	w	1. 84	1. 47	2. 12	592	53.7	36. 3	1,729
A I Ei ders	E	0. 27	0.02	0	29	0	0	0
	w	0.96	0.48	0	170	27.7	0	522
Al Scoters	E	0.08	0. 77	1. 40	250	0	0	0
	w	0.06	0. 77	0.05	135	0	0	0

Page 2...

Speci es	Fli ght Direction	Yukon Coast, 1972 ${ }^{\text {a }}$				Pi ngok 1s1., 1977 ${ }^{\text {b }}$		
		Rate (birds/h)			Total \# Seen	Rate (birds/h)		Total \# Seen
		$\begin{aligned} & \hline \text { 1-15 } \\ & \text { Aug } \end{aligned}$	$\begin{gathered} \text { 16-31 } \\ \text { Aug } \end{gathered}$	$\begin{aligned} & 1-17 \\ & \text { Sept } \end{aligned}$		$\begin{gathered} \text { 21-31 } \\ \text { Aug } \end{gathered}$	$\begin{aligned} & 1-22 \\ & \text { Sept } \end{aligned}$	
Al J aegers	E	0. 49	0.48	0.10	133	0	0	0
	w	0.38	0.38	0.05	102	0.05	0.05	2
G aucous Gull	E	3. 90	4. 73	4.67	1,529	0.1	0	2
	w	3. 47	6. 14	7.51	1,954	1.7	0.8	47
Thayer's/	E	0.04	0.03	0.76	72	0	0	0
Herring Gull	w	0.02	0.03	0. 13	18	0	0	0
Arctic Tern	E	1. 93	1. 78	0. 20	489	0	0	0
	w	3. 13	2.84	0	759	1. 9	0	35
\# Hours of Cbservati on		95.6	162.2	83.4		18. 8	19.7	
\# Days with Observation		15	10	8		10	14	

aYukon data (1972) are from watches at Nunaluk Spit (Gollop and Davis 1974). No data were obtai ned on 6-12 Sept. 1972. Incl udes al I flying bi rds, regardless of di stance fromshore or visibility.
bpingok Island data (1977) include all migrants regardless of distance fromthe island; only watches with visibility at I east $\mathbf{3} \mathbf{~ k m}$ are consi dered.

17-31 August period. Undoubt edl y many additional brant passed unrecorded during both 1977 and 1978. In contrast, Johnson (1971) esti nated that 14, 000 brant flew past an observer at Point Barrow during the 18 August7 Septenber 1970 period (only 1103 actually seen), and Timson (1976) estinated that 2740 brant flew past that area in the 27 August-16 Septenber 1975 period (only 400 seen in 68 h of observations). East of Si mpson Lagoon, Schmidt (1973) saw 12, 910 brant fly west al ong Beaufort Lagoon on 22 August-10 Septenber 1970, and Schweinsburg (1974a) saw 14, 806 fly west past Nunaluk Spit, Y. T., during $\mathbf{1 5 0} \mathbf{h}$ of observations on $\mathbf{2 5}$ August6 Septenber 1971. However, Gollop and Davis (1974) saw only 3526 fly west past Nunaluk Spit during intensi ve watches in 1972 (Table 11). These results suggest that brant nesting to the east of the study area migrate west ward in a concentrated stream close to the Beauf ort Sea coast, and thus pass through Si mpson Lagoon.

Odsquaw 01 dsquaws were seen migrating west through Si mpson Lagoon in late August and intermittently throughout Septenber 1977. However, very large numbers remai ned in the lagoon as late as 22-23 Septenber in 1977-79 (Table 9). The seasonal trends in numbers, sex ratios and age ratios of oldsquaws in the Iagoon suggested that in 1977 and 1978, postnolting male oldsquaws began to leave the Iagoon during August. Many mal es were still present in September, but in addition large numbers of postbreedi ng fenal es and \mathbf{j} uveniles noved into the lagoon late in the sumer (see 'MOLTI NG section). Thus there was consi derable turnover of oldsquaws using the I agoon in the August-September period. About 250 oldsquaw. were still present in an area of open water east of the ARCO causeway in Prudhoe Bay on 15 October 1978.

If the rates of migation recorded during our rather snall number of watches (Table 11) apply to the entire 21 August- 22 Septenber 1977 period (including ni ghttine hours), about 33, 000 oldsquaws flew west within sight of an observer on Pi ngok Island during this period. However, an estimated 106, 600 oldsquaws remai ned in Si mpson Lagoon itself on 22 Septenber 1977, and additional oldsquaws were presumal y present further east at that time (see 'MDLTI NG section, bel ow). Thus the total number that passed through Si mpson Lagoon in the fall of 1977 may have been much nore than $\mathbf{1 0 0} \mathbf{0 0 0}$. Mich of the migration from (and per haps much of that through) the Iagoon
occurred after our systenatic observations ended. Tinson (1976) estinated that about 32, 000 and 208, 500 ol dsquaus passed an observation poi nt at Poi nt Barrow in the 3-9 and 10-16 September 1975 peri ods, respectivel y. Presumably more ol dsquaus passed after her study ended.

No systenatic fall migation watches were conducted at Simpson Lagoon in 1978, but no significant westward migration of ol dsquaws was noticed during casual observations in August and Septenber. Trends in numbers and sex ratios (see 'MOLTING) indi cated that novenents must have occurred, but they were not conspi cuous and there is no proof that the birds noved west ward al ong the coast. Si milarly, few ol dsquans migrated west al ong the Yukon coast during systenatic watches on 24 August-6 Septenber 1971 (997 seen in 156 h--Schweinsburg 1974a) or up to 17 Septenber in 1972 (Table 11). Oldsquans do occur far offshore in the Beauf ort Sea during I ate August and Septenber (Searing et al. 1975:224; Di voky 1978a:407, 419, 432). Thus it is probable that a significant fraction of the autum oldsquaw migration is not near the coast.

Eiders. Ei ders migrated west through Si mpson Lagoon in small numbers during I ate August of 1977 and 1978 (Table 10, 11). Only 522 were seen during 38. 6 h of systenatic watches from Pi ngok Island on 21 August22 Septenber 1977. Although ei der migration was not noted during early or mid-September, snall numbers of ei ders remai ned in Si mpson Lagoon and Harrison Bay as late as 22-23 Septenber in 1977-79 (Table 9). Si milarly, little eider migration was noted al ong the Yukon coast in August or Septenber of 1971-72 (Schweinsburg 1974a; Gollop and Davis 1974).

In contrast, large numbers of female eiders and (after late August) young- of-the-year pass Point Barrow during I ate summer. Timson (1976) estimated that about 173, 000 ei ders passed her observation site in the 27 August-16 Septenber period (14, 625 actually seen in 68 h).

The above results suggest that many post-breeding and \mathbf{j} uvenile eiders bypass Si mpson Lagoon during fall migration. It is uncl ear what route these birds follow Some eiders are seen in rel atively shallow waters of the southern Beauf ort Sea beyond the barrier islands in late summer (Table 9; see al so Bartels 1973; Whtson and Divoky 1974; Divoky 1978a). However, densities farther offshore are very low (Searing et al. 1975; Harri son 1977; Divoky 1978a).

Phal aropes. Few phalaropes were seen in active fall migration, although premigratory staging phalaropes were abundant al ong the Jones Isl ands during mid to I ate August of 1977 and 1978 (see 'PREMIGRATORY STAG NG section). All phal aropes collected in the Si mpson Lagon area in August were young-of-the-year. Peak numbers al ong the shorelines of Si mpson Lagoon were about 6100 on 16 August 1977 and 2475 on 29 August 1978. Northern phalaropes were much less abundant..than red phalaropes.

The maj ority of the phal aropes had departed by early Septenber. However, during 1977 sone flocks were observed in the study area as late as 14 Septenber. Al though no phal ar opes were recorded in the study area after 3 Septenber 1978, a flock of approxi mately 400 was recorded in the Sagavanirktok Ri ver delta on 23 Septenber 1978, and two snall flocks of four and ei ght phal aropes were seen in an area of oPen water along the east side of the ARCO Causeway (Prudhoe Bay) on 14 and 15 October 1978, respectivel y.

Jaegers. Al nost no \mathbf{j} aegers were seen to migrate through Si mpson Lagoon in late summer (Table 10, 11). There was al so no clear mestward migration al ong the Yukon coast in August-Septenber of 1971 or 1972, and few jaegers pass Point Barrow at this time (Johnson 1971; Timson 1976). Jaegers are apparently widely di stributed in nearshore and offshore waters of the Beauf ort Sea in August and early Septenber (Frame 1973; Harrison 1977; Divoky 1978a).

G aucous Gull. Little west ward novenent of glaucous gulls through Si mpson Lagoon was evident up to the end of regul ar observations around 22 Septenber in 1977 and 1978. In all years (1977-79) the numbers of glaucous gulls present in the lagoon area increased during Septenber (I-able 9; see 'PREMIGRATORY STAG NG section, bel ow). In 1972, west ward migration al ong the Yukon coast began in mid-Septenber (Gollop and Davis 1974). It is probable that there was consi derable migration through Simpson Lagoon in late Septenber and October ($c f$. Bailey 1948). However, glaucous gulls are also common in offshore waters of the western Beauf ort Sea in I ate summer (Frane 1973; Watson and Divoky 1974; Divoky 1978a). Thus it is probable that many fall migrants bypass Si mpson Lagoon.

Arctic Tern. Terns began to nove west through Si mpson Lagoon in nid-August of 1977. Large noi sy flocks of adults and \mathbf{j} uveniles uere observed noving westward at high altitudes al ong the Jones Islands (Table 10). The fall migration of arctic terns had terminated by 30 August 1977. Possibly because the field camp was situated on the nainl and and because systenatic migration watches were not conducted during fall 1978, no such novenent of arctic terns was noted during fall 1978. Terns al so noved west al ong the Yukon coast in mid and late August of 1972 (Gollop and Davis 1974; Table 11). At Point Barrow fall migration of terns was nai nly in August during 1976 (Connors and Risebrough 1977:444; Di voky 1978a: 489), but sone terns were present in early Septenber. Timson (1976) estimated that 1879 terns passed her observation site at Point Barrowin the 27 August-16 Septenber 1975 period. Athough the hi ghest densities of terns are found near the barrier islands during the late summer period (Table 9; see al so Harrison 1977; Divoky 1978a), some terns do occur far offshore at this time (Divoky 1978a).

Speci es Noteworthy for their Scarcity. Several species that might be expected to be conmon fall migrants through Si mpson Lagoon were not (Table 10). Sone of these speci es were common migrants or summer residents at Simpson Lagoon earlier in the season, but were uncommon transients during late summer (e.g., white-fronted geese, pintails, scoters, jaegers, Sabine's gulls). Sone of these species, and sone others, are common fall migrants el sewhere in the North Sl ope area but not over the nearshore waters of Si mpson Lagoon.

Snow and white-fronted geese, pintails and scoters are common fall migrants al ong the Yukon coast but not at Si mpson Lagoon (Table 11). Mbst of these species migrate through the Brooks Range in snall numbers (Irving 1960). However, thei r mai n fall migration routes out of the Beauf ort Sea area are up the Mackenzi e Val ley (Campbell 1973; Salter 1974; Bellrose 1976; Koski 1977).

Sabine's gulls, on the other hand, are common during late summer at Point Barrow (Scale 1898; Bailey 1948; Bee " 958; Timson 1976; Connors and Risebrough 1977; Di voky 1978a), but are not common at this tine either at Si mpson Lagoon or al ong the Yukon coast. They are widel y di stri buted in offshore waters of the western Beauf ort Sea in late summer (Frane 1973;

Vhtson and Divoky 1974; Divoky 1978a), so it is probable that their mestward fall migration fromthe Beauf ort Sea area is largely through offshore waters.

Mbst Thayer's gulls have been presuned to migrate through the Beauf ort Sea while en route between thei r breedi ng areas in the Canadi an arctic islands and their wintering areas al ong the Pacific coast (e.g., Witson and Di voky 1974). Those authors saw only a few offshore in the western Beauf ort Sea in late summer, and suggested that nost may nove through inshore waters. Sone Thayer's gulls have been collected in northwest Al aska in fall (Bailey 1948), but there is no evi dence of a si gnificant west ward novenent near the Yukon coast or in the Si mpson Lagoon area, at least up to the third neek of Septenber (Table 11).

In summary, the nost abundant late summer and fall transients in Si mpson Lagoon are brant, ol dsquaws, phalaropes and, to a lesser degree, arctic terns. Numerous loons and ei ders al so nove through the I agoon, but the numbers invol ved are snall rel ative to known popul ation sizes. G aucous gulls probably migrate through the lagoon in large numbers in fall, but nost of this migrion occurs after our systenatic studi es ended (i.e. , after 22 Septenber). Snow geese, white-fronted geese, pintails, scoters, jaegers, Thayer's gulls and Sabine's gulls are all only scarce migrants in nearshore areas during late summer and fal.

Di scussi on

Mgration is inherently a large scale phenonenon. To understand migration patterns in a snall area such as Simpon Lagoon, it is necessary to consi der migration patterns and envi ronnental conditions over a mach larger area.

Spring Mgration
The Beauf ort Sea is largely ice-covered during spring migration. However, sone areas of open waterdo exi st, and nany of these are quite consi stent from year to year. The exi stence of recurring areas of open water and recurring patterns of ice break- up has undoubtedly had profound influences on the devel opment of waterbird migration routes and timing in the Beauf ort Sea area.

Spring Ice Conditions. I ce conditions in the Beaufort Sea have been studi ed intensi vely in recent years. The following description is based on Markham (1975), Marko (1975), Shapi ro and Barry (1978) and Dey et al. (1979), as well as our own anal yses of aerial survey data and interpretation of satelite inagery (Richardson et al 1975; Searing et al 1975).

Even during the early part of arctic spring (April), a lead is present j ust beyond the edge of the narrow shel f of I andf ast ice bordering the Chukchi coast of northwest Alaska. Thus open water is present as far to the northeast as Point Barrow East fromthere to the Tuktoyaktuk Peni nsula, N.W.T., an unbroken and generally broad sheet of I andf ast ice covers the nearshore waters of the southern Beauf ort Sea. Currents and winds cause leads and cracks to form and di sappear on an irregul ar schedule al ong the northern edge of this landf ast ice and in the heavy pack ice to the north. Thus there are usually sone small areas of open water far offshore in the Beauf ort Sea during early spring, but their positions are predi ctable in only a general way. However, al ong the eastern edge of the Beauf ort Sea--just west of Banks Island and north of the Bathurst Peni nsula-areas of open water are quite dependably present even in early spring. Sone of these areas are no nore than $\mathbf{3 0} \mathbf{m}$ deep, which is within the di ving range of ol dsquaus and possibly eiders (Pal ner 1976; Peterson and Ellarson 1977).

Thus, open water is dependably present in early spring off northwest Al aska ($N E$ to Point Barrow) and in the extrene eastern part of the Beauf ort Sea. In the intervening area (which is 1000 km wide), small areas of open water are usually present in the pack ice far offshore, but nearshore areas are covered by thick landf ast ice.

During May and the first hal f of June, the period of peak spring migration, the sane general pattern prevails. However, areas of open water becone sonewhat nore extensi ve:

- Leads tend to becone commoner and Iarger.
- The areas of open water in the eastern Beaufort Sea becone very extensi ve and expand westward, particularly when the spring flood of water fromthe Mackenzie Ri ver reaches the sea in late May and June (Davi es 1975).
- Ri ver and stream runoff onto the landfast ice al ong the Al askan and Yukon coasts initially produces areas of freshwater on top of the ice (e.g., Whl ker 1974). Ice melt is
rapid in these areas, so shorel eads form off river nouths during June- - wel I bef ore nost of the I andfast ice breaks up.
Thus, during the peak of spring waterbird migration, an extensi ve area of open water in the eastern Beaufort Sea is still separated from open water near Point Barrow by a large area where the onl y open water is in leads far offshore and (after early June) in local areas at the nouths of ri vers.

In the Si mpson Lagoon area, I andf ast ice extends northward at least 25 km from the barrier islands during spring (W.J. Stringer, in Shapiro and Barry 1978:19). The northern edge of the landfast ice is ori ented WNW-ENE, parallel to the general trend of the Beauf ort Sea coast of Al aska. Ri ver and stream water flows out onto the ice of Si mpson Lagoon fromthe Kuparuk Ri ver and snaller streans during the first two weeks of June (Schamel 1978; this study). In early June of 1977 and 1978, water fromthe Colville Ri ver covered an extensi ve area in Harrison Bay, but did not flow into Si mpson Lagoon. In midJune, the Iandfast ice lifted from the bot tom of Si mpson Lagoon (see Griffiths and Dillinger 1980), and shorel eads began to form al ong the barrier islands (both sides) and mainland. In early to mid July, the I agoon ice broke up and noved out of the I agoon into Harrison Bay, which by this time was also breaking up. Ice in the nearshore Beauf ort Sea north of the barrier islands often does not break up until several weeks after that in the Iagoons.

The mai nl and tundra in the Si mpson Lagoon-Prudhoe Bay area remai ns I argel y snow covered until late May, and snowmelt proceeds rapidy in early June. Snowmelt begins earlier on inl and portions of the North Sl ope despite the hi gher el evations inland (Benson et al 1975; Holmgren et al . 1975). The prevailing ENE onshore winds cause temperatures to be lower al ong the coast than inl and (Brown et al. 1975; Wil ker and Webber 1979).

Eastward Mgration al ong the Coast. Al ong the northwest coast of A aska, where open water occurs rather cl ose to shore during spring, very I arge numbers of waterbirds can be seen migrating northeast over nearshore waters (Gabrielson and Li ncol n 1959; Johnson 1971). East of Poi nt Barrow, there is al so conspicuous eastward migration of waterbirds near the i cebound coast. However, it has long been evi dent that, for nost species,
the numbers migrating al ong the coast east of Barrow are comparativel y low (Brooks 1915; Irving 1960:275). Observations fromislands and points of I and have suggested that much of the migration, especially in early spring, occurs too far offshore to be seen fromland (Anderson 1937:118; Barry 1972; Schamel 1978).

This study and an earlier one conducted in 1975 provide the first systenatically-deri ved estimates of numbers of waterbirds migrating al ong the Alaskan or Yukon coasts of the Beauf ort Sea in spring. Table 4 provi des such esti mates for both the Si mpson Lagoon area and the Yukon coast. Sone of the noteworthy results are the rather low estimated numbers of certain speci es passing through the Simpson Lagoon area in the spring of 1977: only about 1200 loons, 2100 brant (probably more in 1978), 10, 000 oldsquaw, 4800 ei ders, 11 Sabine's gulls, and 130 arctic terns. These estimates are imprecise, for reasons al ready nentioned, and incl ude only low altitude visiblemigration. However, they are based on a considerable vol une of systenatically-collected data, and are comparable in reliability to previ ous summer and fall results from Point Barrow (Thompson and Person 1963; Johnson 1971; Timson 1976). Consi stent with our low estimates, radar shows that the eastuard migration past Si mpson Lagoon in spring is broadfront in character, with little concentration near the rather irregularshaped coast.

During late May and the first hal f of June, the 01iktok radar routinely shows an eastward broad-front migration over the North SI ope (Fig. 3, 8, 9; see al so Flock 1973). East bound migrants are usually present to the limits of radar detectability $50-75 \mathbf{~ k m i n l}$ and. The species composition of these migrations is not adequatel y known, but vi sual observations from the coast indicate that many brant and some jaegers fly over portions of the tundra within a few kiloneters of the coast.

Farther east, al ong the coast of the northwestern Yukon Territory, both visual and radar evi dence show that nore of the eastbound migrants are narrow y concentrated al ong the coast. Mgrants that were markedly nore abundant there than at Si mpson Lagoon included brant (about 26, 000 vs 2100 estinated) and arctic terns (about 790 vs 130). However, Ioons, ol dsquavs and eiders, which are known to be abundant migrants in the Beauf ort Sea area (Johnson 1971; Timson 1976), were seen in only modest numbers al ong the Yukon coast.

Counts from Cape Dalhousie at the top of the Tuktoyaktuk Peni nsula in the SE Beauf ort Sea al so reveal ed onl y nodest numbers of eastbound Ioons, oldsquaws and eiders. The numbers seen passing within $1.6 \mathbf{k m}$ of the observer during daily watches of 12-h duration during 29 May- 16 June 1972 totalled only 275, 1507 and 1659, respectively (Barry 1972). Only 192 jaegers, 354 glaucous guls, 64 Sabine's gulls and 23 arctic terns were reported at Cape Dalhousie.

Thus there is an important broad-front eastward migration over the arctic coastal plain and southern Beauf ort Sea during spring, but the coast itself does not forma naj or route for narrowfront east ward migration, at least in the Si mpson Lagoon area. The nany east bound waterbirds vi sible to a coastal observer represent only a small portion of the total eastward novenent. The brant is the onl y bird whose Beauf ort Sea popul ation appears to be hi ghly concentrated anywhere al ong the coast during spring migration, and this concentration is al ong the Yukon coast, not at Si mpson Lagoon.

The Iack of concentration al ong the coast in the Si mpson Lagoon area during spring presumbly is attributable to (1) the presence of a continuous sheet of landfast ice over nearshore waters, (2) the irregularity of the coast (poor leading Iine), and (3) the great width of the arctic coastal plain (little funneling effect). Even after river water overflous onto the ice in early June, access to marine food resources is blocked by the underIying ice. Little or no food is accessible to waterbirds in nearshore areas until shoreleads formin mid June. Onl \mathbf{y} then do birds gain access to the amphipods, mysids and fish that recol onize the shallow waters during mid to Iate June (Griffiths and Dillinger 1980; Craig and Haldorson 1980).

Sone waterbi rds (especially brant) did land on the river water present on top of the Iagoon ice in early June 1977. It is unlikely that any significant anount of food was available to these birds, although two yellow-billed loons were seen to dive into this uater on 8 June 1977.

Eastward Mgration Offshore. Visual and radar observations at Point Barrow suggest that, after passing that location, nost ei ders fly ENE toward the offshore waters of the Beauf ort Sea (Fl ock 1973). There have been no systematic observations offshore in the Al askan Beauf ort Sea during spring, but in 1974 Iarge numbers of ei ders and ol dsquans appeared in the leads and polynyas of the eastern Beauf ort Sea during May (Searing et al. 1975).

I ndeed, Inuit have reported that some ol dsquans, common eiders and king ei ders are present at the floe edge off SW Banks Island in April (Manning et al. 1956).

Extensi ve aerial surveys of the Canadi an Beauf ort Sea in the springs of 1974 and 1975 showed that loons (especialy yellow billed), brant and gl aucous gulls were al so widelistributed in small numbers far offshore (Searing and Ri chardson 1975*; Searing et al. 1975; Ri chardson et al. 1975; Barry 1976a). These speci es, as well as ei ders and ol dsquavs, probably migrate eastward through of f shore portions of the Beaufort Sea. However, jaegers were scarce, arctic terns were al nost absent, and Sabine's gulls were not seen. Aeri al surveys in the Baffin Bay area of the eastern arctic during the spring migration period have shown higher densities of migrating jaegers near the floe edge than over pack ice or open water farther offshore. However, migrating arctic terns in the eastern arctic are widel y di stributed over of fshore areas (Johnson et al. 1976; McLaren and Renaud 1979).

In the absence of aerial survey or other data from offshore waters of the Al askan Beauf ort Sea in spring, patterns of waterbird migration are highly uncertain. Inferences about the species composition, timing and certain characteristics of the novenents can be nade fromobservations at Poi nt Barrow in the Canadi an Beauf ort Sea, and el sewhere. However, the specific routes, stopover locations (if any) and numbers of migrants in offshore waters are unknown. Radar observations fromthe coast (Fl ock 1973; Ri chardson et al. 1975; this study) show that there is broad front novenent to the E and ESE over the I andf ast ice zone and at least the southern edge of the pack ice (Fig. 8). Visual observations suggest that ol dsquans, eiders, loons and glaucous gulls are the main speci es moving east over the I andfast ice north of the barrier islands (Table 4, column G; Schamel 1978). However, nei ther island-based observers nor coastal radars can detect the low altitude flights that probably occur al ong and beyond the floe edge. The apparent decrease in frequency and density of eastward migration with increasing di stance fromshore (Fig. 8) may be an artifact of the reduced ability of the radars to detect birds at increasing distances.

[^6]There have been both radar and visual observations of birds approaching the North SI ope fromthe north in spring (Fl ock 1973; Richardson et al. 1975; Schamel 1978). Schamel's visual observations invol ved red phalaropes. It is possible that sone waterbirds that nest on the Al askan North Sl ope migrate over offshore areas, and remain offshore until snow nelt occurs on Iand or until river runoff produces shorel eads in the nearshore landfast ice.

Northeast and North Mgration through Interi or Al aska. The of fshore and coastal routes di scussed above are not the onl y routes by which waterbirds wintering in Alaskan or Pacific waters reach the Beauf ort Sea. Radar observations in the northern Yukon show that sone birds fly northeast frominteri or Alaska, across the North SI ope of extrene NE Al aska and the Yukon, and out over the Beauf ort Sea (Fig. 8; details in Richardson et al. 1975). Such flights were detected as early as 12 May. Sone brant (Cade 1955; Irving 1960) and jaegers (Dean et al. 1976; B. Kessel pers. comm 1978) are known to follow such a route, at least as far as the North Slope, during Iate May and June. However, it is unlikely that brant or jaegers were responsiblefor the northeastuard migration detected by radar in midMay.

Other species present offshore $\mathfrak{i n}$ the Canadian Beaufort Sea in midto late May are ol dsquaws, common and king ei ders, and glacous guls. There is no direct evi dence that nembers of any of these species fly NE across interi or Al aska and then out into the Beauf ort Sea, but the radar evi dence suggests that sone must do so.

Adsquaus seem to be the nost likely possibility. They migrate through interior Alaska and the Yukon in at least snall numbers (Kessel and Cade 1958; Irving 1960), and during spring they are known to migrate overland for long di stances, nostly at high altitudes, in northern Europe (Bergnan and Dorner 1964; Bergnan 1974, 1977) and in central North Aneri ca (Bell rose 1976).

Ei ders are not known to migrate in si gni ficant numbers across interior Al aska, but they are not al ways confined to coastal and offshore routes. Sone cross the Seward Peni nsula and the tundra south of Barrow during spring (Myres 1958; Johnson 1971; Fl ock 1973; Pal ner 1976). There are welldocumented overland migrations of common eiders in eastern North Anerica
(Gauthier et al. 1976), Denmark (Schmidt 1976), and southern Sweden (Swegen 1972; Alerstam et al. 1974). In the Swedi sh case, nost of the eiders were al ready at hei ghts of 200-450 m AGL (naxi mum 800 m) after traveling at nost 50 km overland (Karlsson 1976). Many king eiders are known to fly overland across Baffin Island during their molt migration (Wynne-Edwards 1952). There is circunstantial evidence of along (1200 km) non-stop spring migration of common ei ders from western Norway across the Scandi navi an nountains, the frozen Gulf of Bothnia, and Finl and to the White Sea (Folkestad and Moksnes 1970; Bergnan 1974:133). Radar data show that, over the Gulf of Bothnia, the birds presumed to be eiders are at altitudes of 1500 to $\mathbf{2 0 0 0} \mathbf{m}$ or nore. Thus it is possible, on the basis of eider behavi or el sewhere, that sone ei ders fly non-stop and unseen over Alaska to the eastern Beauf ort Sea.

Some glaucous gulls migrate through interior A aska in spring (Kessel and Cade 1958; Irving 1960). However, it is doubtful that they fly fast enough to account for the fast-noving flocks of bi rds detected migrating NE over the northern Yukon in May 1975.

Some other waterbirds al so bypass much or all of the Alaskan portion of the Beauf ort Sea and take a nore di rect overland route to NE Alaska or the western Canadi an arctic. Sone arctic loons, yellow billed loons, and perhaps arctic terns fly overland al ong this route (Kessel and Cade 1958; Irving 1960; Kessel and Schaller 1960; Pal ner 1962; Griffiths 1973). Sone of these species nest in the interior as well as al ong the arctic coast, so it is uncertain how nany conti nue on to the coast. However, arctic loons are known to undertake long overland migrations in Europe (Schüz 1974; Cramp and Si mons 1977), and some arctic terns apparently fly overland to the Janes Bay area (Godfrey 1973). In view of their scarcity in the Al askan Beauf ort Sea in spring, many Thayer's and perhaps Sabine's gulls may al so fly overland.

Many other waterbird and shorebi rd species that are summer residents of the North Sl ope al so fly north through the interi or of Alaska. These include snow Canada and white-fronted geese, pintails, scoters and various shorebi rds. (Kessel and Cade 1958; Kessel and Schaller 1960; Irvi ng 1960). Sone of these species are common on tundra and freshwater habitats north to the coast of the Beauf ort Sea, but these speci es do not nove north into
the Beaufort Sea itsel f during spring. Derksen and E' ldridge (1980) di scuss the stat us of the pintail on the North Sl ope.

Northwest vard Mgration into Arctic Alaska. Irving (1960:276) stated that 'there are no reports known to me which indicate that spring migration passes west ward from Mackenzie to the arctic coast of Al aska'. Recent studi es in northwestern Yukon have shown that si gni ficant numbers of whi stling swans and pintails fly west into Alaska ang the coast; small numbers of white-fronted, snow and Canada geese al so followthis coastal route (see Table 4, based on data of Johnson et al. 1975; see al so Brooks 1915; Schmidt 1973; Gollop and Davi s 1974:161).

Al five of these waterfow species apparently al so migrate west in spring through interior portions of the Yukon coastal plain (Salter et al. 1980). Many if not all of the whistling swans nesting on the Alaskan North Sl ope are nembers of the Atlantic-wintering popul ation (Sladen 1973), and thus are likely to migrate Wand NWfromthe Mackenzie Valley rather than through the interior of Alaska. The other four species listed above migrate north through interior Al aska as nell as Wal ong the coast. None of these five species uses narine habitats to any significant degree.

Bel I rose (1976) indi cates that over 10, 000 snow geese migrate west al ong or near the Beauf ort Sea coast fromthe Mackenzie Delta to Point Barrow and onward to Wrangel Isl and, U.S.S.R. We know of no observational evidence of such a migration.

The five waterfow species di scussed above migrate west al ong the Yukon and Al askan North Sl ope in onl y small to noderate numbers. The numbers of west bound migrants seen visually are quite inconsi stent with the nearly continuous and broad-front westbound nigration detected by radar during spring (Fig. 4, 8, 10). Frommd June onward, westward nolt migration of seaducks (oldsquaws, ei ders, scoters) no doubt accounts for mach of the west ward migration evident on radar. In some years (e.g., 1975) there is al so a conspi cuous westward migration of non-breeding jaegers anay from their nesting areas in mid and late June (see Fig. 6 and Maher 1974). These movenents may account for the increase in the rate of west ward migration as June progresses (Fig. 4), but they do not account for the westuard migrations in late May and early June.

Shorebirds are likely responsibe for much of the west and WNW migration detected by radar during spring. Of five sandpi per species listed as abundant at Prudhoe Bay, Barrow or both by Norton et al. (1975), four speci es-- the semipalmated, Baird's, pectoral and buff-breasted sandpi pers-migrate to northern Alaska fromthe interior of the continent (Pal ner 1967; Marti nez 197' 4, 1979; Barri ngton and Mbri son 1979; Jehl 1979; Lank 1979). Aneri can gol den plovers and long-billed dowitchers as well as pectoral sandpi pers are conspi cuous eastbound migrants in the northern Yukon during I ate summer (Campbell 1973; Gollop and Davis 1974; Vermeer and Anweiler 1975; Salter et al. 1980), and sone likely migrate WNW through northern Al aska in spring. All six of these species are common at Anaktuvuk Pass in spring (Irving 1960), so it is likely that only a fraction of the indi vidual s nesting in northern Al aska migrate WNW or Wal ong the North SI ope. Sone pectoral sandpi pers and long-billed dowitchers migrate west from Al aska to breeding areas in Si beria (Houston 1965; Pal ner 1967; Martinez 1979), although not necessarily through northern Al aska. Shorebirds are normally very inconspi cuous during their long di stance migrations, which often occur at high altitudes (see Richardson 1979 for review). Thus they are likely to be much nore prominent on radar than visually. Sandpi pers and plovers do not use shoreline habitats al ong the Beaufort Sea in spring.

Attraction to Open Whter. The timing and routes of spring waterbird migration into and through the Beauf ort Sea are strongly influenced by seasonal patterns of availability of open water, on which narine waterbirds depend for access to food. Open water is a scarce commodity in spring, and the evi dence indicates that migrating water bi rds can be expected to land on any available open water in nearshore areas (this study; Bergnan et al. 1977; Schamel 1978). Thus, it is al nost certain that sone waterbirds hould be contam nated if oil or another contami nant were present during spring in any nearshore area with open water.

A further cause for concern is that sone bi rds appear to be attracted to pools of oil on top of ice, presumbly mistaking the oil for open water (Dubrovsky 1959; Barry 1970, 1976 b). Such pools could occur not onl y if oil is spilled onto the ice fromabove, but al so when oil that has accumulated under the ice in winter migrates upward through the nel ting ice in spring (Lewis 1978). The situation uould be especially serious in a
heavy-ice year when there is little or no open water offshore in the Beaufort Sea. Whterbi rds are severely stressed in such years (Barry 1968), and would be expected to concentrate even nore than usual in any available area of open water (Barry 1976b). Birds presumaly would be especialy likely to land in pools of oil if little or no open water were present.

Mot Mgration

The summer nol \mathbf{t} migration of adult male eiders past Point Barrowis well known from the work of Thompson and Person (1963), Johnson (1971) and ot hers. The nol \mathbf{t} migrations of ol dsquaws and scoters are much less well docunented. Indeed, even in the case of eiders there are important gaps in know edge.

Ei ders. Systenatic observations at Poi nt Barrow began on 14 July in 1953 (Thompson and Person 1963) and on 13 July in 1970 (J ohnson 1971). The west ward migration of eiders at Si mpson Lagoon begins in early July (Fi g. 16), and at Barrow the duck camp becane active about that time in 1970 (Johnson 1971:6). Thus the earliest stages of the mol migrations have not been included in previ ous studi es.

The routes of westbound eiders in areas east of Point Barrow are poorly known. Anderson (1937) reported a large flight past the tip of the Bathurst Peninsula in midJuly of 1912; he does not give total numbers, but the implication is that many thousands were seen. In contrast, few ei ders nove west al ong the Yukon coast in July (Fig. 16), and Brooks (1915) and Schmidt (1973) i mply that onl y nodest numbers nove west al ong the coast of NE Al aska. Our results show that the numbers migrating through Simpson Lagoon in July are in the thousands, in contrast to the hundreds of thousands that pass Point Barrow at this tine. Similarly, Hall (1975) and Schamel (1978) observed no maj or westward migration of ei ders through nearshore waters in the Simpson Lagoon area. Thus, there is no evidence of a concentrated west ward mol t migration of eiders al ong the south-central coast of the Beauf ort Sea (Si mpson Lagoon to Mackenzie Delta). Maj or west ward nol t migration is apparently evident at Cape Bathurst, NWT., in the SE Beaufort Sea, as well as at Point Barrow

Radar evi dence about the routes of the eiders is, for the nost part, inconcl usi ve. During early July, broad-front WNW migration occurs over the North SI ope and southern Beaufort Sea around the Yukon- Al aska border (Richardson et al. 1975). However, scoters and perhaps ol dsquaw must account for at least a portion of that movenent. During late July, on one occasi on of maj or west ward ei der migrations (numbers unstated) al ong the coast past Lonel y, Al aska (approxi nately 130 km west of Si mpson Lagoon), Lonel y radar showed an intense broad-front westward migration over the coastal plain (Fl ock 1973). However, in neither of these studies is it known that eiders were the bi rds responsi blefor the broad-front novenents. Eiders engaged in molt migration do fly overland at Baffin lsland (WynneEdwards 1952) and in Denmark (Salomonsen 1968; Schmidt 1976); overl and migrations by ei ders at other seasons were mentioned earlier.

Radar observations at Point Barrow indi cate that nost eiders approach the point in a rather narrow stream al ong the shore or barrier islands; their flight direction is about 290° as they approach the point, and gradually changes to 250° west of the point (Fl ock 1973).

An aerial survey of the Canadian Beauf ort Sea during 3-7 July 1974 showed that eiders were present as far as 115 km from shore, al though nost of those seen were less than $60 \mathbf{k m}$ offshore (Searing et al 1975:231). A total of 721 eiders were seen al ong about 4200 km of transects ($0.44 / \mathrm{km}^{2}$). The numbers present offshore decreased during surveys later in July. Surveys offshore in the Al askan Beaufort Sea during the summer have shown that few ei ders are present in offshore waters (Bartels 1973; Frane 1973; Harrison 1977; Divoky 1978a). However, nost of these surveys of Alaskan offshore waters were conducted after the period of peak molt migration by nal e eiders.

The rel ative abundances of common and eiders during nol migration vary narkedly fromplace to place. At Poi nt Barrow ' 35% of the westbound ei ders seen and 95% of the ei ders shot frommidJuly to early Septenber 1970 were king ei ders (J ohnson ?971). Ki ng ei ders al so predominate in other years (Thompson and Person 1963). However, at Si mpson Lagoon ki ng and common ei ders comprised 42% and 58% respectivel y, of the 4711 westbound eiders that were specifically identified in the $26 \mathrm{June}-31 \mathrm{July}$ period of 1977 and 1978 (Table 7). If only the westbound eiders seen during systenatic watches
at Si mpson Lagoon are consi dered, the percentages are $\mathbf{6 2 \%} \mathbf{k i n g}$ and $\mathbf{3 8 \%}$ common (Table 6). Wéstbound spectacle and Steller's eiders toget her comprise less than 1% of the flight at both Point Barrow and Si mpson Lagoon. At Cape Bathurst, Anderson (1937) found that ki ng ei ders predominated initially, but by 18 July 'there nere about as many Pacific [Common] Eiders as King Eiders'. Of the $\mathbf{8 4 0}$ eiders identified during aerial surveys of the southeastern Beauf ort Sea in July 1974, 51\% were king and 49\% common (Searing et al. 1975:20).

The total number of common ei ders in the Beauf ort Sea area is not well known. T.W. Barry estinated that a fourth of the eiders there, or about 275, 000, are common eiders (cited in Bellrose 1976:356). Over 75, 000 common ei ders were seen in a single lead in the eastern Beauf ort Sea on 21 May 1974 (Searing et al. 1975:126). Thus the rel ative abundances of king and common eiders at Point Barrow during the sumertine nol migration appear at ypi cal of those el sewhere in the Beauf ort Sea area. Sone common ei ders renai n in the Beauf ort Sea area to nol (Höhn 1955; Snith 1973; Whrd 1979). Even if nore common than king ei ders nol in ine Beauf ort Sea, it is noteworthy that the king: common ratio is much higher during mol \mathbf{t} migration at Point Barrow than at Si mpson Lagoon or Cape Bathurst.

Oldsquaw This study provi des the first systematic docunentation of the west ward nolt migration of mal e ol dsquavs along the Al askan north coast. There were previ ous observations of this migation (see bel ow), but its magnitude has not been documented before. Si milarly, there are few welldocumented cases of nolt migations of oldsquavs el sewhere in their circumpol ar range (Salomonsen 1968; Pal ner 1976; Cranp and Si mons 1977). The best known case is a northward nol migration of ol dsquaws fromeastern Si beria to Wrangel Isl and (Salomonsen 1968).

During the systematic migration watches at Point Barrow very few ol dsquaus have been seen novi ng west bef ore I ate August (J ohnson 1971; $c f$. Thompson and Person 1963; Ti nson 1976). In the Si mpson Lagoon- Prudhoe Bay area, several previ ous authors have nentioned the build up of nolting ol dsquavs al ong the coast during sumer, but the exi stence of a maj or westward migration has not been mentioned (Hall 1975; Gavin 1976; Schamel 1978). Farther east, near the Al aska-Yukon border, west ward migration of
ol dsquavs has been noted in late June and July (Brooks 1915; Schmidt 1973; Gollop and Davis 1974). Si milarly, Anderson (1937) saw a few ol dsquaws noving west at Cape Bathurst, N.W.T., in mid July.

The peak of the nolt migration through Simpson Lagoon in 1977 and 1978 was in the first half of $\mathrm{Jul} y$, with a secondary, snaller peak later in July (Fig. 16). The systematic migration watches at Point Barrow did not begin until midJuly, so the first peak might have been missed there. However, Divoky (1978a:482) di d not record a west ward nolt migration through Elson Lagoon in late June or early July of 1976. It seens highly unlikely that any maj or westward novenent in late June or early July could have passed unnoticed by Di voky (1978a) and the nunerous other 'investigators who have worked at Barrow

Thus it is probable that the ol dsquaws that nove west through Simpson Lagoon in early July either remin in the western Beaufort Sea to nol t, or bypass Point Barrow Many oldsquaws are present bet ween Si mpson Lagoon and Barrow during July and August, the nolt and post-molt periods (this study; Di voky 1978a:432). However, scattered groups of ol dsquans are al so present in offshore waters of the western Beauf ort Sea in July (Harrison 1977:422). Thi s suggests that sone molt migrants do not follow the coast, and thus may bypass Point Barrow The ability of oldsquaws to di ve to great depths (perhaps as deep as $60 \mathrm{~m}--\mathrm{Pa}$ lmer 1976), together with the shallowness of much of the southern Beauf ort Sea, uould allow ol dsquaws to feed on benthic organi sns even during migration across areas far from shore.

The numbers of ol dsquaws seen migrating west al ong the Yukon coast in I ate June and July of 1972 and 1974 (Fi g. 16) are much too Iow to account for the arrival of tens of thousands of oldsquaws in Iagoons and bays al ong the north coast of Alaska during July (see 'MOLTI NG section, bel ou). A hi gh percentage of the male ol dsquavs that appear al ong the Al askan coast probably nove to the sea from adj acent breeding areas on the nainl and. Those that migrate west through the lagoon in early summer may be engaged in a short-distance molt migration within the $\mathbf{A l}$ askan Beaufort Sea region. However, oldsquaws were al so widel y di stributed in small numbers in offshore waters of the eastern Beauf ort Sea in late June and early July of 1974 and 1975 (Richardson et al. 1975; Searing et al. 1975). Al though ice conditions in 1974 were atypically severe, these results and the previ ously mentioned
si ghtings offshore in the western Beaufort Sea in July (Harrison 1977) suggest that there nay be a significant westuard nolt migration of oldsquaus over offshore waters.

Scoters. Surf and white-winged scoters are comon nesting birds north to the Mackenzie Delta (Porsild 1943; Cowan 1947; Martel 1975). They al so nest sparingly in the interior of northern Alaska (Irving 1960), but not to any si gnificant extent al ong the arctic coast. The black scoter is uncommonin the Beaufort Sea area even as a non-breeding visitant.

Male scoters begin to nove west across the Mackenzie Delta in mid June (Porsild 1943), and nove west al ong the Yukon coast into Alaska in late June and July (Fig. 16; see al so Andersson 1973; Gollop and Davis 1974). Surf scoters and smaller numbers of white-winged scoters were common nol migrants at Si mpson Lagoon in 1978, although not in 1977. Few scoters nove west as far as Point Barrow Fever scoters occur in the Si mpson Lagoon-Prudhoe Bay area during the nol ting period than occur al ong the coast of extreme northeastern Al aska and the northern Yukon; especially large numbers nol thear Herschel Island, Y.T. (4500 estinated by Vermeer and Anweiler 1975; see al so Andersson 1973; Gollop and Ri chardson 1974; Gollop, Gol dsberry and Davis 1974a; Uard and Sharp 1974; Salter et al. 1980). Even Iarger concentrations may occur just east of the Mackenzie Delta (Barry 1972; Searing et al. 1975:131).

Sone scoters appear in leads and polynyas of the eastern Beauf ort Sea as early as late May (Johnson et al. 1975; Searing et al. 1975). It seens likel y that these are imat ure or non- breedi ng bi rds, which sonetimes conti nue northward beyond the breedi ng range (Pal ner 1976:303).

The nol t migrations and other novenents of scoters in North Anerica are poorly understood (Bellrose 1976; Pal ner 1976). The west and northwest mol t migration al ong the south coast of the Beauf ort Sea is now one of the best-known exampl es of nol migration in North Anerican scoters. This novenent, unl i ke the nol t migrations of eiders and oldsquaws in the Beaufort Sea area, is in a direction contrary to the fall migration. In contrast, the well-known nolt migrations of bland white-winged scoters in northern Europe are generally toward the wintering areas (Salomonsen 1968; Bianchi and Krasnov 1976; Schmidt 1976; Viksne and Baumanis 1976; Cramp and Si mmons 1977; Graubits and Janaus 1977; Moskalev 1977; Zhalakevicius 1977).

Importance of Si mpson Lagoon to Mbl Mgrants. Sone oldsquaws and smaller numbers of ei ders and scoters I and in Simpson Lagoon during their west ward mol migrations (Table 8). However, the peak of the oldsquaw nol t migration occurs in early $\mathbf{J} u l y$, around the tine of breakup of the lagoon ice. In nany years the anount of open water in the lagoons at the tine of peak ol dsquaw novenent is low (shorel eads onl y). The very I arge numbers of nale ol dsquaus (tens of thousands) that nol in the lagoon do not reach their peak abundance until I ater in July, after breakup and the peak of uest ward molt migration (see 'MDLTING section, bel ow). Thus the I agoon is of onl y noderate importance to ducks during nol \mathbf{t} migration per se, but it is of great importance as a destination for nol ting ol dsquaws.

Fal I M gration
Brant, oldsquaus, phalaropes and, to a lesser degree, arctic terns are abundant I ate summer and fall transi ents in Si mpson Lagoon. Loons and ei ders are al so common west bound migrants, but thei r numbers, like those of ol dsquaws, are apparently small rel ative to numbers passing Point Barrow at this tine (cf. Timson 1976). Most glaucous gulls, as well as nany oldsquans and ei ders, probably mige west ward through the lagoon in late Sept enber and October, after our observations ended.

Whterbirds whose migrion is concentrated al ong the coast are most susceptible to devel opment of the nearshore zone. The brant appears to be the speci es whose autum migration route through the Si mpson Lagoon area is nost narrow y confined to the coastal zone. Brant fly west ward in a narrow corridor al ong the coast fromthe northern Yukon at least as far as Si mpson Lagoon (see 'Results', above). They commonly I and on coastal netlands during these flights (Searing et al. 1975; Bergnan et al. 1977; Koski 1977). Brant nould be especi ally vul nerable if high water levels caused by a late summer storm (Henry 1975) carried oil ontolowlying coastal areas. The I arge flocks of brant that nol t near Cape Hal kett, west of Si mpson Lagoon, during at least sone summers (King 1970) might al so ve nerable.

The west ward migration of brant through the south-central portion of the Beauf ort Sea area is mai nly WWNal ong the coast, but west of Si mpson Lagoon nost brant apparently follow a more di rect westerly or WSW route overland south of Barrow (Johnson 1971; Pitelka 1974; Timson 1976). It
is not surprising that brant, despite their cl ose association with marine areas, undertake this overland flight. In spring, a considerable number of brant fly NE across interior Alaska (see Cade 1955 and earlier di scussion). Furthernore, the normal migration routes of many brant in eastern North Anerica and Europe incl ude long overland segnents (Lewis 1937; Bellrose 1976; Bergnan 1978).

Odsquaus migrated west through Simpson Lagoon in late summer of 1977, and tens of thousands still in the area when our observations ceased must have migrated away from Si mpson Lagoon in late Septenber or perhaps October. However, the anount of west ward migration through the I agoon in late summer was nodest compared to that at Point Barrow (cf. Tinson 1976). Thus it is probable that nany ol dsquavs bypass the lagoon during fall migration. The Poi nt Barrow radar has detected broad-front westuard migration over the North Sl ope, coast, and southern Beauf ort Sea in autum (Fl ock 1973); thi s migration probably incl uded many ol dsquaws.

Ei ders are even less conspicuous fall migrants al ong the arctic coast east of Point Barrow than are ol dsquaws (Table 11). Mbltand fall migation of ei ders are not clearly di stingui shable in northern Alaska; nal es nove west nai nly in July, but nany fenal es begin to nove west toward nol ting areas in August. By early Septenber young birds are al so beginning to nove west, al ong with I ater-migrating fenal es (Johnson 1971; Timson 1976). In late summer and fall, as during the peak of the nol $t \mathrm{migrati}_{\text {on }}$ of nal es in July, westbound eiders are much less numerous at Si mpson Lagoon and el sewhere al ong the south-central coast of the Beauf ort Sea than at Poi nt Barrow Sone ei ders minate west over the shallow marine waters seavard of the barrier islands, but few are seen far offshore in the Beaufort Sea during late summer (Bartels 1973; Frane 1973; Watson and Divoky 1974; Searing et al. 1975; Harrison 1977; Divoky 1978a). Thus the routes of nost west bound ei ders past the Si mpson Lagoon area during the nol thal fall migration periods are uncertain; but it is clear that nost eiders do not I and in Si mpson Lagoon, or fly over the lagoon at low altitudes.

G aucous gulls concentrate in the Simpson Lagoon area during mid Septenber (Table 9), which is the time when their west ward migration is begi nni ng. Most of the bi rds then in the lagoon are feeding rather than actively migrating (see 'PREMIGRATORY STAG NG section, bel ow). It is not
certain what route these gulls follow during their subsequent departure from the lagoon. However, glaucous gulls are common ofshore in the western Beaufort Sea in September (Uhtson and Divoky 1974; Di voky 1978a), so the fall migration is probably not confined to the coastal zone.

Arctic terns, like glaucous gulls, are common fall migrants al ong the barrier islands, but al so occur offshore during the fall emigration (see Results).

Only very small numbers of Sabine's gulls and jaegers migrate west al ong the south-central coast of the Beauf ort Sea in fall (see Results). Somejaegers may migrate westward over the interior of the arctic coastal pl ain or southward through the nountains, as in spring (Dean et al. 1976). However, these bi rds are common ofshore in the Beauf ort Sea during Iate summer (Frane 1973; Whtson and Di voky 1974; Di voky 1978a), and it is probable that nost west ward emigration fromthe area is over offshore waters. Sabine's gulls appear to concentrate in the Point Barrow area before noving southwest through the Chukchi Sea.

Juvenile phalaropes (predominantly red but sone northern) are abundant al ong shorelines in the Si mpson Lagoon area during August, but then di sappear, The adul ts have al ready departed by the time that j uveniles concentrate al ong the lagoon shorelines. The departure routes of these phalaropes are not known. Very large numbers of red phalaropes occur near Point Barrow in August and early September (Connors and Risebrough 1977, 1978; Connors et al. 1979). Their marking studies suggest that there is much day-to-day turnover in the indi vidual s present, especially after mid August. However, it is uncertain whether red phalaropes migrate from Si mpson Lagoon WNW to Poi nt Barrowin late summer.

In the Herschel Island-Nunaluk Spit area of the northern Yukon, thousands of northern phalaropes were observed noving predomi nantly eastuard in August and early Septenber of 1972 (Gollop and Davis 1974). However, Verneer and Anweiler (1975) suggest without details that thousands of northern phalaropes noved west in that same area in August 1973. Northern phalaropes, at least, are known to migrate overland for long di stances in western Canada (Godfrey 1966; Sadl er and Myres 1976) and al so in Europe (Hildén and Vuolanto 1976; Glutz et al. 1977). Thus it should not be assumed that al phalaropes migrate around the coast of $\mathbf{A l}$ aska.

Whisting swans, white-fronted geese, pintails and scoters are not conspi cuous fall migrants near the coast in the Si mpson Lagoon area. These bi rds are much nore conspi cuous in the northern Yukon and Mackenzie Delta area during late summer. There they are observed to migrate east and southeast (Table 11; see al so Campbll 1973; Gollop and Davis 1974; Schweinsburg 1974a). I ndi vi dual s that summer in northern Al aska must migrate either ESE al ong the coastal plain into the Yukon, or south through interior Al aska (see Irving 1960). They do not make si gnificant use of the waters near Si mpson Lagoon during this migration.

NESTI NG STUDI ES

Results

The numbers, densities and fates of nests of the various bird species that were found nesting in the study area during 1977 and 1978 are presented in Tables 12-15. Fifty active nests were found on the barrier islands during 1977, representing a total density of 11.4 nests/ km. Of these 50 nests, 38 (21.1 nests/ $k m^{3}$) were found on the Pingok Island tundra plots and on the tundra-covered portions of the other barrier islands; nany of these nests (18 of $\mathbf{3 8}$, or 10.0 nests/ $\mathbf{k m}$) were of lapland longspurs. The remai ning 12 nests (9.24 nests $/ \mathrm{km}^{2}$) were found on the portions of the barrier islands, spits and bars that were comprised of gravel and sand.

During 1978, the compl ete study area was not censused for nesting birds. Only Pl ot 2 on Pingok island was monitored as representative barrier island tundra habitat. On this pl ot six nests (20 nests $/ \mathrm{km}^{2}$) representing three species were found during 1978 compared with 11 nests (37 nests $/ \mathrm{km}^{2}$) representing two species during 1977. The average density of birds on this pl ot for the two year period of study was 28 nests/ km, which is approxi matel y hal f the density of birds (60 nests $/ \mathrm{km}^{2}$) found nesting on the comparative nai nl and tundra pl ot (Pl ot 3) established at Milne Point during 1978 (Table 14). Furthernore, the diversity of bird speci es nesting on the mainl and tundra plot (10 species on the pl ot and an additional 7 species nearby) was nore than three ti nes greater than that on the Pingok Isl and tundra plot (three species during 1978 and two species during 1977; no additional speci es nested near the barrier island tundra pl ot during either year).

Based on the total number of nests found in the tundra-covered portions of the barrier islands in the study area, the overall density of all species of birds nesting in this type of habitat was 21.1 nests/ kmíduring 1977 and 20.0 nests $/ \mathrm{km}^{2}$ during 1978; an overall val ue of 20.6 nests/ kmifor this habitat was cal cul at ed for the two year period of this study. Si milarly, the numbers of territorial male ($\Pi 0^{\prime} \sigma^{\prime \prime}$) birds recorded on tundra plots 1 and 2 on Pi ngok Island during 1977 were $24.0 / \mathrm{km}^{2}$ and $20.0 / \mathrm{km}^{2}$, respecti vel y .

Table k. active bird nests found during ig7 on the Jones Islands and on adja cent spits and bars in Simpson Lagoon, A aska.

Speci es	Type of Nesting Habitat				Fate of Nest				
	Tundra ($3.9 \mathrm{~km}{ }^{2}$)		Gravel / Sand (2.6 km)		Successful *		Predat ed	Oeserted	Other/ Unknown
	Nests (\#)	Density (nests/ km)	Nests (\#)	Density (nests/ kn*)	Nests (\#)	Density (nests/ km)			
Lapland Longspur	18	10.00^{+}	0	0.00**	7	3.89	8	0	3
Willow Ptarmigan	1	0.56	0	0.00	0	0.00	0	0	1
Snow Bunting	4	2.22	2	0.77	3	1. 32	0	0	3
Oldsquaw	0	0.00	2	0.77	0	0.00	1	1	0
Dunlin	3	1. 67	0	0.00	0	0.00	0	0	3
Ruddy Turnstone	1	0.56	0	0.00	0	0.00	0	0	1
Bai rd's Sandpi per	8	4.44	0	0.00	1	0.56	3	0	4
Aneri can Gol den Pl over	1	0.56	0	0.00	1	0.56	0	0	0
Parasitic J aeger	1	0.56	0	0.00	1	0.56	0	0	0
Common Ei der	0	0.00	2	0.77	0	0.00	1	1	0
King Ei der	1	0.56	0	0.00	0	0.00	1	0	0
Arctic Tern	0	0.00	3	1. 15	0	0.00	2	0	1
G aucous Gull	0	0.00	3	1. 15	2	0.77	0	0	1
Total	38	21. 13	-	4. 61	-	7.66	$\overline{16}$	2	17

* A nest was j udged to be successful if evidence (many tines only circunstantial evidence) suggested that sone young from the nest had fledged
${ }^{\mathrm{t}}$ Density calculations are basec on the $1.8 \mathrm{~km}^{2}$ of tundra area surveyed during nest searches.
**Density cal culations are based on the $\mathbf{2 . 6} \mathbf{~ k m}$ of gravel/sand area surveyed during nest searches.

Table 13. 4 comparison of bird densities on two tundra plots on Pingok I sland and on the total area of tundra surveyed during nest searches on the Jones I slands, 1977*.

Species	Pinqok Plot 1 ($0.625 \mathrm{~km}^{2}$ tundra)				Pi ngok Plot 2 ($0.300 \mathrm{~km}^{2}$ tundra)				Total Tundra Surveyed During Nest Searches$\left(1.80 \mathrm{~km}^{2}\right)$	
	Nest Searches		Counts-of-IHO ${ }^{\circ}$ \#11 dod Density		Nest Searches		Counts of Π of			
	\# Nests	Density			\# Nests	Oensity	\#110 0	Density	\# Nests	Density
Lapland Longspur	6	9. 60	14	22. 40	8	26. 67	6	20. 00	18	10. 00
Wil low Ptarmigan									1	0.56
Snow Bunting									4	2. 22
Dunlin					3	10.00			3	1.67
Ruddy Turnstone	1	1.60							1	0.56
Baird's Sandpi per	2	3. 20	1	1. 60					8	4.44
American Golden Plover	1	1.60							1	0.56
Parasitic Jaeger	1	1.60							1	0.56
King Ei der									1	0.56
Total	11	17. 60	$\overline{15}$	24. 00	11	36. 67	$\overline{6}$	20. 00	38	21. 13

*counts of territorial males (n of $\boldsymbol{\sigma}^{\prime}$) were conducted only On Plots ${ }^{1}$ and 2 on PingokIsland. Alldensities are per km^{2}.

Table 14. A compari son of bi rd nest densities on a nai nl and tundra pl ot and a barri er isl and tundra pl ot in the Si mpson Lagoon-Jones Islands area of Alaska (1977-1978).

Speci es	Pingok Pl ot 2 (0. $\mathbf{3 0 0} \mathbf{~ k m}$)						Milne Pt. Pl ot (0.250 kmí)1978		
	1977			1978					
	\#Nests	Density*	Fate ${ }^{\S}$	\#Nests	Density	Fate ${ }^{\text {§ }}$	\#Nests	Density	Fate ${ }^{\text {§ }}$
Pintail							1	4. 00	+
K ng Ei der							1	4. 00	+
Spectacle Ei der							1	4. 00	+
Bai rd's Sandpi per							2	8. 00	+
Dunlin	3	10.00		2	6. 67	+	1	4.00	+
Semipalmated Sandpi per				2	6. 67	+	1	4. 00	+
Buff-breast ed Sandpi per							1	4.00	+
Pectoral Sandpi per							1	4. 00	+
Aneri can Gol den Pl over							1	4. 00	+
Lapl and Longspur	8	26. 67	5+	2	6. 67	+	5	20. 00	+
TOTAL	$\overline{11}$	36. 67		$\overline{6}$	20.01		15+	60.00	

*All densities are per km.
' Within a linear di stance of approximatel y $2.50 \mathrm{~km} E$ and $0.25 \mathrm{~km} \mathrm{~S}, \mathbf{W}$ and N of the Milne Pt. tundra pl ot, an additional 18 nests were recorded. These incl uded nests of the arctic (1) and red-throated (1) loon, white-fronted goose (1), king ei der (2), spectacle eider (2), dunlin (1), ol dsquaw (2), Sabine's gull (4), arctic tern (3) and snow bunting (I). No additional nests were either observed or suspected in areas similarly adjacent to the comparable tundra plot on Pingok Island. Alldensities are per km^{2}.
' During 1978, no evi dence was found of predation or desertion of nests on mai nl and or barrier island tundra plots; apparently all of these nests were successful. During 1977 all three dunlin nests were destroyed by predators and three of the ei ght longspur nests were destroyed by predators.

Table 15. A comparison of the numbers of nests found on tuo gravel-covered barrier islands in the Jones I sl anas- Si mpson Lagoon area of Al aska, 1976-1978. (Thetis Island data for 1976 provi ded by Janes W Helmericks.)

*According to J.W. Helmericks (pers. comm., 1978) arctic foxes were present on Spy Island in 1976 as well as 1977, al though Di voky(1978b) made no mention of foxes there during his visit in 1970; none were present during 1978. Arctic foxes have sel dom been reported on Thetis Island in summer. Thetis lsland was not intensi vel y surveyed during 1977.
 ot her
**Depressi ons in the gravel or sand designating an early stage of nest establishment.

Nb counts of territorial males were nade during 1978 on either the barrier island or the nai nl and tundra pl ot.

Table 13 compares the speci es composition, numbers of nests and num bers of territorial males observed on the tuo census plots on Pi ngok Island during 1977; the total numbers of nests found in all tundra habitats throughout the study area are al so shown.

No nests were found al ong the section of the nai nl and shorel i ne between Oliktok Point and Beechey Poi nt during 1977; however, two active nests (one common ei der nest and one glacous gull nest) were found on the gravel/sand spit projecting west from Beechey Point, and at least two active glaucous gull nests were present on the 01iktok Poi nt gravel bar. These bars are separated fromthe nai nl and by water and are comprised of sand and gravel substrates similar to those found on the barrier islands. This mai nl and shorel ine was not surveyed for nesting birds during 1978.

Most nests were checked twice during the early summers of 1977 and 1978 in order to assess their fates (Tables 12 and 14). However, fates of sone nests were identified by using circunstantial evidence of fledging of young, desertion of eggs or young by adults, or by evidence of predation on eggs or young. Fox predation accounted for a high proportion of nest failures on the Jones Islands, and especially on Spy lsland, during 1977. Approxi natel y ei ght arctic foxes ($\mathbf{1 . 2} \mathbf{f o x e s / k m i) ~ w e r e ~ p r e s e n t ~ o n ~}$ the Jones Islands after the ice retreated in miduly during 1977. Their di stribution in 1977 is shown bel ow

I sl and	Number	of
Foxes		
spy	$\mathbf{2}$	
Leavi tt	1	
Pi ngok	2	
Bertoncini	1	
Bodfish	1	
Cottle	1	

Foxes were observed searching for bi rd nests on the tundra on Pi ngok, Bertoncini and Bodfish isl ands throughout the summer of 1977. Fox tracks and scats were abundant around active and inactive nests in all suitable nesting habitats al ong beaches and on the gravel portions of Spy, Leavitt and Cottle islands during 1977.

Arctic foxes were recorded on only four occasions during the June through Septenber 1978 period; all of these sightings were on the mainland tundra near the field camp at Milne Point (Fig. 1). No foxes nor fresh fox tracks were recorded on any of the barrier islands in the study area during 1978.

During both 1977 and 1978 Spy Island was incl uded within the intensi ve study area. Two arctic foxes were present there throughout the summer of 1977 and as a consequence onl y two active nests (both of arctic terns) were found on this island during that year--both of these nests were destroyed by foxes (Table 15).

Thetis Island, which lies off the nouth of the Colville River and west of Spy Island (Fig. 1), historically has been without arctic foxes in summer. Although this island was not intensi vel y surveyed during 1977, extensi ve nesting by at least four speci es of mari ne-associated birds was recorded there (J.W. Hel neri cks, pers. comm. 1977 and 1978). Duri ng 1978, when no arctic foxes were recorded on any of the gravel-sand barrier isI ands in the study area, the number of nests on Spy and Thetis islands were compared (Table 15). Bird production on Spy Island increased fromtuo active nests (1.3 nests $/ \mathrm{km}^{2}$) of one species (arctic tern) during 1977, to 13 active nests (8.7 nests $/ \mathrm{km}^{2}$) of three species (arctic tern, glaucous gull, and common eider) during 1978. Many additional scrapes, inactive nests or destroyed nests were present in each year (Table 15). On Thetis Island, bird production remai ned high; in 1978, 54 nests (34 nests $/ \mathrm{km}^{2}$) and 207 scrapes of four speci es were recorded.

Di scussi on
The number of nests found by us on the Jones Islands during 1977 was I arger than that reported by Di voky (1978b) for the same islands in 1976 and I arger than that reported by Gavin (1976) for the same islands surveyed yearly for the six-year period 1970-1975. Pl ot 2 on Pingok Island was the
only barrier island tundra location censused by us during 1978. The density of birds on that pl ot was lower in 1978 than in 1977 primarily because of the few lapland longspur nests found during 1978. However, the six nests found by us on Plot 2 in 1978 was equal to the greatest number of nests found by Gavin on the whole of Pingok Island during any of his six years of investigation there. Di voky (1978b) found no nests on Pi ngok Island during his search there in 1976.

None of the species of birds that nested or attempted to nest on the tundra portions of the J ones $I s l a n d s$ are uni que to barrier islands. Mbst of these tundra nesting species were nesting on our mai nl and tundra plot during 1978 (and on those of others, see Table 16), in most instances at densities mach higher than on the tundra portions of the Jones lalands (see Tables 12, 14).

The total nesting densities (all species) of birds on various tundra portions of the Jones Islands (17.6 to 36.7 nests/ kmí) were narkedly lower than the density on the adj acent mainland tundra in 1978 ($\mathbf{6 0 . 0} \mathbf{0}$ nests/ kmi). In fact, the only tundra area in Arctic North Aneri ca where the recorded densities of nests or nesting pairs of birds have been accurately determined to be lower than on the Jones Islands was a High Arctic site on Devon Island, NWT., Canada (2.0 nests/ knj; Pattie 1977). Table 16 gi ves a comparison of the density and nesting success of sel ected species of tundra nesting birds at several locations al ong the Beauf ort Sea coast of Al aska. The val ues vary from 20.0 nests/ kmion Pi ngok Island during 1978 to 167 territories/ kmat Barrow during 1977. The density of nests (60.0 nests/ kmi) on our nai nl and tundra pl ot at Milne Point during 1978 was nost comparable to densities (51.0 and 59.2 nests/kmi) found by P. Martin (Univ. of Al aska, pers. comm., 1980) in similar habitat at Brownlow Point (approxi matel y $160 \mathbf{k m}$ east of Si mpson Lagoon) during 1979.

The contrast between densities of birds on the tundra-covered portions of the Jones Islands and mainlandis interesting. These differences nay be a result of factors such as (1) a reduced availability of food (terrestrial and aquatic invertebrates) on the islands, or (2) a difference in soil substrate and vegetation type and therefore of nesting habitat, or (3) increased predation on birds on barrier islands. I nvestigations of insect popul ations and plant commities were not within the scope of this

Table 16. A comparison of bird nesting density and nesting success of selected species in tundra habitats at several locations along the Beaufort Sea coast of Alaska.

Location	Speci es					A 1 Speci es
	Dunlin		Bai rd's Sandpi per	Lapl and Longspur	Snow Bunting	
Prudhoe Bay (Norton et al. 1975)						
Density (nests/ km)	4.6			7.7		96.7
Success (\%)*	50			60		62
Barrow (Norton 1973)						
Density (nests/km)	13.9		24.8	30.0	15.0	133.5
Success ($\%$ *	72		39	63	80	65
Barrow (Myers et al. 1977)						
Density (Pl ot 1, Territori es $/ \mathrm{km}^{2}$)	21. 2		4.6	31.8	6.1	167.0
Density (Pl ot 2, Territori es/ km ${ }^{2}$)	20.4			22. 2	3.7	148.0
Brownlow Point (p. Martin, pers. comm. 1980)						
Densi ty-Low and Pl ot (nests/ $/ \mathrm{km}^{2}$)				11.1		59.2
J ones I sl ands (present study)						
Densi ty- 1977 (nests/ km')	1.7		4. 4	10.0	2.2	21.1
Success ${ }^{\dagger}$ ($\%$ \%**	0		13	39	75	30
Pi ngok Isl and- Pl ot 2 (present study)						
Density- 1977, 197B (nests/ km)	10.0,	6. 7	-, -	26.7, 6.7	-> -	36.7, 20.0
$\begin{aligned} & \text { Success- 1977, } 1978 \\ & (\%)^{* *} \end{aligned}$	O,	100	-'	63, 100	-	45, 100
Milne Point (present study)						
Dens ity-1 978 (nests/km²)	4.0		8.0	20.0		60.0
$\begin{aligned} & \text { Success- } 1978 \\ & (\%)^{* *} \end{aligned}$	100		100	100		100

*Eggs hatched/eggs laid in that nest $=$ \%
' A nest was judged to be successful if evidence suggested that sone young from the nest had fl edged.
**Nests with seine young fledging/total nests of that species ${ }^{*} \%$.
st udy; ther ef ore the first two factors remai \mathbf{n} largel y uni nvesti gat ed. However, Cannon and Rawlinson (1978) have shown that barrier islands al ong the central Alaskan Beaufort Sea coast are nai nl and remnants that have becone separated from the adj acent North Sl ope through processes of coastal tundra erosion. Through these processes, Iarge coastal lakes have gradually becone connected to the marine system the resulting peni nsul as and seavard margins have gradually becone barrier islands and the coastal lakes have gradually becone coastal estuaries. The soils, vegetation and associ ated terrestrial fauna on the tundra-covered portions of the barrier islands, theref ore, have basi cally the same origins as the adj acent mainI and tundra.

Nb doubt the influences of the arctic maritine climate (Leavitt and Kozo 1978; Kozo 1979; Kozo and Brown 1979) near the barrier islands have had subtle influences on the soil and vegetation of the barrier islands (e.g., increased salinity, infiltration of sand into the tundra vegetation, col d temperat ures associ ated with the persi stence of ice and col d water al ong the seaward coasts of the islands). These factors, in turn, will have affected soil invertebrates (Tipulidae) that are important as food for many tundra nesting bi rds (Hol mes and Pitelka 1968; Kistchinski 1978; Seastedt and MLLean 1979).

Predation by arctic foxes apparently accounted for nost of the nesting failure and consequently for the low density of successful nests on the tundra portions of the Jones Islands during 1977. Foxes nay have preyed nore heavily on birds' eggs during 1977 than during the imediately preceding years because of the marked decline in the leming population al ong the central Beauf ort Sea coast during the winter of 1976 and spring of 1977 (L. Eberhardt, pers. comm., 1977). Lemmings are a naj or prey item of arctic foxes in tundra habitats (Chesemore 1968). Although old leming nests and skel etal material were found on the tundra on the Jones Islands, we caught no lemmings (nor any snall nammal s) during 960 trap-ni ghts (25 snap-traps) on Pi ngok Island during the summer of 1977. Further nore, during the summer of 1978 we caught no small nammal s during 538 trap-nights on Pi ngok Isl and and none during 478 trap-nights on the nai nl and plot at Milne Point.

Certain species of birds nest on gravel portions of the barrier isI ands. The small number of nests of common eiders found during 1977 were all on gravel portions of the barrier islands. Gravel substrates are nost common on Thetis, Spy, Leavitt and Cottle islands. Arctic foxes apparently preyed heavily on the eggs of ei ders during 1977 and the number of active nests found in these habitats was small. However, the numbers of nest scrapes* and destroyed nests ${ }^{\dagger}$ found on the gravel barrier islands during 1977 suggested that in the absence of arctic foxes, a great potential existed for successful nesting by such species as the common ei der (and the arctic tern). No arctic foxes were recorded on the gravel barrier i slands in our study area during 1978 and, as hypothesized in 1977 (J ohnson 1978), the number of common ei der nests in that habitat greatly increased.

Divoky (1978b) has mentioned that factors such as (1) the proximity of a barrier island to the nouth of a maj or river system and (2) the phenology of snow and ice melt around barrier islands during spring, may play important roles in determining the presence or absence of arctic foxes and the anount of avian production on nesting islands. Di voky suggested that arctic foxes may be effectively barred frombarrier islands by an early di scharge of river flood- uater across the ice and around barrier islands and/ or by early snow and ice nel t and consequent noat formation around barrier islands. Bird production can be high, as on the Jones I sl ands during 1978, during years when foxes are barred access to barrier islands. However, such events are irregul ar and unpredi ctable al ong the Beauf ort Sea coast and the breeding strategi es of such bi rds as the conmon ei der, glaucous gull and arctic tern have evol ved accordingly (Larson 1960; Evans 1970).

In summary, barrier island tundra generally supports fewer species and much lower densities of nesting birds (approxi mately 20 nests/ kmiof tho to five species during 1977 and 1978) than does nai nl and tundra (60 nests/ km² of 10 species during 1978). Gravel/sand barrier islands similarly support few species of nesting birds; however, some species that do nest in this

[^7]habitat sel dom nest in ot her habitats (e.g., common eider). Although arctic foxes prey heavily on eggs of all birds nesting on barrier islands, speci es nesting on the gravel/sand islands, possibly because they are nore conspi cuous (generally large size and less nesting cover) appear nost susceptible to fox predation.

Nesting potential on the gravel/sand barrier islands is high, but may not be realized during years when arctic foxes have access to these islands and prey heavily on birds' eggs. During a year (1978) when arctic foxes were absent fromthe barrier islands, bird production on the gravel/ sand islands increased markedly.

MOLTI NG*

Resul ts

adsquaw Pre-Molt Peri od
Distribution and Abundance. Low densities of ol dsquaws were present in al I Si mpson Lagoon habitats on 5 and 20 June 1977, on 23 J une 1978, and on 22 June 1979 (Table 17). On these dates the hi ghest density of ol dsquans recorded on any transect in the intensi ve study area was only $3.2 \mathrm{birds} / \mathrm{km}^{2}$, and this transect was over tundra habitats south of Simpon Lagoon on 20 J une 1977 (Transect 5; see Table 17).

The 5 J uly 1977 and 5 July 1978 aerial surveys were conducted just after (in 1977) and during (in 1978) the peak of the nale ol dsquaw nol t migration through the intensi ve study area. The peak densities of ol dsquaus in Si mpson Lagoon during this survey in 1977 (26.2 birds/ km^{2}) and in 1978 (160.4 birds $/ \mathrm{km}^{2}$) were recorded in the only significant areas of available open water: in the shorel eads al ong the southern margins of the barrier i slands (Transect 2; see Table 17). During 1977, 1978 and 1979, the midlagoon area (Transect 3) remai ned ice-covered until after $5 \mathrm{Jul} y$ and it theref ore supported very low densities of ol dsquans until after that date (Table 17). The nearshore mari ne habitat adj acent to Si mpson Lagoon (Transect 1) was similarly covered with ice until after 5 Jul y; however, densities of oldsquaws in this habitat remained rel atively low throughout the pre-molt period, regardless of ice cover.

The overall density of ol dsquaws ($1.7 / \mathrm{km}^{2} ; 109$ bi rds seen) recorded on 5 July 1978 during surveys west of the Si mpson Lagoon study area was low (Fig. 18) compared to the overall density recorded in Si mpson Lagoon (62.2 / kmi; 2482 birds). Furthernore, al though the number of oldsquaws (2736) recorded during surveys east of Si mpson Lagoon as far as Flaxman Isl and was approxi matel y equal to the number recorded in Si mpson Lagoon, the overall density of ol dsquaus east of Si mpson Lagoon on this date

[^8]Table 17. Densities (birds/kn*)* of oldsquaws recorded in all habitats during aerial surveys of five transects in the Jones IslandsSi mpson Lagoon area during summer 1977-79.

	Transect					Mean (unwei ghed)
	1	2	3	4	5	
$\underline{1977}{ }^{+}$						
5 J une	0.0	0.0	0.0	0.2	2. 6	0.6
20 J une	0.0	1. 6	0.0	0.9	3.2	1. 1
5 July	2. 2	26. 2	2.9	21.6	1.9	11.0
28/ 29 July	0.1	401.7	501. 1	516.4	1. 2	284.1
15 August		811.3		161. 9	5.8	326. 3
30 August	3.3	73.1	184. 6	68.0	0.0	65.8
22 Septenber	3.4	21.6	928, 1	220.0	0.0	234.6
1978						
23 J une	0.0	1. 3	0.0	0.2	1. 4	0.6
5 J uly	0.1	160.4	5.4	2. 2	1. 4	33.9
15 July	2.5	1344. 8	39.0	70.8	0.2	291.5
25 July	17.7	284.7	73.0	19. 1	0.0	78. 9
5/ 6 August	0.2	324.7	62.5	6.4	0.0	78.8
15 August	0.0	994.2	7. 3	0.0	0.0	200.4
25 August	50.2	337.4	33.3	0.8	2.0	84.7
5/ 6 Septenber	20. 2	150.2	12.3	0.1	0.1	36. 6
15 Sept enber	193. 3	47.0	29.6	7.1	0.0	55.4
23 Septenber	1. 6	9. 9	231.8	138.5	0.0	76.4
1979						
22 J une	0.0	2.5	0.0	0.2	0.6	0.7
28/29 July	4.2	520.5	132.6	31. 2	8.6	139. 4
31 Aug. / 1 Sept.	24. 7	78. 9	330.3	0.0	0.0	86.8
23 Sept enber	15.8	231.6	3. 4	113.7	0.0	72.9

[^9]
(12.3/ km^{2}) was consi derably lower than that in Simpson Lagoon ($62.2 / \mathrm{km}^{2}$; Table 18, Fi g. 18).

During the one aerial survey (22 June) conducted in the oldsquaw pre nol t period of 1979, bi rds of this speci es were nost densel y concentrated at I ocations east of Si mpson Lagoon (Fig. 19; Table 19).

Satel It te i magery i ndi cated that by 13 July 1977, by 6 Jul y 1978 and by 14 July 1979, the i ce had noved westward out of the coast al I agoon systens and that the ice seaward of the barrier isl ands had begun to break up al ong much of the A askan Beauf ort Sea coast.

Odsquaw Molt Period-Males
Distribution and Abundance. The aerial surveys conducted in midto I ate July 1977-1979 indi cated that the area seaward of the barrier islands cont nued to support low densities of ol dsquaws after the ice had retreated from thi s area:

Date	01dsquaws $/ \mathrm{km}^{2}$
$\mathbf{2 9}$ July 1977	$\mathbf{0 . 1}$
15 July 1978	2.5
25 July 1978	$\mathbf{1 7 . 7}$
28 July 1979	$\mathbf{4 . 2}$

A nost hal f of the birds recorded on 25 July 1978 were in tho flocks (75 and 50 bi rds) near brash-ice and snall ice pans seaward of Pi ngok Island.

During this sane period, oldsquaws becane mach nore abundant in the I agoon. The wei ghted average density of birds recorded in all habitats in Si mpson Lagoon (Transects 2, 3 and 4) had increased from 6. 0 birds $/ \mathrm{km}^{2}$ on the 5 July 1977 survey to at least 321 . (and possibly 566. 1) birds/km² on the 28-29 July 1977 aerial survey (Table 20), and from 15. 5 birds/km² on 5 July 1978 to 183. 2 birds/ km^{2} on 15 July 1978 (Table 21). The average density of ol dsquaws recorded in lagoon habitats on a comparable date during the nolt period in 1979 (28 Jul) was 145.0 birds $/ \mathrm{km}^{2}$ (Table 22). Bet ween 15 July and 25 July 1978, however, the average density of ol dsquaws recorded

Table 1.8. Numbers of 01 dsquaws recorded on-transect along various sections of the Beaufort Sea coast in northeastern Alaska, 23 June to 23 September 1978.

Survey Date	West of Simpson Lagoon*		Simpson Lagoon		East of Simpson Lagoon ${ }^{\text {² }}$	
	$\begin{gathered} \text { surveyed } \\ \text { kmin } \end{gathered}$	\# oldsquaws on-transect	$\# \mathrm{~km}^{2}$ Surveyed	\# 01 dsquaws on-transect	\# km Surveyed	\# Odsquaws on- transect
23 J une	12. n	10	39.9	22	31.3	85
5 July	65.5	109	39.9	2,482	222.8	2, 736
15 July	12.0	8,013	39.9	21,423	31.3	10,463
25 July	65.5	3,326	39.9	5,384	162.0	4, 552
5-5 August	65.5	1,813	39.9	5,688	315.1	32,661
15 August	12.0	4,431	39.9	14,903	31.3	2, 731
25 August	5.5	1,583	39.9	5,444	126.9	15,445
5-6 August	65.5	1,862	39.9	2,388	315.1	28,543
15 Sept enber	12.0	112	39.9	1,156	31.3	705
23 Septenber	12.0	17	39.9	4,792	126.9	18,819
A 1 Dates	327.5	21,276**	399.2	63,682 ${ }^{\text {+1 }}$	1393.9	116, 740***
Mean Densi ty		64.36		159.52		83.75

*Thi s area incl uded as many as six transects ($163.7 \mathrm{~km} \times 0.4 \mathrm{~km}=65.5 \mathrm{~km}^{2}$); it extended as far west as Atigaru Pt. and included nost of the Colville River del ta (see Figure 2 AB).
${ }^{\dagger}$ This area incl uded as many as $\mathbf{1 2}$ transects ($787.8 \mathrm{~km} \times 0.4 \mathbf{~ k m}=315.1 \mathrm{~km}^{2}$); it extended as far east as the Canada- U . S . border and as far north as the M dway Islands, north of Prudhoe Bay (see Figure $2\left(-\mathrm{f}_{\mathrm{r}}\right.$).
**Of thetotal 21,276 oldsquaws recorded on the 35 surveys of transects in areas west of Si mpson Lagoon, 19, 146 oldsquaws (90.009 were recorded during the 10 surveys of one transect which incl uded the south shorel i ne of Theti is Island.
TH Of the total 63,682 oldsquaws recorded on the 30 surveys of transects in Si mpson Lagon, 54,428 oldsquaws (85.5%) vere recorded during the 10 surveys of one transect al ong tre south shorel ine of the Jones Islands.
***0f the total 116, 740 oldsquaws recorded on the 48 surveys of transects in areas east of Si mpson Lagoon, compl ete data exist for 115,040. of these, 87, 559 oldsquaws (76.19 f were recorded during the 32 surveys of only four transects al ong the south shorel ine of barrier islands.

Fi gure 19. A comparison of the unvei ghed nean densities of oldsquaws in barrier island lagoon habitats to the east, west and in Si mpson Lagoon, Al aska, J une- Septenber 1979.

Table 19. Numbers of ol dsquavs recorded on-transect al ong vari ous sections of the Beauf ort Sea coast in northeastern Al aska, 22 June to 23 Septenber 1979.

Survey Date	West of Si mpson Lagoon*		Si mpson Lagoon		East of Si mpson Lagoon ${ }^{\text {t }}$	
	\# km Surveyed	\# Ol dsquans on- transect	\# km² Sur veyed	\# Ol dsquans on- transect	\# km² Sur veyed	\# Ol dsquaws on- transect
22 J une	65. 5	9	39.9	40	93. 8	518
28 July	65. 5	2,955	39. 9	9, 728	222. 3	48, 723
31 August	65.5	2,445	39. 9	5, 210	13. 9	1, 379
23 Sept enber	65.5	203	39. 9	4,934	31.3	2,435
A I Dates	262. 0	5, 612**	159. 6	19,912 ${ }^{\text {+† }}$	316. 3	53, 055***
Mean Density		21. 42		124. 76		167.74

*Thi s area incl uded as many as six transects ($163.7 \mathrm{~km} \times 0.4 \mathbf{k m}=265.5 \mathrm{~km}$) ; it extended as far west as Atigaru Pt. and included nost of the Colville River delta (see Figure 2A-B).
'This area incl uded as many as 9 transects ($555.8 \times 4 \mathrm{~km}=222.3 \mathrm{~km}^{2}$); it extended as far east as the Canada- U.S. border and as far north as the Mdway I slands, north of Prudhoe Bay (see Fi gure $2 \mathrm{C}-\mathrm{G}$).
**Of the total 5,612 ol dsquans recorded on the $\mathbf{2 4}$ surveys of transects in areas west of Si mpson Lagoon, 3,350 ol dsquavs (60% were recorded during the 4 surveys of one transect which incl uded the south shorel ine of Thetis Island (Transect 6).
${ }^{+\dagger}$ of the total 19,012 ol dsquaus recorded on the $\mathbf{3 0}$ surveys of transects in Si mpson Lagoon, 12,335 ol dsquavs ($62^{\circ} \%$ were recorded during the 4 surveys of one transect al ong the south shorel i ne of the Jones I sl ands (Transect 2).
*** of the total 53, 052 oldsquaws recorded on the 19 surveys of transects in areas east of Si mpson Lagoon, 51, 435 ol dsquavs (97%, were recorded during the ei ght surveys of only four transects al ong the south shorel i ne of barrier islands.

Table 20. Estimates of the Lotalrumber of oldsquaws Present in Simpson Lagoon during aerial surveys conducted in 1977. ${ }^{\text {ttt }}$

Transect Number	Location	Approximate Lagoon Area Represented (km')	$\begin{gathered} \text { Lagoon } \\ \text { Arrea } \\ \text { Suveed } \\ \left(\mathrm{km}^{2}\right) \end{gathered}$	5 June	20 June	5 July	28/29 July	15 August	30 August	22 September
2	Barrier IslandNorth Lagoon (<1.82 m de	22	7.7?	$0(0)^{\dagger}$	23 (23)	398 (398)	14,284 (5,045)	33,951 (11,991)	419 (148)	841 (297)
3	Mid-Lagoon (>1.82 m deep)	102	12.34	0 (0)	, 0 (0)	292 (35)	51,375 (6, 165)	- (-)**	18,829 (2,271)	95, 142 (11,417)
4	South Lagoon (<1.82 m deep)	36	9.66	0 (0)	11 (11)	269 (269)	24,921 (6,687)	7,808 (2,095)	2,687 (721)	10,617 $(2,849)$
To ta 1		160	29,67	0 (0)	34 (34)	959 (702)	$51,375(6.165)^{\text {tt }}$	41,759 (14,086)	21,935 (3,140)	106,600 (14,563)
Mean Dens	ty (weighted)			0.0	0.2	6.0	321.1***	(261.0)***	137.1	666.3

- Transect numbers 1 and 5 were seaward and landward, respectively, of simpson Lagoon. Densities of oldsquaws on these transects were low [see Table 17) and estimates have not, therefore, been calculated for these transects.
'Numbers in parentheses represent the total number of oldsquaws recorded 'on-transect' ($<200 \mathrm{~m}$ on either side Of the aircraft) In lagoon habitats only.
- *IncMP]ete survey; transects 1 and 3 were not surveyed on this date.
${ }^{1 t}$ since the surveys of transects 2 and 4 were conducted on 28 July and that of transect 3 was conducted on 29 July, it is possible that some or allof the birds recorded on 28 July were also recorded on 29 July. We have, therefore, used the larger of the two estimates (the estimate from transect 3 rather than the sum of the values from transects 2 and 4), as a total for the survey.
***Minialum estimate.
${ }^{\dagger \dagger \dagger}$ During 1978, estimates of the total numbers of oldsquaws in Simpson Lagoon were calculated differently than they were in 1977 . See Appendix iv or a discussion of these differences.

Table 21. Estimates of the total number of oldsquaws present in Simpson Lagoon during aerial surveys conducted in in7e."

Transect Number'	Location	Approximate Lagoon Area Represented (km')	Lagoon Area Suryezed (km^{2})	23 June	5 July	15 July	25 July	5 August
2	North Lagoon (<1.82 m deep)	22	14.80	19 (19)	2,3\$8 (2,388)	20,212 (20,026]	4,747 [4,239)	$5,197(4,836)$
3	$\begin{aligned} & \text { Mid-Lagoon } \\ & \text { (>1.82 m deep) } \end{aligned}$	102	12.24	$9(0)$	66 (66)	4,000 (480)	7,483 (898)	6,409 (769)
4	South Lagoon ($<1.82 \mathrm{~m}$ deep)	36	12.88	3 (3)	28 (28)	5,092 (915)	539 (247)	462 (83)
Total		160	39.92	22 (22)	2,482 (2,482)	29,309 (21,421)	12,769 (5,384)	12,068 (5,588)
Mean Dens	ty (weighted)			0.1	15.5	183.2	79.8	75.4

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Transect Number* \& Ap

Location
Le
Re \& roxim 00n A prese
(km') \& Lagoon Area Surviyed (kmif) \& 15 August \& 25 August \& 5 September \& 15 September \& 23 September

\hline 2 \& North Lagoon ($<1.82 \mathrm{~m}$ deep) \& 22 \& 14.30 \& 15,366 (14,S13) \& 5,859 (5,024) \& 2,450 (2,236) \& 796 (700) \& 181 (147)

\hline 3 \& Mid-Lagoon ($>1.82 \mathrm{~m}$ deep) \& 102 \& 12.24 \& 750 (90) \& 3,417 (410) \& 1,258 (151) \& 3,033 (364) \& 23,758 (2,851)

\hline 4 \& | South Lagoon |
| :--- |
| ($>1.82 \mathrm{~m}$ deep) | \& 36 \& 12.98 \& 0 (0) \& 28 (10) \& S (1) \& 381 (92) \& 7,937 (1,794)

\hline Total \& \& 160 \& 39.92 \& 16,116(14,203) \& 9,304 (5,444) \& 3,715 (2,388) \& 4,210 (1,156) \& 31,896 (4,792)

\hline \multicolumn{4}{|l|}{Mean Density (weighted)} \& 100.7 \& 58.2 \& 23.2 \& 26.3 \& 199.2

\hline
\end{tabular}

*Iransect numbers 1 and 5 were seaward and landward, respectively, of Simpson Lagoon. Densities of oldsquaws on these transects were low (see Table 17) and estimates have not, therefore, been calculated for these transects.
†ouring 1978, estimates of the total numbers of oldsquaws in Simpson Lagoon were calculated differently than they were in 1977.
See Appendix IV for a discussion of these differences.

Table 22. Estimates* of the total number of ol dsquavs present in Si mpson Lagoon during aerial surveys conducted in 1979**.

Transect Number	Location	Approxi nate Lagoon Area Represent ed (km)	Lagoon Area Surveyed (km)	22 J une	28 July	31 August	23 Sept enber
2	North Lagoon (<1.82 m deep)	22	14. 80	53 (37)	9, $108(7,703)$	1,919 (1,167$)$	3, $628(3,428)$
3	M d-Lagoon (>1.82 m deep)	102	12. 24	0 (0)	13, 525 (1, 623)	33, $690(4,043)$	347 (42)
4	South Lagoon (<1.82 m deep)	36	12. 88	7 (3)	559 (402)	O (0)	4, $092(1,464)$
Total		160	39. 92	60 (40)	23, $192(9,728)$	35,609 (5,210)	$8,004(4,934)$
Mean Dens	ty (uei ghted)			0.4	145.0	222.6	50.0

*During 1979, estimates of the total numbers of ol dsquaws in Si mpson Lagoon were cal culated differently than they were in 1977, but identical to those in 1978. See Appendix IV for a di scussion of these differences.
**Transect numbers 1 and 5 were seaward and landward, respectively, of Simpson Lagoon. Densities of ol dsquans on these transects were low (see Table 17) and estimates have not, theref ore, been cal cul at ed for these transects.
in lagoon habitats had decreased from 183. $2 \mathrm{birds} / \mathrm{km}^{2}$ to $79.8 \mathrm{birds} / \mathrm{km}^{2}$; but this density renai ned substantially hi gher than the $15.5 \mathrm{birds} / \mathrm{km}^{2}$ recorded several weeks earlier, on 5 July 1978. The density of 1344.8 birds/ kmi recorded on the 15 J uly 1978 survey of Transect 2 was the hi ghest single-transect density of oldsquaws recorded during this study. On this date in 1978, about 20, 026 ol dsquans were crouded al ong the south shoreline of the Jones Islands from Spy Island in the west to Cottle Island in the east. Mbst of these bi rds (99% 19, 827 bi rds, $2662.8 \mathrm{birds} / \mathrm{km}^{2}$) were on the shorel ine side of the ai rcraft (within 200 m of the shore). On 28 J uly 1979, 7703 ol dsquaus were recorded al ong this sane barrier island transect (Transect 2). Agai \mathbf{n} nost of these bi rds (approxi mately $\mathbf{8 1} \% \mathbf{6 2 4 1}$ bi rds, 838. 2 birds $/ \mathrm{km}^{2}$) were on the shorel ine side of the aircraft.

Throughout the ice-free period of 1978 in Si mpson Lagoon, si gnificantly hi gher densities of ol dsquaws were recorded on the barrier island shoreline transect (Transect 2) than on either the mid-lagoon transect (Transect 3) or mai nl and shoreline transect \{Transect 4) (Friedman $\chi^{2}=10.34, \mathbf{n}=\mathbf{8}, \mathrm{k}^{=3}$, $\mathrm{P}=0.003$). In fact, during the entire 1978 aerial survey program a very I arge proportion (68% 218, 289 birds) of all ol dsquaw sightings on surveys of all transects (from Thetis Island in the west to Denarcation Bay in the east) were during the surveys of six transects (Transects 2, 6, 12, 13-2, 14 and 15) I ocated imedi atel y south of barrier islands. Furthernore, nost ol dsquaus recorded on-transect on these six barrier island transects were seen on the shoreline side of the aircraft--within $\mathbf{2 0 0} \mathbf{m}$ of shore (85.3% of 159, 039 bi rds; Wilcoxon $Z 3.86 ; n=30$ transect/date conbi nations; $\mathrm{P}<0.001$).

This same phenomenon was generally evi dent during the three aerial surveys conducted during the open- uater period in 1979; of 19, 872 ol dsquans recorded in Si mpson Lagoon during that period, 12, 298 (62% were al ong Transect 2, and of those, 80% (9845) were recorded al ong the shoreline side of the ai rcraft (within 200 m of shore). Of the total 101, 509 ol dsquaws recorded during all aerial surveys conducted in the sumer of 1979, approxi matel y $\mathbf{7 0 \%}$ (70,801 indi vidual s) were recorded al ong the same six barrier island transects mentioned above and about 84% (59,204 indi vi dual s) of those birds were recorded on the shoreline side of the aircraft.

By 15 July 1978, both the number and densities of oldsquaus had increased dranatically throughout the eastern Beauf ort Sea coast of Al aska. However, even though di ssimilar proportions of each area were surveyed, both the number and density of ol dsquaus in Si mpson Lagoon pl us Harrison Bay (south of Thetis Island) were narkedly higher than at locations farther east (Table 18; Fig. 18).

The raw densities of ol dsquavs recorded on three Si mpson Lagoon transects on 28-29 July 1977 were very similar- 401.7 , 501.1 and 516.4 birds $/ \mathrm{km}^{2}$ for transects 2, 3 and 4, respectivel y-but actual densities of birds on the water al ong transects 2 and 4 (which incl uded sone land) were sonewhat hi gher. Nonet hel ess, the high density in mid-lagoon is not eworthy, and because of the similar densities on all lagoon transects, the estimates for 28-29 July 1977 in Table 20 are not very sensitive to the specific wei ghting procedure used. In contrast, on 25 July 1978 and 28 July 1979, the density of oldsquaus in lagoon habitats imediately south of the barrier islands (Transect 2) was markedly hi gher than in either the mid-lagoon area (Transect 3) or al ong the nai nl and shorel ine (Transect 4).

Survey Date	Oldsquavs/ km^{2}		
	Transect 2	Transect 3	Transect 4
25 Juty 1978	284.7	73.0	19.1
28 July 1979	520.5	132.6	31. 2

The estimated peak number of ol dsquaws present in Si mpson Lagoon during the ol dsquaw nol t period was on the 28-29 J uly 1977 survey when at least 50, 000 bi rds were estinated to be present--this was a substantial increase fromthe estimated total of 959 bi rds present during the preceding survey on 5 July 1977 (Table 20). Since no aerial surveys were conducted in areas east or west of the Si mpson Lagoon study area during 1977, it is not known what proportion of the total number of ol dsquavs present al ong the Beauf ort Sea coast of Al aska during 1977 were nolting in Si mpson Lagoon.

No oldsquaws were systematically collected in Si mpson Lagoon during the summer of 1979, so the peak of the nol t period was not precisely determined. However, large numbers of apparently flightess ol dsquaws (unable to fly away fromthe survey aircraft) were recorded al ong the coast of northeast Al aska during the 28-29 July survey (Table 22); we presumed, therefore, that the date of this survey was within the peak of the oldsquaw molt period. About 23, 000 ol dsquaus were present in Si mpson Lagoon during this survey-quite similar to the estimated 21, 000 oldsquaws nolting in Si mpson Lagoon during the peak of the nolt in 1978 (see Table 21).

As mentioned earlier, even though dissimilar proportions of each area were surveyed (Table21), the density of ol dsquavs nol ting in Si mpson Lagoon during 1978 was consi derably hi gher than that in areas to the east and was slightly lower than that to the west in Harrison Bay (see Fig. 18). If all transect's between Prudhoe Bay and Demarcation Bay had been surveyed during this period in 1978, however, the results of this comparison migh have been quite different. For example, 20 of the 22 aerial survey transects (between Atigaru Pt. and Demarcation Bay) established during 1978 were resurveyed during 28-29 July 1979. The number of oldsquaws recorded ontransect in Harrison Bay on that date was 2955 (45. 1 birds $/ \mathrm{km}^{2}$). However, the number recorded east of Si mpson Lagoon (from Gyydyr Bay to Denarcation Bay) was al nost 50, 000 i ndi vidual s, or 222.3 birds/ km²(see Table 22). Thus, during the presumed peak of the oldsquaw nol theriod during 1979, about equal densities of ol dsquaws were present in Si mpson Lagoon and in similar barrier island-lagoon habitats to the east. However, the densities of ol dsquavs in the Harrison Bay area, to the west of Si mpson Lagoon, were much I ower.

During the last two aerial surveys conducted in the oldsquaw nol t period of 1978, on $25 \mathrm{Jul} y$ and 5 August, the estimated numbers of ol dsquaus present in Si mpson Lagoon (12, 769 and 12,068 bi rds, respectivel y) were less than half those estimated to be present earlier, on 15 July 1978. On $\mathbf{2 5} \mathrm{July}$ 1978, the densities of ol dsquaws had declined not only in the Si mpson Lagoon area, but al so west of Si mpson Lagoon as far as Atigaru Point and east of Si mpson Lagoon as far as Flaxman Island (Fig. 18). During the extensive 5-6 August 1978 surveys, al though the mean density of oldsquaws in Si mpson Lagoon remai ned rel ati vel y unchanged from that during the 25 J ul y survey,
the mean density of ol dsquans had declined further in the area nest of Si mpson Lagoon. On the other hand, the number and nean density of oldsquaws east of Si mpson Lagoon had increased substantially (Table 18, Fig. 18), no doubt due to the inclusi on during this survey of the extensi ve barrier island-I agoon systens east of Flaxman Island as far as the U.S.Canada border (see Fig. 2).

Odsquavs were not evenly di stributed within Si mpson Lagoon during the nolting period. On 28 July 1977, oldsquaws were nost heavily concentrated at locations al ong the south sides of the barrier islands in Si mpson Lagoon (Table 23). Fewer oldsquaws were recorded on $\mathbf{t h i s}$ same date (28 July 1977) al ong the mai nl and shorel i ne of Si mpson Lagoon and on $\mathbf{2 9} \mathbf{J u l y}$ at mid-lagoon locations (Table 23). Fewer ol dsquaus nol ted in Si mpson Lagoon during 1978 and 1979 than in 1977 (see Tables 20, 21, 22 and Fig. 20), and fewer naj or concentrations of ol dsquavs were noted in Si mpson Lagoon. However, concentrations that were recorded in 1978 were al ong the south shorel ines of barrier islands, as in 1977 (Table 23).

At locations west and east of Si mpson Lagoon during 1978 and 1979, maj or concentrations of nolting ol dsquaws were recorded primarily at barrier island locations (Table 24). West of Si mpson Lagoon during both years, concentrations were recorded only at one Iocation--south of Thetis Island. East of Si mpson Lagoon during 1978, naj or concentrations were recorded south of Flaxman Island, south of the Jago-Tapaurak Spit, and south of Icy Reef. The Iargest concentrations found at mid-Iagoon locations in 1978 were in Arey Lagoon, Jago Lagoon and Flaxman Lagoon (Table 24 and see Fig. 2). East of Si mpson Lagoon during 1979, maj or concentrations of nolting oldsquaws were recorded al ong the south shorel ines of Long Island and Flaxman Island, al ong the south shore of Collinson Point, al ong the north shore of Oruktalik Lagoon and the north shore of Nuvagapak Lagoon (see Table 24). The only large concentration of nol ting oldsquaws found at a midagoon location in 1979 was in Si mpson Lagoon (see Table 23).

Sex Ratios and Body Condition. Based on the sex ratios of oldsquaws shot during the 29 Jul y to 5 August 1977 and 1978 collection periods (Table 25; note that no ol dsquavs were systematically collected during 1979), approxi matel y 85% and 93% respectivel y, of the oldsquaws present in the study area during this period were nales. Several types of evidence

Table 23. Locations of maj or ol dsquaw concentrations recorded during the peri od of summer nol tin Si mpson Lagoon, Al aska, 1977-79.

	\# Odsquaws
28 July 1977	
Barrier Island Shorel ine Locations	
SE Shore Spy Isl and	3,100
S Shore Leavitt Isl and	3, 065
SE Shore Cottle Island	5, 200
	11, 365
Mai nl and Shorel ine Locations	
NWShore 0liktok Pt.	2, 700
SW Shore Milne Pt.	2, 875
SW Shore Kavearak Pt.	1, 225
	6, 800
29 July 1977	
Md-Lagoon Locations. Total s probably underesti nated because of incompl ete coverage.	
Between Beechey Pt.-E End Cottle Is. Bet ween Kavearak Pt.-Bertoncini Is.	$\begin{aligned} & 1,750 \\ & 4,575 \end{aligned}$
	6,325
25 July 1978*	
Barrier Island Shoreline Locations	
SW of Spy I sl and	1,371
	1,371

Page 2...
\# O dsquaws
5 August 1978*
Barrier Island Shorel ine Locations
SW of Spy IsI and 997
SW of Leavi tt I sl and 1, 000
SW of Pi ngok Isl and 1, 022
S of Cottle Island 964
3, 983
28 July 1979
Barrier Island Shorel ine Locations
SW Shore Spy Island 1, 098
Between Spy Island-Leavitt Island 1, 121
1 km W Fat Point, Pingok Isiand 926
2 km East of Pi ngok Island 2, 655
SWShore Cottle IsI and 996
6, 796
Md-Lagoon Locations
. 3 km SW Fat Poi nt, pi ngok Is land 1, 728
1, 728
*During aerial surveys conducted in 1978 no naj or ol dsquaw concen- trations were recorded al ong nai nl and shorel ines or at mid-lagoon locations in Si mpson Lagoon.

Figure 20. The change in the weighted mean density of ol dsquans (from Tabl es 21 and 22) throughout the seasons of 1977, 1978 and 1979 inSimpson Lagoon, Alaska.

Table 24. Locations of maj or ol dsquaw concentrations recorded during the period of summer molt at Barrier islandLagoon locations along the Beaufort Sea coast of NE Alaska, 1978.79. This table incl udes some birds recorded off-transect.

	\# Ol dsquaus
28-29 July 1978	
Barrier Isl and Shorel ine Locations	
S Shore Thetis Island	2, 500
SW of Spy Isl and	1, 371
SW Shore Long I sl and	2, 644
	6,515
5 August 1978	
Barrier Isl and Shorel ine Locations	
S Shore Thetis Isl and	1,275
S Shore Jones Islands (see Table 23)	3, 983
SW Shore Long Island	3, 844
SE Shore Long I sland	1, 262
S Shore Flaxman Isl and	5, 835
SW Shore Arey IsI and	1, 415
SE Shore Arey Island	2, 625
s Shore Jago-Tapaurak Spits	5,932
S Shore ICy Reef	4, 309
S Shore Demarcation Spit	1,550
	32, 030
M d-Lagoon Locations	
Arey Island	2, 070
Jago Lagoon	1,660
Flaxman Lagoon	2, 305
	6, 035

Page 2...

\# 01dsquaws

28-29 July 1979

Barrier Island Shorel ine Locations

S Shore Thetis Isl and	1,770
S Shore Jones Islands (see Table 23)	6, 796
SW Shroe Long IsI and	4,782
S Shore McClure Islands	2, 425
S Shore Stockton Islands	2,477
s Shore Flaxman ISI and	5,543
NW Shore Canni ng Lagoon*	1, 182
NE Shore Canni ng Lagoon	2, 610
S Shore Collinson Point	5,510
b/t Collinson and Anderson Points	1, 646
S Shore Anderson Point	1, 315
S Shore Arey Island	2,013
N Shore Oruktalik Lagoon	4, 039
n Shore Nuvagapak Lagoon	4, 231
N Shore Demarcation Bay	3,954
	50, 293

*Thi s list incl udes the names of sone waterbodi es because sone barrier isl ands and spits are unnamed.

		Collection Intervals				
		17 June-27 July*	29 July-5 August	7-18 August	20-31 August	4-23 September
males		Pre Molt ,	ml t	Post Molt		
Wing Length (cm)	1977	23.1 : 1.0 ($\mathrm{n}=13$)	12.9 ± 2.0 ($n=15$)	19,3 $\pm 2.2(\mathrm{n}=10)$	21.9 i 1.1 ($\mathrm{n}=12$)	22.8 ± 1.0 ($\mathrm{n}=7$)
	1978	$18.9 \pm 5.1(n=24)$	$14.2 \pm 3.7(n=14)$	18,5 $\pm 1.5(n=18)$	$19.1 \pm 1.2(n=13)$	$22.4 \pm 1.4(n-14)$
Height (9)	1977	$869.3 \pm 128.4(n=13)$	914.2 ± 64.7 ($n=15$)	879.0 : $52.4(n=10)$	862.5 ± 72.1 ($n=12$)	949.3 :62.9 ($\mathrm{n}=7$)
	1978	$925.7 \pm 71.2(\mathrm{n} \times 28)$	920.8 ± 70.7 ($\left.\mathrm{n}^{2} 14\right)$	839.1 * $49.5(n \times 18)$	$853.9 \pm 39.8(n=13)$	939.6 : $85.7(\mathrm{n}=14)$
Suba Fat Thickness (mbu)	1977	$4.6 \pm 0.9(\mathrm{n}=8)$	$5.6 \pm 1.7(n=10)$	$3.7 \pm 1.5(n=10)$	$3.2 \pm 1.1(n=12)$	$3.8 \pm 1.7(n-7)$
	1978	$4.7 \pm 1.5(\mathrm{n}=28)$	$5.4: 1.2\left(n^{2} 14\right)$	$3.6 \pm 1.1(n=18)$	$3.2 \pm 0.8\left(n^{-13)}\right.$	$3.6 \pm 2.5(\mathrm{n} \times 14)$
FEMALES		Pre Molt		Molt	Post molt	
Wing Length (cm)	1977	22.3; 21.1 ($\mathrm{n}=2$)	$20.6 ; \underset{(n=3)}{22.2 ; 20.5}$	$13.9 \pm 1.7(n \leq 5)$	17.2 ± 3.3 ($n=5$)	20.8 i 0.4 ($n=12)$
	1978	$-{ }^{\dagger}$	23.7 ($\mathrm{n}=1$)	$16.7 \pm 7.5(n \times 5)$	$16.6 \pm 2.2(\mathrm{n} 27)$	$20.0 \pm 1.8(\mathrm{n}=9)$
Weight (9)	1977	653 ; 685 ($\mathrm{n}=2$)	$742 ; \underset{(n=3)}{699} ; 814$	761.0 288.8($\mathrm{n}=5$)	737.0 : $57.3(\mathrm{n}=5)$	800.7 ± 62.9 ($\mathrm{n} \times 12$)
	1978		675 ($n=1$)	745.0 ± 63.6 ($\mathrm{n}=5$)	691.4 : $61.2\left(\mathrm{n}^{7} 7\right)$	$775.6 \pm 93.4(\mathrm{n}=8)$
Suba Fat Thickness (mm)	1977	heavy; 1 ight ($\mathrm{n}=2$)	$8.0 ; \underset{(n \times 3)}{3.0} ; \quad 2.0$	$3.5 \pm 1.6(n \times 5)$	3.9 ± 2.0 ($n=5$)	$2.4 \pm 1.0(n=12)$
	1978		3.0 (n^{1})	4.0 : 1.4 ($\mathrm{n}=5$)	$3.5 \pm 1.0(\mathrm{n}=7)$	3.0 i 1.6 ($\mathrm{n}=9$)
SexRation*	1977	1:6.5 ($n=15$)	1:5.0 ($n=18$)	1:2.0 ($n=15$)	1:2.4 ($\mathrm{n}=17$)	1:0.6 ($\mathrm{n}=19$)
($\mathrm{F}: \mathrm{M}$)	1978	$0: 29.0$ ($n=28$)	1:14.0 ($n=15$)	1:3.6 ($\mathrm{n}=23$)	1:1.9 ($\mathrm{n}=20$)	1:1.6 ($n=23$)

- Five male and two female oldsquaws were accidentally caught in gill nets during the period 17 June to 27 June 1977 and one male oldsquan was accidentally caught in a gill net on 28 June 1978. These eight birds were salvaged and have been included in the wing length and weight calculations. Al 1 other birds were adults collected during the period 11 to 27 July 1977 and 10 to 27 July 1978, respectively.
'No female oldsquaws were collected in this period in 1978.
${ }^{* *}$ During the collection of birds no attempt was made to collect either mates or females; hence, sex rat 10 s are probably a true reflection of flock composition.
indi cated that the nol t of male ol dsquans began in Iate July during 1977: the large proportion of mal es present then, the considerable interval since the peak of nolt-migration, the fact that the peak number of birds was recorded in late July, and the abrupt decrease in the nean wing length of nal es from the 17 J une- 27 J uly collection period to the $29 \mathrm{Jul} \mathbf{y}-5$ August period (Table 25). Furthermore, the mean wing lengths of male ol dsquavs collected during the 17 J une to 27 July and the 29 Jul y to 5 August periods were narkedly (though not statistically) different (shorter during the early period and longer during the latter period) and nore variable (Table 25; Fig. 21) than they were in 1977. Al so, al though the period of maxi mum subcutaneous fat thickness was similar during 1977 and 1978, ol dsquaus attai ned naxi mum wei ght earlier during 1978 (within the 17 June to 27 July period) than during 1977 (29 July to 5 August period). These results suggest that during 1978 sone nale ol dsquavs began to nolt several weeks earlier than during 1977.

Although the wei ghts of male ol dsquans collected in Si mpson Lagoon did not change si gnificantly during the summer of 1977, they did so during the summer of 1978; peak weightoccurred during the late september periodin 1978 (Table 26). During the summers of both 1977 and 1978 the thickness of the subcutaneous fat layer on the males did vary significantly with date, and was greatest (5.6 $\mathbf{t} \mathbf{1 . 7} \mathbf{~ c m ~ d u r i n g ~} 1977$ and $5.4 \pm 1.2 \mathrm{~cm}$ during 1978; Table 25) in the 29 Jul y - 5 August collection period, during the latter part of the nol t.

Table 27 gi ves i nf ornation concerning the small samples of ol dsquaus collected at inl and tundra and barrier island locations during the summer of 1979.

Odsquaw Mbl Peri od-Fenal es
Al ong the Al askan Beauf ort Sea coast, fenale ol dsquans usually incubate untilmid to late July (Johnson et al. 1975). This expl ai ns the low number of femal es present in lagoon habitats or on mainl and tundralakes and ponds during the 17 June to 5 August peri od in both 1977 and 1978. Unexpectedly, in 1979 the hi ghest density of ol dsquavs ($8.6 \mathrm{birds} / \mathrm{km}^{2}$) recorded on the mai nl and tundra transect (Transect 5) during the three years of surveys was recorded during the 28 July survey. Few oldsquaws (0.6 birds $/ \mathrm{km}^{2}$) were

Table 26. Statistical comparisons of the change in adult male oldsquaw wei ghts and subcutaneous fat thi ckness throughout the summers of 1977 and 1978.

Kruskal-Wallis One- way ANONA	1977		1978	
	wt (g)	SubQ Fat Thi ckness (mm)	W (g)	SubQ Fat Thi ckness (mm)
'H'	4. 21	16. 12	24. 28	26. 08
d.f.	4	4	4	4
N	57	51	86	86
P	>0.25	<0.005	<0.001	<0.001

Table 27. Body measurements of twe ive oldsquaws collected at barrier isl and-I agoon and tundra locations during September 1979.

	Collection Location and Date		
	Tundra Lake	Barrier Island-Lagoon	(Thetis Island)
	1 Septenber	2 Septenber	23 Septenber
Males			
Wing Length (cm)	25.0 ($n=1$)*	$22.8 \pm 0.54(n=5)$	
$10^{\text {th }}$ Primary (cm)	11.3 ($n=1$)	14.3 $\pm 0.28(n=5)$	
Weight (g) Tarsus (CM)	4.5 ($\mathrm{n}=1$)	$4.6: 0.13(n=4)$	
SubQ Fat Thi ckness (mm)	2.0 (n=1)	3.1 ± 0.57 (n=5)	
$\binom{$ Testes }{$(\mathrm{m}} \quad \mathbf{~ X ~} \underset{\text { Left }}{\mathbf{W}_{\text {Right }}}$		$\begin{aligned} & 1.1 \times 0.4(n=5) \\ & 1.1 \times 0.4(n=5) \end{aligned}$	
Fenal es			
Wing Length (cm)	18.2 ± 0.24 ($\mathrm{n}=5$)**		21.7 ($\mathrm{n}=1$)
$10^{\text {th }}$ Primary (cm)	$9.6 \pm 0.91(n=5)$		13.6 ($n=1$)
Weight (g)			795.0 ($n=1$)
Tarsus (cm)	4.3 ± 0.18		4.0 ($\mathrm{n}=1$)
Suba Fat Thickness (inn)	1. 6 ± 0.41 ($\mathrm{n}=5$)		2.0 ($\mathrm{n}=1$)
Largest Oum (inn)			2.0 ($n=1$)

[^10]recorded during the earlier survey on 22 J une 1979, and none were seen on the tundra transect during the final two surveys conducted on 31 August and 23 September.

During both 1977 and 1978, the ratio of femaleto male oldsquaws present in the study area was markedly hi gher during $\mathbf{7 - 1 8}$ August than it had been on 29 July - 5 August (Table 25). This shift in the sex ratio was probably a result of an influx of female birds, apparently failed breeders, frominIand tundra locations. the greatly reduced mean wing-lengths of females collected on 7-18 August of each year compared with values prior to this period (Table 25) indicated that the females collected then had very re. cently molted theirflight feathers.

The larger and nore variable wing lengths of the five fenale oldsquaws collected during the 7-18 August 1978 period compared with the wing-I engths of the five females collected during the same periodin 1977 (Table25) suggests that females as well as males initiated molt earlier in 1978 than in 1977.

01dsquaw Post-Mbl Period

Distribution and Abundance. Although fenale ol dsquavs were nolting during mid-August in 1977 and 1978, mal es had nearly compl et ed repl acenent of their flight feathers by then (Table 25). The aerial survey conducted on 15 August 1977 was incompl ete; overwater Transects 1 and 3 were not surveyed. However, high densities of ol dsquaws were recorded on the two I agoon transects that were surveyed- - 811. $3 \mathrm{birds} / \mathrm{km}^{2}$ on Transect 2, and 161. 9 birds $/ \mathrm{km}^{2}$ on Transect 4 (Table 17). During the 15 August 1978 survey, very few birds were recorded in habitats other than the shoreline transect south of the Jones Island, and the density of ol dsquavs at this location was hi gh (994.2 birds $/ \mathrm{km}^{2}$).

The estimated total number of oldsquans present in the study area on 15 August 1977 (at least 41,759 birds) was snaller than the estimated total present during the previ ous survey of $28 / 29 \mathrm{Jul}$ y 1977 (at least 51, 375 bi rds). However, had Transect 3 been surveyed on 15 August the total for this date would probably have been larger. The estimed total number of ol dsquaus present in the study area on 15 August 1978 (16,116 bi rds) was slightly larger than the estimated number present during the preceding tuo
surveys on $25 \mathrm{Jul} y$ and 5 August 1978 (12, 769 and 12, 068 bi rds respecti vel y).

During both 1977 and 1978, a very large proportion of the oldsquaws present in Si mpson Lagoon during the 15 August aerial survey were concentrated in waters imedi ately south of the Jones Islands (Tabl es 17 and 20-22). In fact, on 15 August 1978, $95.3 \%(15,366 \mathrm{bi} \mathrm{rds})$ of the estimated total number of ol dsquavs $(16,116)$ present in the study area were recorded on the transect imediatel y south of the barrier islands (Transect 2).

The density of oldsquaws recorded on tundra habitats during the 15 August 1977 survey (5,81 birds $/ \mathrm{km}^{2}$) was noticeably higher than that recorded there during the preceding survey on 28 July 1977 (1.2 birds/km ${ }^{2}$). This increase may be explained by the fact that female oldsquaws with broods would probably be more conspicuous on tundra ponds on 15 August than they were on 28 July (Bellrose 1976; King 1977). During 1978, oldsquaws nere not detected on nai nl and tundra lakes and ponds until the 25 August survey (Table 17). In contrast to this, and as mentioned earlier, during 1979 no ol dsquaus were recorded on the nai nl and tundra transect after $28 \mathrm{~J} \mathbf{u l} \mathrm{y}$.

By I ate August and early Septenber of 1977, 1978 and 1979, al though female ol dsquaus were still flightless, nost nales had regai ned flight (nean wing length $=21.9 \pm 1.1 \mathrm{~cm}$ during 1977, $19.1 \pm 1.2 \mathrm{~cm}$ during 1978 and $22.8 \pm 0.5 \mathrm{~cm}$ during 1979; Table 17 and 18a) and were capable of longdistance movements away from Simpson Lagoon. Possibly related to this, there was a marked decline from 15 to 30 August 1977 and from 15 August to 5 September 1978 in the number of oldsquaws observed in the study area (Tables 12 and 14). In contrast, during 1979 the peak in the estimated abundance of ol dsquaus in Si mpson Lagoon occurred during the Iate August (31 August) aerial survey. The estimated total number of birdsin simpson Lagoon (approximately 35,000 oldsquaws) was equivalent to a weighted mean density of 222.6 oldsquaws $/ \mathrm{km}^{2}$ (Table 22).

The Iargest concentration of ol dsquaus recorded in Si mpson Lagoon during the 30 August 1977 survey was of approxi natel y 2775 indi vi dual s seen in the mid-Iagoon area bet ween Kavearak Poi nt and Bertoncini Island. The only ot her large group of oldsquaws recorded in the study area on this date in 1977 was a concentration of 1800 birds SE of 01 iktok Point.

The largest concentrations of oldsquaws seen in Simpson lagoon during the 15 August to 5 Septenber 1978 period were as follows:

Date	Locati on	No. 01dsquaws
15 August 1978	SW Spy I sl and	8296
	SE Spy IsI and	4085
	S Pi ngok Isl and	2910
25 August 1978	SW Leavitt Isl and	3526
5 Septenber 1978	SWCottle Isl and	1745

In 1978, approxiamtely 77% (4013 indi vidual s, $330.3 \mathrm{birds} / \mathrm{km}^{2}$) of the oldsquaws seen on-transect in Si mpson Lagoon during the 31 August survey were at mid-I agoon locations. The I argest concentration of oldsquaws seen (both on- and off-transect) on this date was 5800 bi rds swiming miduay between Bodfish Isl and and Kavearak point. Another I arge group of approxi matel y 2500 indi vidual s was seen off-transect swiming between Cottle 'Island and Beechey Point.

The sex ratios of oldsquaws collected during the 20-31 Augsut periods of both 1977 and 1978 remai ned in favor of mal es (71% and 66% respectivel y). During 1977 and 1979, no oldsquaws were recorded on tundra habitats during the 30 August survey. During 1978, however, the density of oldsquaws on the tundra transect (Transect 5) increased from $0.0 \mathrm{birds} / \mathrm{km}^{2}$ on 15 August to 2.0 birds $/ \mathrm{km}^{2}$ on 25 August and then declined to 0.1 birds $/ \mathrm{km}^{2}$ on 5 Septenber 1978. Apparently some female and young oldsquaw had begun departing the tundra for coastal habitats after 25 August; $j u v e n i l e s ~ w e r e ~ c o l-~$ Iected in Si mpson Lagoon for the first time during the 25-31 August collection periods in 1977 and 1978.

The density of oldsquaws in offshore mari ne habitats seaward of the barrier islands on 30 August 1977 was still low (3.3 birds $/ \mathrm{km}^{2}$), compared with densities on Iagoon habitats, and the few oldsquaws that were signted on Transect 1 on this date were near ice pans and chunks of ice that had drifted landward fromthe pack ice, which was located farther offshore. During the comparable survey in offshore marine habitat on $\mathbf{2 5}$ August io78,
approxi nately 1800 ol dsquaus (50.2 birds $/ \mathrm{km}^{2}$) were recorded on-transect anong the many loose and scattered ice pans present of the coast of the Jones Islands. On this date the edge of the Beaufort Sea pack ice was only about 10 km offshore fromthe barrier islands. During the survey of this same nearshore nari ne transect (Transect 1) on 5 Septenber 1978, approximately 850 ol dsquans (20.2 birds $/ \mathrm{km}^{2}$) were recorded in these waters, which were then ice-free. On 31 August 1979, 500 ol dsquaws (350 on-transect, 24.7 birds/km; 150 off-transect) were recorded during the survey of Transect 1 , seaward of the Jones Islands. The bi rds were gathered into three Iarge flocks that appeared to be feeding anong ice pans.

During the 22 Septenber 1977 aerial survey, the wei ghted average density of oldsquaws recorded on the three Si mpson Lagoon transects was $666.8 \mathrm{bi} \mathrm{rds} / \mathrm{km}$, a substantial increase fromthe average val ue of $137.1 \mathrm{birds} / \mathrm{km}^{2}$ recorded on these sane three transects during the previ ous survey on 30 August (Table20). The density of ol dsquans recorded on Transect 3, in the mid-lagoon portion of the study area, was about 930 birds $/ \mathrm{km}^{2}$--the highest transect density of this species recorded during 1977. The estimated total number of ol dsquavs present in the study area during the 22 Septenber 1977 aerial survey was 106, 600 birds (Table 20). Approxi natel y $\mathbf{9 0 \%}$ of these birds $(95,142)$ were estimated to be present in mid-lagoon waters. No maj or concentrations of oldsquaws were observed al ong the southern margin of the barrier islands on 22 Septenber. Over $\mathbf{9 0 \%}(19,183$ of 21,068) of all oldsquaws actually observed in the midI agoon area (i ncl udi ng off-transect si ghtings) on 22 Septenber were in the eastern half of the study area--east of a line fromJones Mbund on the mai nl and to the survey marker at mid-Pingok Island. The Iargest concentration of ol dsquaws observed during the 22 Septenber 1977 survey (4082 ol dsquaws) was in the mid-lagoon regi on between Kavearak Point and the west end of Cottle Island. Other maj or concentrations of ol dsquavs were seen in mid-lagoon waters between Milne Point and Shacklo Point on Pi ngok Island (approxi matel y 3000 ol dsquaus) and in mid-Iagoon waters bet ween Milne Point and the survey marker at mid-Pingok Island (approxi mately 3000 birds).

Of the 8585 ol dsquaus seen al ong the nai $\mathbf{n l}$ and shorel i ne of Si mpson Lagoon on 22 Septenber 1977, 95\% (8009) were observed in the eastern portion of the study area. Maj or corcentrations along the mainland
on- and off-transect during 23 Septenber 1978 were in the western hal f of the Iagoon, i.e., west of a line from Milne Point to the survey narker at mid-Pingok Island. The only Iarge concentration of oldsquaws recorded in Si mpson Lagoon during this final survey was 4013 birds seen on- and off-transect inthe I arge bay SWof Milne Point.

No maj or peak of oldsquaw abundance in Si mpson Lagoon was detected during the late Septenber survey in 1979. The wei ghted nean density of 50.9 birds $/ \mathrm{km}^{2}$ was considerably lower than the val ues of 199.2 and 666.3 birds $/ \mathrm{km}^{2}$ cal cul ated for the surveys conducted on 23 and 22 Septenber 1978 and 1977, respectively. of the total 5521 ol dsquavs recorded on- and offtransect in Si mpson Lagoon on 23 Septenber 1979, 62\% (3428) and 33\% (1795) were seen al ong the shorel i nes of the barrier islands and the nai nl and, respecti vel y . Only $\mathbf{1 . 3 \%}$ (75 bi rds) were seen at mid-I agoon I ocations; 4\% (224 birds) were seen seaward of the barrier islands al ong the nearshore narine transect.

On 24 Septenber 1979, while we were en route between the Colville Delta and Prudhoe Bay, we saw two very large concentrations of oldsquaws. Approxi mately 10,000 indi vi dual s were seen in the rough water (winds at $56 \mathrm{~km} / \mathrm{h}$ from $\mathbf{2 2 5}^{\circ}$) along the l eeward (west) side of the bay west of Point MtIntyre. Another large concentration of approxi matel y 1000 ol dsquaus was seen on a large lake approxi natel y 24 km west of Prudhoe Bay.

Tables 28 and 29 gi ve locations of naj or oldsquaw concentrations recorded during 1978 and 1979 periods of post nol t in barrier island-lagoon habitats al ong the entire Beaufort Sea coast of NE Al aska. The extensi ve surveys conducted on 5-5 Septenber 1978 indicated that very large concentrations of oldsquaws (approxi mately 8058 bi rds seen) were present in the barrier islandI agoon systens ESE of Brownl ow Point. Silightly west of this location, in the I agoon area behi nd Flaxman Island, the si ngle Iargest concentration of ol dsquaus di rectly observed during the 3-year study (approxi nately 32, 000 birds) was recorded. Si milar large concentrations of oldsquaws in barrier island-I agoon habitats east of Prudhoe Bay as far as Flaxman Island were recorded during the final aerial suryey on 23 Septenber 1978 (Table 28). Poor weather during the 31 August-1 Septenber and 23 Septenber 1979 periods prevented surveys east of the Prudhoe Bay area consequently few post nolting concentrations of oldsquâws were recorded at locations other tham the Si mpson Lagoon area.

Table 28. Locations of maj or ol dsquaw concentrations* recorded during the post nol t peri od (15 August to 23 Septenber) at barrier island-l agoon locations al ong the NE coast of \mathbf{A} aska during 1978.

	\# Odsquaus
15 August	
Harrison Bay between Thetis Is. and Oliktok Pt.	3,245
SE Shorel ine of Long Island	1,927
	5, 172
25 August	
S Shoreline Thetis Island	1, 022
SW Shorel i ne Long I sl and	2,347
S Shorel i ne Egg Isl and	2, 315
S Shoreline Pole Island	1,479
S Shorel ine Fl axman Island	6, 111
	13, 274
5-6 Sept enber	
Harrison Bay between Thetis Is. and Oliktok Pt.	1,335
S Shoreli ne Fl axman Isl and	5, 603
ESE Brownl ow Pt. (Canni ng Lagoon)	8, 058
SE Konganevik Pt.	3, 055
S Shoreline Icy Reef	1,212
Fl axman Lagoon	32, 027
	51, 290
23 Sept enber	
8 km N Heald Pt.	1,859
S Shorel i ne Naruhal I sl and	1, 197
S Shoreline Pole Island	18, 073
Flaxman Lagoon	7, 338
Mikklesen Bay	5, 009
Foggy I sl and Bay	4, 717
N Howe Island	1, 500
Gwydyr Bay	3,651
	43, 344

[^11]Table 29. Locations of maj or ol dsquaw concentrations* recorded during the post nolt period (31 August and 23 Septenber 1979) at barrier island-I agoon locations al ong the NE coast of Al aska during 1979.
\# O dsquavs
31 August ,
SW Shore of Long I sl and 1, 343
1, 343
23 Sept enber
Harri son Bay, approxi natel y 6 km SSW of Atigaru Pt. 1, 925
Prudhoe Bay, approxi natel y 5 km WSW of Heald Pt. 1,3803, 305
*This table incl udes birds recorded both on- and off-transect. I nf ornation regarding concentrations of bi rds recorded during post nol t period in the Si mpson Lagoon study area is mentioned in the text.

By 23 September of 1977 and 1978 both sexes of adul t ol dsquans as well as \mathbf{j} uvenile birds were capable of flight; of the 12 and 9 female ol dsquans collected during the 4-23 Septenber 1977 and 1978 collecti on periods (Table 25), four and one, respectively, were juveniles. A so not eworthy is the fact that the sex ratio of adult ol dsquaws collected in the Iagoon during the 4 to 23 Septenber period had shifted in favor of femal es, especially during 1977 (fenal e/ male ration. 42 and 0.52 during 20-31 August 1977 and 1978, respectivel y; 1. 67 and 0. 62 during 4-23 Sept enber 1977 and 1978, respecti vel y).

The wei ghts of ol dsquaws collected throughout the 1977 and 1978 seasons indi cate that both mal es and fenal es were very heavy during the Septenber collection period. Surprisingly, the subcutaneous fat Iayer of both male and fenale.ol dsquaus tended to be thi nnest during this sane mid-Septenber collection period (Fig. 21 and Table 25).

In summary, fewer male ol dsquans nol ted in Si mpson Lagoon during 1978 than in 1977 and the nol t for sone males began up to two weeks earlier during 1978. Both of these factors nay be rel ated to an early spring break-up in 1978 and early flushing of ice not only from Si mpson Lagoon but from the entire northeast coast of Alaska. During 1978 oldsquaws concentrated in very high densities imedi ately south of the Jones Islands during July, August and early Septenber. During extensi ve coastal surveys in 1978 and 1979, concentrations of oldsquaws were recorded south of nost barrier islands al ong the entire NE coast of Alaska from Thetis Island in the west to the $\mathbf{A l}$ aska- Canada border in the east. Male ol dsquaus were generally fattest and heaviest during the peak of the nolt in both 1977 and 1978.

After the period of molt by mal es in both 1977 and 1978, the numbers and densities of ol dsquaws in Si mpson Lagoon declined and renai ned low until late Septenber. At this tine, large numbers of fenale and newly fledged young oldsquaws arri ved in Si mpson Lagoon. Observations of I arge numbers of ol dsquavs at locations east of Si mpson Lagoon during surveys conducted in early and mid-Septenber 1978 suggested that some of these I ate-arri ving ol dsquaus in Si mpson Lagoon may have cone from nai nl and tundra ponds and lakes that typically freeze over during late Septenber, and from areas to the east. During tite late Septenber peak of abundance, oldsquaws were concentrated primarily at mid-iagoon locations.

During the 1978 season as a whole, the density of ol dsquavs in Simpson Lagoon was not significantly different from densities recorded in areas to the west (in Harrison Bay) nor from densities recorded to the east (as far as the U.S. - Canada border) (Friedman $\chi^{2}=2.6, n=10, k=3, P>0.35$). On the other hand, during the summer of 1979, the densities of oldsquaws recorded in Si mpson Lagoon and in the lagoons to the east were significantly higher than the density in the Harrison Bay area (Friedman $\chi^{2}=6.5$, $\mathbf{n}=4, \mathbf{k}=\mathbf{3}, \mathrm{P}=0.042$).

The aerial survey program during 1979 was less intensive than that during either 1977 or 1978. Based on the four surveys that were conducted in 1979, the seasonal trend in ol dsquaw abundance in Si mpson Lagoon during 1979 was different from that in either 1977 or 1978. Although densities of ol dsquaus recorded in the study area on 22 J une 1979 were comparable to those at that tine in 1977 and 1978, those during late July 1979 (the presuned peak of the mal enolt period) were considerably lower than during 1977 and were slightly hi gher than during the same period in 1978. The peak density of ol dsquavs in Si mpson Lagoon during 1979 was in late August; during 1977 and 1978, late August through early Septenber was typically a period of declining or low oldsquaw abundance in Si mpson Lagoon. No dranatic increase in numbers of fenal es and young- of-the-year in the lagoon was recorded during late September of 1979, as had occurred during both 1977 and 1978. Unseasonably warm weather prevailed al ong portions of the Al askan North Slope during Iate Septenber 1979; consequent ly large anounts of open water at tundra locations were available to oldsquavs and other water-associated birds at that tine. Thus during late Septenber 1979, many fenal es and young-of-the-year oldsquaws nay have not yet noved from tundra netlands to coastal I agoons.

Discussion

Pre-Molt Period

In early June, during the peak of spring bird migration al ong the Al askan Beauf ort Sea coast, nost rivers and streans begi n to di scharge nassi ve volume of water from the rapid snowmelt and runoff at interior tundra locations (Maykut and Church 1973:623). The river di scharge flows out over the surface of the Iargel y frozen Iagoons to depths of nearly a meter at certain locations. Mgrating water birds (loons and waterfow'l) were observed I andi ng and swi ming on this nelt-uater during spring 1977 (see ' M GRATI ON section, this chapter).

The nelt water eventually flows down through pressure cracks and strudel holes, and under the lagoon ice. The total duration of the spring flood is generally less than two weeks and it culminates when the ice lifts from the bottons of the lagoons. After the lagoon ice has lifted (in mid to late June), anadromous fish and sone species of invertebrates (primarily mysids) move from marine areas into the lagoon waters. At this time the I agoons provide limited feeding habitat for various species of birds, incl uding arctic terns, several species of gulls, and post-breeding nale ol dsquans. These bi rds are nost commonly observed resting and feeding at locations near river mouths, along shore leads, and in the cracks and holes in the Iagoon ice.

The floating lagoon ice gradually thins, breaks apart and floats westward (under the influence of the prevailing strong northeasterly winds; Kozo 1979) out of the lagoons. Msst coastal lagoons are generally free of ice by midtolateJuly--tuo to four weeks earlier than marine areas north of the barrier islands. The exact time in July that the lagoons clear of ice depends on the thickness of the ice, the spring weather conditions and the configuration of the lagoon or bay. As the lagoons begin to cl ear of ice, post-breedi ng nale (and to a lesser extent, non-breedi ng fenal e) ol dsquaws begin to concentrate in flocks in the shorel eads, and in the cracks and holes in the Iagoon ice.

The ol dsquaw is one of the nost abundant species of waterfow in the Beauf ort Sea area (Barry 1974). Barry (1974) specul at ed that during spring migration in 1972, over 1.1 milli on oldsquaws noved into the southeastern portion of the Beauf ort Sea.

Bell rose (1976) stated that ol dsquaus are di spersed over the Arctic tundra to a greater extent than any other species of waterfow. Hanson et al. (1956) found a pair of oldsquaus on each tundra pond that they investigated near the Perry River in Canada. Near Chesterfield Inlet, Canada, Hohn (1968) reported a pair of oldsquaws on almost every pond, even on those as small as 0.27 ha. 0ldsquaws were the most commonnestirg speci es of duck on I akes al ong the Yukon North Sl ope duri ng 1972 and 1973 (Gollop and Davis 1974; Sharp et al. 1974). Densities of oldsquaws on the Al askan North slope during the breeding season are also high (Bergman et al. 1977; Derksen et al . 1977; Kirg 1977) rel ative to other waterfow.

Surveys of summer populations of oldsquawsinAlaska (King and Lensink 1971) have I ed to the very conservative estinate of $\mathbf{1 2 5 , 0 0 0}$ present on the Arctic Slope (0.5 birds $/ \mathrm{km}^{2}$) . Similarly, both Kistchinski (1976) and Krechmar et al. (1978) found the oldsquaw to be the most abundant species of waterfowl on the coastaltundra of northeast siberia.

After the breeding season, large numbers of male and non-breeding femaleoldsquaws move from their breeding grounds and travel along traditional routes to specific locations where they continue their summerI ong molt (see Salomonsen 1968, for a description of the moltigration). Salomonsen (1968) argued that the potential shortage of food on the breeding grounds nay be the ultinate cause of the nol t migration in many species of uaterfow. As Tayl or (1980) has summarized, the nolt migration is typi cally regul ar and, al though the evol utionary devel opnent of the moltmigration is not clearly understood, it apparently maximizes indi vi dual fitness and has si gnificant survival val ue (Fredrickson and Drobney ?978).

Al ong the $\mathbf{A l}$ askan North Sl ope, ol dsquaws nove fromthei \mathbf{r} breeding I ocations on the above mentioned lakes and ponds to nearshore coastal waters to feed and to nolt (Johnson et al. 1975; Bellrose 1976; Pal ner 1976).

Mbl Peri od

The period of nolt by nale (and to a lesser extent by non-breeding female) oldsquaws along the Beaufort coast is generally between 15 J uly and 15 August. Prior to this period, as nentioned above, densities of ol dsquavs in coastal habitats are highest in the only open water habitat available to them-atriver mouths, inshoreleads around the margins of the barrier islands, in the shoreleads along the mainland shoreline, and to a lesser extent, in the cracks in the lagoon ice. During 1977, the peak of the oldsquaw molt occurred during the period 29 July to 8 August; during 1978, the peak was I ess di stinct and the nolt in Si npson Lagoon apparently occurred over a longer period. In 1978 the nol t began possibly as early as 15 July in some birds. During both 1978 and 1979, the peak of nol t by ol dsquaus occurred roughl y bet ween 29 July and 5 August; in 1978 sone birds were still incapable of flight in mid-August.

Several other investigators have documented the use of I agoons and bays al ong the Beauf ort Sea coast by molting oldsquaws (Brooks 1915; Bartonek 1969; Bartels 1973; Schmidt 1973; Hall 1975; Ward and Sharp 1974; Gollop, Black et al. 1974; Gollop and Richardson 1974; Verneer and Anweiler 1975; Barry 1976; Di voky 1978a).

Feather molt by birds is a costly physi ol ogi cal process (Payne 1972: 139-145). The energy requi renents of nol ting birds increase because of i ncreased net abol ic costs for ther noregul ation when feather loss reduces body insulation, and because of netabolic denands for feather repl acenent. Unlike nost birds (and all other waterfow), ol dsquaus acquire three distinct pl unages--they nolt virtually continuously fromearly spring through I ate fall (Salomonsen 1941; Pal ner 1976). The energetic costs of nolt by ol dsquans, therefore, are probably considerably greater than for ot her waterfow. In view of these facts, it is si gnificant that in Simson Lagoon, the thickness of the subcutaneous fat layer in male ol dsquaws was greatest during the period of nol when insulation afforded by feathers was reduced. The subsequent decrease in the thickness of this fat layer after the peak of the nolt probably was a result of the prior increased netabolic denands during molt.

Earlier we suggested that the availability of shelter and a reliable food supply prior to and during the nol t period may be an important factor in increasing or naintai ning adequate fat reserves during the nol t (J ohnson 1978;)

Although the effects of wind on the energy requirenents of nolting seaducks have not been specifically investigated, the metabolic responses of other species to wi nd have been di scussed by Stevens and Mben (1970), Gessaman (1973), Evans and Mben (1975) and Kelty and Lustick (1977). In general, the metabolic rate of a bird exposed to wind increases in proportion to the square root of wind speed. During 1977 we found no consi stent quantitative evidence that oldsquaws sought shel ter from the wind behi nd the barrier islands (Table 30). However, over hal f of all the ol dsquaws observed during aerial and ground surveys during 1977 appeared to be associ ated with the lee sides of the barrier islands. During 1978, the rel ati onshi \mathbf{p} bet ween the di stribution of oldsquaws and the lee sides of the barrier islands was nore cl early shown (Table 31). Approxi matel y

Table 30. Distribution and abundance of oldsquaws in Si mpson Lagoon in rel ation to wind, 1977.

Survey Date	Survey Type	W nd		Position of $\mathbf{O l}$ dsquaus							Total
				Lee	Si de of	I sl ands	M d Lag	goon	Mai nl and	Coast	
		Di rection (${ }^{\circ}$)	Speed (kmin)		\#	\%	\#	\%	\#	\%	
5 July	Aeri al Aerial	$\begin{gathered} \text { Cal m } \\ 120 \end{gathered}$	$\underset{8}{\text { Cal m}}$		398*	56.7	35	5. 0	269	38. 3	702
28 July					5, 345*	44.4			6, 687	55.6	12, 032
1 August**	Ground	090	24		4,583	46.1			5, 347	53. 8	9,930
14 August**	Ground Aerial	060	16		19, 938	87.8			2, 758	12. 2	22,636
15 August ${ }^{\dagger}$		135	8		11, 991*	85. 1		-	2, 095	14.9	14, 086
30 August	Aerial Aerial	090	5		148*	4. 7	2,271	72.3	721	23. 0	3, 140
22 Septenber	Aerial	270	27		297*	2.0	11,417	78.4	2, 849	19. 6	14, 563
					42, 700	55.3	13, 723	17.8	20, 726	26.9	77, 149

*Total birds seen on and off transect.
${ }^{\dagger}$ Because of logistic. difficulties, the midde portion of the lagoon was not surveyed on 28 julyor 15 August.
** During counts ofoldsquaws from positions on the ground (1 and 14 August), \mathbf{t} he lagoon was divided only into north and south portions.

Table 31. Distribution and abundance of oldsquavs in Simpson Lagoon in relation to wind, 1978.

*Aeri al surveys.
${ }^{\dagger}$ Total birds seen on and off transect.
$\mathbf{9 0 \%}$ of all the birds observed during the aerial surveys of Si mpson Lagoon (no ground surveys of the lagoon were conducted in 1978) were associ ated with the lee (south) sides of the barrier islands; wind di rections were from northern azi miths (290° to 070°) during all aerial surveys considered. The positive rel ationshi p bet ween the northern component of wind and the percent of ol dsquaus present al ong the lee sides of the barrier islands during 1977 and 1978 (see Fig. 22) was highly si gnificant (Spearman $\mathbf{r}=\mathbf{0} . \mathbf{7 6}$, $\mathrm{n}=16, \mathrm{P}<0.001$), and suggests a remarkable adaptation to the prevailing northerly and northeasterly wins in the Si mpson Lagoon area.

Wind Direction at Oliktok		August (Approx. \%	Sept enber (Approx. \%)
N	7	6	4
NE	26	21	20
E	24	28	30
S	3	3	4
SW	5	7	10
w	8	9	10

*Oata from Brewer et al. 1979.

Although Ashmole (1971:235) presented convincing documentation (e.g., Hardy 1967; Ingham and Mahnken 1966; Bennett and Schaefer 1960) that local enrichment and high production of ten occur in the eddies on the lee sides of islands and over subnerged banks, this phenomenon was not observed in the Si mpson Lagoon system However, Griffiths and Dillinger (Ecol ogy of I nvertebrates, this vol une; Tables 14 and 17) have shown that during 1978 at least two of the three naj or invertebrate prey (Mysis relicta and Onisimusglacialis) consuned by oldsquaws were si gnificantly ($\mathrm{P} \ll 0.001$) nore abundant in the lagoon, south of the barrier islands, than in the marine system north of the islands. Furthernore, Griffiths and Dillinger found that within the Si mpson Lagoon system densities of major crustacean i nvertebrates (mysids and Onisimus amphipods) were significantly highest in the deep central portions; their invertebrate sampling stations 78-2,-3 and -4 were al at depths of 2.5 m In genera], oldsquaws were observed

Fi gure 22. Rel ationshi p between wi nd di rection and speed (\mathbf{N} com ponent of wind) and the location of ol dsquaus in Si mpson Lagoon, Al aska duri ng 1977 and 1978. N component of wind = (wi ndspeed) cos (wi nd di rection); negative N component is S component. $\mathrm{O}=1977$ data deri ved from Table 30 and $=1978$ dat a deri ved from Table 31.
feedi ng in slightly shal lower waters, closer to the lee sides of barrier islands. Tuenty-five groups of feeding oldsquaws were collected; the locations of collection had an average depth of $2.1 \pm 0.18 \mathrm{~m}$.

The associ ation between nolting ol dsquaw ducks and barrier islandI agoon systens al ong the $\mathbf{A l}$ askan and Canadian Beauf ort Sea coasts is very si gni ficant. Few investigators have docunented such an abundance of densel y concentrated ol dsquaus during the summer nolt periodin other habitats or in other locations in the Arctic (see Pal ner 1976 for a summary). The results of this study suggest that the presence of protective (fromwind, waves and ice) barrier islands and the availability of rich supplies of foodin adjacent coastal lagoons at least partially account for these dense concentrations of moling (and feeding) ol dsquavs in lagoon habitats.

In summary, during the mid-summer peri od of nol t, ol dsquaws gat her intolarge flocks and becone completel flightless after the loss of their wing feathers. During this period, they are rel ativel y concentrated and are probably more vul nerable to waterborne pollutants and to di sturbance than at any other stage of their lifecycle; development-related activities in I agoon systens al ong the Beauf ort Sea coast, should be conducted with this fact in mind. A recent preliminary study in a lagoon system in the Southeastern Beaufort Sea (Sharp 1978) suggests that stationary scaring devices would have limited usefulness in deterring molting oldsquaws from areas of possible contamination, but that slow-moving and low-flying helicopters may be useful to 'herd' both nolting and flying oldsquaws away from areas where they concentrate, and hence away fromareas of possible cont ami nation.

Post-Mblt Period

The estimated number of oldsquaws in Simpson Lagoon on 30 August 1977 and on 15 August 1978, after nost males of this species had regai ned flight, was reduced fromthe estimated numbers during and imedi atel y after the peak of abundance during the moit (28 July to 5 August 1977 and 15 July to 5 August 1978). A though the fenal e/ nale ratio renai ned rel ativel y unchanged throughout August 1977 (1/5 to 1/2.4), apparently some ol dsquaws had noved out of Si mpson Lagoon by the end of that nonth. During 1978 the fenale/ male ratio increased drastically during the nonth of August (1/14 to 1/1.9).

During both 1977 and 1978, a dranatic increase in the estimated number of ol dsquans present in Si mpson Lagoon had occurred by 23 Septenber--imedi ately after I akes and ponds on the mainland tundra had frozen over. An influx of bi rds fromrecently frozen tundra areas adj acent to Si mpson Lagoon, or from such areas east of Si mpson Lagoon, probably accounted for this dranatic increase. During the west ward fall migration out of the Beauf ort Sea, nany ol dsquavs follow coastal route similar to the route followed by sone oldsquans during east ward spring migration (J ohnson et al. 1975; see 'M GRATI ON section). It is probable, therefore, that birds fromthe Canadi an portion of the Beauf ort Sea, and/ or from areas farther east in the Canadi an Arctic, nay temporarily stop in food-rich lagoons and estuaries such as Si mpson Lagoon as they pass westward during late Septenber. The naj ority of these I ate-arriving bi rds are $j u v e n i l e s$ and fenal es; this expl ains the increased proportion of female ol dsquans and the presence of $\mathbf{j u v e n i l e}$ birds during the I ate Septenber collection periods.

The maj or dissimilarity between the post nolt periods of 1977-78 and 1979 was the absence of the expected influx of prinarily fenale and youngof - the- year ol dsquaw in late Septenber, 1979. There is strong evi dence that by Septenber 1979, nost fenal e and young- of-the-year ol dsquaw had not yet noved frominl and tundra lakes and ponds, to the coastal lagoons. Table 32 shows the year-to-year differences in temper at ures, percent ice-cover on I akes and ponds, percent snow cover on the nai nl and tundra, and the number of water-associ ated bi rds present al ong Transect 5, the, mai nl and tundra transect approxi natel y $8 \mathbf{k m i n l}$ and from and adj acent to Si mpson Lagoon. The temperature was hi gher and the percent cover by snow and ice was l ower in 1979 than in 1977-78.

Although only three species groups and ten indi vidual s were recorded al ong Transect 5 on 23 Septenber 1979, hi gh densities of bi rds have sel dom been recorded al ong this transect. The hi ghest densities of ol dsquaus recorded on this tundra transect during three years of surveys were 5.8 and 8.6 birds $/ \mathrm{km}^{2}$ on 15 August 1977 and on 28 July 1979, respectivel y . Even though the oldsquaw is a common speci es of nesting waterfow on the Alaskan North Slope, it is difficult to detect fromthe air. Bartels (1973) has di scussed the problens and bi ases associated with the detection of birds in tundra habitats using various aerial survey techniques.

Table 32. A comparison of weat her data and bird sightings al ong the mai nl and tundra transect adj acent to Si mpson Lagoon, Al aska, during the week prior to the Iate September aeri al survey 1977-79.

Date			$\begin{gathered} \text { Mean } \\ \text { Temper at ure } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Estimated \% Ice and Snow Cover			Nunber of MaterAssoci ated Bi rds		
			Ponds	Lakes	Tundra	\# of Speci es Groups	\# of I ndi vi dual s		
16-22	Sept.	1977		-1. 6	100	95	99	0	0
17-23	Sept.	1978	-0.2	95	85	90	0	0	
17-23	Sept.	1979	+0.7	45	35	5	3*	10*	

*Four loons, 5 gul s and 1 uni dentified duck.

Thus, unseasonably warm weather al ong portions of the Alaskan:North Sl ope during I ate Septenber 1979 and the consequent large amount of open water available to waterfowl, and the presence in these haditatsof several species of water-associated birds (including ducks), provide strong circurn.stantial evi dence that many ol dsquaws had not yet moved from tundra lakes and ponds to lagoon habitats.

Oldsquavs in Areas Other Than Si mpson Lagoon

The total number of post-breeding oldsquaws that use the procected Iagoons and bays al ong the north coast of Alaska not prscisely known. In his review of major molting locations of oldsquaws in the Nearctic, Palmer (1976:362) does not mention the coastal lagoons and barrier islands along the north coast of Alaska.

The area bet ween Thetis Island and the U.S.-Canada border provides an extensi ve chai n of protected barrier island-lagoon systens. Asi de from the Pl over Islands, the area of coast bet neen Thetis Island and Point Barrow is generally lacking such barrier islands and lagoons. Even, so, such areas as Teshekpuk Lake, Harrison Bay, Smith Bay, and Admiralty Bay provide large areas of protected water for molting and posit molting concentrations of seaducks. During shi pboard surveys in August and September of 1971, Bartels (1973) recorded large numbers of post-breeding oldsquawsin the nearshore waters between Point Barrow and the Sagavanirktok River delta. He cal cul ated that $\mathbf{9 0 \%}$ and 84% respectivel \mathbf{y}, of the total number of oldsquaus that he recorded during his surveys in 1971 were ir waters within 18 and 8 km from shore. Further nore, approxi natel y 88% of the total number of ol dsquaus that Bartels recorded were in rel ativel y shallow waters near the coast. During the helicopter surveys conducted in these shallow naters, Bartels recorded densities of oildsquaws rangi ng from 41.3 to 530.9 birds/kmin the area between Pt. Barrow and the Sag Jelta. Bertels extrapol ated his average nearshore density of 173.4 oidsquaws $/ \mathrm{km}^{2}$ acruss his study area in order to estimate that approxi nately 337,000 past-breeding indi vidual s may have used this area during 18 August to 18 Septenber 1971.

Judging fromthe results of our 1978 and 797% aerial surveys from the Colville Delta east ward to the U.S.-Cana border, we suggest that densities and numbers of post-breeding oldsquaws are higner al ong this more protected
eastern hal f of the Al askan Beauf ort coast than al ong the western hal f. Thus, we conservatively estimate that over one-half milion ol dsquavs may occupy the north coast of Alaska during the post-breeding season. The fact that over 100, 000 ol dsquans were cal cul ated to be present in one barrier i sland-I agoon system (J ones I sl ands-Si mpson Lagoon) I ate during the postbreeding period in 1977 (see Table 20, this volume) lends credibility to the above estimate.

Harrison (1977) conducted aerial surveys in the Beaufort Sea during July and August 1976. During July, he recorded densities from 10 to 99.9 oldsquaws $/ \mathrm{km}^{2}$ at several coastal locations between Beaufort Lagoon and Reindeer Island (Fig. 2). An interesting feature of Harrison's July results is that noderate densities (1.1 to 30.0 birds $/ \mathrm{km}^{2}$) of oldsquaws were recorded in far offshore locations, in the Beauf ort Sea pack ice. During August, Harrison's recorded nean density of oldsquaws on all transects was only 3.4 birds/km; locally high densities of from 30 to greater than 100 oldsquaws $/ \mathrm{km}^{2}$ were recorded at coastal locations between Anderson Poi nt and Griffin Point, to the west and east, respectively, of Barter Island. During this same nonth locally high densities of oldsquaws were recorded al ong the coast south of the Maguire Islands and in Leffingwell Lagoon. Few oldsquaws were recorded at offshore locations during Harrison's August survey.

During the 4-day period 18-21 July 1973 over 31, 000 post-breedi ng (nolting) oldsquaws were counted in the nearshore waters al ong the 538.3 km section of coastline between Shingle Point, Yukon Territory, and Prudhoe Bay, Alaska (Gollop and Ri chardson 1974). Approxi nately $\mathbf{6 5 \%}$ of the total 31, 000 birds were recorded in 16 areas of concentration al ong the north coast of Al aska. Those areas of greatest concentration are listed in Table 33.

Three ot her surveys were conducted al ong the northeast coast of Al aska during 1973 (LG. Ltd. unpubl i shed data). (1) The survey conducted on 1718 J une 1973 indi cated that, asi de fromminor concentrations in areas of open water near river del tas, few oldsquaws were present al ong the north coast of Al aska. (2) Few 01 dsquavs were detected during the survey conducted on 29 July 1973 (4352 bet ween Prudhoe Bay and the U. S. - Canada border); however, that survey did not incl ude many mid-lagoon and barrier island locations. Major concentrations on 29 July 1973 were Iocated in Canden Bay,
Table 33. Abundance and concentration areas of ol dsquavs al ong the north coast of Alaska during 18-21 July 1973*. (Data are from Gol lop and Ri chardson 1974.)

Areas of Concentration	Number of 01dsquaw
South of FI axman IsI and	5, 033
Si mpson Cove	3, 100
S of Arey Island	1,612
S of North Star I sland	1, 300
\mathbf{S} of Tigvariak IsI and	1,141
S of Bullen Point	1,000
Total Nine Other Concentration Areas	7,063
Renai ni ng Scattered Fl ocks	11, 004
Total	31, 253

*The oldsquaw nol t period.
behind Arey Island, in Kaktovik Lagoon, in Tapkaurak Lagoon, in Pokok Bay and in Angnun Lagoon. (3) The last coastal survey conducted by LGL during 1973was on 30 August. On that date 25, 040 oldsquaws were recorded al ong the northeast coast of Alaska. Maj or concentrations were seen of f the Sag River delta, in the protected waters behi nd the Maguire, Stockton and MECl ure islands, behi nd Flaxman Island, offshore from Canden Bay (approxi mately 8000 i ndi vi dual s) and of fshore from Barter Island (approxi natel y 10, 000 i ndi vi dual s).

Spi ndl er (1979) conducted aerial surveys al ong the coast of the Arctic National Wildife Range during August and September of 1979. His survey procedures and transect locations uere simiar to ours along this portion of the Arctic coast. Spindler's first survey was conducted on 1 August and was approximately along our Transect 14 (his transect terminated at Barter Island; ours terminated at Arey Island). On this date and in this area he recorded a density of 97.9 oldsquaws $/ \mathrm{km}^{2}$, which was radically less than the 373.3 birds $/ \mathrm{km}^{2}$ thatwe recorded there three days earlier on 29 Jul y . The reason for this apparent decline in the number of ol dsquans (fromapproxi nately 14,000 birds to approxi natel y 4000 birds) is not clear. It is concei vable that our earlier assumption regarding the timing of the molt by male oldsquaws during 1979 was incorrect. If so, then the nolt may have begun early in July rather than late in July, as we had assumed. Thus, it is possible that by 1 Septenber sone oldsquaws may have completed their wing nol t and may have been able to fly out of the survey area. However, si nce nost of the Iagoon systens al ong the coast of northeast \mathbf{A} aska were not free of ice until 14 July , it is unlikely that the initiation of the nolt began earlier than a week later, during the fourth week of July. Male oldsquaws only rel uctantly fly on wins that are less than 19-20 cm long. After they molt their flight feathers, oldsquaws requi re approxi matel y 12-14 days for their wins to grow to 19 - 20 cm (Table 25). Therefore, the earliest date when oldsquaws nay have been able to fly, if they began the nolt during the fourth week of Jul y , was during the period 2 to 4 August.

Another possi ble expl anation for the apparent decline in the oldsquaw density between 29 July and 1 August 1979 may be that large numbers of oldsquaws swam, rather than flew from the transect area. A much I arger
proportion of transect 14, compared with other transects, lies al ong the exposed coast between Konganevik Point and Anderson Point. On 29 July we recorded over 8400 oldsquaws on-transect between these two points. Thus, it is possible that many of the 8400 ol dsquaus recorded in this area on 29 July were of fshore from the coast on 1 August (out of the transect area) and were undetected. The subtraction of these 8400 ol dsquans from our on-transect count recorded on 29 July would reduce the density from 373. 8 birds $/ \mathrm{km}^{2}$ to 139. 2 birds $/ \mathrm{km}^{2}$. The difference bet ween 139. 2 and 97. 9 bi rds/ km² represents approxi natel y 1500 ol dsquaus, and could be attributable to factors such as variability in an observer's detection and esti nation skills, the state of the sea, or $f 0 g$ conditions.

Spi ndl er's second 1979 aerial survey al ong the coast of the Arctic National Villdife Range was during the period 7 to 10 Septenber. Along portions of our Transect 14 on 10 September, he recorded onl y 234 ol dsquaus (8.1 bi rds/ kmí); al ong Transect 15 on 7 and 10 Septenber, he recorded 2027 ol dsquaus (56.2 birds/ km^{2}). Thus, al ong the 162 km of coast bet ween Konganevi k Poi nt and Denar cation Bay, onl y 2256 ol dsquaws (38. 4 birds $/ \mathrm{km}^{2}$) were recorded. This was a narked decline fromthe density recorded al ong portions of this coast during early August. As mentioned earlier, however, the period frommid or I ate August to early Septenber traditionally has been a period of decline in the abundance of ol dsquaws at barrier islandI agoon locations al ong the cuast of northeastern \mathbf{A} aska. In Simpson Lagoon this decline is coi nci dent with a decline in the ratio of male:female ol dsquaws.

During our investigations of oldsquaws in the post nol period in the Si mpson Lagoon area, we have not recorded nany oldsquaws migrating east ward or uestuard al ong the coast. Such novenents probably nould have been detected if male oldsquaws were leaving the coastal Beaufort Sea area for Iocations east or west of there. Si milarly we have not recorded large scal e migrations northward or southward from the lagoons. A novenent southward by I arge numbers of ol dsquaws would be unl ikel y during this period si nce tundra wet land habitat is rel ativel y sat ur ated with fenale ol dsquans and thei r broods. A novenent northward by large numbers of ol dsquavs seens nost likel y and could easily occur without being noticed. The fact that the hi ghest densities of oldsquaws al ong the offshore marine transect (Transect 1;

1. 6 km seaward of the Jones Islands) normally are recorded during the period 15 August to 15 Septenber (see Table 17) supports the hypothesi s that ol dsquaws, primarily males, nove seaward into offshore narine habitats during late August and early Septenber. During aerial surveys conducted on 30 August 1973 (LG Ltd. unpubl. data), large flocks of ol dsquans were recorded at offshore locations north of Canden Bay (8000 birds) and north of Barter Island (10,000 birds), and in late August 1977, after most oldsquans in the Si mpson Lagoon area had regai ned flight, snall flocks were observed flying seaward of the barrier' islands and landing anong the ice floes that had noved close to the coast at that tine. Di voky (1978a: 407, 419 and 432) recorded si gnificant numbers of ol dsquans at locations far offshore in the Beauf ort Sea during August and Septenber and reported (1 978a : 482) that in Septenber oldsquaws arrived in El son Lagoon (SE of Point Barrou) from the north.

Four oldsquaws froma group that appeared to be feeding anong ice floes were collected 300m offshore from Pi ngok Island on 27 August 1977. The stomachs of all four birds contai ned large numbers (see table bel ow) of the ice associ ated amphipod Apherusaglacialis (see Griffiths and Dillinger, Ecol ogy of Invertebrates, this vol une, for more infornation on Alacialis).

A. glacialis in four oldsquaw stomachs							
		2		3		4	
\#	9*	\#	9	\#	9	\#	9
58	0. 48	105	0.52	42	0. 33	15	0.09

*grans wet wei ght.

An inspection of the ice floes in the general area where the birds were feeding reveal ed Iarge numbers of A.glacialis on the under ice surfaces. Amphi pod traps set in the benthos in this area caught very large numbers of Onisimusglacialis and small numbers of A.glacialis. Thus ol dsquans were probably feeding fromthe undersides of the ice pans where Apherusa were dense.

In the absence of ice-associ at ed invertebrates, ol dsquaws could easily feed fromthe epi benthos in offshore regi ons. Mbre than any other species of sea duck, ol dsquavs are adapted for feeding in deep water at offshore marine locations. They are uni que in their manner of diving. They ' $\mathrm{fl} \mathrm{y}^{\prime}$ through the water, using the full area of their wings, in a manner similar to that of the auks (Johnsgaard 1975). They can di ve to depths of nearly 70m (Pal ner 1976; Peterson and Ellarson 1979). The area up to about 50 km offshore fromthe Jones Islands is less than 70 m deep. Thus ol dsquavs could feed on the hi gh densities of amphipods and mysids present in the mari ne epi benthos at of fshore locations (see Results of invertebrate sampling from Station 7, Griffiths and Dill inger, Ecol ogy of I nvertebrates, this vol une).

PREM GRATORY STAG NG

Resul ts

Shor ebi rds
Although phalaropes were not the onl y species of shorebirds observed in the study area during 1977 and 1978, they were the most common shorebirds recorded and they were highly concentrated, especially during 1977, at certain shoreline locations in the study area during mid August. Therefore, phalaropes were considered key species. Other species of birds recorded on shorel ine transects but thought to be of less rel ative importance than phalaropes are shown in Appendix VIII.

The novenent of $\mathbf{j u v e n i l e ~ p h a l a r o p e s ~ f r o m ~ r e a r i n g ~ a r e a s ~ o n ~ t h e ~ t u n d r a ~}$ to coastal staging areas was, in 1977, first noted at Pi ngok Island on 1 August. On this date a total of $\mathbf{1 5 0}$ red phalaropes were recorded on $\mathbf{1 5}$ shoreline transects in the study area. During $\mathbf{1 9 7 7}$ no northern phalaropes were recorded during transect surveys in the study area until 3 August (Table 34). During 1978, red and northern phalaropes (37 and 6 birds, respectivel y) were first recorded al ong the barrier islands on 4 August.

The overall ratio of northern to red phalaropes recorded in the study area during the month of August was 1:4.0 in both 1977 and 1978. During 1977, this ratio was $0: 150$ on 1 August before northern phalaropes had arrived in the study area, $1: 2.8$ on $\mathbf{1 6}$ August during the peak of phalarope abundance, and 1:1.4 on 26 August-- the I ast date when both speci es were recorded in the study area. Seventeen red phalaropes (in winter pl unage) were recorded on Pi ngok Island on 14 Septenber; these were the I ast phalaropes seen in the study area during 1977.

During 1978, the ratio of northern to red phalaropes varied from $0: 277$ on 14 August during the peak of phalarope abundance to $1: 2.1$ during the survey on 29 August. Although the overall ratio of northern to red phal aropes ($1: 4.0$) was the sane during 1977 and 1978, the number of phalaropes recorded during 1978 was much smaller than that during 1977 (Table 34). Even though no phalaropes were recorded in the Si mpson Lagoon area after 3 Septenber 1978, tho snall flocks (4 and 8 bi rds, respectivel y)

	August 1971											Total
	1	2	3	6	8	12	14	16	23	24	26	
Number of Red Pha I a ropes	150	4	77	193	525	69	16	3470	262	1340	24	6130
Northern Phalaropes	0	0	53	60	51	23	0	1220	52	40	17	1516
Northern/ Red Ratio	O1 150	0/4	1/1.5	1/3.3	1/10.3	1/3	0/16	1/2.8	1/5	1/33.5	1/1.4	1/4.0
Nunber of Transects Surveyed	15	1	1	1	1	1	1	15	1	15	1	53

	August 1978															Tots 1
	2	4	1	9	11	13	14	17	19	21	24	26	28	29	31	
Nunber of Red Phalaropes	0	37	0	23	22	4	277	4	242	0	104	7	0	232	97	1049
Nunber of Nort hern Phalaropes Northern/ Red Ratio	$\begin{array}{r} 0 \\ 0 / 0 \end{array}$	$\begin{gathered} 6 \\ 1 / 6.2 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 / 0 \end{aligned}$	$\begin{gathered} 2 \\ 1 / 11.5 \end{gathered}$	$\begin{array}{r} 0 \\ 0 / 22 \end{array}$	0 $0 / 4$	$\stackrel{2}{0}$	$\begin{aligned} & \mathbf{O} \\ & 0 / 4 \end{aligned}$	$\begin{gathered} 103 \\ 1 / 2.4 \end{gathered}$	0 $0 / 0$	$\stackrel{1}{1 / 10.4}{ }^{0}$	$1 / 7$	$\begin{aligned} & 0 \\ & 0 / 0 \end{aligned}$	$1 / 2.1$	$1 / 3.6$	$\begin{gathered} 261 \\ 1 / 4.0 \end{gathered}$
Number of Transects Surveyed	1	16	1	16	1	1	15	1	16	1	16	1	1	16	1	105

were recorded in an area of open water near the ARCO causenay (Prudhoe Bay) 'on 14 and 15 October 1978.

During August and early September of 1977 and 1978, densities of shorebirds differed si gnificantly anong the three types of beach transects surveyed (f or 1977, Fri edman $x_{r}{ }^{2}=6.4, \mathbf{k}=\mathbf{3}, \mathbf{n}=\mathbf{5}, \mathrm{P}=\mathbf{0}$. 04; for 1978, $x_{r}{ }^{2}=11.1$, k=3, $\quad \mathrm{n}=8$, $\mathrm{P}=0.002$-see Table 35 and Siegel 1956). During both years, mean densities were highest along oceanside beaches of the barier islands, intermediate along lagoonside beaches of these islands, and lowest along mainland beaches.

During August of 1978, markedly fewer phalaropes were recorded in the study area than during the same month in 1977 (Tables 35 and 36).

The dates of peak densities of phalaropes al ong barrier island beaches were similar in 1977 and 1978, except that the peak density on the seavard beaches was recorded earlier in 1977 than in 1978, whereas the peak density al ong the lagoonsi de beaches was earlier in 1978 than in 1977 (Table 35). During both 1977 and 1978 phalaropes were recorded al ong mainI and beaches onl y during the peri od of thei r peak abundance in the study area (29. 8 bi rds/ km on 16 August 1977 and 1.0 and 2.4 bi rds/ km on 19 and 24 August 1978; Table 35). Few phalaropes were present in the study area after the end of August in 1977 and after 3 September 1978.

During August of both 1977 and 1978, red phalaropes accumul ated a substantial anount of f at during the period of pre-migratory staging in the study area (Table 37). Northern phalaropes in both years arrived in the study area substantially fatter than red phalaropes and no di stinct increase in fatness of northern phalaropes was noted during August.

Al phalaropes collected for the feeding studi es during both 1977 and 1978 were juveniles. Sex ratios of both species of phalaropes varied greatly bet ween collection periods (Table 37). For both species during 1977, the proportion of fenal es was lower on 19-25 August than on 3-12 August, but the difference was not statistically significant for either speci es. During 1978, the opposite was true; the proportion of femal es of both species was lower (although not statistically so) during the 6-18 August period than during the 20-31 August period.

To summarize, si gnificant numbers of phalaropes were present in the study area only during August, although some flocks apparently remain al ong

Table 35. Average linear densities (birds/ km of shoreline)* of all shorebirds recorded on three beach types surveyed during 1977 and 1978.

Date of Survey	Beach Type					
	Barrier Isl and Oceansi de Beach$(n=5)$		Barrier Isl and Lagoonsi de Beach ($\mathrm{n}=5$)		Mai nl and Beach ($\mathrm{n}=5$)	
	1977	1978	1977	1978	1977	1978
31 July		6. 2(1.0)	2.2(1.2)	0. O(0.0)	1.6(0.0)	2.6(0.0)
1 August	5.0(4.0) ${ }^{+}$		2.2(1.2)	-	1.6(0.0)	- 0.0
4 August		9.4(7.0)		1.6(1.6)		0.0(0.0)
9 August		2. O(2.0)		3. $0(3.0)$		0.0(0.0)
14 August	- ${ }^{-}$(131.8)	0.2(0.2)	- ${ }^{-}$(32.8)	54. 2(53.8)	- ${ }^{-}$	0.6(0.0)
16 August	132.3(131.8)	-	38.0(32.8)	-	32.8(29.8)	-
19 August	-	36.0(34.8)	-	36.4(35.0)		5.2(1.0)
24 August	2.2 (0.0)	15. 2(14.8)	39.8(32.6)	26.4(23.8)	1.2(0.0)	7. 6(2.4)
29 August	-	67.4(61.6)	-	18.4(17.4)	-	3. $4(0.0)$
1 Sept ember	11.2(0.0)		3.0(0.0)	-	$3.8(0.0)$	-
3 Sept enber		0.6(0.4)	-	24.0(12.6)	(0.0(0.0)
14 Sept enber	15.6(0.0)		$2.0(0.0)$		0.0(0.0)	

[^12]> Table 36. Esti nated nunbers of Shorebir ds and quils/terns present along the oceanside and the lagoonside beaches of the Jones I sl ands from Spy to Cottle Isl and, and aliong the mainland beach of Simpson Lagoon from ol iktok Poi nt to Beechey Poi nt, 1977 and 1978 .

Table 37. Changes in subcutaneous fatness* and sex ratios of red and northern phalaropes in Si mpson Lagoon duri ng August, 1977 and 1978. All speci mens were j uveniles.

Speci es	August 1977								
	3	4	5	6	12	19	21	23	25
Red Phalarope									
Fatness \bar{x}	2.4	2. 1	2.4	2.3	2.7	3.0	3.2	4	3. 3
S.D.	0. 55	0.30	1. 14	0. 50	0.82	0. 89	0. 98	0	0.98
n	5	11	5	4	6	6	6	1	12
Sex Ratio (MF)	3/2	5/6	3/2	1/3	$1 / 2^{\dagger}$	6/ 0	$4 / 1^{\dagger}$	${ }_{-}^{\dagger}$	$5 / 5^{\dagger}$
Nort hern Phalarope									
Fatness \bar{x}		3.5	3.5	3. 0	3.4	-	4.5	3.8	4
S.D.		0.58	0. 71	0	1. 41	-	0.58	0. 84	0
n		4	2	4	8	-	4	5	1
Sex Ratio (MF)	2/2	$2 / 0^{\dagger}$	2/0	$1 / 1^{\dagger}$	$1 / 5^{\dagger}$	3/1	3/1	$1 / 0^{+}$	-

. ..Page 2

Speci es	August 1978														
	6	7	10	12	17	18	20	21	22	23	26	27	28	30	31
Red Phalarope															
Fatness \bar{x}	1. 3	2	2	2	3	2. 5	2.5	3. 5	2	2	3. 3	-	3.5	4	2
S.D.	0. 75	-	0. 5	-	0. 33	0.4	0.4	0.29			0. 30		0. 29	0. 25	
n	3	1	3	1	2	6	2	2	1	1	3	-	2	3	1
Sex Ratio (MF)	$2 / 0^{\dagger}$	1/0	$2 / 0^{\dagger}$	$0 / 0^{+}$	1/1	$2 / 3^{\dagger}$	0/2	1/1				-			1/0
Northern Phal arope															
Fatness \bar{x}			2. 3	4	4	2.8	3	4	2	2	-	2. 7		3	3
S.D.			0.43	-	0. 25	0. 35	0.33		0. 5	-	-	0.38		0.33	
n			3	1	2	6	2	1		1		3		3	1
Sex Ratio (M F)			2/1	1/0	1/1	$2 / 3^{\dagger}$	1/1	$0 / 1$				0/2+		1/2	$0 / 1$
*Fatness classifications conform to OCS fatness codes: $1=$ no fat; $2=1$ ight fat; $3=m o d e r a t e f a t ;$ $4=h e a v y$ fat; $5=e x c e s s i v e f a t$.															
${ }^{\dagger}$ Some birds of undetermined sex were collected on this day															

the Beauf ort Sea coast until freeze- up is nearly comple. Markedly fewer phalaropes were recorded in the Si mpson Lagoon-Jones Islands study area in 1978 than in 1977. During the month of August of both 1977 and 1978 red phalaropes accumul ated fat and out numbered northern phalaropes by a ratio of 4.0:1. The period of peak phalarope abundance was during mid to late August when hi gh densities were recorded al ong oceansi de (the hi ghest densities) and lagoonside beaches of barrier islands. Few phalaropes nere recorded al ong mai nl and beaches during either year of study.

Arctic Tern

Although some arctic terns nested in the study area, all large groups of this species were transients. A rel atively large west ward novenent of arctic terns through the study area occurred during mid August of 1977 (Tables 36 and 38). Peak numbers recorded during the 15 August 1977 aerial survey were al ong the barrier islands (Transect 2) where a total of 355 were observed. During this survey no arctic terns were observed in offshore narine habitats, in mid-lagoon habitats or in tundra habitats.

In general, far fewer arctic terns were recorded in the Jones IslandsSi mpson Lagoon study area during 1978 than in 1977. During 1978 the field camp and migration watch station were located near the nai nl and coast rather than on Pi ngok Isl and where they had been during 1977. Probably for that reason, westward fall migration of arctic terns was recorded al ong the barrier islands in August 1977 but not in 1978. However, the peak of tern abundance in the study area in 1978 was again recorded during aerial surveys conducted on 15 August at barrier island locations (Table 39). During the aerial survey prograns of both 1977 and 1978, the maj ority of all arctic terns recorded in the study area (98. 2\%in 1977 and 86.5% in 1978) were recorded at locations al ong the barrier islands (see Table 39). The fact that a few arctic terns were recorded at nearshore marine locations seaward of the Jones Isl ands during Iate August of both 1977 and 1978 suggests that a westward fall novenent may occur there or that terns may feed at locations seaward of as well as al ong the barrier islands. During the entire tuo- year study only five arctic terns (three during 1977 and two during 1978) were observed during aerial surveys al ong the nai nl and
Table 38. Average linear densities (birds/km of shoreline)* of gulls and terns ${ }^{\dagger}$ recorded on three beach types surveyed during 1977 and 1978.

Date of Survey	Beach Type					
	Barrier Island Oceanside Beach ($n=5$)		Barrier Island Lagoonside Beach ($n=5$)		Mainland Beach ($n=5$)	
	1977	1978	1977	1978	1977	1978
31 July	- ${ }^{-}$	1.2(1.2)		0.2(0.0)		0.6 (0.6)
1 August	0.8(0.6)		2(1.0)		0.2(0.2)	
4 August	-	0.6 '0.6)		$0.00 .0)$	-	$0.2(0.2)$
9 August	-	0.2 0.2)	-	$0.8,0.2)$	-	0.0 (0.0)
14 August		0.0,0.0)	- ${ }^{-1}$	1.6.1.2)	-	0.2 (02)
16 August	2.6(0.4)		33.8(0.8)		0.2(0.2)	- $0^{(0.0)}$
19 August		0.60 .5	-	$0.0(0.0)$	-	$0.00 .0)$
24 August	0.8(0.8)	0.2 .0 .2	4.4(4.4)	0 O(0.0)	0.0(0.0)	$0.00 .0)$
29 August		1.8:18	-	$\left.00^{0} 0.0\right)$		$0.90 .0)$
1 September	14.8(14.8		0.0(0.0)		0.4(0.4,	
3 September		1.6(1.6	-	5. (5.4)		1.0(1.0)
14 September	1.0(1.0)		0.8(0.8)	4.	0.0(0.0,	-
*Beach transects were 1 km long $\times 20 \mathrm{~m}$ wide (10 m either side of the shore ine) $=0.02 \mathrm{~km}^{2}$. Only those birds seen on transect have been inc uded in this table.						
${ }^{\dagger}$ Parentheses enc ose the mean densities of all gulls (both glaucous and Sabine's gulls) recorded dur ng each survey. To determine the linear density of arctic terns, subtract the density within the parentheses from the number immediately to the left,						

Table 39. Total numbers of terns recorded during aerial surveys of five transects in the Jones Islands- Si mpson Lagoon area, J une to Septenber 1977-78.

Date	Transect \#					Total
	1	2	3	4	5	
1977						
5 J une	$0(0)^{\dagger}$	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
20 J une	0 (0)	10 (0)	0 (0)	0 (0)	0 (0)	7 (0)
5 July	0 (0)	22 (0)	O (2)	0 (0)	0 (0)	22 (2)
28/29 July*	0 (0)	23 (36)	O (2)	3 (0)	0 (0)	26 (38)
15 August	- (-)	355 (1)	(-)	0 (0)	0 (0)	355 (1)**
30 August	5 (0)	109 (0)	0 (0)	0 (0)	0 (0)	114 (0)
22 Sept enber	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
1978						
23 J une	- (0)*	3 (0)	0 (0)	0 (0)	0 (0)	3 (0)
5 J uly	0 (0)	12 (0)	0 (0)	0 (0)	0 (0)	12 (0)
15 July	0 (0)	12 (4)	0 (0)	2 (0)	1 (0)	15 (4)
25 July	0 (0)	3 (0)	0 (0)	0 (0)	0 (0)	3 (0)
5/ 6 August	0 (0)	2 (3)	0 (0)	0 (0)	0 (0)	2 (3)
15 August	0 (0)	35 (3)	0 (0)	0 (0)	0 (0)	35 (3)
25 August	9 (0)	0 (0)	0 (0)	0 (0)	0 (0)	9 (0)
5 Sept enber	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
15 Sept enber	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	O (0)
23 Sept enber	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	c (0)

*Transects 1 and 3 were surveyed on 29 Jul y 1977; Transects 2, 4 and 5 were surveyed on 28 J ul y 1977.
${ }^{\dagger}$ Parentheses encl ose the number of terns recorded off-transect (>200 m from either side of the ai rcraft).
**M ni mum number.
shoreline of the study area. The few arctic terns that nested in an area of lakes and ponds SW of the mai nl and tundra nesting pl ot (Pl ot $\mathbf{3}$; Fi g. 1) were commonly observed flying to and fromthe barrier islands to feed.

Terns concentrated to feed at several locations al ong the barrier islands during fall westward novenents. The nost notable of these concentration areas during 1977 were at the east ends of Spy Island (about 220 observed on 16 August) and Pi ngok I sl and (naxi mum of 167 observed on 16 August). During 1978, the onl y feeding concentration of terns noted in the study area was of approxi natel $\mathbf{y} 10 \mathrm{indi}$ vidual s recorded at the east end of Pi ngok Island on 29 August.

The detailed survey of barrier island beach transects on 16 August 1977 indicated that the number of arctic terns was greater al ong the I agoonsi de beaches of the barrier islands (33.0 terns/ km of shorel ine) than al ong the oceansi de beaches of the islands (2.2 terns/ km) or the nai nI and beaches (noterns observed). Based on these results, the estimated numbers of arctic terns along all beaches in the study area on 16 August 1977 were as follows: barrier island oceansi de shorel ines, 67 arctic terns; barrier island lagoonsi de shorel ines, 1129; nai nl and shorel ines, none (Tables 35 and 36). Only 109 arctic terns were observed during the 30 August 1977 aerial survey of the barrier islands. No terns were recorded in the study area after 30 August 1977 or after 25 August 1978.

During 1978, the only significant numbers of arctic terns recorded in the study area were during shoreline surveys on 9 and 14 August (Table 38) and during the 15 August aerial survey al ong the barrier island shoreline of Si mpson Lagoon (Transect 2; Table 39).

As mentioned earlier, no intensive field program was conducted in the J ones I sl and-Si mpson Lagoon study area during 1979. During the four aerial surveys conducted in 1979, only one arctic tern was recorded on-transect in the Jones Islands-Simpson Lagoon study area (Table 40). That tern was recorded al ong the south side of Leavitt Island during the $\mathbf{2 8} \mathbf{J}$ uly aerial survey. Four arctic terns were recorded off-transect at this sane location during the preceding survey on 22 J une 1979.

The density of arctic terns in Si mpson Lagoon during 1978 and 1979 was not si gnificantly different fromthat at locations east and west of Si mpson Lagoon (Tables 41 and 42). Of the total 148 and 61 terns seen on-transect

Table 40. Total numbers of terns recorded during aerial surveys of five transects in the Jones Islands- Si mpson Lagoon area, June to Septenber 1979.

Transect \#	22 J une	28/29 July	31 Aug. - 1 Sept.	23 Sept.
1	O (0)*	O (0)	O (0)	O (0)
2	0 (4)	1 (0)	O (0)	O (0)
3	0 (0)	O (0)	O (0)	O (0)
4	0 (0)	O (0)	O (0)	O (0)
5	0 (0)	O (0)	0 (0)	O (0)
Total	O (4)	1 (0)	O (0)	O (0)

*Parentheses encl ose the number of terns recorded off-transect ($\mathbf{~} \mathbf{2 0 0} \mathbf{~ m}$ from either side of the aircraft). Numbers to the left of parentheses are birds seen on-transect.
roble 41. Nunbers of afrcic terns recorded on- and off-transect al ong vari ous sections of the Beavfort Sea coast of northeastern A aska, June to Septenter 1978.

Survey Date	yest of Si mpson Lagoon*			Si mpson Lagoon			East of Simpson Lagoon ${ }^{\dagger}$		
	Surveyed	- Terns		$\begin{aligned} & \text { \# } \mathrm{kn}^{2} \\ & \text { Surveyed } \end{aligned}$	\# Terns		$\begin{gathered} \# \text { kn }{ }^{2} \\ \text { surveyed } \end{gathered}$	\# Terns	
		on	off			$\overline{\text { off }}$		On	off
23 June	12.0	0	0	39.9	3	0	31.3	0	1
5 July	65.5	0	0	39.3	12	2	322.8	13	4
15 July	12.0	0	0	39.9	14	4	31.3	0	0
25 July	65.5	0	0	39.9	3	0	162.0	1	3
5 August	65.5	0	0	39.9	2	3	315.1	6	6
15 August	12.0	0	0	39.9	35	3	31.3	4	12
25 August	5.5	0	0	39.9	0	0	126.9	28	0
5/6 Septenber	65.5	0	0	39.9	0	0	315.1	27	0
15 Septenber	12.0	0	0	39.9	0	0	31.3	0	0
23 Septenber	12.0	0	0	39.9	0	0	126,9	0	0
Al Dates	327.5	0	0	399.2	69	12	1393.9	79	26
Mean Density		0.00			0.17			0.06	

 the Canada-U. S. border and as far north as the Midway Islands, north of Prudhoe Bay (see Fi gure 2C-6).

Table 42. Numbers of arctic terns recorded on- and of f-transect al ong various sections of the Beauf ort Sea coast of northeastern Al aska, June to September 1979.

Survey Date	West of Si mpson Lagoon*			Si mpson Lagoon			$\begin{gathered} \text { East of } \\ \hline \\ \text { \# km² } \\ \text { Surveyed } \end{gathered}$	Si mpson Lagoon' ${ }^{\text {+ }}$		
	\# km Surveyed	\# Terns		\# km Surveyed	\# Terns			\# Terns		
		on	of f		on	off		on		of f
22 J une	65.5	2	1	39.9	0	4	93.8	1	"	0
28/29 July	65.5	4	1	39.9	1	0	222. 3	53		3
31 Aug. -1 Sept.	65.5	0	0	39.9	0	0	13. 9	0		0
23 Sept.	65.5	0	0	39.9	0	0	31. 3	0		0
Al Dates	262.0	6	2	159.6	1	4	361. 3	54		3
Mean Density		0.02			0.01			0. 15		

*This area included as many as six transects ($163.7 \mathrm{~km} \times 0.4 \mathrm{~km}=65.5 \mathrm{~km}$) ; it extended as far west as Atigaru Pt. and incl uded nost of the Colville River delta (see Figure 2A B).
${ }^{\dagger}$ This area incl uded as many as 11 transects ($787.8 \mathrm{~km} \times 0.4 \mathrm{~km}=315.1 \mathrm{~km}^{2}$); it extended as far east as the Canada- U.S. border and as far north as the Mdway Islands, north of Prudhoe Bay (see Fi gure 2C-G).
in I agoon habitats during 1978 and 1979, 135 (91%) and $50(82 \%$, respecti vel y, were seen al ong the south sides of barrier islands.

G aucous Gul I
Of the total of 1112 gl aucous gulls recorded during aerial surveys in Si mpson Lagoon during 1978, 95. 1\% (1058) were seen at shoreline locations (Transects 2 and 4) and 80.9\% (856) of these bi rds were observed al ong barrier island shorelines (Transect 2; Table 43).

Although mid-lagoon waters were little used in either year, considerably more glacous gulls were recorded at mid-lagoon locations in Si mpson Lagoon during 1978 than during 1977 (20 during 1978; two during 1977). Only six glaucous gulls were seen during 1978 al ong the transect seaward of the Jones I slands, and onl y four were seen there during 1977. Si milarly, a total of only $\mathbf{2 8}$ glaucous guls were seen in 1978 during surveys of the nai nl and tundra transect approxi matel y $7 \mathbf{k m i n l}$ and from Si mpson Lagoon; 27 were seen there during surveys in 1977 (a few glaucous gul ls nest at inl and locations).

During 1977, the number of glaucous gulls recorded al ong shoreline habitats of the study area did not exceed 27 birds (1.9 birds/km²; Transect 2; 5 July 1977) until 28 July . On this date a total of 98 glaucous gulls (3.5 birds $/ \mathrm{km}^{2}$) were recorded al ong the mai nl and shorel ine (Table 43).

By 15 August 1977, the density of glaucous gulls al ong the barrier isl ands had nore than doubl ed si nce the previ ous survey (from 3.5 to $7.6 / \mathrm{km}^{2}$). The $\mathbf{1 1 2} \mathrm{gl}$ aucous gulls seen al ong the barrier \mathbf{i} slands on 15 August represented $\mathbf{8 8 \%}$ of the total number recorded during the aerial survey on that date. The mid-lagoon portion of the study area was not surveyed on 15 August, but al ong the nai nl and shoreline the number of glaucous gulls had dec"lined from 7.6 to $1.1 \mathrm{birds} / \mathrm{km}^{2}$ (from 98 to 14 birds seen on-transect).

By 30 August 1977, the number of glaucous gul Is observed in the study area had increased most markedly al ong the barrier islands (Transect 2), where a density of 25.5 birds $/ \mathrm{km}^{2}$ (377 gul ls) was recorded. The number of glaucous gulls seen on this transect represented 94% (377 of $\mathbf{3 9 9} \mathbf{g u l} \mathbf{l s}$) of the total number seen on-transect during this aerial survey. The estimated total number of glaucous guls present al ong the barrier islands on

Table 43. Total numbers of glacous gulls recorded in all habitats during aerial surveys of five transects in the Jones I slands- Si mpson Lagoon area, 1977-78.

Date	Transect \#				Total
	1	2	3	45	
1977					
5 June	- (0) ${ }^{\dagger}$	20 (0)	1 (1)	1 (1) 2 (1)	24 (3)
20 J une	0 (0)	2 (0)	0 (0)	2 (0) 3 (0)	7 (0)
5 July	0 (0)	23 (0)	0 (0)	4(1) 1 (3)	28 (4)
28/29 July*	1 (0)	52 (4)	0 (0)	98 (1) 2 (0)	153 (5)
15 August	- (-)	112 (0)	- (-)	14 (0) 1 (1)	127 (1)
30 August	1 (25)	377 (44)	0 (0)	18 (0) 3 (0)	399 (69)
22 Sept enber	0 (0)	2857 (52)	0 (0)	240 (5) O (0)	3097 (57)
1978					
23 J une	1(0)*	34 (0)	0 (0)	1 (0) o (0)	36 (0)
5 July	2 (0)	23 (8)	0 (0)	1 (1) 0(6)	26 (15)
15 July	1 (0)	48 (18)	0 (1)	25 (0) O (3)	74 (22)
25 July	0 (0)	61 (2)	16(0)	67 (51) 0 (4)	144 (57)
5/ 6 August	0 (0)	1 (12)	- (0)	2 (0) O (8)	3 (20)
15 August	- (0)	13 (37)	- (0)	5 (2) 1 (0)	19 (39)
25 August	O (1)	O(4)	1 (1)	2 (0) 1 (1)	4 (7)
5 Sept enber	0 (0)	66 (121)	0 (0)	9 (5) 1 (1)	76 (127)
15 Sept enber	1 (0)	93 (61)	0 (0)	1 (3) 1 (0)	96 (64)
23 Sept enber	0 (0)	238 (16)	1 (0)	18 (9) 1 (0)	258 (25)

*Transects 1 and 3 nere surveyed on 29 July 1977; Transects 2, 4 and 5 were surveyed on 28 Jul y 1977.
'tParent heses encl ose the number of glaucous gulls recorded ' off-transect' ($>200 \mathrm{~m}$ fromeither si de of the ai rcraft). Numbers to the left of the parentheses are birds seen on-transect.

1 Septenber 1977 (451 birds; see Tabie 36), based on the surveys of barrier island beach transects, was remarkably similar to the number recorded on and off-transect during the 30 August 1977 aerial survey (421 bi rds, see Table 43). The shorel ine surveys indicated that nost gulls were al ong the seaward beaches of the \mathbf{i} slands.

The estimated total number of glacous gulls present a" \boldsymbol{l} ong the barrier islands on 14 Septenber 1977, during the final beach survey was 58 birds (Table 38). This number represented a substantial decrease from numbers observed and estimated for 30 August and 1 Septenber 1977.

During the period 18-20 September 1977, the ponds and Iakes on the mai nl and tundra of the North Sl ope froze over and no open water was available to gulls at inland locations. Consequently, the estimated and observed numbers of glacous gul ls (and ol dsquans, see earlier di scussion) present in the study area were hi gher during the 22 Septenber 1977 aerial survey than on any other date during 1977 (or during the entire study). In vi ew of the low numbers of glaucous gulls present during the 14 September beach survey (Table 38), this increase apparently occurred bet ween 14 and 22 Septenber. Of the 3097 gl aucous gul I s observed on 22 Septenber 1977, approxi matel y 92% (2857 birds) were al ong the barrier islands (Transect 2; Table 43). This number represents a density of 193.0 gl aucous gull $/ \mathrm{km}^{2}$-the hi ghest density of this species recorded during the entire study. On this date $\mathbf{2 4 0} \mathbf{g l}$ aucous gulls ($\mathbf{1 3 . 5}$ birds $/ \mathrm{km}^{2}$) were recorded al ong the nainI and shoreline.

In 1978, the number of glacous gulls recorded on-transect in shoreIine habitats, al ong both barrier islands and the nai nl and shorel ine, increased to a peak of 128 birds (5.0 birds $/ \mathrm{km}^{2}$) on 25 July . Thereafter the number of glacous gulls on-transect in all lagoon habitats did not exceed 18 bi rds (0.46 birds $/ \mathrm{km}^{2}$; 15 August 1978; Table 38) until the 5 Septenber aerial survey when 66 birds (4.5 birds $/ \mathrm{km}^{2}$) were recorded al ong the barrier island transect (Table 43). Two days earlier (3 Septenber) a density of 5.4 gl aucous $\mathrm{gul} \mathrm{ls} / \mathrm{km}$ was recorded on shorel i ne transects south of the barrier islands; this density extrapol ated to an estimated total of 185 gulls present al ong the entire length of the Iagoonside beaches of the Jones Islands (Table 38). During 1978, the final shorel ine surveys were conducted on 3 Septenber. However, during the last two aerial surveys, on

15 and 23 Septenber, the number of glaucous gulls present along lagoonside beaches of the barrier islands increased to the hi ghest level s recorded in the study area during 1978; 93 birds (6.3 birds/ kmi) and 238 bi rds (16.1 birds/ km^{2}), respectivel y . This late-season increase of glaucous gulls along the barrier islands, although of lower amplitude, follows the same general trend in di stribution and abundance observed during 1977 (Tables 36, 43 and 48). Very few glaucous gulls were recorded in areas away fromthe Jones I slands during these last two aerial surveys (see Table 43).

During the four aerial surveys conducted in barrier island-lagoon habitats in 1979, over 4000 glaucous gulls were recorded. Over 3200 of these gulls were seen al ong barrier island transects during the three- neek peri od 31 August to 23 September. The I ate-season increase of glacous gulls al ong the barrier islands occurred again in 1979, as it had during 1977 and 1978 (see Table 44).

The mean density of glacous gulls present in the Si mpson Lagoon study area during 1978 and 1979 was not significantly different fromthe densities at locations east and west of the study area (Tables 45 and 46; for 1978, Fri edman $x_{r}^{2}=4.5, n=10, k 3, P>0.10$ for 1979, Fri edman $X_{r}{ }^{2}=0.00$, $\mathrm{n}=10, \mathbf{k}=\mathbf{3}, \mathrm{p}=1.00$).

No glaucous gul Is were collected during 1978 or 1979; however, of the 27 collected in Si mpson Lagoon during the 16 Jul y to 19 Septenber 1977 period, ei ght were adult mal es and one was a tho-year old nale. El even fenale glaucous gulls, of which ni ne were adults, t wo were one-year-old birds and five were $\mathbf{j u v e n i l e s , ~ w e r e ~ a l ~ s o ~ c o l l e c t e d . ~}$

Di scussi on

As mentioned earlier, the term staging, as used in this report, refers to any large and dense concentration of birds gathered during the spring through fall period at a specific location or in a specific habitat for any purpose other than nesting or nol ting. Staging may occur prior to, during or after migration and may invol ve courtshi p, copul ation and/ or feedi ng.

After brood-rearing at tundralocations, $\mathbf{j u v e n i l e s ~ o f ~ c e r t a i n ~ s p e c i e s ~}$ of shorebirds, such as red phalaropes, northern phalaropes, white-rumped sandpi pers and semipalmated sandpi pers, leave the tundra and concentrate

Table 44. Total numbers of glacous gulls recorded in all habitats during aerial surveys of five transects in the Jones I sl ands- Si mpson Lagoon area, 22 J une to 23 Septenber 1979.

Transect \#	22 J une	28/29 July	31 Aug. -1 Sept.	23 Sept.
1	0 (0)*	0 (0)	1 (0)	O (0)
2	6 (2)	4 (3)	304 (9)	1191 (104)
3	0 (0)	0 (2)	O (0)	O (4)
4	1(0)	5 (1)	21 (20)	6 (0)
5	0 (3)	O (1)	63 (1)	7 (0)
Total	7 (5)	9 (7)	389 (30)	1204 (108)

*Parentheses encl ose the number of gulls recorded 'off-transect' ($\mathbf{~ 2 0 0} \mathbf{~ m}$ from either side of the ai rcraft). Numbers to the left of parentheses are birds seen on-transect.

Table
45. Nuntibers of glaucous gulis recorded on- and off-transect along various sections of the Beduf ort Sea coast of northeastern Al aska, J une to Septenber 1978.

Survey Date	West of 5 impson Lagoon*			Simpson Lagoon			East of Simpson Lagoon ${ }^{\dagger}$		
	$\begin{aligned} & \pm \mathrm{km}^{2} \\ & \text { Surveyed } \end{aligned}$	\% Gulls		$\begin{gathered} \pi k_{[12}^{2} \\ \text { Surveyed } \end{gathered}$	* Gull s		$\begin{gathered} \# \mathrm{~km}^{2} \\ \text { Surveyed } \end{gathered}$	\# Gulls	
		on	of f		on	off		on	of f
23 June	12, 0	22	22	39.9	35	0	31.3	192	1
5 July	65.5	150	506	39.9	24	9	322.8	183	249
15 July	12.0	4	13	39.9	73	19	31.3	363	97
25 July	65.5	238	99	39.9	44	53	162.0	109	394
5 August	65.5	44	14	39.9	3	12	315.1	460	320
15 August	12.0	3	0	39.9	18	39	31.3	118	120
25 August	5.5	0	0	39.9	3	5	126,9	217	120
5/6 Septenter	65, 5	272	47	39.9	75	126	315. 1	722	406
15 Septemter	12,0	39	14	39.9	94	64	31.3	13	59
23 Septenber	12.0	20	15	39.9	257	25	126,9	398	179
All Dotes	327.5	792	730	399.2	926	352	1393. 9	2775	1945
Mean Densily		2.42			2.32			1. 99	

*Tris area Incl uded as many ds 11 transects ($787,8 \mathrm{~km} \times 0.4 \mathrm{~km}=315.1 \mathrm{~km}^{2}$); it extended as far east as the Canddd-U. S. border and as far north as the Mdway Islands, north of Prudhoe Bay (see Figure 2 C - G).

Table 46. Numbers of glaucous gulls recorded on- and off-transect al ong various sections of the Beauf ort Sea coast of northeastern Al aska, J une to Septenber 1979.

Survey Date	$\begin{gathered} \text { West of } \\ \hline \begin{array}{c} \# \mathrm{~km}^{2} \\ \text { Surveyed } \end{array} \end{gathered}$	Si mpson Lagoon*		Si mpson Lagoon			East of \# km ${ }^{2}$ Surveyed	Si mpson Lagoon ${ }^{\text {t }}$	
		\# Gul s		\# km Surveyed	\# Gul I			\# Gul s	
		on	off		on	of f		on	off
22 J une	65.5	93	8	39.9	7	2	93.8	53	169
28/29 July	65.5	99	97	39.9	9	6	222.3	478	162
31 August	65.5	478	384	39.9	975	29	13.9	298	64
23 Sept enber	65.5	238	5	39.9	1197	108	31. 3	81	75
Al Dates	262.0	908	494	159.6	2188	145	361.3	910	470
Mean Density		3. 47			13.7			2. 52	

*This area incl uded as many as six transects ($163.7 \mathrm{kmx} 0.4 \mathrm{~km}=65.5 \mathrm{~km}$); it extended as far west as Atigaru Pt. and included nost of the Colville River delta (see Figure 2A B).
' This area incl uded as many as 11 transects ($787.8 \mathrm{~km} \times 0.4 \mathrm{~km}=315.1 \mathrm{~km}^{2}$); it extended as far east as the Canada- U. S. border and as far north as the Mdway Islands, north of Prudhoe Bay (see Figure 2C-G).
(stage) al ong coastlines (Parmelee et al 1967). In Simpson Lagoon, juvenile phalaropes were the only shorebi rds that gathered in sufficient numbers ($\mathbf{1 0}^{\mathbf{3}}$) to be consi dered a key species. The phalaropes have been treated as a si ngle group throughout mach of this study, even though differences in their biology no doubt occur.

The only other speci es of bird that was consi dered during this study to be a key species is the glaucous gull. During late Septenber thousands of these bi rds congregated (staged) al ong the barrier islands to feed.

Phalaropes

In the Si mpson Lagoon area, phalaropes did not use coastal areas as spring staging sites as reported in the Point Barrow area by Connors and Risebrough (1976, 1977, 1978). Phalaropes were not abundant in the Si mpson Lagoon-J ones Islands study area until August, when juvenile bi rds I eft rearing areas on the nai $n l$ and tundra and arrived al ong barrier i sl and shorel ines to feed. In mid August, during the peak of their abundance in the study area and coinci dent with peak abundance in the Point Barrow area (Connors and Risebrough 1976, 1977, 1978), phalaropes were abundant al ong all the shorelines in our study area.

Phalaropes are uni que shorebi rds in that while at sea or al ong the coast they feed fromthe neuston (surface layer of water) while swi ming. In fact, a typical method of swiming while feeding ('spinning', see Pal ner 1967:264) has been described by several investigators (Tinbergen 1935; Hohn 1971) as a means of noving invertebrate prey to the surface and within easy reach.

Connors and Risebrough (1977, 1978) have shown that during sone years the presence of feeding \mathbf{j} uvenile phalaropes al ong particular beaches in the Point Barrow area was rel ated to wind di rection and possibly to food abundance; during ot her years, however, they found no such rel ationshi ps.

During 1977 and 1978 we conducted our shorebird censuses so that we could examine the effects of wi nd on phalarope di stribution. During 1977 we censused all of our shorebi rd transects on rel ativel cal mays (winds $<3 \mathrm{~km} h \mathrm{~h}$ from di rections varying bet ween 010° and 0900). During 1978, we censused our shorebi rd transects on a systenatic basis (approxi nately every five days) with no regard to wind speed or direction.

In 1977 and 1978, 10 barri er isl and transects (fi ve oceansi de and five lagoonside) were censused for shorebi rds on five and ei ght occasions, respectively. Phalaropes were present on the transects during 3 of the 5 surveys in 1977, and during 7 of 8 surveys in 1978. During the three surveys in 1977 the winds were rel ativel y cal m during the seven surveys in 1978, the average wind speed was $16.2 \pm 7.5 \mathrm{kmih}$ (range=5.3 to $28.3 \mathrm{~km} \mathrm{~h}^{\mathrm{h}}$) and the wind di rections were primarily from northern and northeastern azi muths (range $=320^{\circ}$ to 089°; see Table 47).

During the four surveys in 1978 when wi nd speeds were greater than average, only $\mathbf{2 3} \mathbf{3} \mathbf{3 \%}$ of the phalaropes (mean density=9.4 $\pm \mathbf{1 7 . 0} \mathbf{~ b i} \mathbf{~ r d s / ~ k m}$) recorded al ong the barrier islands were present on the oceansi de (exposed side) of the barrier \mathbf{i} slands; conversel $\mathbf{y}, \mathbf{7 6 . 7 \%}$ (nean density=26.1 $\pm \mathbf{2 2 . 8}$ bi $\mathrm{rds} / \mathrm{km}$) were on the lee sides. During surveys when wind speeds were less than average, al nost two-thirds (65.9\%) of the phalaropes (nean density ${ }^{=}$ $27.8 \pm 29.5 \mathrm{birds} / \mathrm{km}$ were present al ong the oceanside beaches. This percent is lower than the 85.7% recorded on the exposed beaches during the three 1977 surveys, when winds were cal m but it is noteworthy that on the cal m days in 1977 and on days in 1978 when wi nd speeds were less than average, well over half of all the feeding phalaropes were present al ong the oceanside (seavard) beaches of the barrier islands where they fed primarily on marine copepods, amphipods and other small narine invertebrates. The' hi gh densities of phalaropes al ong seaward beaches of the barrier islands may be rel ated to an abundance of food organi sns there, but we collected too few birds or invertebrate samples in those habitats to test this hypothesis (see Fig. 23).

The less specific anal ysis of the distribution of all shorebirds (incl uding phalaropes) al ong the three beach types in the study area al so indicated a si gnificant preference for oceansi de beaches, regardless of wind speed or di rection. It is unclear whet her wind and waves concentrate invertebrates al ong winard beaches, where birds may more easily pick them fromthe cl ear narine water or fromthe shorel ine substrates; or whether specific prey itens simply are nore abundant in marine than in lagoon waters, and shorebi rds concentrate al ong barrier island shorelines because of an abundance of food organi sns there.

Fi gure 23. Rel ationshi p bet ween wi nd di rection and speed (N component of wind) and the position of feeding phalaropes near the Jones I sl ands, Al aska, during 1977 and 1978. N component of wind $=($ wi nd speed) \cos (wi nd di rection). $O=1977$ data deri ved from Table 36 and 1978 data derived from Table 47.

Table 47. Distribution of phalaropes in rel ation to wind speed and di rection on Barrier Island beaches, 4 August to 3 Septenber 1978.

Date	Barrier Isl and Oceansi de Beach		Barrier Isl and Lagoonsi de Beach		W' nd	
	\# of Phalaropes		\# of Phalaropes			
	Density (bi rds/ kn)	\%	Densi ty (bi rds/ kn)	\%	Speed (km/hr)	Direction (${ }^{\circ}$)
4 August	7. 0	81.4	1. 6 .	18. 6	12. 4	320
9 August	2. 0	40. 0	3.0	60. 0	28. 3	070
14 August	0. 2	0.4	53.8	99.6	17.7	050
19 August	34.8	49. 9	35. 0	50.1	17.7	089
24 August	14.8	38. 3	23. 8	61.7	10. 6	050
29 August	61.6	78. 0	17.4	22. 0	5. 3	010
1 Sept enber	0.4	3.1	12. 6	96.9	21. 3	060
	17. $3 \pm 23.1 *$	47.6 ± 32.1	21. 0 ± 18	4 ± 32.1	16. 2 ± 7.5	

*Mean \pm st andard devi ation.

G aucous Gull
Early during the summers of 1977 and 1978, bef ore the ice had noved out of Si mpson Lagoon and away fromthe seaward shorel ine of the barrier islands, snall numbers of glacous gulls were present in the study area; those seen at this time were nainly in exposed gravel areas al ong the barrier islands. During the first surveys conducted after the ice noved out of Si mpson Lagoon ($28 \mathrm{Jul} y 1977$ and 15 July 1978) the Iargest proportions (approxi matel y 97.5% and 94.8% respectivel y) of the total number of glaucous gulls (158 and 96 birds) recorded in the study area were seen al ong the barrier islands and nainl and shorel ines (Transects 2 and 4; Table 43). During early spring in the Beauf ort Sea, anadromous fish speci es such as cisco, whitefish and arctic char leave their wintering areas in freshwater streans and rivers and, as soon as a sufficient anount of water is available, begin a migration al ong the coast (Craig and McCart 1976; Craig and Haldorson, Ecol ogy of Fish, this vol une). The presence of glaucous gulls al ong the nainl and and barrier island shorelines during the period just after lagoon breakup (breakup was complete on $11 \mathrm{Jul} y$ 1977 and 6 J uly 1978) may be rel ated to the presence of migrating fish in this area. Fish appeared in the diet of glacous gulls sporadically throughout 1977 (the onl y season when glaucous gul I stomachs were sampled) but the I argest quantity recorded in an indi vidual gull stonach was froma bird collected at a barrier island location rel atively early in the season (16 July 1977).

The consistent presence and build-up of glaucous gulls al ong the beaches of the barrier islands throughout the open- water season is probably rel ated to the extensi ve feeding habitat available there. The importance of barrier island habitats to glacous gulls is significant--of the total 6694 birds recorded on- and off-transect in Si mpson Lagoon and al ong the Jones Islands during the three summers of aerial surveys, approxi nately 90% (6022) were recorded on or adj acent to the single barrier island transect (Transect 2).

Ingolfsson (1967) showed that in Icel and, the glaucous gul I is more cl osel y associ ated with intertidal or shoreline habitats than were four other species of Iarge arctic gulls. Barrier islands provide both seavard and lagoonward shoreline feeding habitats. Furthernore, the presence of
marine and lagoon habitats in cl ose proximity al ong the barrier islands provi des a quantity and di versity of food organi sns not present al ong the nai nl and shorelines (see Griffiths and Craig 1978, Appendi x Table r).

Arctic Tern and Sabine's Gull
In general, arctic terns have left the Beaufort Sea area by early Septenber (Johnson et al. 1975). During their fall migration in 1977, adult and \mathbf{j} uvenile arctic terns, with smaller numbers of adult and \mathbf{j} uvenile Sabine's gulls, were observed concentrated at specific locations in Si mpson Lagoon during the third week in August. These concentrations in 1977 occurred approxi natel y tho weeks later than concentrations farther west on the Plover Islands, during 1976. These several thousand arctic terns were present fromthe first week of August to early September (Divoky 1978a:490). Connors and Risebrough (1977) al so found that arctic terns and Sabine's gulls were abundant in the Point Barrow area during the second week of August 1976, and several other workers have nentioned the abundance of Sabine's gulls at Point Barrowin late summer (see ' M GRATI ON section).

Presumably these species rely at least partly upon pre-migration feeding to accumul ate fat reserves used during their long southward migrations; locations al ong the barrier islands where gulls and terns concentrate to feed nay, therefore, be important to these species.

FEEDI NG ECOLOGY

Results

01 dsquaw
As mentioned in the methods, ol dsquaws were collected differently in 1977 and 1978. Although we collected birds systematically during 1977, we did so rel ativel \mathbf{y} indiscriminantly, with only brief attention given to whether birds or flocks appeared to be feeding (about 3-5 min of observation prior to each collection). During 1978, approxi mately half of our sample of ol dsquaw collections ($\mathbf{2 5}$ of $\mathbf{4 5}$ collections, $\mathbf{8 1}$ of 108 birds) were of birds or flocks that were observed for a longer period of time than in 1977 (about 10-30 rein) and that were determined to be feedi ng. Of the $\mathbf{8 1}$ feeding birds that we collected in 1978, $\mathbf{8 0 \%}$ had identifiable food in their guts. Of the $\mathbf{2 7}$ birds that were indiscriminantly shot (no prior observations of behavior conducted) onl $\mathbf{y} 26 \%$ had sone identifiable food in their guts.

During 1977, 64% ($\mathbf{5 8}$ birds) of the total oldsquaws collected had identifiable food in their guts; that proportion was simiar to the overal I val ue for the 1978 collections (67%. It is apparent, then, that opt i mum use of ol dsquaw speci mens is dependent on at least some observation of the birds prior to collection in order to ensure that a reasonable proportion has been feedi ng and will be usef ul in prey anal yses.

Although we earlier presented the results of oldsquaw feeding ecol ogy studi es on a seasonal basis (see Johnson 1978; early, mid and late season di ets of ol dsquaws), the results of subsequent anal yses (Cl uster Anal yses, Clifford and Stephenson, 1975:134) of the data indicated no justification for such a categorization. Therefore we have presented all subsequent results (Johnson 1979a and this report) on the basis of their total season di ets.

Of the 91 ol dsquans collected as part of the feeding ecol ogy investigations during 1977, 15 had enpty stomachs and 18 had only uni dentifiable naterial present in their stomachs. Four birds were accidentaly captured in gill nets and nay have regurgitated sone food while drowning; these birds were onitted from the stonach anal yses. The average di et of the
remai ning 54 bi rds incl uded, on a percent esti nated vol une basi s , 58.7% mysids and 14. $\mathbf{2 \%}$ amphipods (Table 48). The renai ning portions of the di et of oldsquaws during 1977 consisted primarily of bi val ves (8.1\%, isopods (2.3\%, snall fishes (2.3\%), and a rel atively large proportion of uni dentifiable naterial (14.2 ${ }^{2}$ ¢ (Table 48).

The results of the oldsquaw feedi ng ecol ogy studi es conducted in Si mpson Lagoon during 1978 were similar to 1977 results (Morisita Si miI arity Index; $\mathrm{C}=0.74$; Horn 1966). Of the 108 ol dsquaus col lected during 1978, 34 had empty stonachs and two had only uni dentifiable naterial present in their stomachs. The average diet of the renai ning $\mathbf{7 2}$ bi rds i ncl uded, on a percent esti mated volume basi s , 68.5% mysi ds and $\mathbf{1 5 . 5 \%}$ amphipods (Table 48). The remaining portions of the oldsquaw di et during 1978 consi sted primarily of bi val ves (12.19). Unlike the 1977 oldsquaw diet, the proportion of the 1978 diet that was comprised of uni dentifiable material (1.5\% was small (Table 48).

Griffiths and Dill inger (Ecol ogy of Invertebrates, this vol une) discuss the Iimitations and bi ases associated with conventional equi pnent and procedures used in sampling marine zoopl ankton and epibenthic ani mals. Epibenthic invertebrates of the types important to oldsquaws are especially difficult to sample quantitativel y. Methods used to sample such animal in 1978 were much i mproved over those used during 1977. These problens should be consi dered when interpreting the data concerning food availability.

During 1977, few mysids or amphipods were collected fromthe surfacewaters of the lagoon (see Fig. 24). This evi dence, plus our observations and those of others (Peterson 1976) of the di ving behavi or of oldsquaws, indicated that oldsquaws probably rarel y feed in this layer. The predomi nant invertebrate taxa present in the surface layer during 1977 were, on an estimated percent of total vol une basis, copepods (68.1\%) and cnidarians (16.7%. Snall proportions of amphipods (5.7\% and chaetognaths (3.3% comprised nost of the remai nder of the organi sns collected in this habitat (see Fig. 24).

Copepods al so represented al nost two-thirds (64.4\%) of the total vol une of invertebrate organi sns present in the mid- water habitat samples collected during 1977 (see Fig. 24); this proPortion of copepods was similar to that found in the surface water samples. Mysids and amphipods both

Table 48. A comparison of food organisns consumed by oldsquaws throughout the season at Si mpson Lagoon, A aska, during 1977 and 1978,

Taxa	1977 ($n=54$; total poi $n t s=443 *$)		1978 ($n=72$; total points=422)	
	\% Total	Tot al I dentifiable	$\%$ Total	\% Tot al I dentifiable
Mysids	58.7	68.4	68.5	69.5
Amphi pods	14.2	16.6	15.5	15. 7
Bi val ves	8.1	9.5	12.1	12.3
I sopods	2. 3	2.6	1. 0	1.0
Fi sh	2. 3	2. 6	0. 2	0. 2
Copepods	0.1	0.1	0.2	0.2
Polychaetes	0	0	0.7	0.7
Euphausiids	0	0	0.2	0.2
Priapulids	0	0	0.1	0.1
Tunicates	0	0	0.1	0.1
Uni dentifi able	14. 2		1. 5	
TOTAL	99. 9	99. 8	100. 1	100.0

*See Griffiths et al. (1975) for a description of the points method for assessing the rel ative importance of food organi sns.

Fi gure 24. A comparison of the organi sns present in the di ets of ol dsquans, phalaropes, alaucous gul s and the organi sns present in their feedi ng habitats during 1977. All proportions are expressed as approxi nate 'percent vol unes' (based on the Hynes point method).
comprised Iarger proportions (11.7 and 9.4% respectivel y) of the midwater samples than of the surface samples. Cnidarians, chaetognaths and ctenophores compri sed the naj or proportion of the renai nder of the midwater samples during 1977.

Copepods, mysids and amphipods comprised the maj or proportions (33.8, 28. 1 and 27.5% respectivel y) of the epibenthic samples collected during 1977 (Table 49). Observations by a SCUBA di ver at several locations in Si mpson Lagoon during 1977 and 1978, incl uding a series of di ves where flocks of ol dsquaus had been feeding, indicated that mysids and amphipods were the nost conspi cuous invertebrate organi sns present in the epibenthos (Griffiths and Craig 1978; Griffiths and Dillinger 1979, this vol une).

Because both mysids and amphipods, the organi sns that comprised the maj or proportions of the di et of ol dsquaws during 1977, were proportionatel y nost abundant in the lagoon epi benthos, it is probable that ol dsquaus fed al nost excl usi vel y fromthis habitat rather than fromeither the surface or the mid-water layers, where mysids and amphipods were rel ativel y uncommon. Copepods are extrenely snall, and al though they com pri sed one-thi rd of the vol une of samples collected fromthe epi bent hos during 1977*, they were not observed by the di vers during that year in the epibenthos. Possibly for the same reason (snall and difficult to detect by feeding oldsquaws) copepods did not comprise a si gnificant proportion of the di et of oldsquaws during 1977 (see Table 48 and Fig. 24). The very small proportion of copepods in the diet during 1977 may have been taken incidentally during the process of feeding on other epibenthic i nvertebrates.

St udi es conducted during 1977 indi cated that oldsquaws were feedi ng primarily from the epibenthos; samples for anal yses of food availability were, therefore, collected only fromthis regi on of the I agoon during 1978. Gear used to sample the epibenthos (see 'Methods' section) during 1977 and 1978 were different; therefore, comparisons of the data from these two years should be made with caution.

[^13]Table 49. A comparison of ol dsquaw tot al season di et and the composition of oldsquaw epibenthic feeding habitat sampl es in the Jones Isl ands- Si mpson Lagoon area of Al aska during 1977 and 1978.

Taxon	1977		1978	
	$\begin{gathered} \text { C dsquaw } \\ \text { Di et } \\ \left(\begin{array}{l} n=54 ; \end{array}\right. \\ \text { total }{ }^{\text {poi nt } \left.s^{*}=443\right)} \end{gathered}$	Epibenthic Habi tat Samples ($\mathrm{n}=8$; total points $=160$)	$\begin{gathered} \text { 01dsquaw } \\ \text { Diet } \\ (n=72 ; \\ \text { total points = 422) } \end{gathered}$	Epibenthic Habi tat Sampl es ($\mathrm{n}=39$; total points $=166 \frac{1}{2}$
	\% Total	\% Total	\% Tot al	\% Total
Mysids	58.7	28.1	68.5	48. 9
Amphipods	14.2	27.5	15.5	36.6
Bi val ves	8.1	1. 9	12.1	7.1
1 sopods	2. 3	0	1. 0	1. 4
Fi shes	2.3	0	0.2	0.3
Copepods	0.1	33.8	0.2	0.5
Polychaetes	0	1. 9	0.7	2. 4
Euphausiids	0	0	0.2	0
Priapulids	0	0	0.1	1.1
Tunicates	0	0	0.1	0.6
Cnidarians	0	2.5	0	0.8
Pteropods	0	3.1	0	0
Ostracods	0	0.6	0	0
Foraminiferans	0	0.6	0	0
Sponges	0	0	0	0.1
Chaetognaths	0	0	0	0.1
Cumaceans	0	0	0	0.1
Uni dentifiable	14.2	0	1.5	0
TOTAL	99*9	100.0	100. 1	100.0

*See Griffithset al. (1975) for a description of the points method for assessing the rel ative importance of food organi sns.

During 1978 the rel ative abundance and importance of the invertebrate taxa present in the epibenthos when and where feeding ol dsquaws were collected was nore similar to that found in oldsquaw stomachs than was the case during 1977 (Table 49). Probably because nore effective sampling gear was used during 1978, the apparent importance of copepods in the epibenthos was markedly lower in 1978 ($\mathbf{0} .5 \%$ of estimated vol une) than in 1977 (33.8\%). The specific prey of oldsquaws during the summer of 1978 are gi ven in Table 50.

Mysids and amphipods collectively comprised 85.5% of the estimated vol une of invertebrates in the 1978 epibenthos samples. Although the drop net sampling techni que (see Griffiths and Dillinger 1979) was not an adequate infaunal sampler, a notably larger proportion of the vol une
 Table 49 gi ves a comparison for both 1977 and 1978 of the maj or taxa present in the stomachs of ol dsquaus and in the corresponding epibenthic feeding habi tat samples in Si mpson Lagoon. The results from 1978, when nore effective epibenthic sampling gear was used, show the cl ose rel ationshi p bet ween the rel ative vol unes of maj or invertebrate taxa in oldsquaw stomachs and in feeding habitats. In both 1977 and 1978, the rel ative proportions of mysids found in ol dsquaw stomachs mere approxi matel y twice those found in feeding habitats. Similarly, during both 1977 and 1978, the proportions of amphipods in ol dsquaw stomachs were about hal f those found in feeding habitats.

Ot her evi dence that ol dsquans may feed sel ectivel y is gi ven by Rof ritz (1977) for ol dsquaws feedi ng in MI waukee Harbor, Lake Mchigan. Rofritz found that during J anuary of 1972, ol dsquavs fed al nost excl usi vely on oligochaetes, even though molluscs and crustaceans were al so present in the benthos were oldsquaws were feedi ng. Rof ritz suggested that ol dsquaws in MInaukee Harbor may have sel ected oligochaetes as a food source because oligochaetes had a si gnificantly hi gher cal oric val ue per gram of body wei ght than did other benthic fauna present.

When stomach contents of oldsquaws collected at one place and tine in Si mpson Lagoon were compared with food availability in the epi benthos at that same place and time, a positive and highly si gnificant correl ation was found (Fig. 25). A very similar rel ationship was reported by

Table 50. Prey* consumed by ol dsquavs and phalaropes in Si mpson Lagoon during 1977 and 1978.

Prey	1977			1978		
	Odsquaus	($\mathrm{n}=54$)	Phalaropes (n -46) ${ }^{* *}$	O dsquaus	$(\mathrm{n}=72$)	Phalaropes ($n=46$)
Mysis litoralis	34. 1		8. 1	70.8		2. 3
Mysis relicta	33.5		8. 1	8.9		
Apherusa glacialis	<0.1		8. 1			6.7
Onisimus glacialis	8.0		8.1	10. 4		82.4
Gammarus setosus	1. 7		20. 2	0.8		
Parathemisto Spp.	4.9		20.2	0.3		
Pontoporeia affinis			20. 2	0.1		
Pontporeia femorata	-		20. 2	<0.1		
Gommaricanthus Zoricatus	1.2		20. 2	0.7		6.7
Copepod	1.2		65.3	<0.1		
I sopod	2.7			0.9		1.9
Cumacean	-			0.1		
Euphausiid	-		0.6	0.1		
Fi sh	2.7			0.4		
Bi val ves	9.6			6. 2		
Polychaetes				<0.1		
Pter opods			4. 0			
Others			1. 8	0.3		
Total	99.7		100.0	100.3		100.0

*Presented as \% composition (wet wei ght). Unidentified fractions of the samples have been assi gned to the various prey categories using the assumption that they would appear there in the same proportions that they do in the identified fractions.
**Detailed laboratory analyses of phalaropepreywerenotconducted during 1977; these valuesrepresent wet wei ght determination of maj or taxonomic groups.

Peterson and Ellarson (1977). Although they provi ded no data, they found that in Lake Mchigan, oldsquaw (and the commercially important whitefish) concentrated to feed in the same areas where the epibenthic amphi pod Pontoporeia affinis reached maxi mum density.

Data fromboth 1977 and 1978 indicate that, on the basis of the total season di et, the nean sizes of mysids and amphipods consumed by ol dsquavs were si gnificantly larger than the mean sizes of the same speci es found in oldsquaw feeding habitat samples (see Table 51 and Fig. 26). In 1978, the nean lengths of Mysislitoralis, M. relicts and \mathbf{O} glacialis in oldsquaw st onachs were all si gni ficantly greater than the mean lengths of these taxa in corresponding habitat samples (Wilcoxon matched-pairs tests; $\mathrm{P}<0.01$; $\mathrm{P}<0.02$ and $\mathrm{P}<0.01$, respectivel y). Hence, in Si mpson Lagoon feeding ol dsquaws apparently tended to sel ect larger indi viduals of at least the nost common prey species (mysids and amphipods) found in epibenthic feedi ng habitats (see Fig. 26). This sel ection by ol dsquans of the Iarge size classes of invertebrates is nost apparent during mid-July for all maj or prey consumed, and is less apparent later in the season, especially for MysisIitoralis (Table 52).

During 1978, a maj or effort was made to conduct detailed laboratory anal yses of the invertebrates consuned by oldsquaws and found in their feeding habitat samples (see Griffiths and Dillinger 1979). Table 53 gi ves a comparison of the proportions of these naj or taxa found in oldsquaw stomachs as determined by preci se measurenents of wet wei ght, ash-free dry wei ght, energy content (kilocal ories) and abundance (total numbers of indi vidual s) as well as the less preci se and nore qual itative nodified Hynes Point method (Hynes 1950; Griffiths et al. 1975). This com parison suggests that the qualitative Hynes Point method used in both 1977 and 1978, when compared with the nore precise and quantitative approaches to stonach anal yses, was a rel atively accurate indicator of the proportions and importances of various maj or taxa of prey organi sns consuned.

Phalaropes

Of the 83 red and northern phalaropes collected in the study area during the 3 to 24 August 1977 period, 62 birds had food organisns in their stonachs when they were collected. Al nost one-third (30\%) of their

> Table 51. A compari son of the si zes of three i mport ant nari ne i nvertebrates taken from oldsouaw st onachs and taken from I agoon epibenthic habi tat sampl es col l ected during 1977 in Si mpson Lagoon, Al aska.*

Taxon	01dsquaw St onach (length mi)	Epibenthic Sample (length mm)	$\mathbf{z}^{* *}$	P
Onisimus aracialis	5.64 $\pm 1.16^{\dagger}$	4. 38 ± 1.68	2. 35	<0.009
Apherusa glacialis	9. 33 ± 1.67	6.03 ± 1.67	3. 66	$\ll 0.001$
Mysis litoratis	13.28 ± 2.59	10.74 ± 3.42	1.97	<0.03

*Habi tat sampl es were collected at the locations where bi rds were col lected.
$\mathbf{t}_{\text {Mean } \pm}$ standard devi ation.
**Wilcoxon matched-pairs test; n_{1} and $n_{2}=20$ organi sns of each species sel ected randonity from both the ol dsquaw stomachs and the associ at ed epibenthic samples.

Fi gure 26. A compari son of the di stributions of si zes of the three nost inportant invertebrate prey
speci es consumed by ol dsquans and found in ol dsquaw feeding habitats. This anal ysis is
 representing 39 collections made in Si mpson Lagoon during the period 10 Jul y to 23 Septenber 1978.

Table 52. Comparison of prey sizes available and prey sizes eaten by ol dsquaus in Si mpson Lagoon during 1978.*

	Overl ap I ndex** for Vari ous Sampl ing Peri ods			
Prey Speci es	$\underset{n=0-14}{M \operatorname{d~J}}$	Early August $n=5-12$	t Md August $\mathrm{n}=5-13$	Late August $n=10-13$
Masis litoralis	0. 12	(-). 90	0.82	0.83
M,sis relicts	0.21	0. 64	0. 85	0.71
Onisimus glacialis	0.37	0.65	0.75	0.82

*From Craig and Haldorson (this vol une).
**Morisita Overlap Index (Horn 1966).

Table 53. The di et of ol dsquans in Si mpson Laqoon during 1978 as determined by estimated rel ative vol une, abundance, wet wei ght bi onass, dry wei ght bi onass and energy content.

*See Griffiths et al. (1975) for a description of the points method for assessing the rel ative importance of food organisns. Points listed in this table are only those of identifiable taxa; the unidentified portions of stomach contents are presumed to be comprised of remnants of organisns of the same taxa and present in the same proportions as those in the identified portions of stonach contents.
stomach contents was unidentifiable naterial. The naj or components of the identifiable portion were copepods (40%, amphipods (14.0% and mysids (14.0% Table 54). The remai nder of the di et was comprised of very smal anounts of fish (striated muscle), and snall anounts of pteropods and insects.

Organi sns collected from phalarope feeding habitats during 1977 were in proportions similar to those found in phalarope stomachs (Table 54). Copepods comprised the Iargest proportion (31.1\%, with mysids (26.1\%) and amphipods (12.1%) also present in significant proportions. These data suggest that when phalaropes fed al ong lagoon shorel ines during 1977, they consumed snall organi sns in approxi mately the same proportions in which they were present. The apparent absence of cnidarians from stomachs was probably artifactual; these animes are very fragile, and phalaropes were observed to feed upon them (Johnson 1978). Similarly, chaetognaths comprised an estinated $\mathbf{1 2 . 9 \%}$ of the food vol une available in feeding habitats during 1977, but were not identified in the phalarope stonachs collected that year.

Of the 59 red and northern phalaropes collected in the Si mpson Lagoon study area during the 6 August to 3 Septenber 1978 period, 27 had food organi sns in their stomachs. Unlike 1977, only a snall proportion of the diet during 1978 was comprised of uni dentifiable naterial (2.3\% vs $\mathbf{3 0} .0 \%$. Al nost three-fourths (72.6\% of the 1978 diet of phalaropes was comprised of amphi pods, even though mysids represented a much larger proportion of the organi sns (on a vol une basis) in the habitat samples (Table 54). This result is quite different fromthat in 1977 when copepods represented slightly over 40% of the di et of phalaropes and represented $\mathbf{3 1 . 1 \%}$ of the estimated vol une of the organi sns in phalarope feeding habitat samples (Table 54). In 1978, copepods represented only $\mathbf{1 2}$. $\mathbf{3 \%}$ of the food available.

Hence, during 1977, phalaropes fed on organi sns approxi matel y in the same proportions as the organi sns occurred al ong the shorel ines where these birds fed; copepods were the nost inportant and the nost available prey. During 1978, however, phalaropes preyed sel ectively on small amphipods and copepods, both of which were approxi mately five times less abundant than mysids, which represented a very snall proportion of the phalarope diet (Table 54).

Table 54. A comparison of phalarope* total season diet and the composition of phalarope feeding habitat samples in the Jones Islands-Si mpson Lagoon area of Al aska during 1977 and 1978.

	1977		1978	
	$\begin{gathered} \text { Phalarope } \\ \text { Di et } \\ (n=46 ; \\ \text { poi } \left.n t s^{* *}=269 \frac{3}{4}\right) \end{gathered}$	Feedi ng Habi tat Sampl es ($\mathrm{n}=17$: points = 140)	```Phalarope Di et (}n=26\mathrm{ ; poi nts = 197\frac{3}{4}```	Feedi ng Habi tat Sampl es ($\mathrm{n}=30$; points $=111 \frac{3}{4}$)
Taxon	\%	\%	\%	$\%$
Copepod	40.2	31. 1	22.6	12.3
Amphi pod	14.0	12. 1	72.6	13.9
Mysid	14.0	26.1	2.5	71.8
Chaetognaths	0.0	12.9	0.0	0.9
Euphausiids	0.2	1.1	0.0	0.4
Cnidaria	0.0	10.0	0.0	0.0
Fi sh	0.0	4. 3	0.0	0.7
Pteropods	0.7	2.1	0.0	0.0
Decapod	0.0	0.4	0.0	0.0
Branchiopods	0.2	0.0	0.0	0, 0
I nsect	0.6	0.0	0.0	0.0
Uni dentifi $\mathrm{abl}_{\text {e }}$	30.0	0.0	2.3	0.0
Total	99.9	100. 1	100.0	100. 0

* Northern phalarope and red phalarope have been treated as a single group.
**See Griffiths et al. (1975) for a description of the points method for assessing the relative importance of food organi sns.

Comparisons of the diets of maj or bird and fish species collected during $\mathbf{1 9 7 7}$ showed that the diet of northern phalaropes was nost similar to that of arctic char $(\mathbf{0} .78)$, least $\operatorname{cisco}(\mathbf{0} .74)$ and red phalaropes (0.74 ; Craig and Griffiths 1978). During 1977 the diet of red phalaropes was nost similar to that of northern phalaropes ($\mathbf{0} .74$) and fourhorn sculpins (0.57). During 1978, the collective diet of both phalaropes was nost similar to that of the arctic cisco (Oraig and Haldorson, Ecol ogy of Fish, thi s vol une).

G aucous Gul I

The glaucous gull was initially considered a key species and a small sample was collected during 1977; however, no glaucous gulls were collected during 1978. Of the $\mathbf{2 8} \mathbf{~ g l a u c o u s ~ g u l s ~ c o l l e c t e d ~ d u r i n g ~ t h e ~} \mathbf{1 6} \mathbf{J u l} y$ to 19 Septenber 1977 period, all but one was collected al ong the shoreline of a barrier island or the nai nl and; the one glaucous gull collected at a mid-lagoon location had an empty stomach. The diets of the renai ning 27 glaucous gulls consi sted Iargely of isopods (33.4% of the volume), amphipods (22.8%), small birds (a northern phalarope, 18.1%) and snall fish (11.7%) (Table 55). Mysids and copepods comprised snaller proportions of the di et of glaucous gulls (6.7% and $\mathbf{3}$. $\mathbf{1 \%}$ respectivel y). Euphausiids, bi val ves, tuni cates, hydroids and uni dentifiable materials, allin small proportions, comprised the renai nder of the diet. The di verse nature of the di et of this species, which incl uded or gani sns ranging in size from snall copepods and mysids to larger organi sns such as isopods, sna"lifish and snall birds, suggests that glaucous gulls feed opportunistically al ong shorelines in the lagoons.

The rel ative proportions of invertebrates collected in shal low waters al ong shorelines where the glacous gulls were feeding bore little resem blance to the rel ative proportions of invertebrates in the glacous gull stonachs (Table 55). The nost conspicuous invertebrates where glaucous gulls fed were copepods (48.6\%, chaetognaths (12.5\%, mysids (11.8\%), amphi pods (8.2%) and cnidarians (6.8%. Isopods, which comprised 33.4% of the total diet of glacous gul s , represented only $\mathbf{0 . 2 \%}$ of the available food.

Table 55. A comparison of the organi sns found in the stomachs and in the feeding habitat sample of glaucous gulls in the Si mpson Lagoon area of Alaska, 16 Jul y to 19 Septenber 1977.

Taxon	${ }_{i}^{\prime}$ Total Contents of Stona ch ($\mathrm{n}=27$; poi nts=193*)	\% Total Contents of Habi tat Sampl es ($n=7$; points=140)
Mysids	6.7	11.8
Amphi pods	22.8	8. 2
I sopods	33.4	0. 2
Copepods	3.1	48.6
Bi val ves	0.5	0.0
Fish	11.7	3.6
Cnidaria (Medusae)	0	6.8
Pteropods	0	2. 1
Chaetognaths	0	12.5
Euphausiids	1.0	2. 0
Decapod Larvae	0	0. 2
Tunicates	0.5	0.0
Tunicate Larvae	0	0.5
Hydroids	0.3	0
Larvaceans	0	0.2
Cumacean	0	0.9
01 igochaete	0	0.7
Ctenophore	0	1.3
Birds **	18. 1	0
Uni denti ified	1. 8	0
TOTAL	99.9	100. 1
*See Griffiths et al. 1975 for a descri ption of the points method of assessing the rel ative importance of food organi sns.		
**The stomach of one gull collected on $31 \mathrm{Jul} y 1977$ contai ned hal f of a large coracoid bone (possi bly chicken bone). The stomach of one other gull contai ned a juvenile northern phalarope that nay have been injured during one of our earlier collection trips.		

The anal ysis of dietary overlap in glaucous gulls and the key fish and other bird speci es found in Si mpson Lagoon (Craig and Griffiths 1978) indi cated that the di et of aucous gul ls was nost similar to that of the I east cisco and arctic char (0.64).

Di scussi on

01dsquaw Feedi ng Ecol ogy
Odsquavs in Si mpson Lagoon, as in Lake Mchigan and other Iocations, are largely opportuni stic feeders. That is, they prey on those organi sns nost available to them Ellarson (1956:215) and Hull (1914) recorded oldsquaws feedi ng on Iocally abundant mi nnows, and Madsen (1954) reported that bi val ves comprised a naj or portion of the di et of ol dsquans collected off the coast of Dennark, where those molluscs were very abundant in the marine waters. Cottam (1939), Pehrsson (1974) and Bengtson (1971) showed that the abundant crustacea comprise a maj or proportion of the diet of ol dsquavs in freshwater habitats. Lagler and Wienert (1948) al so reported crustaceans and molluscs to be important prey of oldsquaws in Lake Mchi gan. In northern Sweden, Pehrsson (1974) found that both fenale ol dsquavs with broods and ot her post breeding ol dsquans sel ected and were concentrated on lakes that supported high densities of emphyllopod crustaceans. G osaeter and Saetre (1974) reported oldsquaws (and eiders) feedi ng extensi vel \mathbf{y} on the eggs of capelin (Mallotus villosus) during the spawning season of this fish in the Barents Sea.

The diet of ol dsquavs in coastal wintering areas in North Anerica (Stott and $\mathrm{O}_{\text {son 1973; }}$ Vermeer and Levi ngs 1977; Sanger et al. 1979) and in Europe (Bąge et al. 1973; Nilsson 1972) similarly show that ol dsquans feed extensi vel y on those organi sns nost abundant, primarily epi benthic crustaceans and molluscs.

In Si mpson Lagoon, the princi pal prey of the key vertebrate predators, birds and $\mathbf{f i} \operatorname{sh}$, consi sted of tuo species of mysids, six of amphi pods, as well as two bi val ves, several copepods, several isopods and various fish. As Craig and Haldorson (Ecol ogy of Fi sh, this vol une) have pointed out, this low di versity of principal prey eaten is reflected in the high degree of dietary overlap anong the predators. Table 56 shous the similarity of

Table 56. Degree of similarity* of invertebrate prey consumed by birds and fish in Simpon Lagoon during 1977 and 1978.

*From Craig and Hal dorson (this vol une) and Craig and Griffiths (1978); based on the Morisita index of Horn (1966).
**Val ues in parentheses are for 1978, those to the left are for 1977.
the prey consumed by key bird and fish species present in Si mpson Lagoon during 1977 and 1978. Bengtson (1971) reported that five speci es of subarctic nesting di vi ng ducks (incl udi ng oldsquaws) in Lake Myvatn, I cel and, similarly showed a high degree of overlap in the prey they consumed; the total number of prey types consumed there was small al so, and oldsquaws consumed primarily crustaceans (Cladocera).

The naj ority of ol dsquaw prey, especially the two mysids and onisimus ylacialis, are epi benthic dwelling crustaceans. In many of the lagoons al ong the Beauf ort coast these crustaceans are associ ated with a detrital suspensi on several centimeters thick on the lagoon bottom (Griffiths and Dill inger, Ecol ogy of Invertebrates, this vol une). Preliminary data from Schell (1979) indicate that the detritus on Iagoon bottons may be deri ved fromseveral sources (coastal erosi on and river runoff) and that it di rectly provides only a snall portion of the energy (carbon) necessary to support the benthic commity. The naj ority of the primary production supporting coastal lagoon ecosystens is currently believed to be of narine origin (see Griffiths and Dill inger, this vol une, and Campell, this vol une, for a further di scussion of this issue).

The rel ationship bet ween ol dsquaws and the benthic commity in portions of Lake Mchigan is remarkably simiar to that in Simpson Lagoon. In Lake Mchigan, Peterson and Ellarson (1977) conducted extensi ve investi gations of the feeding ecol ogy of the ol dsquaw and found its primary prey to be a single species of epi benthic amphipod (Pontoporeia affinis, 82% of winter diet). Field experiments in Lake Mchigan by Marzolf (196?, in Peterson and Ellarson 1977) indicated that a thin detrital film(<5 mm) was generally present on the bottom of the lake, and his laboratory experinents suggested that Pontoporeia densities were positively correl ated with the density of bacteria in this organic matter. Further study in Si mpson Lagoon nay show a similar rel ationship bet ween epi benthic invertebrates and detritus-associated bacteria. Griffiths and Dillinger (this vol une) have shown that in Si mpson Lagoon at least part of the diet of the very common amphipod Onisimusglacialisis conprised of Mysis. The nature of other possible trophic rel ationshi ps within the barrier island-lagoon benthic commity as a whole (e.g., anong the epibenthos, the detritus layer and the inbenthos) is currently unknown.

The standi ng stock of benthic infauna* (bi val ves, polychaetes, cuma ceans, tunicates and other organi sns) in Si mpson Lagoon substrates has been determined to be at least as high (approxi nately 2.2 g ash-free dry $\mathrm{wt} / \mathrm{m}^{2}$) as that of the nobile epi benthos* (0.1-2.5 g ash-free dry $\mathrm{wt} / \mathrm{m}^{2}$). In spite of high standing stocks of these infaunal organisns, only about 10% of the diet of ol dsquavs in Simson Lagoon was comprised of bi val ves (primarily Cyrtodariakurriana and, to a lesser extent, Portlandiaarctica), cumaceans and pol ychaetes. Sone of these organi sns may have been available in the epi benthos, so the percentage of the di et taken fromthe inbenthos itself may have been even Iower than $\mathbf{1 0 \%}$ In Lake Mchigan, infaunal organi sns (Tubificidae) were al so very abundant. At sone locations in the lake, maxi mum densities of 335,000 infaunal organisms $/ \mathrm{m}^{2}$ were reported (Rofritz 1972:56); however, they did not appear in the di et of ol dsquavs collected there. These organi sns nay have burrowed into the sand and silt substrates and nere largely unavailable to the ducks.

Another interesting parallel exists bet ween the Si mpson Lagoon system and that in Lake Mchigan. In both, the di ets of the maj or avian predator, the oldsquaw duck, and the maj or fish predator, whitefish, were remarkably similar. As di scussed earlier, the degree of similarity was high bet ween the diets of ciscos (especially the least cisco) and the oldsquaw in Si mpson Lagoon ($\bar{x}=0.81 \pm \mathbf{0} \mathbf{0}$, Morisita Similarity Index for all whitefish vs ol dsquaw comparisons, see Craig and Haldorson, this vol une). Similarly, the diets of the commercially important whitefish (Coregonus autumnatis) and of the oldsquaw in Lake Mchi gan were both comprised principally of Pontoporeia, and both fish and ducks concentrated to feed in the sane areas where amphipods reached naxi mum density (Peterson and Ellarson 1977:88).

As mentioned earlier, our results indicated that ol dsquans preyed on I arge mysids and amphipods and preyed nost effectively in areas where the density of prey was high (Figs. 25 and 26). Griffiths and Dillinger (Ecol ogy of I nvertebrates, this vol une) showed that the density of invertebrates in Si mpson Lagoon was not honogeneous. They found that densities of both mysids and amphipods were significantly greater at their deep (2.5 m)

[^14]I agoon sampling stations, in the central trough near the middle of Simpson Lagoon, than el sewhere. The table bel ow shous that (1) the average depths

	1977		
	All 0ldsquaws ($\mathrm{n}=77$)	Feedi ng 01dsquaws ($\mathrm{n}=81$)	$\text { A I } \underset{(n=108)}{\text { O dsquaus }}$
Dept ${ }^{*}$ (m)	2. 09 ± 0.178	2. 07 ± 0.179	2. 05 ± 0.172

where oldsquaws were collected in Si mpson Lagoon during 1977 and 1978 were all slightly greater than 2 m and (2) these depths were similar during the different years, but (3) these depths were all si gnificantly shallower than those at the midagoon invertebrate sampling stations ($\bar{x}=2.5 \pm \mathbf{0} \mathbf{0}$).

Griffiths and Dillinger (this vol une) sampled their three midagoon stations at systematic intervals. These stations were established independent of the presence or absence of oldsquaws. We have considered these stations to be control' locations and have used themin statistical com pari sons with the ol dsquaw (and associ ated habitat) collection locations. Table 57 gi ves the results of various prey density comparisons (MannWhitney ' U ' tests) at the control and bird collection locations. In all instances the density of mysids was greater at the two deep water control I ocations than at bird collection locations averaging a half meter shal I ower. During the last seven weeks of the 1978 sampling period, the density of amphi pods was al so greater at the deep control locations.

There were no si gnificant differences in the densities of invertebrates at locations where feeding bi rds were collected and at locations where birds were indiscriminantly shot. (Continued at top of p. 218.)

Table 57. Results of Mann-Whitney ' V ' comparisons of invertebrate densities at I ocations where ol dsquans were collected (feedi ng bi rds, ot her bi rds and all birds) and at deep control locations*.

Habitat Comparison	5 Ju7y-5 August		1978 6	6 Jul y - 23	-23 Sept en	eer 1978
	'U'	n_{1} and n_{2}	P		n_{1} and n_{2}	P
Deep Control vs feeding birds						
Total	9	3, 11	ns	22	4, 14	ns
Mysi ds	3	3, 11	<0.05	4	4, 14	<0.05
Amphipods	8	3, 11	ns	0	4, 14	<0.002
Deep Control vs other bi rds						
Total	7	3, 10	ns	3	3, 4	ns
Mysids	2	3, 10	<0.05	0	3, 4	<0.028
Amphi pods	7	3, 10	ns	0	3, 4	<0, 028

Deep Control vs all birds

Total	$\mathbf{1 6}$	$\mathbf{3 ,}$	$\mathbf{2 1}$	ns	$\mathbf{2 5}$	$\mathbf{4 ,} \mathbf{1 7}$	ns	
Mysids	$\mathbf{5}$	$\mathbf{3 ,}$	$\mathbf{2 1}$	<0.05	$\mathbf{4}$	$\mathbf{4 ,} \mathbf{1 7}$	<0.02	
Anphi pods	$\mathbf{1 5}$	$\mathbf{3 ,}$	$\mathbf{2 1}$	ns	$\mathbf{0}$	$\mathbf{4 ,}$	$\mathbf{1 7}$	<0.002

*These control locations were Griffiths and Dillinger(Ecology of Invertebrates this vol une) Si mpson Lagoon sampling stations 3 and 4 which were both 2.5 m deep.
(Continued from bottom of p. 216.)

Thus, ol dsquaws (1) sel ect large prey itens while feeding, and (2) feed nore effectively in areas where prey densities are high. However, they feed in shallow waters even though prey densities are significantly greater in the deeper central I agoon waters. The rel ationship bet ween the rel ativel y deep central trough running the length of the lagoon (within which lie invertebrate Sampling Stations 78-3 and 4) and the invertebrates present there is di scussed in nore detail by Griffiths and Dill inger (this vol une).

We have not investigated rates of predation by ol dsquaw This aspect of the functional feeding response is an important ore, since it no doubt would be affected by changes in the density of invertebrates. If dranatic reductions in invertebrate density occur, ol dsquaws, fish and other organisns dependent on invertebrates for food may be forced to either (1) nove to a nore suitable area or (2) increase their searching time (becone less efficient). In either case, oldsquaws and fish might be del eteriously affected by reduced energy (fat) reserves, inefficient molt, or retarded growth.

At present, we knowlittle of the novenents of flocks of nolting ol dsquans. Turnover rates of individual s within flocks or of flocks within a lagoon system are poorly understood. Al so, as mentioned earlier, little is known of the predation rates of oldsquaws under nat ural conditions. Ni isson (1970) indi cated that ol dsquaus wintering al ong the coast of south Sweden during 1964-1967 spent 79% of the time they were under observation during dayl i ght hours di ving for food; he al so reported that the rate of feeding by oldsquaws increased as the anbi ent temperat ures al ong the
coast decreased. Thus, ol dsquaws are capable of functional changes in thei r feedi ng behavi or in response to sone types of nat ural perturbations.

Phalarope Feedi ng Ecol ogy
Earlier (J ohnson 1978) we presented the hypothesis that sone conbi nation of oceanographic and meteorol ogic vari ables may have conbi ned to make marine invertebrate prey of shorebirds and especially phalaropes more abundant al ong barrier island shorelines (especially the seaward shorelines) than al ong mainl and shorelines. As mentioned in the results, very few phalaropes were collected along the seavard or mai $n l$ and shorelines; therefore few data are available to test this hypothesis. Anal yses of those few data that are available, however, show no significant differences bet ween invertebrate densities al ong the seaward and lagoonward shorel ines of the barrier islands (Mann- Whitney ' \mathbf{U} tests; two sets of comparisons; early and late August 1978; n_{1} and $n_{2}=3,4$ and 2, 4_{3} respectivel $y ; ~ P>0.3$ and >0.05, respectivel y).

During 1977, no prey organi sns ot her than copepods, which were the princi pal prey of phalaropes in Si mpson Lagoon that summer, were systeriatically identified to the species level. During 1978, on the other hand, all prey organisns consumed by phalaropes were identified to the species level (see Appendix IX). During 1977 phalaropes preyed heavily on copepods (65% by wei ght of the total season diet) and amphipods (20% by wei ght of the total season diet), whereas during 1978 they preyed little on copepods (2% by wei ght) and mysids (5\% by wei ght) but heavily on amphipods (93% by nei ght, Appendi x I X).

Connors and Risebrough (1976) found that copepods were a maj or prey item of phalaropes near Barrow, Alaska, during Iate July through early Sept enber 1975 (copepods found in $\mathbf{7 6 \%}$ of stonachs examined) and during the I ate July through Iate August period of 1976 through 1978 (copepods found in 34% of stomachs examined). Si milarly, during early J une 1978 near Cape Krusenstern, Al aska (Seward Peni nsula), copepods were found in 88\% of phalarope stomachs examined by Connors and Risebrough (1978). During fall migration phalaropes al so prey heavily on copepods. In the Bay of Fundy, phalaropes concentrate in tide rips and turbul ent convergent fronts where
copepods are apparently available near the surface of the water (R.G.B. Brown, Canadi an Villdife Service, pers. comm. 1978; Brown et al. 1979).

Copepods, and especialy arctic marine copepods, store Iarge quantities of energy in the form of wax (Benson and Lee 1975; Lee and Nevenzel 1979). In fact, copepods are the main producers of waxes in the marine food chai n and on a world-wide basis at least half of all the organic substance synthesized by phytoplankton is converted for a time into wax (Benson and Lee 1975). Uhxes are a form of lipid that is very high in energy and consequently copepods are rich sources of energy (see Griffiths and Dill inger, Ecol ogy of Invertebrates, this vol une) for birds such as phalaropes that prey heavily on copepods.

During two years of intensi ve studies in Si mpson Lagoon, we found that phalaropes consumed quite different prey during August; they consumed primarily copepods in 1977 and primarily amphipods in 1978. Al so, the number of phalaropes present in Si mpson Lagoon during August 1978 was approxi matel y an order of magnitude less than during August 1977; then numbers of amphi pods in the nearshore waters where phalaropes fed during 1978 similarly were an order of magnitude less during 1978 than in 1977. Connors and Ri sebrough (1977) al so found that phałaropes near point Barrow, Al aska, preyed on different organi sns during different years. Phalaropes there preyed mainly on marine copepods in 1975, on marine amphi pods in 1976, and on brackish water copepods in 1978. Some authorities (Di voky 1978c; D. Schamel, Uni v. of Al aska, pers. comm 1979) have speculated that these variations in prey consumed by phalaropes in nearshore waters nay be rel ated to the presence or absence in the nearshore envi ronment of sea ice and its associ ated planktonic commity.

During a series of observations of the feeding behavi or of phalaropes conducted on 5 August 1977, it was noticed that bi rds of both species were feeding on the snall cnidarian (jellyfish) Euphysa flammea*. Although jellyfish and other soft-bodi ed invertebrates such as pteropods collecti vel y compri sed 12.1% of the esti nated vol une of food available to phalaropes during 1977 (neither taxon was present in the diet or feeding habitat of phalaropes in 1978), these soft-bodi ed invertebrates comprised

[^15]a very snall proportion of the stomach contents of phalaropes during 1977 (see Appendix IX). I ndeed, during 1977 we found no trace of Euphysa flamnea in the phalarope stonachs. Because of this difference between behavi oral observations and results of stomach anal yses, caution should be exerci sed when interpreting the results of feeding ecol ogy studi es of phalaropes (and other species) when vi sual observations do not accompany st omach anal yselse results of micro-bonb cal orimetry determinations have reveal ed that Euphysa flormea represents a rel atively significant anount of food energy ($5.4 \mathrm{kcal} / \mathrm{g}$ ash-free dry ut) for an avian predator such as a phalarope (Griffiths and Dillinger, Ecol ogy of Invertebrates, this vol une, di scuss the results of oxygen micro-bonb cal orimetry trials).

The daily exi stence energy requi rements of a si ngle phalarope, based on equations gi ven by Kendeigh et al. (1975, 1978) and King (1974), was cal cul ated to be approxi mately $33 \mathrm{kcal} / \mathrm{bird}$-day. Assuming a coefficient of utilization of approxi mately $\mathbf{6 0 \%}$ (Norton 1970), the total daily gross energy requi renent of a single phalarope is $55 \mathrm{kcal} / \mathrm{bird}$-day (approximatel y 1.0 g ash-free dry wt/day). The estimated total number of phalaropes present in the study area, based on extrapol ations of linear densities (birds/ km of shorel ine) al ong the 15 shoreline transects surveyed during August 1977 (when phalaropes were at their highest densities during the two year study period, see 'Results', Table 36), ranged from approximately $\mathbf{1 6 0}$ birds on $\mathbf{1}$ August to a peak of approxi nately $\mathbf{6 1 0 0}$ on $\mathbf{1 6}$ August, and decreased to approxi natel y 1120 on 24 August (Table 36). Thus, $6.1 \times 10^{3} \mathbf{g}$ ash-free dry ut was the maxi mum daily requi renent in the form of copepods, small amphipods, snall mysids and small jellyfish to maintain the total number of phalaropes present in the study area during the period of peak density on 16 August 1977. Quantitative estimates of the standing stocks ($\mathrm{g} / \mathrm{m}^{2}$) of invertebrates at stations al ong the north and south shorel ines of Si mpson Lagoon during 1978 are gi ven by Griffiths and Craig (1978). If all phalaropes are assumed to feed 0-20.m from shore, the energy available in mysids and amphipods present in lagoon feeding habitat during 1978 is one to tho orders of magnitude nore than daily requi renents at the time of peak phalarope abundance (mid August).

The energy requi rements (~ 3.0 to $9.0 \times 10^{4} \mathrm{~g} /$ August) and the consequent trophic role of phalaropes in Si mpson Lagoon during August 1977 and 1978
were insi gnificant compared to those of ol dsquavs (- $4.5 \times \mathbf{1 0}^{7}$ to $\mathbf{1 . 2} \mathbf{2} \mathbf{1 0} \mathbf{1 0} \mathbf{g}$ ash-free wt/season) during thei \mathbf{r} periods of abundance in the Iagoon (as discussed in a later part of this report).

However, it is clear that large numbers of phalaropes concentrate al ong shorel ines in the Beauf ort Sea to feed and accuml ate fat reserves (Johnson 1979a) prior to southward migration. The results of col or-narking studi es of phalaropes near Point Barrow, Al aska (Connors and Risebrough 1977), suggest that there is rapid turnover in the population of \mathbf{j} uvenile phalaropes present al ong shorelines during late August. Thus, total numbers using an area nay consi derably exceed the naxi num number seen at any one tine. Thi s inf ornation indicates that the Beauf ort Sea nay be an important area to significant fractions of the total Al askan populations of both red and northern phalaropes.

As mentioned earlier, during 1977 phalaropes preyed on invertebrates (nai $\mathbf{n l y}$ copepods) in approxi matel y the same proportions as the organi sns occurred al ong the shorelines where the birds fed. During 1978, however, phalaropes preyed sel ectively on snall amphipods and copepods; both of these groups were approxi matel y five ti nes less abundant than mysids, whi ch represented a very small proportion of the phalarope diet (Table 54).

Prey sel ection of the type exhi bited by phalaropes has been docunented for other species of shorebi rds. Prater (1972) found that al though knots (Calidpis conutus) preyed on species of invertebrates roughly in proportion to thei r abundance, they sel ected certain sized bi val ves that represented a rel atively small proportion of those present in the benthos. In contrast, Bengtson and Svensson (1968) found that two species of abundant shorebirds (Calidris alpina and C. minuta) did not prey on those species of invertebrates that were nost abundant, but that each sel ected different prey from very di stinct habitats. Prater (1972), Bengtson and Svensson (1968) and oursel ves all found that shorebirds did not appreciably reduce the standi ng stocks of the invertebrate fauna upon which they preyed.

Gul I and Tern Feedi ng Ecol ogy
No arctic terns were collected in the Si mpson Lagoon study area during 1977, 1978 or 1979. The onl y peri od when large numbers of arctic terns were detected in the study area was during their fall migration in

1977, which I asted from approxi mate' ly 15 to 30 August. During this period both adult and juvenile terns, with snaller numbers of Sabine's gulls, fed at locations between the barrier is"lands, where mining of marine and lagoon waters produced turbulence. Both arctic terns and Sabine's gulls were observed picking invertebrates fromthe surface of the water in these areas; juvenile bi rds of both speci es were observed begging for food from adults. Several plankton tows conducted in these areas while birds were feeding indicated that mysids and amphipods were the two nost abundant taxa present there.

The diets of glacous gulls in Si mpson Lagoon consisted of a variety of shoreline invertebrates and vertebrates ranging in size from copepods to amphipods, tunicates, bi val ves, isopods, small fish and small bi rds. In relation to the other key bird species exam ned (phalaropes and oldsquavs), glaucous gulls appear to have adopted an opportuni stic feedi ng strategy al ong shorelines in the si mpson Lagoon area. Gaucous gulls feeding al ong coasts in Icel and al so consumed a variety of food organi sns ranging fromsnall intertidal invertebrates to birds and fish (Ingolfsson 1967).

Belopol'skii (1957) also found that glaucous gulls in the Barents Sea area were opportunistic feeders that ate a wide variety of organi sns such as fish, molluscs, snall nammal s, crustaceans, birds, echi noderns, garbage and berries, with fish, crustaceans, birds and waste comprising the major portion of the diet. Lфvenskiold (1964) similarly found glaucous gulls to be highly adaptable and opportunistic feeders in Svalbard during the breedi ng season. At that time they ate large numbers of eggs and nestlings of other nesting birds, waste of hunter-killed seals and rei ndeer, and garbage. Hartley and Fi sher (1936) noted that in Svalbard glaucous gulls are both scavengers and predators; they killed and ate large numbers of both adult and young bi rds there. Nathorst (1898 in L申venskiold 1964) suggested that in locations where birds of prey are scarce, glaucous gulls have adopted predatory feeding habits"

The di stribution of gulls in the Simpson Lagoon study area during 1977 (the onl y year when this species was studi ed intensi vel y) appeared to be rel ated to the di stribution of thei r food organi sns; the nai $n l$ and shoreline was apparently preferred habitat shortly after breakup, possibly
because of the presence of fish in this area; the lagoonward shorelines of the barrier islands were apparently preferred habitats during August, presumably because of the presence of isopods and mysids; the seaward shorel ines of the barrier islands were apparently preferred habitats during Septenber 1977 because of the presence of Iarge nunbers of Iarge hyperiid amphipods washed up on the beaches at that time.

The exi stence energy requi rements of a glaucous gul 1 , cal cul at ed using formi ae in King (1974) and Kendei gh et al. (1977), is approximately $390 \mathrm{kcal} / \mathrm{bird}$-day. Assuming a coefficient of utilization of $\mathbf{7 0 \%}$ the gross daily energy requi renent is approxi mately $560 \mathrm{kcal} / \mathrm{bird}$. The energy requi rements for the total number of glaucous guls present al ong the barrier isl ands and in Si mpson Lagoon, based on the total number of glaucous gulls recorded both on- and off-transect during aerial surveys conducted in these habitats (Table 25), increased fromalowin 1977 of approxi nately $0.2 \times 10^{3} \mathrm{~g}$ ash-free dry wt/day on 5 J une to $32.1 \times 10^{3} \mathrm{~g}$ ash-free dry wt/day during the period of peak abundance in the three year study, on 22 Septenber 1977. As with the phalaropes, these requi renents were insi gnificant when compared with the over whel ming requi renents of ol dsquavs during thei r period of peak abundance in Si mpson Lagoon.

The Trophic Role of Birds in an Arctic Marine Lagoon System
Griffiths and Dillinger (Ecol ogy of Invertebrates, this vol une, Fig. 27 and Tables 19, 20, 21 and 22) have estimated the anount of food available to and consumed by the maj or groups of consumers (predators) in Si mpson Lagoon during 1977 and 1978; the data for 1978 are the nost comprehensi ve for both the prey available (epibenthic invertebrates) and for the naj or predators (birds, fish, and Onisimus glacialis). Through integration procedures (Johnson and Ki okenei ster 1964:240-242), we used the above mentioned data to determine the total season standing stock of prey (food) and the total season energy requi renents of the maj or groups of consumers during the 1977 and 1978 sumer period (5 J uly to 23 Septenber; see Table 58).

The energy requi rements of ol dsquaws during 1977 and 1978 have been cal cul ated using the recent equation of Kendei gh et al (1977:201): at $\mathbf{O}^{\circ} C^{\prime} \quad M=4.142 W^{0.5444}$, where $M=d a i l y$ exi stence energy requi renents (kcal) during the nolting period, and $W=$ the wei ght of the bird (g). Wooley and

Table 58. Total season food requirenents of maj or consumers in relation to standing stock of prey (5 J uly to 23 Septenber 1978).*

Standing Stock of Avai]able Prey (g / m)	Requi renents of Major Pri mary Consumers							
	O dsquaw		Fish		Onisimus		Total	
	$\mathrm{g} / \mathrm{m}^{2}$	\%	g/ m	${ }^{2} \%$	$\mathrm{g} / \mathrm{m}^{\mathbf{1}}$	\%	g / m	\%
1977 48.800**	0. 769**	1. 602	0.098	0. 204	-		0.973	2. 027
$197819.210^{\dagger \dagger}$	0.281	1. 457	0.126	0.654	$0.056^{\dagger \dagger}$	0. 290	0. 463	2.100

*Determined fromintegration of total season data presented in Griffiths and Dillinger (this vol une, Fi gure 27 and Tabl es 19, 20 and 22).
\dagger Grams ash-free dry wei ght.
**Data adj usted upward (from 37.820 and 0.760 , respecti vel y) in order to nake compari sons over the 80 - day peri od 5 J uly to 23 Septenber 1977, rather than the 62-day and 79-day peri ods 15 July to 15 Septenber and 5 July to 22 September, respectively, given in Griffiths and Dillinger (this vol une).
\dagger Data adj usted upvard (from 18. 490 and 0.054 , respectivel y) in order to make compari sons over the 80 - day period 5 J uly to 23 Septenber 1978, rather than the 77 - day period 8 Jul y to 23 Septenber 1978, gi ven in Griffiths and Dillinger (this vol une).

Owen (1978) and Oren (1970) give a di gestion efficiency of about 70\% for a duck; this val ue was used to convert exi stence energy requi rements to gross energy requi renents. Craig and Haldorson (this vol ume) give the correspondi ng val ues for fish energy requirenents. Phalaropes and gl aucous gulls played rel atively mor energetic roles as consuners in the barrier island-I agoon system and have not been included in these anal yses.

Of the nearly 50 and $20 \mathrm{~g} / \mathrm{m}$ of i nvertebrate prey available to consumers in Si mpson Lagoon during the 80-day sampling periods in 1977 and 1978, respecti vel y, onl y 0.97 and $0.52 \mathrm{~g} / \mathrm{m}$ were requi red to support the maj or predators or consumers present there throughout those periods*. Of the total 0.97 and $0.52 \mathrm{~g} / \mathrm{m}$ requi red by the maj or consumers, ol dsquans accounted for well over half of the total energy denands. Thus, the oldsquaw appears to pl ay one of the nost important roles as a consuner in Si mpson Lagoon. Although several other species of birds are periodically rel ati vel y common al ong the Al askan Beauf ort coast (J ohnson 1978, 1979a), ol dsquaus are by far the nost numerous and are consi stently the nost densel y concentrated speci es of bird throughout barrier island-I agoon ecosystens during the entire summer ice-free period.

The trophic role of birds in ecosystens has been described during only a few other studi es. Wolff et al. (1976:687) summarize the results of nost such studi es conducted prior to 1975; none of those studi es were conducted in marine areas of the Arctic. Table 59 summarizes the trophic role of birds in various ecosystens throughout the western hemisphere.

In their study in the Grevelingen Estuary (Netherlands), Wblff et al. (1976) found that bi rds requi red prey equi val ent to about 3.5 g ash-free dry $\mathrm{wt} / \mathrm{m}^{2}-\mathrm{yr}$, compared to our val ues of 0.77 and 0.28 g ash-free dry $\mathrm{wt} / \mathrm{m}^{3}$ consumed by ol dsquavs during the 80-day summer periodin Simson Lagoon in 1977 and 1978, respectively. About 97% of the prey consumed by birds in the Grevelingen Est uary consi sted of benthic invertebrates; this was al so the case for oldsquaws in our study of Si mpson Lagoon. The naj or avi an predators in the Grevelingen Estuary were shorebi rds (nai nly the
*All ' $\mathrm{g} / \mathrm{m}^{2 \mathrm{\prime}}$ val ues in this section are ash-free dry weights,
rable 59. A summary of the trophic role of birds in various ecosystens.

Source	Ecosystem	Location	Period	god tonsumed g ash-free dry mt/a	\% oftotal Food Avail able"
diens (1973)	Tenperate Grassland	Central USA	April-August	0.2-0.5	-
Hol nes and Sturges (1975)	Temperate Deciduous Forest	New Fampshi re, USA	One Year "	1.5	0.17
$\begin{gathered} \text { Wiens and } \\ \text { Mussbdum (1975) } \end{gathered}$	Tenperate Coniferous Forest	Oregon, USA	April-October	2.0-4.2	-
$\begin{gathered} \text { Karr (1971) in Hiens } \\ \text { ind Nussbaum } \end{gathered}$	Tenperate Bare Ground	Illinois, USA	Apri 1 -Otober	0.22	
$\begin{gathered} \text { Karr (1971) in Hitens } \\ \text { and Mussbaum } \\ \text { (1975) } \end{gathered}$	Temperate Bottomland Forest	Illinois, USA	Apri 1-Otober	3.20	
$\begin{aligned} & \text { Karr (1971) in } \left.\begin{array}{c} \text { Mijens } \\ \text { and Musbdum } \\ (1975) \end{array}\right) \end{aligned}$	Tropi cal Ungrazed Grassland	Panana	April-October	0.28	
Karr (1971) in Hiens and Nussodum (1975)	Tropical Mist Forest	Panama	April-October	3.3	
Smemen (1975)	Tenperate Marine	Madden Sea, Netherl ands	One Year	3.7	0.53
wiens and Scott (1975)**	Tenperate Marine	Pacific Coast, Oregon, USA	One Year	1.5	
Holff et al. (1976)	Temperate Estuary	$\begin{aligned} & \text { Grevelingen Estuary, } \\ & \hdashline \text { Tetherlands } \end{aligned}$	One Year	3.5	0.39
This Study	Arctic Marine Lagoon	Beaufort Sea, Al aska, USA	$\begin{array}{ll} \text { fuly-Septenber } & 1977 \\ u l y \text { y-Septenber } & 1978 \end{array}$	0.77 0.28	1. 1.60

- This category does not include benthic infaunal organi sns that nay be unavailable in sublittoral waters.
**Cal cul at ed using $\bar{x}=5.10 \pm 0.39 \mathrm{kca} / \mathrm{g}$ dry wt ($\mathrm{n}=12$, wiens and Scott 1975; Table3), and total annual energy demand for the 4 -species seabi rd community (hiens and Scott 1975; Table i?).
oystercatcher), gulls and ducks. Although the nain types of birds in our study were similar, shorebirds played a much nore prominent role within the Grevelingen Estuary than they didin Si mpson Lagoon, primarily because of the peri odic tidal fluct uations and consequent exposure of large areas of mad flats in the estuary. No such fluctuations regul arly occurred in Si mpson Lagoon; consequently di ving sea ducks, primarily oldsquaws, played the dominant role as avian predators.

In the Dutch Whdden Sea, Swennen (1975) cal cul at ed that carni vorous bi rds comprised 96% of the total avian bi onmss and that they consumed 3.7 g ash-free dry $\mathrm{wt} / \mathrm{m}^{2}$ over one year (see Table 59). This anount represented approxi natel $y \mathbf{0 . 5 \%}$ of the esti mated total standi ng stock of available food* in that portion of the Whdden Sea. In Si mpson Lagoon during the summers of 1977 and 1978, a si ngle species of bird, the ol dsquaw duck, consuned the available food at a rel ative rate about three times (1.5% vs 0.5% that for all birds in one year in the Whdden Sea.

It should be remenbered that most arctic marine estuaries al ong the north coast of Al aska are shallow (generally 2-3 m deep) and are Iargel y frozen during at least ni ne months of the year (mid October to midJuly). The I agoons therefore do not provi de year-round feeding habitat for avian consumers; al nost all bi rds have migrated south and are absent fromthe Arctic coast during nost of the year. Although low densities of prey organi sns (I argel y amphipods) overwinter near the bottons of these frozen I agoons during winter months (Griffiths and Dillinger, Ecol ogy of Invertebrates, this vol une), these organi sns do not becone abundant until the ice in the lagoons begi ns to break up in mid to late June.

[^16]
ECOSYSTEM SI GN FI CANCE AND I MPACT PREDI CTI ONS

Throughout the course of this study, we have pl aced strong emphasis on the interrel ationships bet ween the various bi ol ogi cal and physical disci plines and on investigations of the nost important species (key species) and the most important biol ogical and physical processes in the barrier island-lagoon systens. The oldsquaw duck was the nost abundant (in num bers and bi onass) and was theref ore the nost important avian consumer within such systens along the north coast of \mathbf{A} aska. Several species of fish (whitefish, char, arctic cod, fourhorned sculpin) and one predatory amphipod (Onisimus glacialis) were the only other significant consumers within this ecosystem nari ne namals were scarce in the lagoon systens. During three years of observations, only $\mathbf{1 6}$ sightings of seals (nai nly Phocahispida) were recorded in the lagoons. Mgrating white whal es (DeIphinaptemis leucas) were recorded on two occasi ons (J ohnson 1979b) al ong the seaward coasts of the barrier islands, and no whal es were recorded within the barrier island-lagoon systens during the three years of investigations there. One pol ar bear (Ursusmaritimus) was present on Pi ngok Island during Septenber 1977 and tracks of another were seen al ong the barrier islands during mid Septenber 1979. One I arge dark whal e (either a bowhead or a grey whal e) was observed swiming eastward al ong the southern edge of the pack ice approxi matel y $5 \mathbf{k m}$ north of Pi ngok Island on 2 August 1977.

Other than the ol dsquans, phalaropes (reds and northerns) and glacous guls were the only species of birds that were present inlarge numbers in the Iagoons and al ong the barrier islands. Sone attention has been gi ven these last tuo groups because of thei r aesthetic importance. But the oldsquaw duck and collectivel y the various species of comercially and donestically important fish were the nost abundant and energetically demanding vertebrates and theref ore had the greatest impacts as consumers on the Iagoons (and the barrier isl ands that define the outer limits of the I agoons).

Throughout this study, the standing stocks of invertebrates have al ways remai ned at least one or two orders of nagni tude greater than the daily energetic demands of mïgrating fish, of postbreeding (nolting) oldsquaus and of postbreeding gulls and phalaropes (Griffiths and Dillinger,

Ecol ogy of Invertebrates, this vol une). Craig and Haldorson (Ecol ogy of Fi sh, this vol une) have argued convincingly that food has not limited the number of fish or birds that nay use the barrier island-lagoon systens. Other factors acting outside the lagoon systens such as those that influence reproducti ve capacity, or that cause winter nortality, or cause nortality during migration, may play maj or role in actually limiting the popul ation sizes of key speci es that use the barrier island-I agoon systens during the summer season. For oldsquaws, there is di rect evi dence that production of young in tundra wetlands is directly influenced by such factors as the timing of snowmelt and the productivity of tundra lakes where post breeding fenal es and young feed throughout nost of the summer (Pehrsson 1973, 1974). Si milarly, the population sizes of sone species of arctic anadromous fish are no doubt limited to a great extent by the anount of overwintering habitat availablein inland rivers, streans and lakes (Craig and McCart 1976). Li kewi se, popul ations of many of the important species of invertebrates, such as the mysids, may be limited more by events that occur in offshore nari ne habitats where they reproduce and overwi nter, than in the nearshore systens to which the yearlings migrate each spring and spend the summer (Griffiths and Dillinger, Ecol ogy of Invertebrates, this vol une).

One may ask, then, why have we pl aced emphasis on investigations of these organi sns and the processes that influence themin the barrier isl and-I agoon systens of north coastal Al aska during the short summer season? The ansuer of course is that these organi sns are strongly associated with this interface bet ween the harsh but rich marine system of the Beauf ort Sea and the warmer (in summer) terrestrial system of the north coastal plain. In this interface, food is super-available. Anple protection fromwind, ice and cold water is provi ded by the barrier island chai ns (without which the lagoons nould not exist) and the waters are rel ati vel y warm These feat ures reduce the nai ntenance energy requi rements of consuners, and thereby allow a large proportion of the energy consumed by aquatic organisns in the lagoon systens to be used for growth (fish and invertebrates), for repl eni shing depl eted energy reserves (fish and birds) and for repl acement of insulation and the building of f at reserves prior to migration (birds and in sone cases, fish). Significant proportions
of the Beaufort Sea popul ations of oldsquaw, brant and possi bly other species pass through the lagoons annually.

In a docunent recently produced by the U.S. Congress (Library of Congress 1976:151), the coastal zone, of which the barrier island-Iagoon system al ong north coastal Al aska is a part, has been defined as a "band of dry I and and adj acent ocean space in which land ecol ogy and use di rectly interacts with ocean ecology and use. The coastal zone is one of the nost sensitive and bi ol ogi cally productive areas of the narine envi ronnent. Because of the importance of the coastal zone to marine ecosystens, the envi ronmental impacts from Outer Continental Shel foil and gas operations are nost likely to be nost critical in this area". That sane docunent (Li brary of Congress 1976:114) referred to an oil spil 1 when it stated that "Sone of the nore notable danage has been done to di ving sea birds, to the point where the survi val of some species in certain localities has been threatened". Ki ng and Sanger (1979) recently assi gned reasonably high Oil Vul nerability Index (OVI) val ues (range Oto 100) to the oldsquaw (66) and the phalaropes (60) and a lower val ue to the glaucous gull (45). I ndeed, in areas where the hi story of the effects of oil polfution have been well documented (Joenson 1972a, b and Joenson and Hanson 1977), sea ducks and especially eiders, scoters and the oldsquaw have suffered the greatest mortality (even greater than the auks). Severe oil pollution al ong the coast of the Beauf ort Sea during the summer open water period could affect as many as several hundred thousand oldsquaws, depending on the duration and location of the pollution. For example, during early spring (March) 1979, a snall fuel oil spill (no further details available) killed an estimated $\mathbf{1 0 , 0 0 0}$ to $\mathbf{2 0 , 0 0 0}$ seabirds that had concentrated in a rich feedi ng area of f the coast of northern Norway (Barrett 1979). Even a snall and localized spill could have severe effects on ol dsquavs when they are hi ghly concentrated in a I agoon, or on snow geese at Howe Island, Al aska's only snow goose col ony.

Various authors have deal \mathbf{t} in detail with the subject of impact assessment and predictions associ ated with oil and gas devel opment in coastal marine waters (Bourne 1968; Blumer 1969, 1970; Mironov 1970; Otway 1970; Hoult 1971; Straughan 1971; Brown 1973; Brown et al. 1973; Vaughan 1973; Boesch et al. 1974; Anderson 1975; Anonynous 1975; Nati onal Acadeny of

Sciences 1975; Bourne 1976; Gorski et al. 1976; Koski and Richardson 1976; Li brary of Congress 1976; Szozepski 1976; Mackay 1977; Milne 1977; Ross 1977; Nbrlands Petrol euns 1978) but two recent docunents (Vél ler et al. 1978: 251348 and OCS Arctic Project Office 1979) best describe the predi cted impacts and suggested mitigative neasures and stipul ations associ ated with OCS oil and gas devel opment in the coastal Beauf ort Sea.

A variety of unregul ated activities associ ated with oil and gas devel opnent could have del eterious effects on various important avian species or species groups al ong the Al askan Beauf ort Sea area. Activities such as toxic materials spills; icebreaking; low level aircraft overflights; shi p, boat, hovercraft or barge novenents; ground transportation; excavating and dredging; sei smic exploration; drilling; causeway construction bet ween or to coastal islands; ri ver di version; heat ed water di scharge; road construction on islands; pipeline construction on islands; buil ding construction on islands; erection and presence of communi cation towers and/ or wires; biophysical scientific field research and increased human presence and hunting all could have significant effects on birds. The effects of these activities on birds nay be nonentary, short-termor I ong-term they nay be di rect or indi rect and they may be of an insignificant, noderate or severe nature. Those species or species groups nost likely to be affected by such devel opment activities are snow geese, oldsquaws, ei ders, gulls and terns, shorebi rds, brant, swans, various other species of geese and ducks, and a variety of terrestrial birds. Table $\mathbf{6 0}$ presents a general description of the sensitivity and vul nerability of birds in various coastal habitats al ong the Alaskan Beauf ort Sea.

Attempts to predict the results of interactions of these groups of birds with the above nentioned devel opnent-rel ated activities are usually qualitative in nature and are often confounded by such variables as the time, place, weather conditions and other unknown variables that inevitably surround such events, and consequently such attempts are often unsuccessful.

Scientifically credi ble, quantitative studies of disturbance, em pl oying proper controls, are difficult to conduct. The very presence of an observer recording responses of organi sns to various types of di sturbance is a major source of error. Similarly, misleading ant hroponorphic

Table 60. Sensitivity/vul nerabil ity ${ }^{\top}$ index for various avian species and habitats in barrier island-lagoon arusulong the asterniesufort

Speci es	Habitats							
	Barrier Islands			Lagoon		Mainland Shorel i ne		Of fshore Marine
	Gravel	Oceansi de Shorel i nes	Lagoonside Shorel i ines	Shall ow Lagoon	$\begin{aligned} & \text { Oeep } \\ & \text { Lagoon } \end{aligned}$	Entire Shoreline	Sa avanirktok R? ver Delta	
Snow Goose ${ }^{\text {t }}$						$\begin{aligned} & \text { fall stagi } \\ & \left.\begin{array}{l} 15 \\ 30 \text { Aug- } \\ 30 \\ \text { Sept } \end{array}\right) \end{aligned}$	$\begin{aligned} & k * \text { nesting*** } \\ & \text { (1) Jung- } 30 \\ & \text { July) } \end{aligned}$	
01dsquaw			$\begin{aligned} & \text { loafing }{ }^{* *-} \\ & (25 \text { July- } \\ & 30 \mathrm{Aug} \text {) } \end{aligned}$	$\begin{aligned} & \text { loaf-feed* } \\ & \text { (25 July- } \\ & 30 \mathrm{Aug} \text {) } \end{aligned}$	Feedi ng*** (open water season)			Migration** (1 muy-5 J une)
Brant	nesting** (1) une- 30 Jul y)					migration** (20) hsg- 5 Sept)		
Eiders				$\begin{aligned} & \text { (oaf-feed" } \\ & (1-30 \text { Aug }) \end{aligned}$				migration (1 May-5 June*** $15 \mathrm{Jund} \mathrm{Y}-10$ Sept*)
Phalarope		during hi gh density $\left\{\begin{array}{c}\text { tagi } \text { ng*** }^{* *} \\ 10-30\end{array}\right.$	during high density stagi ing** ($10-30 \mathrm{Aug}$)			during hi gh density stagi ng* (10-39 Aug)		
G aucous Gull	$\begin{aligned} & \text { pesting* } \\ & \begin{array}{l} 1 \\ 30 \text { Junne } \\ 30 \text { Jul y) } \end{array} \end{aligned}$	during stagi n* * (15-30 Sept)	feeding staging 30 Sept)	$\begin{aligned} & \text { feedi ng' } \\ & \text { (25 July- } \\ & 30 \mathrm{Aug} \text {) } \end{aligned}$				
Arctic Tern	$\begin{aligned} & \text { nesti ng*** } \\ & \text { (1 } \frac{1}{30} \text { une- } \\ & 30 \text { uly y) } \end{aligned}$		feeding, stagi in** (15-30 Aug)	$\begin{aligned} & \text { feedi ng } \\ & (15-30 \mathrm{Au9}) \end{aligned}$				
Loons								$\begin{aligned} & \text { feedi rig** } \\ & \text { (open vater season) } \end{aligned}$

[^17]interpretations of responses by nals to di sturbance are difficult to avoi d. Experi ence and sone experi nents have shown, however, that nany speci es of birds accommodate rel ativel y well to certaintypes of devel op-ment-rel ated activities (Schweinsburg 1974b; Gol loP, Gol dsberry and Davis 1974a, b; Gollop, Black et al. 1974). Notable exceptions al ong the Beaufort Sea coast incl ude snow geese approached by ai rcraft (at nearly any altitude) during the nesting period ($1 \mathrm{~J} u n e$ to $30 \mathrm{Jul} y$) and during the period of fall pre-migratory staging, which occurs from approxi nately 15 August to approxi natel y 30 September (Salter and Davis 1974;
Schweinsburg 1974b; Koski 1977); and aircraft overflights in the vicinity of certain species of seaducks, such as common ei ders (Barry and Spencer 1976; Schamel 1974; Korschgen 1977; Schamel, pers. comm, 1978). In particular, Schamel (1974) showed that as aircraft approached, common ei ders nesting on Beauf ort Sea barrier islands flushed fromtheir nests and thereby exposed their eggs to predation. Schamel indi cated (pers. comm., 1979) that the level of di st urbance to eiders was nost pronounced during the egg-laying and the early incubation period (1 to 30 June).

Leffingwell (1919) mentioned that Duck Island, I ocated in the Sagavanirktok River de"lta, once supported a large eider col ony but that it was exterminated as a result of egg robbing, According to Gavin (1976:60), Duck Island has cent inued to support very few ei ders (2-4 nests/ year over a 5-year period) from 1970 through 1974, but that the number of glaucous gulls nesting there over the sane period has been substantial (40-54 nests/year over the same 6-year period). These results are especially interesting because they suggest that eiders, once they abandon traditional nesting areas, nay not readily return.

Little is known of the effects on nolting ol dsquaws of di sturbance such as chronic aircraft and boat traffic, dredging activities, sei smic operations and other devel oped rel ated activities and associ ated noi se in barrier island-lagoon systens. Sei smic operations in Si mpson Lagoon during the summer of 1977 appeared to have little lasting effect on nearby flocks of post nol ting ol dsquaws (S.R. Johnson, unpublished data, 1977). However, such infornation has so far been purely qualitative and has not been based on quantitative experimentation. It has been docunented, however, that shortages of protein in the diets of wild birds prior to or
during the molt period can cause nol to be slowed or to be interrupted, and Ashmole (1962) reported that an unseasonal shortage of food nay cause del ays in the onset of nol in wild seabirds.

Our experiences in Simpson Lagoon suggest that nol ting and post nolting oldsquaws nere little affected by such activities as systematic collecting with shot guns, by systenatic di sturbance from small boats noving across and through Si mpson Lagoon, by systenatic lowlevel aerial surveys from both helicopters and small fixed-wing aircraft, and by overflights of many other ai rcraft (Johnson 1978, Appendi x Table 14). adsquans did not leave the study area after such di sturbances; nor did they cease to frequent certain areas of concentration al ong the leward sides of the barrier islands. Experiments by Whrd and Sharp (1974) similarly found that nolting ol dsquaws were only slightly affected by ai rcraft overflights near Herschel Island, Yukon Territory, during August 1973, and that the documented effects did not appear to be long lasting. Si milar results concerning oldsquaws were reported by Sharp (1978) who conducted a study of various bird deterrent measures at MEKi nl ey Bay, east of Tuktoyaktuk, N WT., during 1977.

Feeding flocks of staging phalaropes showed little overt reaction to our collecting activities (shooting some indi vidual sith shotguns). Many flocks of phalaropes continued to feed while several birds fromthe flock were collected. However, glacous gulls becane very wary of small boats after a number of encounters with biol ogists shooting at themfromsnall boats.

CONCLUSI ONS

Bri ef concl usi ons of the ornithol ogical studies are:

1. Lagoon and nearshore mari ne habitats were largel y frozen when spring bird migration occurred, and bi rds made minimal use of the area. Any open water created during this time by nan's activities night attract large numbers of waterbirds and thereby increase their vul nerability to oil or other contaminants that might accumul ate at such sites.
2. Male ol dsquans used shorel eads and cracks in lagoon ice during their mol migration in early July, thereby concentrating in habitats potentially vul nerable to contamination bil. Male ei ders I argel y by-passed Si mpson Lagoon during thei r west ward nol t migration.
3. Common eiders, arctic terns and glaucous gulls nested al nost excl usi vel y on gravel surfaces of i sl ands, whereas speci es and densities of nesting birds on tundra portions of islands were unrenarkable; it is concl uded, theref ore, that gravel-surf aced barrier islands are very important to these species and should recei ve protection during the course of devel opnent.
4. Si mpson Lagoon and vari ous other lagoons, primarily to the east, were extrenel y i mportant areas for post breeding (nol ting and staging) ol dsquans frommid to late July through Septenber; an esti mated maxi mum of 106, 000 oldsquaws were present in Simpson Lagoon during late September 1977. Devel opment in coastal lagoons and al ong barrier islands should proceed only with extrene caution i medi ately prior to and during the open- water season.
5. Shorel ines were important habitats to feeding shorebi rds in August; seavard shores of isl ands were nost important, lagoonward shores of islands were of inter medi ate importance, and mai nl and shores were of least importance. Shorel ines were al so important to glaucous gulls throughout the open- water season. Devel opnent activities that affect beach habitats during the open- water season should theref ore proceed with caution.
6. G aucous gulls were opport uni stic in their di ets and feeding strategies; phalaropes and ol dsquaws were nore specialized.

Phalaropes fed mai nly on copepods during $\mathbf{1 9 7 7}$ and mai $\mathbf{n l} \mathbf{y}$ on amphipods during 1978. \mathbf{A} dsquaws fed mainly on epibenthic mysids and amphipods during both 1977 and 1978. In terns of energy consumed, ol dsquaus were the naj or vertebrate predator in the I agoon. St andi ng stocks of epibenthic invertebrates were one to two orders of magni tude greater than the daily requi renents of the key bird speci es.

LI TERATURE CI TED

Alerstam, T., C. - A Bauer and G Roos. 1974. Spring migration of eiders Somateriamollissima in southern Scandi navi a. Ibi s 116:194-210.
Anderson, J.W. (cd.). 1975. Laboratory studies on the effects of oil on marine organi sns: an overvi ew Aner. Petrol. Inst. Pub. 4249. 70 p.
Anderson, R.M. 1937. Mammals and bi rds of the western arctic district, Northwest Territories, Canada. Canada's western northland, Parks and Forest Branch. Kings Printer, Otawa. 162 p.
Andersson, M 1973. Bi rds of the Nuvagapak Poi nt, northeastern Al aska. Arctic 26(3):186-197.
Anonynous. 1975. No lasting danage from Japanese oil spill. Chem. Engi n. News. 13 p.
Ashmole, N.P. 1962. The black noddy Anoustenuirostris on Ascensi on I sl and. Part 1. General bi ol ogy. I bi s 103b: 235-273.
Ashmole, N.P. 1971. Sea bird ecol ogy and the nari ne envi ronnent. p. 223-286. In: Farner, D.S. and J.R. King (eds.). Avian Biology. Vol. I. Academic Press., New York. 586 p.

Bagge, P. R., Lemmet yi nen and T. Raitis. 1973. Spring food of sone di ving waterfow in the southwestern Finnish Archi pel ago. 0ikos. Suppl enent 15:146-150.

Bailey, A M 1948. Bi rds of arctic Al aska. Popular Series No. 8, Colo. Ms. Nat. Hist. 317 p.
Barrett, R.T. 1979. Snall oil spill kills 10-20,000 seabirds in north Norway. Marine Pol I. Bul I. 10:253-255.
Barry, T.W. 1968. Observations on nat ural nortality and native use of ei der ducks al ong the Beauf ort Sea coast. Can. Fi eld-Nat. 82:140-144.
Barry, T.W. 1970. Li kel y effects of oil in the Canadian arctic. Mar. Poll. Bull. 1:73-74.

Barry, T.W. 1972. An attempt to survey the sea bi rds of the Beauf ort Sea--1972. Unpubl. Can. Wildl. Serv. Rep., Edmonton, Al berta. 18 p.
Barry, T.W. 1976a. Seabirds of the southeastern Beauf ort Sea: summary report. Beauf ort Sea Tech. Rep. 3a. Dept. Envi ronment, Vi ctoria, B. C. $\quad 41$ p.

Barry, T.W. 1976b. Concerns for birdlife during oil and gas devel opment. Evi dence to Berger Inquiry, Delta Phase, Inuvik, Feb. 1976. Unpubl. ME. 19 p.
Barry, T.W. and R. Spencer. 1976. Vildife response to oil well drilling. Can. Wildl. Serv. Progress Note Nb. 67. 15 p.

Bartels, R.F. 1973. Birds survey techni ques on \mathbf{A} aska's north coast. M.Sc. Thesis, I owa State Uni v., Anes. 47 p.

Bartonek, J.C. 1969. Arctic Sl ope and Trans- Al aska pi peline task force report; the bird resources of Al aska's Arctic SI ope and petrol eum devel opnent. Mimeo. Rep.: on file at Northern Prairie Vildife Research Center, Janestown, North Dakota. 33 p.
Bee, J.W. 1958. Birds found on the arctic sl ope of northern Alaska. Uni v. Kansas Pub. Mis. Nat. Hist. 10(5):163-211.
Bellrose, F.C. 1976. Ducks, geese and swans of North Aneri ca. The Stackpole Co., Harrisburg, Pa. 536 p.
Belopol'skii, L.O. 1957. Ecol ogy of sea col ony birds of the Barents Sea. Akadem ya Nauk SSSR Mbskva- Leni ngrad. (Transl ated by I srael Program for Scientific Translations, Jerusalem 1961). 346 p.

Bengtson, S.-A 1971. Food and feedi ng of di vi ng ducks breedi ng at Lake Mývatn, I cel and. Ornis Fenn. 48:77-92.

Bengtson, S. - A and B. Svensson. 1968. Feeding habits of Calidris alpina L. and C. minuta Leisl. (Aves) in rel ation to the di stribution of marine shore invertebrates. Oi kos 19:152-157.
Bennett, E.B. and M.B. Shaefer. 1960. Studi es of physi cal, chemical and bi ol ogi cal oceanography in the vicinity of the Revillagigedo I sl ands during the "I sl and Current Survey" of 1957. Inter-Aner. Trop. Tuna Comm., Bull 4(5):218-317.

Benson, A.A. and R.F. Lee. 1975. The role of wax in oceanic food chai ns. Sci. Aner. 232:77-86.

Benson, C., B. Holmgren, R. Ti mer, G Vèler and S. Parrish. 1975. Coservations on the seasonal snow cover and radi ation clinate at Prudhoe Bay, A aska during 1972. p. 13-50. In: J. Brown (cd.). Ecol ogi cal investigations of the tundra biome in the Prudhoe Bay regi on, Al aska. Biol. Pap. Uni v. Al aska, Spec. Rep. No. 2.
Bergnan, G 1974. The spring migration of the I ong-tailed duck and the common scoter in western Fi nl and. Ornis Fenni ca 51:129-145.
Bergnan, G 1977. Fi nni sh radar investigations on migation of waterfow between the Baltic and the White Sea. 24 Rassegna Internazionale El ettroni ca Nucleare ed Aerospaziale, Rome, 1977. 8 p.
Bergman, G. 1978. Effects of wind conditions on the autum migration of waterfow between the White Sea area and the Baltic regi on. Oi kos 30(2):393-397.
Bergnan, G. and K.O. Dormer. 1964. An anal ysis of the spring migration of the common scoter and I ong-tailed duck in southern Fi nl and. Acts Z001. Fenni ca 105:3-59.

Bergnan, R. D., R.L. Howar d, K.F. Abr aham and M.W. Vell er. 1977. Whter birds and their wetland resources in rel ation to oil devel opment at Storkersen Point, Al aska. U. S. Dept. Int., Fi sh Wildl. Serv. Resource Pub. 129. Whshi ngt on, D.C. 38 p.

Bianchi, V.V. and Y.V. Krasnov. 1976. Summer passage of the comon scoter across the White Sea. (Engl. summary). p. 102-107, In: E. Kumari, (cd.). Bird migration. Acad. Sci. Estoni an SSR, Tal Iinn.
Blumer, M. 1969. Oil Pollution of the ocean. Symp. on Man's Chemi cal I nvasi on of the Ocean: an Inqui ry. Scripps Inst. Oceanogr., La Jolla, Calif.

Bl uner, M. 1970. $0 i l$ contamination and the living resources of the sea. FAO Tech. Conf. Mar. Poll., Rome. Paper FIR:MP/70/R-1.
Boesch, D. F., C.H. Herschner and J.H. Milgram. 1974. Oil spills and the mari ne envi ronment. The Ford Foundation. 114 p.
Bourne, W.R.P. 1968. Observation of ancounter bet ween birds and floating oil. Nat ure 219:632.
Bourne, W.R.P. 1976. Seabirds and pollution. p. 403-502. In: R. Johnston (cd.). Mari ne pollution. Academic Press, New York.

Brooks, W.S. 1915. Notes on the birds fromeast Siberia and arctic Al aska. Bull. Mis. Comp. 7.001. 59:361-413.

Brewer, WA, Jr., H.W. Searby, J.L. Wise, H.F. Di az and A.S. Prechtel. 1979. Climatic atl as of the outer continental shel f waters and coastal regi ons of Al aska. Vol. III Chukchi and Beauf ort Sea. BLM NOAA, OCSEAP. Boul der, Colo.
Brown, J., R.K. Haugen and S. Parrish. 1975. Sel ected climatic and soil thernal characteristics of the Prudhoe Bay regi on. p. 3-11. In: J. Brown (cd.). Ecol ogi cal investigations of the tundra biome in the Prudhoe Bay regi on, Al aska. Biol. Pap. Uni v. Al aska, Spec. Rep. No. 2.

Brown, R.G.B. 1973. Seabi rds and oil pollution: the investigation of an offshore oil slick. Can. Wildl. Serv., Progress Note No. 31. 41 p.
Brown, R. G. B., S.P. Barker and D.E. Gaski n. 1979. Dayti ne surface suarming by Meganyctiphanes norvegica (M Sars) (Crustacea, Euphausiacea) off Brier Island, Bay of Fundy. Can. J. Zool. 57:2285-2291.
Brown, R. G, D.I. Gilespie, A.R. Lock, P.A. Pearce and G.H. Watson. 1973. Bi rd mortality from oil slicks off eastern Canada, February to April 1970. Can. Fi el d-Nat. 87(3):225-234.
Cade, T.J. 1955. Records of black brant in the Yukon basin and the question of a spring migration route. J. Wildl. Manage. 19(2):321-324.
Campbel I, R.W. 1973. Fall migration of birds in the Mackenzie Delta and I ower Mackenzi e Ri ver, 1972. Appendix 5. 28 p. Towards an envi ronmental impact assessment of the portion of the Mackenzie gas pipeline from Al aska to Alberta. Envi ronment Protection Board, Wİ nni peg, Mani toba.

Campel I, W.B. 1980. Beauf ort Sea barri er island-I agoon ecol ogi cal process studi es: final report, Si mpson Lagoon. Part 6. Primary production and nutrients. Res. Unit 467. In: Envir. Assess. Al askan Cont. Shel f, Fi nal Rep. Prin. I nvest. (this vol une). BLM NOAA, OCSEAP. Boul der, Colo.

Cannon, P.J. and S.E. Rawlinson. 1978. The envi ronmental geol ogy and geomorphology of the barrier island-I agoon system al ong the Beauf ort Sea Coastal PI ai n from Prudhoe Bay to the Colville Ri ver. Res. Unit 530. In: Envir. Assess. Al askan Cont. Shelf. Annu. Rep. Prin. I nvest. BLM NOAA, OCSEAP. Boul der, Colo. 25 p.

Chesenore, D.L. 1968. Notes on the food habits of arctic foxes in northern Al aska. Can. J. Zool. 46:1127-1130.
difford, H.T. and W Stephenson. 1975. An introduction to numeri cal classification. Academic Press, New York.
Connors, P. G, J.P. Mers and F.A. Pitelka. 1979. Seasonal habitat use by arctic Alaskan shorebirds. Studi es in Avian Biol. 2:100-112.
Connors, P. and R.W. Risebrough. 1976. Shorebird dependence on Arctic Iittoral habitats. p. 401-455. In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. Invest. , October 1976, Vol. 2. BLM/NOAA, OCSEAP . Boulder, Colo.
Connors, P. and R.W. Risebrough. 1977. Shorebird dependence on Arctic Iittoral habitats. p. 402-524. In: Envi ron. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. Invest. , Oct ober 1977, Vol. 2. BLM/NOAA, OCSEAP. Boul der, Colo.
Connors, P. and R.W. Risebrough. 1978. Shorebird dependence on Arctic Iittoral habitats. p. 84-167. In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. Invest. , October 1978, Vol. 2. BLM/NOAA, OCSEAP . Boul der, Colo.
Cottam, C. 1939. Food habits of North Aneri can di vi ng ducks. U. S. Dept. Agric. Tech. 'Bull. 643. 140 p.
Cowan, I. MET. 1947. Preliminary report on wildife investigation on the Mackenzi e Ri ver del ta, N.W.T. Can. Wildl. Serv., Ottama. Rep. C.W.S.C. 195. 29 p.

Craig, P.C. and W.B. Griffiths. 1978. Beaufort Sea barrier islandlagoon ecol ogi cal process studies. Ecol ogy of fishes in Si mpson Lagoon, Beauf ort Sea, Al aska. p. 587-664. In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. Invest. , Oct ober 1978, Vol. 7. BLM NOAA OCSEAP. Boul der, Colo.

Craig, P.C. and L. Haldorson. 1980. Beauf ort Sea barrier islandI agoon ecol ogi cal process st udies: final report, Si mpson Lagoon. Part 4. Fi shes. Res. Unit 467. In: Envir. Assess. Al askan Cont. Shel f, Fi nal Rep. Prin. Invest. (this vol une). BLM/NOAA, OCSEAP. Boul der, Colo.

Craig, P.C. and P. McCart. 1976. Fish use of nearshore coastal waters in the western arctic: emphasis on anadromous species. In: Hood, D.W. and D.C. Burrell (eds.). Assessnent of the arctic marine envi ronment: sel ected topics. Occas. Publ. No. 4, Inst. Mar. Sci., Uni v. Al aska, Fai rbanks. 468 p.

Cramp, S. and K.E.L. Si mons (eds.). 1977. The bi rds of the western Palearctic. Vol. 1. Oxford Univ. Press, Oxford. 722 p.
Davi es, K.F. 1975. Mackenzie river in put to the Beaufort Sea. Beauf ort Sea Tech. Rep. 15. Can. Dept. Envi ronment, Vi ctoria, B. C. $\quad 72$ p.

Dean, F.C., P. Valkenburg and A.J. Magoun. 1976. Inl and migration of jaegers in northeastern Al aska. Condor 78(2):271-273.
Derksen, D.V. and W.D. El dri dge. 1980. Drought-di splacenent of pintails to the arctic coastal plain, Alaska. J. Wildl. Manage. 44(I): 224-229.

Derksen, D. V., W.D. Eldridge and T.C. Rothe. 1977. Whterbi rd popuI ations and habitat anal ysis of sel ected sites in NPR-A. Unpubl. Rep., U. S. Fi sh Wildl. Serv., Ecol ogi cal Servi ces/ Office of Speci al Studi es. Anchorage, Al aska. 91 p.
Dey, B., H More and A.F. Gregory. 1979. Mbnitoring and mapping seaice breakup and freezeup of arctic Canada fromsatelite inagery. Arctic Alp. Res. 11(2):229-242.
Divoky, G.J. 1978a. The di stribution, abundance and feeding ecol ogy of birds associated with pack ice. p. 167-509. In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. Invest. , Oct ober 1978, Vol. 2. BLM NOA, OCSEAP. Boul der, Colo.
Divoky, G.J. 1978b. Identification, documentation and del ineation of coastal migratory bird habitat in Al aska. I. Breeding bird use of barrier islands in the northern Chukchi and Beauf ort Seas. ${ }^{\text {p. 482-548. In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. }}$ Prin. I nvest. , Oct ober 1978, Vol. 1. BLM NOAA OCSEAP. Boul der, Colo.
Divoky, G.J. 1978c. Identification, documentation and del ineation of coastal migratory bird habitat in Al aska. II. Feeding habits of birds in the Beauf ort Sea. p. 549-568. In: Envir. Assess. Al askan Cont. Shel f, Ann. Rep. Prin. Invest. , Oct ober 1978, vol. 1. BLM/NOAA, OCSEAP. Boul der, Colo.
Di xon, J.S. 1943. Bi rds observed between Poi nt Barrow and Herschel Island on the arctic coast of $\mathbf{A l}$ aska. Condor 45:49-57.
Dubrovsky, A 1959. Birds perish in oil. Khozohstvo 13:58.
(Transl ated from Russi an by Can. Wildl. Serv., Ottawa).

Ellarson, R.S. 1956. A study of the ol dsquaw duck on Lake M chi gan. Ph. D. Thesis. Uni v. Wisconsi n, Madi son. 231 p.
Evans, K.E. and A.N. Moen. 1975. Ther nal exchange bet ween sharp-tailed grouse (Pedioecetes phasianellus) and their wi nter envi ronment. Condor 77(2):160-168.
Evans, R.M. 1970. Odsquaws nesting in associ ation with arctic terns at Churchill, Manitoba. Wilson Bull. 82:383-390.

Everett, K.R. 1975. Soil and Iand form associ ations at Prudhoe Bay, Al aska: a soils map of the tundra biome area. In: Brown, J. (cd.). Ecol ogi cal investigations of the tundra biome in the Prudhoe Bay regi on, Al aska. Biol. Pap. Uni v. Alaska, Spec. Rep. 2. 163 p.
Fl ock, W.L. 1973. Radar observations of bird novenents al ong the arctic coast of Al aska. Vils son Bull, 85(3):259-275.
Fol kestad, A.0. and A. Mbsnes. 1970. Observationer av trekkende Aerfugl i Trøndelag. Sterna 9:9-17.
Frane, G.W. 1973. Occurrence of birds in the Beauf ort Sea, summer 1969. Auk 90(3):552-563.

Fredrickson, L.H. and R.D. Drobney. 1978. Habitat utilization by post breedi ng waterfow. p. 119-131. In: T.A. Bookhout (cd.). Waterfow and wetlands-an integrated revi ew Mdwest Fi sh and Wildl. Conf. 39.

Gabrielson, I.N. and F.C. Li ncol n. 1959. The bi rds of Al aska. The Stackpole CO and Wildl. Manage. Inst. 922 p.
Gauthier, J., J. Bédard and A Reed. 1976. Oerland migration by common ei ders of the St. Lawrence estuary. Ẅl son Bull. 88(2): 333-344.

Gavin, A. 1976. Wildife of the North Sl ope. Atlantic Richfield Co., Los Angel es. 71 p.
Gessaman, J.A. 1973. The effects of sol ar radi ation and wind on energy metabolism In: Gessaman, J.A. (cd.). Ecol ogi cal energetic of homeotherms. Utah State Uni v. Monogr. Ser. 20. Logan, Utah. 155 p.
G osaeter, J. and R. Saetre. 1974. Predation of eggs of capelin (Mallotusvillosus) by di vi ng ducks. Astarte 7:83-89.
Glutz von Blotzheim, U. N , K.M. Bauer and E. Bezzel. 1977. Handbuch der Vögel Mitteleuropas. Band 7. Charadriifornes (2. Teil). Akademische Verlagsgesellschaft, Wiesbaden.

Godf rey, W.E. 1966. The bi rds of Canada. Nat. Mus. Can. Bul I. 203. 428 p.
Godf rey, W.E. 1973. A possi ble shortcut spring migration route of the arctic tern to J anes Bay, Canada. Can. Fi eld-Nat. 87:51-52.

Gollop, MA, J.E. Black, B.E. Felske and R.A. Davis. 1974. Di st urbance studi es of breedi ng bl ack brant, common ei ders, glaucous gul Is and arctic terns at Nunaluk Spit and Phillips Bay, Yukon Territory, July 1972. Arctic Gas Bio1. Rep. Ser. 14(4):153-201.
Gollop, M.A. and R.A. Davis. 1974, Gas compressor noi se di sturbance to snow geese, Konakuk Beach, Yukon Territory, Septenber 1972. Arctic Gas Biol. Rep. Ser. 14(8):1-23.

Gollop, M.A., J.R. Gol dsberry and R.A. Davis. 1974a. Aircraft di sturbance to moulting sea ducks, Herschel Island, Yukon Territory, August. Arctic Gas Biol. Rep. Ser. 14(5):202-231.

Gollop, M.A., J.R. Gol dsberry and R.A. Davis. 1974b. Effects of gas compressor noi se si mul at or di sturbance to terrestrial breeding birds, Babbage River, Yukon Territory, June 1972. Arctic Gas Biol. Rep. Ser. 14(2):49-96.
Gollop, M.A. and W.J. Ri chardson. 1974. I nventory and habitat eval uation of bird breedi ng and moulting areas al ong the Beauf ort Sea coast from Prudhoe Bay, Al aska to Shi ngle Poi nt, Yukon Territory, July 1973. Arctic Gas Biol. Rep. Ser. 26(1):1-61.
Gorski, W, B. Jackuczun, C. Nitecki and A Petryna. 1976. The investigations of oil pollution of Polish coast on the Baltic Sea (1970-1974). (Pol ., Engl . summary). Przeglad Zool . 20(1):81-87.
Graubits, G and M Janaus. 1977. Moult migration of the common scoter on Kolkasrags Spit in July and August, 1975. (Rus., Engl . summary). Commun. Baltic Comm. Study Bi rd Migr. 11:37-45.
Griffiths, D.E. 1973. Yellow billed I oon on Lesser Sl ave Lake, Al berta: a new record. Can. Fi eld-Nat. 87:182-183.

Griffiths, W.B. and P.C. Orai g. 1978. Beauf ort Sea barrier islandI agoon ecol ogi cal process studies. Ecol ogy of invertebrates in Si mpson Lagoon, Beauf ort Sea, Alaska. p. 665-757. In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. Invest. , Oct ober 1978, Vol. 7. BLM/NOAA, OCSEAP. Boul der, Colo.
Griffiths, W.B., P.C. Crai g, G Walder and G Mann. 1975. Fisheries investigations in a coastal regi on of the Beauf ort Sea (Nunaluk Lagoon, Y.T.). Arctic Gas Biol. Rep. Ser. 34(2):1-219.
Griffiths, W.B. and R.E. Dillinger. 1979. Beaufort Sea barrier islandI agoon ecol ogi cal process studies. Ecol ogy of invertebrates in Si mpson Lagoon, Beauf ort Sea, Al aska. Res. Unit 467. In: Envir. Assess. A askan Cont. Shel f, Annu. Rep. Prin. Invest. (in press). BLM/NOAA, OCSEAP. Boul der, Colo.
Griffiths, W.B. and R.E. Dillinger. 1980. Beauf ort Sea barrier islandI agoon ecol ogi cal process st udi es: final report, Si mpson Lagoon. Part 5. Invertebrates. In: Envir. Assess. Alaskan Cont. Shelf, Final Rep. Prin. Invest. (this vol une). BLM NOAA OCSEAP. Boul der, Colo.

Hall, G.E. 1975. A summary of observations of birds at 0liktok Point and notes on bi rds observed along the Colville River--summer 1971. p. 505-533. In: Envi ronment al Studies of an arctic estuarine system-final report. EPA 660/3-75-026. U.S. Envir. Prot. Agency, Corvallis, Oregon.
Hanson, HC., P. Queneau and P. Scott. 1956. The geography, bi rds and nammal s of the Perry River regi on. Arct. Inst. N Aner. Spec. Pub. 3. $\quad 98$ p.

Hanson, W.C. and L.E. Eberhardt. 1976. Ecol ogi cal i nvesti gations of Al askan North Sl ope oi I devel opment. p. 32-33. In: Peterson, D.F. and E.M. Sul Ii van (compilers). Bi onedical and envi ronnental research program of the LASL Health Division. Los Alamos Scientific Lab. , Uni v. Cal ifornia, Los Alamos, N.M.

Hanson, W.C. and L.E. Eberhardt. 1977. Ecol ogi cal consequences of North SI ope oi I devel opment. p. 58-60. In: Peterson, D.F. and E.M. Sullivan (compilers). Bi onedi cal and envi ronmental research program of the LASL Heal th Division. Los Alamos Sci entific Lab., Uni v. California, Los Alanos, N.M.
Hardy, A 1967. Great waters. Collins, London. 318 p.
Barri ngton, B. A and R.I.G. Mbri ison. 1979. Semipalmated sandpi per migration in North Anerica. Studi es in Avian Biol. 2:83-100.

Harri son, C.S. 1977. Seasonal di stribution and abundance of mari ne birds. Part 2. Aerial surveys of marine birds. p. 285-593. In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. Invest. , Oct ober 1977, Vol. 3. BLM/NOAA, OCSEAP. Boul der, Colo.
Hartley, C.H. and J. Fi sher. 1936. The marine foods of birds in an i nl and fj ord-regi on in Vest-Spitzbergen. Part 2. J. Ani mal Ecol. 5:370-389.
Hartung, R. 1967. Energy metabolismin oil-covered ducks. J. Wildl. Manage. 31:798-804.
Henry, R.F. 1975. St orm surges. Beauf ort Sea Tech. Rep. 19. Can. Dept. Envi ronnent, Victoria, B. C. 41 p.
Hildén, O. and S. Vuolanto. 1972. Breeding biology of the red- necked phalarope Phalaropuslobatus in Finland. Ornis Fenn. 49(3-4): 57-85.
Höhn, E. 0. 1955. Birds and nammal s observed on a crui se in Amundsen Gul f, N WT., July 29th-August 16th, 1953. Can. Fi el d-Nat. 69:41-44.

Höhn, E.O. 1968. Birds of the Chesterfiel d Inlet, District of Keenatin, Northwest Territori es; Canada. Can. Fi el d-Nat. 82:244-262.

Höhn, E.O. 1971. Observations on the breeding behaviour of the grey and red-necked phalaropes. Ibis 113:335-348.

Hol mes, R.T. and F.A. Pitelka. 1968. Food overlap among coexi sting sandpi pers on northern Al askan tundra. Systenatic Zool ogy 17:305-318.
Hol nes, R.T. and F.W. Sturges. 1975. Bi rd comminity dynamics and energetic in northern hardwoods ecosystem J. Anim. Ecol. 44:175-200.

Hol ngren, B., C. Benson and G. Weller. 1975. A study of the breakup of the Arctic Sl ope of Al aska by ground, air and satellite observation. p. 358-366. In: G Veller and S.A. Bowling (eds.). Clinate of the arctic. Proc. AAAS-AMS Symp., Fai rbanks, Al aska, Aug. 1973, Geophys. Inst., Uni v. Al aska.
Horn, H.S. 1966. Measurement of "overlap" in comparative ecol ogi cal studi es. Am Nat. 100:419-429.

Hoult, D.P. 1971. Mari ne pollution, concentrating on the effects of hydrocarbons in the sea. In: Canadi an- U.S. maritime problens and policies and the implications for the devel opment of international law A norkshop. Law of the Sea Inst., Can. Inst. Int]. Affai rs, and Uni v. Toronto Faculty of Law Toronto, Canada, June 15-17.

Houst on, C.S. 1965. Si berian recovery of pectoral sandpi per. BirdBandi ng 36:112-113.
Hull, E.D. 1914. Habits of the ol dsquaw (Hare Zdia hyemalis) in Jackson Park, Chi cago. Wilson Bull. 26:116-123.
Hynes, H.B.N. 1950. The food of freshwater stickl ebacks (Gasterosteus aculeatus and Pygosteus pungitius), with a revi ew of methods used in studies of the food of fishes. J. Anim. Ecol. 19:36-58.
Ingham, M.C. and C.V.W. Mahnken. 1966. Turbulence and productivity near St. Vincent Island, B.H.I.: a preliminary report. Carib. J. Sci. 6:83-87.

Ingolfsson, A 1967. The feedi ng ecol ogy of five species of large gulls (Larus) in Icel and. Ph. D. Thesis. Uni v. of Mich., Ann Arbor. 200 р.
I rving, L. 1960. Bi rds of Anaktuvuk Pass, Kobuk and OldCrow A study in arctic adaptation. U.S. Hat. Mis. Bull. No. 217. 409 p.

Jeh1, J.R. Jr. 1979. The autumal migration of Bai rd's sandpi per. Studi es in Avian Biol. 2:55-68.
Joensen, A.H. 1972a. Oil pol luti on and seabi rds in Denmark, 19351968. Dani sh Rev. Gam Biol. 6(8):1-24.

J oensen, A.H. 1972b. Studi es on oil pollution and seabi rds in Denmark, 1968-1971. Dani sh Rev. Game Biol. 6(9):1-32.
J oensen, A.H. and E.B. Hansen. 1977. Oil pollution and seabi rds in Dennark, 1971-1976. Dani sh Rev. Gane Biol. 10(5):1-31.

Johnsgaard, P. 1975. Handbook of uaterfow behavi or. Cornel I Uni v. Press. Ithaca, N.Y. 378 p.
Johnson, L.L. 1971. The migration, harvest and importance of waterfow at Barrow, Al aska. M.Sc. Thesi s, Uni v. Al aska, Fai rbanks. 87 p.
Johnson, R.E. and F.L. Kiokemeister. 1964. Cal cul us with anal ytic geometry. Thi rd edition. Allyn and Bacon, Inc., Boston. 798 p.
J ohnson, S.R. 1978. Beauf ort Sea barri er island-I agoon ecol ogi cal process studi es. Avian ecol ogy in Si mpson Lagoon, Beauf ort Sea, Al aska. p. 457-586. In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. Invest. , October 1978, Vol. 7. BLM/NOAA, OCSEAP. Boul der, Colo.
Johnson, S.R. 1979a. Beauf ort Sea barrier island-I agoon ecol ogical process studi es. Avian ecol ogy in Si mpson Lagoon, 1977-1978. Res. Unit 467. In: Envir. Assess. Al askan Cont. Shelf, Annu. Rep. Prin. Invest. (in press). BLM/NOAA, OCSEAP. Boul der, Colo.
J ohnson, S.R. 1979b. Fall observations of west ward migrating white uhal es (Delphinapterus leucas) al ong the central Al askan Beauf ort Sea coast. Arctic 32(3):275-276.
Johnson, S. R., W.J. Adans and M.R. Morrel1. 1975. Bi rds of the Beauf ort Sea. Can. Dept. Envi ronment, Victoria, B. C. 310 p.
Johnson, S. R., W.E. Renaud, W.J. Ri chardson, R.A. Davi s, C. Holdsworth and P.D. Hollingdale. 1976. Aerial surveys of birds in eastern Lancaster Sound, 1976. Unpub1. LG. Ltd. Rep. for Norlands Petroleuns Ltd. 2 vol.

Karlsson, J. 1976. Flyghöjden hos ejder under varflyttningen over sydligaste Skane--bestämning ned hjälp av radar. Fauna och Flora 71(4):152-157.
Karr, J.R. 1971. Structure of avian commities in sel ected Panama and Illinois habitats. Ecol. Monogr. 41:207-233.
Kelty, i1.D. and S. 1. Lustick. 1977. Energetic of the starling (Sturnus vulgaris) in a pi ne woods. Ecol ogy 58:1181-1185.
Kendeigh, S. C., V.R. Dol'nik and V.M. Gavrilov. 1977. Bioenergetics. p. 127-204. In: J. Pi nouski and S.C. Kendei gh (eds.). Granivorous birds in ecosystens. Canbridge Uni versity Press, London.
Kessel, B. and T.J. Cade. 1958. Bi rds of the Colville Ri ver, northern Al aska. Biol. Pap. Uni v. Al aska. No. 2:1-83.
Kessel, B. and G.P. Schaller. 1960. Birds of the upper Sheenjek Val ley, northeastern Al aska. Biol. Pap. Uni v. Al aska 4:1-59.
King, J.G. 1970. The swans and geese of Al aska's arctic slope. WI dfow 21:11-17.

King, J.G. and C.J. Lensi nk. 1971. An eval uation of Alaskan habitat for migratory bi rds. Bur. Sport Fish. Wildl. Processed Rep. 46 p.
King, J.G. and G.A. Sanger. 1979. Oil vul nerability index for marine oriented birds. p. 227-240. In: Conservation of marine birds in northern North Anerica. U.S. Fish Wildl. Serv., Wildl. Res. Rep. 11. 319 p.
King, J.R. 1974. Seasonal allocation of time and energy resources in birds. In: Paynter, R.A. (cd.). Avi an energetic. Pub. Nuttall Ornith. Club 15. Canbridge, Mass.
King, R.J. 1977. Mgratory bird popul ations of the National Petrol eum Reserve- Al aska (NPR-A) 1977. Unpubl. Rep., U. S. Fi sh Wild1. Serv., Ecol ogi cal Services/ Office of Special Studies. Anchorage, Alaska. 31 p.
Kistchinski. A.A. 1976. Numbers of waterfow on the Chukotsk Peni nsula. Bul I. Moscow Sot. Nat. , Biol. Section. 81(6):40-50. (Transl ated by C.H. Welling).
Ki stchi nski, A.A. 1978. Trophic relations bet ween birds and sone invertebrates in tundra ecosystens. (Rus., Engl. summary). Journ. Gen. Biol. 29(2):212-226.
Korschgen, C.E. 1977. Breeding stress of fenale eiders in Maine. J. Wildl. Manage. $41(3): 360-373$.

Koski, W.R. 1977. A study of the distribution and novenents of snow geese, other geese, and whi stling suans on the Mackenzie Delta, Yukon North Sl ope, and eastern Al askan North S'lope in August and Septenber, 1976. Unpubl. LG. Ltd. Rep. to Canadi an Arctic Gas St udy Limited. Cal gary, Al berta. 69 p.
Koski, W.R. and W.J. Ri chardson. 1976. Revi ew of waterbird deterrent and di spersal systens for oil spills. PACE Report No. 76-6. Petrol eum Associ ation for Conservation of the Canadi an Envi ronment, Ottana. 122 p.
Kozo, T.L. 1979. Evi dence for sea breezes on the Al askan Beauf ort Sea coast. Geophys. Res. Letters. Vol. 6(11):849-852.
Kozo, T.L. and R.A. Brown. 1979. Meteorol ogy of the Al askan arctic coast. Res. Unit 519. In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. Invest. BLM NOAA OCSEAP. Boul der, Colo.
Krechnar, A. V., A.V. Andreev and A. Y. Kondrat' ev. 1978. Ecolo gy and distribution of birds in northeast USSR. Mbscow Nauka. 196 p. (Transl ated by C.H. Welling).
Lagler, K.F. and C.C. Wienert. 1948. Food of the ol dsquaw in Lake M chi gan. Wilson Bull. 60(2):118.
Lank, D. 1979. Dispersal and predation rates of wing-tagged semipalmated sandpi pers Calidris pusilla and an eval uation of the technique. Whder Study Group Bull. 27:41-46.

Larson, S. 1960. On the influence of the arctic fox (Alopex lagopus) on the distribution of arctic birds. 0ikos 11:276-305.

Leavitt, E. and T.L. Kozo. 1978. Coastal meteorol ogy of the Al askan arctic coast. Res. Unit 526B. In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. Invest. BLM/NOAA, OCSEAP. Boul der, Colo.
Lee, R.F. and J.C. Nevenzel. 1979. U\&x esters in the marine environment: origin and composition of the wax from Bute Inlet, British Col unbi a. J. Fi sh Res. Bd. Can. 36:1519-1523.

Leffingwell, E. de K. 1919. The Canni ng Ri ver regi on, northern Al aska. U. S. Geol. Surv. Prof. Paper 109. 251 p.

Lewis, E.L. 1978. $\mathbf{C i l}$ in sea ice. Proc. 27th Alaska Sci. Conf., Fai r banks: 229-260.

Lew s, H.F. 1937. Mgrations of the Anerican brant (Branta bemicla hrota). Auk 54:73-95.
Li brary of Congress Congressi onal Research Service. 1976. Effects of of f shore oil and natural gas devel opment on the coastal zone. 95th U. S. Congress.
Løvenskiold, H 1964. Avifauna svalbardensis. Norsk Polarinstitutt, Oslo, Norway. 460 p.

Mackay, D. 1977. Oil in the Beauf ort and Mediterranean Seas. Arctic 30(2):93-100.

Madsen, F.J. 1954. On the food habits of di ving ducks in Dennark. Dani sh Rev. Gane Biol. 2:157-266.
Maher, W.J. 1974. Ecol ogy of pomarine, parasitic and long-tailed jaegers in northern A aska. Cooper Ornith. Soc., pacific Coast Avifauna, No. 37. 148 p.
Manni ng, T. H, E.O. Hohn and A.H. MtPherson. 1956. The bi rds of Banks I sland. Nat. Mus. Can. Bull. Nb. 143. 137 p.

Markham W.E. 1975. I ce climatol ogy of the Beauf ort Sea. Beauf ort Sea Tech. Rep. 26. Can. Dept. Envi ronnent, Vi ctoria, B. C. 87 p.
Marko, J. 1975. Satellite observations of the Beaufort Sea ice cover. Beauf ort Sea Tech. Rep. 34. Can. Dept. Envi ronment, Vi ctoria, B. C. $\quad 137$ p.

Marte], A M 1975. Natural resources of the Mackenzie Delta area: waterfow. Boreal Inst. for Northern Studi es, Prelim. Draft Rep., for Can. Dept. Indian Affairs and Northern Devel opment, Ottana.

Marti nez, E.F. 1974. Recovery of a semipalmated sandpi per at Prudhoe Bay, Al aska. Bi rd-Bandi ng 45:364-365.
Marti nez, E.F. 1979. Shorebird banding at the Cheyenne Bottons waterfowl managenent area. Whder Study Group Bul I. 25:40-41.
Marzolf, G.R. 1962. Substrate rel ations of the burrowing amphipod, Pontoporeia affinis Lindstrom. Ph. D. Thesis. Uni v. Mchigan, Ann Arbor.

Maykut, G.A. and P.E. Church. 1973. Radi ation climate of Barrow, Al aska. J. Applied Met eor ol ogy 12(4):620-628.
McLaren, P.L. and W.E. Renaud. 1979. Distribution of sea- associ at ed birds in northwest Baffin Bay and adj acent waters, May-October 1978. Unpubl. LG. Ltd. Rep. for Petro-Canada Expl orations Ltd. 3 vol.
Milne, A. 1977. Oil, ice and climate change. Can. Dept. Fish. Oceans, Ottawa. 103 p.
Mironov, 0.G. 1970. The effects of oil pollution on the flora and fauna of the Black Sea. FAO Tech. Conf. Mar. Poll., Rone. Paper FI R: MP/ 70/ E-92.

Moskalev, V. 1977. Mgration of the common scoter on Kolgomnya Spit (west from Leni ngrad) in July, 1975. (Rus., Engl. summ). Commun. Baltic Comm. Study Bird Migr. 11:46-48.
Mers, J.P., R.G. Greenberg and F.A. Pitelka. 1977. Breedi ng bird censuses-- wet coastal plain tundra. Am Birds 31(1):82-83.
Myres, M.T. 1958. Preliminary studi es of the behaviour, migration and di stributional ecol ogy of ei der ducks in northern Al aska, 1958. Interim Prog. Rep. to Arctic Inst. N Aner.

Nathorst, A.G. 1898. Ars svenska pol ar expedition från joklig synspunkt. Sv. Jägareförb. Nya Tidskr. 36 Stockhol m
National Acadeny of Sci ences. 1975. Petrol eumin the nari ne envi ronment. Whshi ngton, D.C. 107 p.
Nieland, B.J. and J.R. Hok. 1975. Vegetation survey of Prudhoe Bay regi on. In: Brown, J. (cd.). Ecol ogi cal investigations of the tundra biome in the Prudhoe Bay region, Alaska. Biol. Pap. Uni v. Al aska. Spec. Rep. 2. 163 p.
Nilsson, L. 1970. Food-seeking activity of south Swedi sh di vi ng ducks in the non-breeding season. 0ikos 21:145-154.
Nilsson, L. 1972. Habitat selection, food choi ces and feeding habits of di ving ducks in coastal waters of south Sweden during the nonbreeding season. Ornis Stand. 3:55-78.
Norlands Petrol euns Ltd. 1978. Envi ronnental impact statement for expl oratory drilling in the Lancaster Sound regi on. Cal gary, Al berta.

Norton, D.W. 1970. Thernal regi ne of nests and bioenergetics of chick grouth in dunlins (Calidris alpina) at Barrow Alaska. M.Sc. Thesi s. Uni v. Al aska, Fai rbanks. 78 p.
Norton, D.W. 1973. Ecol ogi cal energetic of calidridine sandpi pers breedi ng in northern Al aska. Ph. D. Thesi s. Uni v. Al aska, Fai rbanks. 163 p.

Norton, D. W, I.W. Ailes and J.A. Curatolo. 1975. Ecol ogi cal rel ationshi ps of the inl and tundra avifauna near Prudhoe Bay, Alaska. p. 124-133. In: J. Brown (cd.). Ecol ogi cal investigations of the tundra biome in the Prudhoe Bay regi on, Al aska. Biol. Pap. Uni v. Al aska, Spec. Rep. Nb. 2.

OCS Arctic Project Office. 1979. Envi ronmental stipulations rel ating to OCS devel opment of the Beauf ort Sea. Proceedi ngs of a synthesi s neeting of OCSEAP investigators. Arctic Project Special Bulletin 25:1-36.
Ottway, S.M. 1970. The comparative toxicities of crude oils. Proc. Symp. Ecol. Effects Oil Poll. Litt. Conm. Inst. Petrol. London, Engl and.

Oren, R. B., Jr. 1970. The bioenergetics of captive bl ue-winged teal under controlled and outdoor conditions. Condor 72:153-163.

Pal ner, R.S. (cd.). 1962. Handbook of North Anerican birds. Vol. 1. Loons through flam ngos. Yale Uni v. Press. New Haven, Corm 567 p.
Pal ner, R.S. 1967. Speci es accounts. p. 143-267. In: G.D. Stout (cd.). The shorebi rds of North Anerica. Viking Press, New York.

Pal ner, R.S. 1976. Handbook of North Aneri can bi rds. Vols. 2 and 3. Whterfow. Yale Uni v. Press, New Haven, Corm 521 and 560 p.
Parmelee, D. F., H.A. Stephens and R.H. Schmidt. 1967. The bi rds of sout heastern Victoria Isl and and adj acent small islands. Nat. Mus. Canada Bul I. 222. 229 p.
Pattie, D.L. 1977. Popul ation level s and bioenergetics of arctic birds on Truel ove Low and. p. 413-436. In: Bliss, L.C. (cd.). True love Low and, Devon Isl and, Canada: A high arctic ecosystem Uni v. Al berta Press. Edmont on.
Payne, R.B. 1972. Mechani sns and control of molt. p. 104-157. In: Farner, D.S. and J.R. King (eds.). Avian Bi ol ogy. Vol. II. Acadenic Press, New York.
Pehrsson, 0 1973. Chi ef prey as a factor regulating popul ations of ei der (Somateria mollissima) and I ong-tailed duck (Clangula hyemalis). Zool. Revy. 35(2):89-92.

Pehrsson, Q 1974. Nutrition of small ducklings regul ating breeding area and reproductive output in the Iong-tailed duck, Clangula hyemalis. XI Congr. Int. Uni on Gane Biol. Stockhol m 1973:259-264.

Peterson, S.R. 1976. The oldsquaw: body measurements, food habits, and envi ronment al contaminants. Ph. D. Thesi s. Uni v. Wisconsi n, Madison. 132 p.
Peterson, S.R. and R.S. Ellarson. 1977. Food habits of ol dsquaus wintering on Lake Mchigan. Wilson Bull. 89(1):81-91.

Pitelka, F.A. 1974. An avifaunal revi ew for the Barrow regi on and North Sl ope of Arctic Al aska. Arctic Alp. Res. 6(2):161-184.
Porsild, A.E. 1943. Bi rds of the Mackenzie Delta. Can. Fi eld-Nat. 57(2-3):19-35.
Prater, A.J. 1972. The Ecol ogy of Morecambe Bay, III. The food and feedi ng habits of knot (Calidris canutus L.) in Morecambe Bay. J. Applied Ecol ogy 9:179-194.

Richardson, W.J. 1972. Temporal variations in the abilities of indi vidual radars in detecting bi rds. Nat. Res. Count. Canada, Assoc. Comm. on Bird Hazards to Ai rcraft Field Note 61:1-68.

Ri chardson, W.J. 1979. Southeast ward shorebi rd migrati on over Nova Scotia and New Brunswi ck in autum: a radar study. Can. J. Zool. 57(1):107-124.
Ri chardson, WJ., M.R. Morrell and S.R. J ohnson. 1975. Bird migration al ong the Beauf ort Sea coast, May-July 1975: a radar and vi sual study. Beauf ort Sea Tech. Rep. 3c. Can. Dept. Envi ronment, Victoria, B. C. 131 p.
Rofritz, D.J. 1972. Ecol ogical investigations on waterfow wintering in the MI uaukee Embayment. M.Sc. Thesi s. Univ. Wisconsin, M I naukee.

Rof ritz, D.J. 1977. 0ligochaeta as a winter food source for the oldsquaw. J. Wildl. Manage. 41(3):590-591.
Rosent hal, R. 1978. Conbi ni ng results of independent studies. Psychol. Bull. 85(1):185-193.
Ross, S.L., W.J. Logan and W RoW and. 1977. Oil spill countermeasures. Can. Dept. Fi sh Envir., Ottana. 67 p.
Sadl er, T.S. and M.T. Myres. 1976. Al berta birds, 1961-1970, with particul ar reference to migration. Prov. Mis. Al berta, Nat. Hist. Sect. Occas. Pap. No. 1. Ednont on. 314 p.
Salomonsen, F. 1941. Mauser und Gefiederfolge der Eisente (Clangula hyemalis [L.]). J. Ornith. 89(2/3):282-337.
Salomonsen, F. 1968. The moult migration. Vill df owl 19:5-24.
Sal ter, R.E. 1974. Autum migration of bi rds through the central and upper Mackenzi e Valley regi on, 1972. Arctic Gas Biol. Rep. Ser. 13(2):32-82.

Sal ter, R.E. and R.A. Davis. 1974. Snow geese di st urbance by ai rcraft on the North Sl ope, Septenber, 1972. Arctic Gas Biol. Rep. Ser. 14(7):259-279.
Salter, R. E., M.A. Gollop, S.R. Johnson, W.R. Koski and C.E. Tull. 1980. Di stribution and abundance of birds on the arctic coastal pl ai n of northern Yukon and adj acent Northwest Territories, 197176. Can. Field-Nat. 94 (in press).

Sanger, G. A, R.D. Jones and D.W. Wiswar. 1979. The wi nter feedi ng habits of sel ected speci es of marine bi rds in Kachemak Bay, Al aska. Res. Init 341. In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. Invest. (in press). BLM/NOAA, OCSEAP. Boul der, Colo.
Schame1, D.L. 1974. The breeding bi ol ogy of the Pacific eider (Somateria molizssima v.-nicta Bonaparte) on a barrier island in the Beaufort Sea, Al aska. M. Sc. Thesi s. Uni v. Al aska, Fai rbanks. 95 p.

Schame T, D.L. 1978. Bird use of a Beaufort Sea barrier island in sumer. Can. Fi el d-Nat. 92(1):55-60.
Sche11, D.M. 1979. Nutrient dynamics in nearshore Al askan Beauf ort Sea waters. Res. Unit 537. In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. Invest. (in press). BLM/NOAA, OCSEAP. Boul der, Colo.
Schmidt, G.A.J. 1976. The overland-migration of waterfow over Schleswig-Hol stein. p. 87-99. In: E. Kumari (cd.). Bi rd migration. Acad. Sci. Estoni an SSR, Tallinn.

Schmidt, W.T. 1973. A field survey of bird use at Beauf ort Lagoon, June-Sept. , 1970. Unpubl. Rep. on file, U.S. Fish and Wildife Serv. , Arctic Nat. Wildife Range, Fairbanks, Alaska. 35 p.
Schiiz, E. 1974. Uber den Zug von Gavia aretica in der Paläarktis. Ornis Fennica 51:183-194.
Schweinsburg, R.E. 1974a. An ornithol ogi cal study of proposed gas pi peline routes in Al aska, Yukon Territory and the Nbrthwest Territories, 1971. Arctic Gas Biol. Rep. Ser. 10:1-215.
Schweinsburg, R. 1974b. Disturbance effects of ai rcraft to waterfow on North Sl ope Iakes, June, 1972. Arctic Gas Biol. Rep. Ser. 14(1):1-48.

Scale, A 1898. Notes on Al askan water birds. Acad. Nat. Sci. Phila. Proc. 50:126-140.
Searing, G. F., E. Kuyt, W.J. Ri chardson and T.W. Barry. 1975. Seabi rds of the southeastern Beauf ort Sea: aircraft and ground observations in 1972 and 1974. Beauf ort Sea Tech. Rep. 3b. Can. Dept. Envi ronnent, Vi ctoria, B. C. 257 p.
Searing, G.F. and W.J. Ri chardson. 1975. A study of seabi rds in the coastal Beauf ort Sea area, 1972 and 1974. Unpubl. LG. Ltd. Rep. for Can. Dept. Envi ronment, Victoria, B. C. 460 p.

Seastedt, T.R. and S.F. MacLean J r. 1979. Territory size and composition in rel ation to resource abundance in Lapl and I ongspur breeding in arctic Al aska. Auk 96:131-142.
Shapi ro, L. and R.G. Barry (eds.). 1978. The sea ice envi ronment. p. 3-55. In: Interimsynthesis report: Beaufort/Chukchi. BLM NOAA, OCSEAP. Boul der, Colo. 362 p.

Sharp, P.L. 1978. Preliminary tests of bi rd-scare devices on the Beaufort Sea coast. Unpubl. LGL Ltd. Rep. to Canadi an Marine Drilling Ltd. for Arctic Petrol eum Operators Assoc., Cal gary, Al berta. $\quad 54$ p.

Sharp, P.L., P. S. Tayl or, W.J. Ri chardson and J.W. Ward. 1974. Conti nui ng studi es of bi rd popul ations and productivity on lakes of the Yukon Coastal Plain, 1973. Arctic Gas Biol. Rep. Ser. 29(1):1-38.

Si egel, S. 1956. Nonparametric statistics for the behavi oral sciences. MEGraw Hill Co., New York. 312 p.

Sladen, W.J.L. 1973. A continental study of whistiing swans using neck collars. Wildf ow 24:8-14.

Snith, T.G. 1973. The birds of the Holman regi on, western Victoria I sland, Can. Fi el d-Nat. 87(1):35-42.

Spetzman, L.A. 1959. Vegetation of the Arctic Sl ope of Al aska. U. S. Dept. Int., Geol. Surv. Pap. 302-B. 39 p.

Spi ndl er, M.A. 1978a. Bi rd popul ations utilizing the coastal tundra, coastal lagoons, and nearshore waters of the Arctic National Wildife Range. Prelim. Rep. on file, U.S. Fish and Wildife Serv., Arctic Nat. VII dlife Range, Fai rbanks, Al aska. 8 p.
Spi ndl er, M.A. 1978b. Fal I staging of lesser snow geese on the North Sl ope of the Arctic National Wildiffe Range. Prelimn. Rep. on file, U.S. Fish Wildl. Serv., Arctic Nat. WIdilife Range, Fai rbanks, Al aska. 11 p.

Spi ndl er, M.A. 1979. Bi rd popul ations in coastal habitats, Arctic National Wildife Range, Alaska. Prelim. Rep. on file, U.S. Fish Wildl. Serv., Arctic Nat. WIdlife Range, Fairbanks, Al aska. 23 p.
Stevens, D.S. and A.N. Moen. 1970. Functional aspects of wi nd as an ecol ogi cal and thermal force. Trans. N Am Wildl. Nat. Res. Conf. 35:106-114.

Stott, R.S. and D.P. Ol son. 1973. Food-habitat rel ationship of sea ducks on the New Hanpshi re coastline. Ecol ogy 54(5):996-1007.

Straughan, D. (cd.). 1971. Bi ol ogi cal and oceanographi cal survey of the Santa Barbara Channel oil spill, 1969-1970. Vol. I. Bi ol ogy and bacteriol ogy. Allan Hancock Foundation, Uni v. Southern Cal if ornia, Los Angel es. 426 p.

Swegen, H 1972. Ejderns Somateria mollissima sträck över I and i södra Sverige. Var Fagelvärld 31:183-190.
Swennen, C. 1975. Aspecten van voedselproduktie in Whddenzee en aangrengende zeegebieden in relatie net de vogelrijkdom. Het Vogeljaar 23:141-156.
Szozepski, J.B. 1976. Report of oil pollution danaging the seabirds of Gdansk Bay. (Pol./Eng1. summary). Przeglad Zool. 20(1):75-81.
Tayl or, E.J. 1980. Food habits, feedi ng ecol ogy and mol t of ol dsquaus (Clongulahyemalis [L.]) on the Arctic Coastal Pl ain, Al aska. Research proposal subnitted to U.S. Fi sh Wildl. Serv., Office of Speci al Studi es, Anchorage, Al aska. 20 p.
Thompson, D. Q. and R.A. Person. 1963. The ei der pass at Poi nt Barrow, A aska. J. Wildl. Manage. 27:348-356.

Ti nson, R.S. 1976. Late summer migration at Barrow, Al aska. p. 354400. In: Envir. Assess. Al askan Cont. Shelf, Annu. Rep. Prin. Invest., Oct ober 1976. Vol. 1. BLM NOAA, OCSEAP. Boul der, Colo.
Ti nbergen, N 1935. Fi eld observations of East Greenl and bi rds. 1. The behaviour of the red- necked phalarope. Ardea 24:1-42.

Vaughan, B.E. (cd.). 1973. Effects of oil and chemically di spersed oil on sel ected marine biota--a laboratory study. Aner. Petrol. Inst. Pub. 4191,
Vermeer, K. and G. Anweiler. 1975. Oil threat to aquatic birds al ong the Yukon coast. Will son Bull. 87(4):467-480.
Vermeer, K and C.D. Levings. 1977. Popul ations, bi onass and food habits of ducks on the Fraser Delta intertidal area, British Col unbi a. WI df ow 28:49-60.

Viksne, J. and J. Baumanis. 1976. Results of the comon scoter moult mi gration observations in Irben Sound in Jul y-August, 1973. (Rus., Engl. summary). Commun. Baltic Comm. Study Bi rd Migr. 10:32-39.
WAl ker, D. A. and P.J. Webber. 1979. Rel ationships of soil aci dity and air temperature to the wind and vegetation at Prudhoe Bay, Al aska. Arctic 32(3):224-236.

Whl ker, H.J. 1974. The Colville Ri ver and the Beauf ort Sea: some interactions. p. 513-540. In: J.C. Reed and J.E. Sater (eds.). The coast and shelf of the Beaufort Sea. Arctic Inst. N. Aner.
Whrd, J.G. and P. Sharp. 1974. Effects of aircraft di sturbance on moulting sea ducks at Herschel Island, Yukon Territory, August, 1973. Arctic Gas Biol. Rep. Ser. 29(2):1-54.

Whrd, J.G. 1979. Bi rd and nammal surveys in the Cape Parry area, Northnest Territori es, June- August 1979. Unpubl. LG. Ltd. Rep. for Done Petrol eum Ltd., Cal gary, Al berta. 40 p.

Wht son, G.E. and G.J. Divoky. 1974. Marine birds of the western Beauf ort Sea. p. 681-695. In: Reed, J.C. and J.E. Sater. The coast and shel f of the Beauf ort Sea. Proc. Symp. Beauf ort Sea Coast and Shel f Res., Arctic Inst. N Aner.

Webber, P.J. and D. A Wil ker. 1975. Vegetation and I andscape anal ysis of Prudhoe Bay, Alaska: a vegetation map of the tundra biome study area. In: Brown, J. (cd.). Ecol ogi cal investigations of the tundra biome in the Prudhoe Bay regi on, Al aska. Biol. Pap. Uni v. A aska, Spec. Rep. 2. 163 p.
Weller, G, D.W. Nort on and T. Johnson (eds.). 1978. I nterim synthesi s: Beaufort/Chukchi. BLM NOAA, OCSEAP. Boul der, Colo. 362 p.
Wiens, J.A. 1973. Pattern and process in grassland bird commities. Ecol. Monogr. 43:237-270.
Wiens, J.A. and R.A. Mussbaum. 1975. Model estimation of energy flow in northwestern coniferous forest bird commities. Ecol ogy 56:547-561.
Wiens, J.A. and J.M. Scott. 1975. Mbdel estimation of energy flow in Oregon coastal seabird popul ations. Condor 77:439-452.
Wiggins, I.L. and J.H. Thomas. 1962. A flora of the Al askan Arctic Sl ope, Arctic Inst. N Am Spec. Pub. 4. 425 p.
Wblff, WJ., A.M.M. van Haperen, A.J.J. Sandee, H.J.M. Baptist and H.L.F. Saeijes. 1976. The trophic role of birds in the Grevelingen estuary, The Netherlands, as compared to their role in the saline Lake Grevelingen. 10th Europ. Symp. Mar. Biol. Vol . 2:673-689.
Wooley, J.B., Jr. and R.B. Owen, Jr. 1978. Energy costs of activity and daily energy expenditure in the black duck. J. Wildl. Manage. 42(4):739-745.

Wynne-Edwards, V.C. 1952. Zool ogy of the Baird Expedition (1950). I. The bi rds observed in central and south-east Baffin Island. Auk 69(4):353-391.
Zhalakevicius, M 1977. Radar observations on the moult migration of the common scoter in the Lithuani an S.S.R. (Rus., Engl. summary). Commun. Baltic Conm. Study Bird Migr. 11:24-36.

APPENDI CES

Appendix 1. Transect survey dates and ai rcraft types used during aerial surveys conducted in the study area during the period 5 J une to 22 Sept enber, 1977.

Transect Number	Survey Date and Aircraft Type*						
	5 J une	20 J une	5 July	28/29 July	15 August	30 August	22 Sept.
1	Bell 205	Bell 205	Bell 206	Bell 206	Not Surveyed	Bell 205	Bell 206
2^{+}	Bell 205	Bell 205	Bell 206	Cessna 206	Cessna 206	Bell 205	Bell 206
3^{+}	Bell 205	Bell 205	Bell 206	Bell 206	Not Surveyed	Bell 205	Bel I 206
4^{\dagger}	Bell 205	Bell 205	Bell 206	Cessna 206	Cessna 206	Bell 205	Bell 206
5**	Bell 205	Bell 205	Bell 206	Cessna 206	Cessna 206	Bell 205	Bell 206

*One observer was seated in a front seat and one in a rear seat, on opposite sides of the aircraft. In fixed-wing (Cessna) ai rcraft, the front observer was seated on the right side; in rotary-winged (Bell) ai rcraft, the front observer was seated on the left.
${ }^{\dagger}$ Survey altitude was $30 \mathbf{m}$ and survey ground speed was approxi matel y $160 \mathrm{~km} / \mathrm{h}$ (approxi matel y 100 mph).
**Survey altitude was 15 m and survey ground speed was approxi matel y $90 \mathrm{~km} / \mathrm{h}$ (approxinatel y 55 mph).

Appendi x II. Transect survey dates and aircraft types used during aerial surveys* conducted in the study area during the Period 23 June to $\mathbf{2 3}$ Sept enber 1978.

Transect Number	Survey Date and Aircraft Type ${ }^{+}$									
	23 J une	5 July	15 July	25 July	5-6 Aug.	15 Aug.	25° Aug.	5-b Sept.	15 Sept.	23 Sept.
1	Cessna 206	Cessna 206	Bel 1206	Cessna 206						
2	Cessna 206	Cessna 206	Bel 1206	Cessna 206						
3	Cessna 206	Cessna 206	Bel 1206	Cessna 206						
4	Cessna 206	Cessna 206	Bell 206	Cessna 206						
5	Cessna 206	Cessna 206	Bell 206	Cessna 206						
6	Cessna 206	Cessna 206	Bell 206	Cessna 206						
7	Cessna 206	Cessna 206	Bel 1206	Cessna 206	Cessna 206	Cessna 206		Cessna 206	Cessna 206	Cessna 206
8		Cessna 206		Cessna 206	Cessna 206			Cessna 206		
9		Cessna 206		Cessna 206	Cessna 206			Cessna 206		
10		Cessna 206		Cessna 206	Cessna 206			Cessna 206		
11		Cessna 206		Cessna 206	Cessna 206			Cessna 206		
12	Cessna 206	Cessna 206	Bell 206	Cessna 206						
13-1		Cessna 206		Cessna 206	Cessna 206		Cessna 206	Cessna 206		Cessna 206
13-2		Cessna 206		Cessna 206	Cessna 206		Cessna 206	Cessna 206		Cessna 206
14		Beaver**			Cessna 206		Cessna 206	Cessna 206		Cessna 206
15		Beaver**			Cessna 206			Cessna 206		
16					Cessna 206			Cessna 206		
17					Cessna 206			Cessna 206		
18		Cessna 206		Cessna 206	Cessna 206		Cessna 206	Cessna 206		Cessna 206
19		Cessna 206		Cessna 206	Cessna 206		Cessna 206	Cessna 206		Cessna 206
20	Cessna 206	Cessna 206	Bel 1206	Cessna 206						
21	Cessna 206	Cessna 206	Bell 206	Cessna 206						

*Survey al titude on ' al 1 transects except Transect 5 was 30 m and survey ground speed was approxi matel y $160 \mathrm{~km} / \mathrm{h}$ (100 mph)
in Transect 5, the survey altitude was 15 m and survey ground speed was approxi matel y $130 \mathrm{~km} / \mathrm{h}$ (80 mph).
${ }^{\dagger} n_{n e}$ observer was seated in a front seat and one in a rear seat, on opposite sides of the aircraft. In fixed-wing (Cessna) aircraft, the front observer was seated on the right side; in rotary-winged (Bel 1) aircraft, the front observer was seated on the left.
**Survey conducted by USFWS (Arctic National Wildlife Range).

Appendix III. Transect survey dates and aircraft types used during aerial surveys* conducted in the study area during the period 22 J une to 23 Septenber 1979.

Transect Number	Survey Date and Aircraft Type ${ }^{+}$			
	22 J une	28-29 July**	31 Aug. -1 Sept.	23 Sept enber
1	Cessna 206	Cessna 206	Cessna 206	Cessna 206
2	Cessna 206	Cessna 206	Cessna 206	Cessna 206
3	Cessna 206	Cessna 206	Cessna 206	Cessna 206
4	Cessna 206	Cessna 206	Cessna 206	Cessna 206
5	Cessna 206	Cessna 206	Cessna 206	Cessna 206
6	Cessna 206	Cessna 206	Cessna 206	Cessna 206
7	Cessna 206	Cessna 206	Cessna 206	Cessna 206
8	Cessna 206	Cessna 206	Cessna 206	Cessna 206
9	Cessna 206	Cessna 206	Cessna 206	Cessna 206
10	Cessna 206	Cessna 206	Cessna 206	Cessna 206
11	Cessna 206	Cessna 206	Cessna 206	Cessna 206
12	Cessna 206	Cessna 206	Cessna 206	Cessna 206
13-1	Cessna 206	Cessna 206		
13-2	Cessna 206	Cessna 206		
14		Cessna 206		
15		Cessna 206		
16				
17				
18		Cessna 206		
19	Cessna 206	Cessna 206		
20	Cessna 206	Cessna 206		Cessna 206
21	Cessna 206	Cessna 206		Cessna 206

*Survey altitude on all transects except Transect 5 was 30 m and survey speed was approxi matel y $160 \mathrm{~km} / \mathrm{h}$ (100 mph). On Transect 5, the survey altitude was 15 m and survey ground speed was approxi mately $130 \mathrm{~km} / \mathrm{h}(80 \mathrm{mph})$.
"" - One observer was seated in a front seat (right side) and one in a rear seat, on opposite sides of the aircraft.
**Two additional transects (Transects 22 and 23) were established al ong the north coast of the Yukon Territory, Canada, and were surveyed on 30 July 1979. Transect 22 i ncl uded the coastline, I agoons, spits and bays bet ween the Yukon- Al aska border and the east end of Herschel I sland. Transect 23 incl uded the coastiline, I agoons, spits and bays between the east end of Herschel Isl and and the border between the Yukon and Northwest territories. Data fromthe surveys of these two transects have not been incl uded in this report.

Appendi x IV. Methods of estimating the total number of ol dsquans present in Si mpson Lagoon, Beauf ort Sea, Al aska, during 1977 and 1978.

Because of a difference in the aerial survey procedures between 1977 and 1978 (see Methods section), the nethods of estimating the total number of ol dsquaus present in Si mpson Lagoon during these years were also different.

During aerial surveys conducted in 1977, lagoon Transects 2 and 4 were desi gned to sample I argel y I agoon habitats, but small anounts of barrier i sl and and mai nl and habitats were al so sampl ed on these transects. Odsquaws observed in these terrestrial habitats were not incl uded in ol dsquaw density cal cul ations. The mean densities of ol dsquavs in lagoon habitats were extrapol ated to the appropriate limits of similar habitats off-transect to arrive at an estinate of the total number of oldsquavs present in Simpson Lagoon.

During 1978, surveys of Transects 2 and 4 were redesi gned to sample onl y lagoon habitats. This design enabl ed the numbers and densities of ol dsquavs in lagoon habitats on each side of the aircraft ($\mathbf{0 - 2 0 0} \mathbf{m}$ and 200-400 mfromshore) to be counted and cal culated separately (this was not possi ble during 1977). Onl y the density of oldsquaus on the Iagoon side of the ai rcraft was extrapol ated to adjacent I agoon habitats. This provided an estimate that, when added to the total number of ol dsquans counted on the opposite side of the aircraft (the side imedi atel y adjacent to the shoreline), provided the best approxi nation of the total number of ol dsquaus present in a gi ven section of the lagoon.

Transect 3, located at mid-lagoon, was surveyed using identical procedures during both 1977 and 1978. Cal cul ations and extrapol ations of densities on this transect are straightforward.

The final estinate of the total number of ol dsquavs present in Simpson Lagoon was cal cul ated by si mplotalling the estimated numbers present in habitats represented by Transects 2, 3 and 4 (see Table 14).

Appendix y. Total nunbers and densities of oldsoudws on all transects and during all aerial surveys in the Simpson Lagoon area during 1977.

Amerdiz V!.	Tetal maners and 6 censt during 1978.										
TFAREECT mJTER		ग?	5ก6y			$\begin{aligned} & 5 / 6 \\ & 406 . \end{aligned}$	$\begin{gathered} 75 \\ 175 . \end{gathered}$	$\begin{gathered} 2 \mathrm{~S} \\ 17 \in \mathrm{c} \end{gathered}$	$\begin{gathered} 5 / 6 \\ 5 z^{6} \mathrm{~F} . \end{gathered}$	$\begin{gathered} 15 \\ 589 . \end{gathered}$	$\begin{gathered} 23 \\ \text { s2 } \\ \hline \end{gathered}$
J	$\begin{aligned} & \text { peqs } \\ & \text { copp } \\ & \text { cof } \end{aligned}$	$\begin{aligned} & 3.3 \\ & 0 \\ & 3 \end{aligned}$	n. 3	$\begin{aligned} & 5.5 \\ & 35 \\ & 53 \end{aligned}$	$\begin{aligned} & 1196 \\ & 40 \end{aligned}$	$\begin{aligned} & 0 \cdot 2 \\ & 3 \end{aligned}$		$\begin{gathered} \text { SO. } 7 \\ 719 \\ 3629 \end{gathered}$		$\begin{aligned} & 3 \text { ifsen } \\ & 2754 \\ & 387 \end{aligned}$	$22^{1 . \mathrm{s}}$
1	32vs	$19^{1.3}$	160."	$\begin{array}{r} 1345.1 \\ 23 \$ 2 \mathrm{n} \end{array}$	$\begin{gathered} 284 \cdot 7 \\ 4239 \end{gathered}$	${ }^{324.8}$	${ }_{14813}^{494.9}$	$5337{ }^{\text {a }}$	2236	700.0	14.9
	mip	3	4518.		8330	325	1053.3	65	12.3	1990.6	${ }^{165}$
3	3En5	${ }^{0 .} 3$	$50_{0} .1$	39.3 -89	73.0 896	${ }_{759} 7$	${ }^{1} 7.3$	13.3 410	${ }_{151}^{12.3}$	${ }_{364} 29.6$	${ }^{231.8}$
	Mn¢	J	33\%?	255	511.	55	300	259	50.	69.1	7138.6
*	0r4s	3.3	$28^{2 . ?}$	9178	297 ${ }^{19}$	$3^{6.4}$	0.0	${ }_{10}^{0.8}$	0.1	92	138.6
	\% Op	$\underline{3}$	20	917 450	240	19	$7{ }^{\circ}$	10 201	17	92	1780
5		$10^{1.3}$	19.	7. 1	$8 \cdot 0$	0.0	0.0	27.0	${ }_{i} 1$	8.0	${ }_{0} 0.0$
	unf	10	12	1	0		0	0	0	0	8.
b	Dess	1.8	14.5	1449. 1	372.1	21:.4	679.7	20?. 7	206.6	6.9	3.1
	- 04	19	80	7973	3151	1198	3740	1563	1356	38	17
	009\%	3.1	160	203	1.\$	165 S .9	496.7	235 0.0	30.1	17.1	0.0
7	d an	j	10°	$40^{.2}$	12^{18}	135	691	0	195	$7{ }^{7}$	0.0
	cort	0	0	J	0	205	2	0	15	19	15
a	dews	-	12.5	-	73.2	${ }^{18} 3.9$		0.0	$103{ }^{5}$		
	OfF	*	20		9	509		0	159		
9	0:ns	-	9.6		$\text { . } 3.0$	$7^{6.2}$	-	0.0	$\text { so } 1$		-
	tory	-	150		0	280		0			
11	9445	-	0.0		0.0	0.0		0.0	3.0		
	1 On	-	0		0			0	8		
	17P9	-	3		15	8.7		0	\%30		
11	SE\%S	-	$8 \cdot 2$		19.2	$22^{8.7}$		0.0	153.4		
	OOF\%	*	2		110	0		0	108		
12	dens	5.9	5. \%	749.0	190.3	212.8	174. 2	435.4	115.2	36.4	126.1
	- ${ }^{\text {an }}$	02	41	13436	2688 040		2425	6060 520	1603	367	17s5
	H0FF	325	15	566	- U0	. 2199			685.9		${ }^{32 s_{6.3}}$
13-1	DEWS	-	1.1		8.7	175.6		${ }_{101}^{14: 2}$	$21^{2.9}$		$59^{6.3}$
	IOPF	*	0			458		0	178		2265
13-2	9P45	-	5.1								
	'om	:	252		1078	3S61		$\begin{aligned} & \text { 甘876 } \\ & 2650 \end{aligned}$	$\begin{gathered} 859 / \\ 575 \end{gathered}$		1235
14	SEvs	-	0.0			121. *		0.0	87.7		3.0
	1 on	-	0			423			3098		8
	inft	-	0			t2199.1		0.0	$\begin{gathered} 15750 \\ 2 \mathrm{~A}, \mathrm{~s} \end{gathered}$		
15	2E45	-	.2. J			1.2274		0.0	$1{ }^{45} 5$		
	Anf	-	-			${ }^{2} 7391$		0	110		
16	28.5	-			-	1.27. 5		0.0	26.0		
	- ${ }^{\text {ar }}$	-				6257		D	15.7		
17	1075	-				$10 \% 0$, 0	1915		
	285	-						0.0	1909. 1		
	10\%p	-				691		0	207		;
18	OEVS	-			2.3	53.10		0.2	279.8		127.5
	1 OH	-	6.31		78	1795			9195		4163
	pup	-	087		28.	1565			24577		18043
19	DEYS	-	2.0		1.6	3.6		0.7	22.2		0.0
	\% On	-	8		11	25		5	155		1950
23	107\%	,	0		85				238.5		1850
	2ews	2. 3	9.2	0.0	J. 0	1.9	${ }^{8.1}$	26.0	68.5	0.0	${ }_{165}^{63.7}$
	$1{ }^{101}$)	12	7	9	10^{5}	21	26	167	3	165
29	107F	0		5.6	${ }^{5}$	$\begin{aligned} & 10 \\ & 8.3 \end{aligned}$					${ }^{\circ}$
	38.5	3.2	9.9	39^{6}	322.8	$124^{8.3}$	205. ${ }^{\text {t9. }}$	349	4893	$33{ }^{2.7}$	$540^{36.3}$
	10\%?	7	-	7	0	1	4.16	55	175	118	3879
	Devs	131.1	10.3	39950.1	$13 \mathrm{c}{ }^{\text {75.8 }}$	89.6	199.0	116.1	73.8	442.6	174.5
	- 01	135	3640	39936	$13 \mathrm{~s}{ }^{\text {a }}$	40165°	22065	23313	$3409{ }^{\circ}$	5727	23650
	nopp	327	7040	1611	2552	21465	2493	7629	48089	849	33291

Appendi x vil 1: Humbers of charadrilformes si ghted on a frequently sur veyed shoreline transect* on Pingok Island. Alaska, during $1971 \bullet$ nd 1978.

Cate	SPECI ES																									
	Black-bellied Plover		Ruddy Turnstane		Pectoral Sandpiper		Baird's Sandpiper		Dunl in		Semipalmated Sandp i per		Sanderling Phalarope				Northern Phalarope		Al 1 Phal a ropes		Glaucaus Gull				Arctic Tern	
	1977	1978	1977	1978	1977	1978	1977	1978	1977	1978	1977	1978	1977	1978	197719		1977	1978	19771	978	1	9	7	1976	1977	1978
August																										
2	0	0	0	0	0	0	1	0	2	0	29	0	0	0	4	0	-	0	4	0		0		0	0	0
3	0	-	1	-	0	,	5	-	1	-	2	-	0	-	77	,	53	-	130	-		0		-	0	-
4	-	0	-	0		0	-	0	-	0		0	,	0	-	1	-	0		0		-		1	-	0
6	0		7	-	0	-	1	-	0		0	-	0	-	193	-	60	-	253	-		1		-	3	
7	-	0	-	0	-	0	-	0	-	0	-	0	-	0	-	0	-	0	-	0		-		\checkmark	-	0
8	0	-	18	-	0	-	1	-	0	-	1		0	\cdots	525	-	51	-	686			0		-	1	-
9	-	0	-	0		0	-	0	-	0	-	0	-	0	-	0	,	0	-	0		-		0	-	0
10	0	-	5	-	0	-	0	-	0	-	0		0	-	0	-	0	-	338			3		-	0	-
11	-	0	-	0	-	0	-	0	-	3		0		0	-	30	-	0		33		-		0	-	0
12	0	-	1	-	3	-	6	-	1	-	1		0	-	69	-	23	-	11;	-		0		-	0	-
13	-	0	-	1	-	0	-	0	-	0		0	-	0	-	4		0		4		-		0	-	0
14	0	2	11	0	6	0	3	0	29	2	6	8	0	0	16	7	0	0	16	0		0		-	0	-
17	-	0	-	0	-	0	-	0	-	0		0		0	-	4	-	0		4		-		0	-	0
19	-	0	-	0	-	0	-	0	-	0		0		0	-	26	-	8		34		-		0	-	0
21	-	0	-	0	-	0	-	0	-	0	-	0		0	-	0	-	0	-	0		-		0	-	0
23	0	-	0	-	2	$-$	0	-	13	-	0	-	0	-	262	-	52	-	364	-		0		-	60	0
24	-	0	-	0	-	0	-	0	-	0		0		0	-	0	-	0	-	0		-		0	-	0
26	2	0	0	1	2	0	0	0	7	5	0	0	1	0	24	7	17	1	41	8		6		0	15	0
28	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0		0		0	0	0
31	4	2	0		0	0	0	0	9	8	0	0	3	0	0	0	0	0	0	238		1		0	26	0
September																										
2	3	2	0	2	0	0	0	0	9	6	1	8	5	1	0	0	0	0	0	0		0		0	0	0
3	-	2	-	0	-	0	-	0	-	0	\square	0	-	0	-	3	-	1		4		\square		12	-	3
4	0	-	0	-	0		0	-	0	-	0		1	-	0	-	0		0			0		-	0	-
6	0	-	2	-	0		0	-	37	-	0		0	-	0	-	0		0			2		-	0	-
8	1 ,	-	0	-	0	-	0	-	0	-	0		3	-	0	-	0		0			0		-	0	-
12	6		0	-	0		0	-	66	-	0		17	-	17	-	0		17			18		-	0	-
16	0	-	0	-	0		0	-	0	-	0		0	-	0	-	0		0			0		-	0	-
18	6	-	0	-	0		0	-	2	-	0		2	-	0	-	0		0			2		-	0	-

'This transect was located along the lagoons ide shoreline of Pingok island, (see Fig. 1). The dimensions of this transect, $1.2 \mathrm{~km} x 20 \mathrm{~m}$ (0.024 km^{2}), were slightly differ ent from ot her shorel ine transect s.

Appendix $\ x$. Prey organisms consumed by red and northern phalaropes in Si mpson Lagoon during August 1977 and 1978.

Taxon	August 1977 ($n=46$)				August 1978 ($\mathrm{n}=16$)			
	* wt*	\%	Occurrence	\% Hynes Poi nt	${ }_{8}^{8} w t$	6	Occurrence	\%Hynes Point
Mollusca Pteropoda	$[4]$		[2]	$[\overline{0.7]}$				
Crustacea							6	
Branch iopoda	tr		2	0.2	-			
Copepoda	45		50	50	1		25	17
Calanoida	8		13					
Calanidae	1		4	,				
Calanus aristotus	1		2					
Ca lanushyperboreus	3		9		tr		19	
Cuhonus g lacialis	tr		9		$t r$		19	
Pseudocalanidae								
Microcalarns sp.	t		2					
Hicroca lanus py dmaeus $^{\text {a }}$	1		4					
Pseudocalanus SP.	0.5		2				-	
Pseudocalanns minutus	0.5		6		tr		12	
Metridiidae								
Metriaia Sp.	1		6					
Me tridia iucens	1		17				-	
'fecmidia Longs	3		15		tr		6	0
Centrapagidae								
Limnoca lanus grimaki	1		2				-	
Thimidius SD Parachae ta norvegicus	tr		4		tr		6	0
Total copepods	[67]		[67]	[50]	[2]		[56]	[17]
Malacoatraca								
$\begin{array}{lll}\text { Mysidacea } \\ \text { Hysidae } & 8 & 13\end{array}$								
Mysis littoralis	8		13		5		12	4
Total mysids	[8]		[13]	[19]	[5]		[12]	[4]
Cumacea	tr		2	-				
Amph i poda	20		24	29	65		12	
Gammari dae				-	17		25	
Gantraricanthos iomisutus					1		6	
Gommarue se tosus					4		6	
Onisimus glacialis	.				6		31	
Total amphipods	[20]		[24]	[29]	[93]		[62]	[79]
Euphausiaced	[1]		[21	[0. 21				-
I nsects	[1]		[61]	[0.91				-
TOTAL	101			99.8	100			100

\% wet weight.

PART 4. FI SH

P.C. Craig
LG Li mited 2453 Beacon Avenue Si dney, British Col unbi a, Canada and
L. Haldorson
LG Ecological Research Associ ates 103 PI easant Street Bryan, Texas 77801

March 1980

TABLE OF CONTENTS

Page
SIMARY 388
ACCNOKEDEXNENS 390
InReOCTII 391
General Nature and Scope of Study 391
Cojectives 393
Rel evance to Devel opnent. 394
CaRREN STATE OF KIONEDE 395
STOV AREA 396
The Annual Cycle 397
Tides 398
Tenperature and Sal inity 398
Turbidi ty 399
Dissol ved Oxygen 40s
METHOOS AND RATI ONALE OF DATA COLLECTION 406
Sumer Prograns 406
1977 406
1978 406
1979 407
Winter Prograns 407
Al Years 407
1977.78 407
1978.79 409
Summer Met hodol ogy 409
Gill Nets 409
Fyke Nets 413
Faber Net 414
Beach Seine 415
Pole Seine 415
Fish Tagging 417
aher Nethods 417
Vinter Methodology 418
Estimation of Daily Ration 419
Stonach Evacuation Rate. 419
Feedi ng Periodicity 421
Physical and Chemical Measurenents 422

TABLE OF CONTENTS (cent'd)

Page
Laboratory Anal ysi s of Fish 422
Parasites 423
Food Habits 423
GENERAL RESULTS 426
Fi sh Popul ation in Si mpson Lagoon 426
Speci es Composition 426
Rel ati ve Abundance 427 427
Bi onass 431
Habitat Utilization 433
Nearshore (Brackish Water) versus Offshore (Marine) 433
Distribution
The "Edge Effect" 436
The Shorel i ne Corri dor 443
Summer Distribution 450
Winter Distribution 452
Effects of Physi cal Factors 456
Fish Movenents 460
Seasonal Mbvenents 461
Resi dency Tine in Si mpson Lagoon 475
Popul ation Numbers 430
Popul ation Estimates of "Catchable" Arctic and
480
480
Least Cisco
Least Cisco
486
486
Esti nated Densities of Conbi ned Speci es
Esti nated Densities of Conbi ned Speci es
490
490
Feedi ng Ecol ogy
492
Trophi c Spectrum
498
498
General Food Habits and Food Chai \mathbf{n}
500
500
Principal Prey
Principal Prey
509
509
Sel ectivity
Sel ectivity
513
513
Feedi ing Areas
Feedi ing Areas
516
516
Food Requi renents of Fish 522
Influence of Other Organi sns 522
Human Use of Fi sh Resources
528
528
Predator 529
Additional Life-History Data for Fishes 532
Arctic Oisco 532
Bering Cisco 551
Least Cisco 553
Arctic Char 564

TABLE OF CONTENTS (cent'd)

Page
Boreal Snelt 569
Fourhorn Sculpin 578
Arctic Cod 586
Saffron Cod 598
Broad Whitefish 601
Humpack Wii tefish 605
Arctic Flounder 605
Capelin 607
Sal mon 697
aher Species 699
GIIERLL DSCUSION 610
Characteristics of Arctic Fish Populations 610
Fish Use cf Nearshore Habi tats 615
I mpl ications of Feedi ng Ecol ogy 615
Food Supplies 615
Factors Contributing to Food Abundance 617
Factors Influencing Fish Acti vities 622
Feedi ing and Goovth 625
Mgration 627
Spawning and Overwintering 629
carcusias 632
RECOWENDED FURTIER RESEARCH 635
LITERATRE CITED 637
APPENDX 1 - Tag and recapt ure data for fish recovered during this study, Si mpson Lagoon 1977-79 651
APPENDIX 2 - A fish survey in the I ower Colville River drai nage with an anal ysis of spawning use by arctic and least cisco 657

SUMARY

During the brief open- water season al ong the Beauf ort Sea coastline, the rel ati vel y warm and bracki sh waters of Si mpson Lagoon and nearshore waters in general provide important habitat for several anadronous species (arctic cisco, least cisco, arctic char) and marine speci es (arctic cod, fourhorn sculpin). It is postul ated that there are physiol ogical advantages, and perhaps requi renents, for at least the anadromous speci es to renain in the nearshore envi ronnent.

Nearshore habitats are used by fish for one overriding purpose, nanel y feeding on the abundant nearshore food supply. Each spring as the ice nelts, anadromous and marine fishes invade nearshore waters and feed extensi vel y on epi benthic invertebrates (organi sns living on or near bottom substrates). The fish accumul ate food reserves for spawning and/ or overwintering requirenents. Dietary overlap anong fishes (and bet ween fish and birds) was high; a few mysids(Mysislitoralis,M. relicta) and amphipods(Onisimusglacialis) accounted for nost of the prey eaten. Throughout the open- water period the available invertebrate supply of preyin the Iagoon averaged about 1-2 orders of magnitude greater than the total daily food requi renents of all vertebrate consumers (fish and birds) in Si mpson Lagoon (Griffiths and Dillinger 1980).

Seasonal use of nearshore habitats by fish differed greatly. Anadromous fish arrived with the first si gns of spring breakup, di spersed al ong the coastline, and returned in fall to river drai nages to spawn and/ or overwinter. Marine speci es tended to increase in nearshore waters as the open- uater season progressed. For all species, numbers of juvenile and adult fish at specific locations in the lagoon constantly changed because of day-to-day pulses of novenent and I arge-scal e population novenents over periods of several weeks. Fishes appeared tol erant, for at least short periods, of a wide range of water temperatures, salinities, and turbidities; few specific responses to these variables were documented.

In summer, fish were di stri buted throughout nearshore waters, but anadromous fish were nost abundant al ong the shoreline, and highest concentrations often occurred within 100 m of the mai nl and shore; nari ne speci es tended to be nore evenly di stributed in nearshore waters.

Species composition and di stribution changed in wi nter. Mbst anadromous fish left coastal waters, but several marine species (principally arctic cod and fourhorn sculpin) and one anadromous species (boreal snelt) were caught under the ice between Prudhoe Bay and the Colville River. These fish event ually left shallow areas (< $\mathbf{2} \mathbf{m}$ deep) as ice thickened and salinities increased; they used deeper nearshore habitats for spawning and/ or overwintering. Tho anadromous species, arctic and least cisco, overwintered in the brackish waters ($18-32^{\circ} / \mathbf{0 0}$ salinity) of the Colville Delta.

Fish tagged in Si mpson Lagoon were recaptured in donestic, comercial and sport fisheries at several locations al ong the Alaskan Beauf ort Sea coastline. The comercial fishery in the Colville Delta harvests an estimated 9% of the arctic cisco and 5% of the least cisco that are susceptible to the fishery. Donestic fishing by the village of Nuiqsut, al so located in the Colville Delta, may harvest a similar anount. Effects of this fishing pressure on arctic fish stocks are not known.

Several factors influencing the numbers and di stribution of nearshore fishes were examined but predation pressure, parasite loads and food supply were not considered to be limiting to these fish popul ations. However, a continual imigration of prey into Si mpson Lagoon from marine waters was necessary to insure an adequate food supply for fish in their preferred nearshore habitats (Griffiths and Dillinger 1980). A di sruption of this immigration process, or di sruption of the exchange rates in general bet ween nearshore bracki sh waters and of fshore mari ne waters, nould probably reduce the food supply for nearshore fishes.

In summary, Si mpson Lagoon is a rigorous estuarine envi ronment whi ch appears to be mai ntai ned at an early stage in ecol ogi cal succession because of widely fluctuating physical factors (e.g., temperature, salinity, substrate gouging and resuspension, and periodic freezing). The I agoon is essentially a shallow ($<\mathbf{3} \mathbf{m}$ deep), frequently wind-churned and turbid channel of water. Successful species in this envi ronnent tend to be mobile and/ or tol erant of a wide range of conditions. This, in turn,
suggests that--at least in summer--the rel atively few species tol erating these conditions nould not be overly sensitive to rel ated types of snall-scale physical perturbations that might result fromindustrial activities.

ACKNOWLEDGEMENTS

It has been a pleasure interacting with the many people invol ved in this project. Acknow edgenent of the hel p and interest provided by indi vi dual s from BLM, NOAA, OCSEAP, LG, and associ ated researchers is presented in the introductory section of the overall programreport. We especially acknow edge Joe Truett, Carl Wilters and Bill Griffiths for their stimulating di scussions and overall improvenents to our program Benny Gallaway, Alan Birdsall and Joe Margraf al so provi ded fresh ideas and admini strative support for the project. Howard McElderry played an especially active and interested role in carrying out the field program JimHelmericks provided know edge of arctic fish and reliable logistic support. We al so appreciate the hel pof Rob Dillinger and Tim Byers for anal ysis of invertebrates, Hugh Bain for fish aging, Brian Harvie and Nell Stallard for data anal ysis and nany of the people listed above for assistance in the field. Our report has al so been im proved by the editorial comments of John Richardson and Joe Truett.

I NTRODUCTI ON

The nearshore envi ronment al ong the Beauf ort Sea coastline provides essential habitat for several arctic fishes, including the anadromous speci es utilized by man. During the short arctic summer, large numbers of marine and anadromous fish enter coastal waters and feed extensively on nearshore food resources. Anadromous fish accuml ate food reserves to support them through the arctic winter, and adult fish must reach a critical level of food reserves or they will not spawn (Bolotova 1976). During winter nonths, several species of narine fish continue to use nearshore water for feeding and spawning.

General Nature and Scope of Study

In 1976, LG. Ecol ogi cal Research Associ ates (LG) initiated an interdisciplinary study of a barrier island-I agoon ecosystem on Al aska's Beauf ort Sea coast. The purpose of this program was to identify and anal yze those components and processes that contribute significantly to the structure and productivity of the nearshore ecosystem The program began with a review and planing phase, followed by an active research programin 1977-1979. Truett (1980) provides a summary of the general objectives of the program

Si mpson Lagoon (Fig. 1) was selected as the study site because (1) it was reasonably typical of island-lagoon systens al ong the Beauf ort Sea coast, (2) prior human di sturbance to the area was rel atively limited, (3) it was reasonably accessible, and (4) some baseline data for the area were available.

From the onset of the program fish populations were identified as a significant component of the island-lagoon ecosystem Fish were an i mportant part of the short food chain operating in nearshore waters, and fish were important to humans residing al ong the Beauf ort Sea coastline. Theref ore, field studi es were conducted to examine fish resources in Si mpson Lagoon and assess their vul nerability to Outer Continent al Shel f devel opnent.

Fi gure 1. Map of Si mpson Lagoon study area, showing sumer sampling stations in 1977 and 1978.

Research emphasis in this study was directed towards those species identified to be of special interest to society or thought to be biologically important to these species. The fishes identifiedinthis manner were three anadromous species (arctic cisco, least cisco, arctic char) and two marine species (arctic cod, fourhorn sculpin).

The three anadromous speci es were considered important because they are the principal fish taken in most subsi stence, commercial and sports fisheries along the \mathbf{A} askan Beauf ort Sea coast. These species are al so widely distributed and abundant in coastal waters; they account for al nost 50% of the fish bi onass present in the summer. Ci scoes and char are maj or consumers of the secondary production (invertebrates) in lagoon waters.

The two mari ne speci es were incl uded as i mportant speci es because they are the numerically dom nant fish in Beaufort Sea coastal naters, al so accounting for about 50% of the fish bi onass present. They too are maj or consumers of secondary production in lagoon waters, and the arctic cod is, in turn, a val uable food itemfor birds, ' narine nammals and humans.

Obj ecti ves

The present study exami ned nearshore fishes and their ecol ogi cal role in a barrier island-lagoon system As previously described, the principal fishes sel ected for study were the arctic cisco, least cisco, arctic char, arctic cod and fourhorn sculpin. Specific objectives of the fisheries studi es were:

1. I dentify the princi pal uses (spawning, rearing, migrating, overwintering) of the barrier island-lagoon ecosystem by important fish species.
2. Determine fish utilization of habitat types during open- water and wi nter periods, and assess reasons for differential utilization of various habitats.
3. Document the timing of fish novenents, the resi dency tine of fish in specific lagoon waters, and patterns of coastal migration.
4. Assess food sources, feedi ng dependenci es and daily ration of fish in nearshore waters. Examine trophic rel ationships of fish with predators and prey.
5. Examine human use of fish resources.
6. Docunent life-history characteristics of fishes in the barrier island-l agoon ecosystem and adj acent waters.

Rel evance to Devel opnent
Scenarios describing potential envi ronmental impacts of petrol eum expl oration and production in coastal waters of the Beauf ort Sea have been devel oped (Milne and Smiley 1976; Veller et al. 1978; Bureau of Land Managenent 1979). Burns (1978) lists the following categories of devel opment activities that are likel y to cause envi ronmental impacts:

Pl anned Activities

1. Establishment of settlenents and support sites
2. Establishment of utility or transportation corridors i ncl udi ng roads, piers, pi pel ines, utility lines, airfields, storage areas, etc.
3. On-site devel opment and production structures (platforns, rigs, ice islands, etc.)
4. Marine transport

Unpl anned Activities

1. Fuel spills
2. Losses and di scharge of drilling muds (al so incl uding disposition of drill cores and escape of formation water)
3. Well bl ow out (gas)
4. Petrol eum facility fires
5. Maj or spills of crude oil, incl uding well failures.

Many of these activities will affect fish populations di rectly (e. g., oil spil 1s, water withdrawal from critical overwintering habitats) or indi rectly through alterations of fish habitat (e.g., gravel renoval, changes in temperat ures and salinities resulting fromman- caused changes in nearshore currents) or altercating of water quality (e.g., fuel spills, rel eases of drilling mads and formation waters).

CURRENT STATE OF KNOWLEDGE

Petrol eum di scoveries in the arctic have prompted a variety of fisheries studi es over the past decade. Mbst studi es have been of a catalogue and inventory nature since little fisheries infornation was available when oil and gas were found at Prudhoe Bay in 1968-69. Si nce that time, surveys of freshwater areas over much of the North Sl ope have been conducted with emphasis al ong the Sagavanirktok Ri ver where the Alyeska oil pipeline was built in 1974-76. Regions east of the Colville Ri ver recei ved nore attention by fisheries biol ogi sts than regions west of the river, since industry once proposed building another pi pel ine from Prudhoe Bay across the Arctic National Wildife Range and into Canada.

During this sane period, inventories of coastal fishes were also initiated, again with emphasis on locations between the Colville and Mackenzie rivers (Roguski and Konarek 1972; Alt and Kogl 1973; Ward and Crai g 1974; Kogl and Schell 1974; Galbraith and Hunter 1979; Kendel et al. 1975; Hablett 1980). Coastal sites where nore detailed studi es have been conducted are: Barrow (Cohen 1954; Wohlschlag 1954 and 1956), Prudhoe Bay (Furniss 1975; Doxey 1977; Bendock 1977), Barter I sl and (Griffiths et al. 1977), Nunaluk Lagoon (Griffiths et al. 1975), the Yukon coast (Craig and Mann 1974; Kendel et al. 1975) and the Mackenzie Delta (Mann 1974, 1975; Slaney 1974; Percy 1975; deGraaf and Machniak 1977). Topi cs such as species di stribution, rel ative abundance, general food habits, age-length rel ationships and basic life-history data have been the emphasis of nost studies, and a general picture of fish use of nearshore waters has gradually energed. However, only recently has attention been paid to the problens of trophic relationships, locations of overwintering areas, stock identification, effects of ofshore petroleum devel opment and resource managenent.

Fi sh use of offshore waters remains poorly documented. Virtually al Ifisheries studi es to date have described fishes, particularly the anadromous speci es, i nhabiting shal low nearshore waters, which are typically less than 3 m deep. Little is known about the distribution, abundance and ecol ogical role of mar'ine fishes in offshore waters, although an important contribution to this subject is a recent deep- uater (40-400 m) survey by Frost et al. (9 978).

Si mpson Lagoon, located between Prudhoe Bay and the Colville River delta on Al aska's North Sl ope (Fig. 1), is a large and partially encl osed body of water neasuring approxi mately 35 km in length and $3-6 \mathbf{k m}$ in width. To the north, Si mpson Lagoon is protected from di rect ocean exposure by a chain of barrier islands in the Jones Island group. Sone of these islands are composed of gravel and sand (Spy and Leavitt islands) while others are partly covered by tundra (Pingok, Peat, Bertoncini, Bodfish and Cottle islands). The mai nl and forms the southern boundary of the lagoon and is characterized by sl umping tundra banks (1. 5-3.0 min hei ght) and narrow beaches composed of silt, sand and gravel .

There are three principal pathways for water exchange into and out of Si mpson Lagoon (1) the far western exit between Spy Island and 0liktok Point, (2) the Iarge gap bet neen Spy and Leavitt islands, and (3) the far eastern entrance between Cottle Island and Beechey Point. In addition, there are several snall and shallow channel s between the vari ous isl ands. Fl ushing rates of lagoon waters are estimated to be 10-20\% exchange per day under normal conditions and up to 100% exchange per day during exceptionally strong winds (65 kmh h) (Mungall 1978).

Al though 14 small tundra creeks flow di rectly into Si mpson Lagoon, water exchange in the lagoon during the open- uater season is dominated by coastal currents of the Beauf ort Sea. For much of that season, the waters flowing through the lagoon origi nate partly from North SI ope rivers lying to the east of the study area. Because of prevailing easterly winds and westward-flowing currents, ri ver waters di scharged into the nearshore Beauf ort Sea generally flow fromeast to west and remain in the nearshore zone. Thus, Al aska's largest North Sl ope river, the Colville, which empties into Harrison Bay imediatel y west of Si mpson Lagoon, has surprisingly little direct hydrol ogical influence on the I agoon despite the closeness of its di scharge. During spring breakup in 1977 and 1978, overflow fromthe Colville onto the ice did not enter the lagoon, and for the remai nder of the season prevailing westwardflowing currents tended to carry the Colville's di scharge to the west rather than through Si mpson Lagoon. A reversal in the prevailing
di rection of nearshore currents occasi onally occurs during the sumer when storm wi nds bl ow from the west.

Si mpson Lagoon is a shallow water basin with an average depth of onl y 2 m and a maxi mum depth of 3 m Otside Si mpson Lagoon on the seavard side of Pi ngok Island, ocean depths drop to 2 mwithin 50 m of the shoreline and to $10-15 \mathrm{~m}$ within 1 km

The lagoon floor is uniformy flat and al nost feat urel ess. In nost areas, a layer of detritus covers substrates of mad and sand. The detrital layer, which varies in thickness up to $\mathbf{2 ~ c m ~ i s ~ n o t ~ c o n s o l i d a - ~}$ ted, but consists of a flocculent, anorphous mass above which mysids and amphi pods nove about. Nunerous snall hol es in the detritus are further signs of ani mal activity.

Sone topographic relief on the lagoon floor is provi ded by shallow ice gouge narks in the central portion of the lagoon and occasi onal tundra cl umps and piles of stones throughout. These stones, which neasure approxi mately $2.5 \mathbf{c m}$ in width, serve as a base for attached laminarian al gae, $30-45 \mathrm{~cm}$ in length.

The Annual Cycle

The ice-free period in Si mpson Lagoon is short, lasting about 3 nonths. Initial stages of spring breakup consist of flooding from the Kuparuk and Ugnuravik rivers in early June, subsequent drainage of much of this water through the ice, and the formation of open-water leads along mainland and island shorelines in mid-June. By late june and early July, shoreleads are $\mathbf{1 0} \mathbf{- 1 0 0} \mathrm{m}$ wide and contain cold $\left(0-4.5^{\circ} \mathrm{C}\right.$), clear and almost fresh waters (2.1-6.0 ppt). Most nearshore ice soon nelts or is noved away by wind and currents, and the lagoon is $\mathbf{9 0 \%}$ ice-free by mid-July.
ocean ice may hold fast against the outside of the barrier islands until mid- or late July, at which time the ice is noved about $\mathbf{1 0} \mathbf{~ k m}$ offshore by winds. Thereafter, ice floes occasi onally are blown back to the islands by win, but the lagoon itself renai ns ice-free for the duration of the summer.

Freeze- up begins in the lagoon in late September, when slush ice forns in shal low, cal maters. Lagoon waters were open on 1 October 1978, al though ice cover probably devel oped over the entire lagoon during the next two weeks.

During winter nonths, surface ice steadily increases in thickness. In Novenber, the ice is $20 \mathbf{c m}$ thick and maxi mumthicknesses of about $\mathbf{2 m}$ are reached in late winter (April). At this time, approximately $\mathbf{9 0 \%}$ of the lagoon vol une is frozen solid and the only unfrozen water is located in the lagoon center where under-ice depths are $0.3-1.0 \mathrm{~m}$ and in the deeper channel set ween the islands.

Ti des
Tidal fluctuations along the Beauf ort Sea coastline are snall and i rregul ar (J ohnson and Hartmann 1969; Lewellen 1970). Daily fluctuations in water level s are often onl y $10-15 \mathbf{c m}$ al though wind-generated changes may be greater (e.g., Griffiths et al. 1975 and 1977). The naxi mum recorded difference between hi ghest and lowest water level s over the open- water season was 90 cmin Nunaluk Lagoon (1974) and 75 cm in Kakt ovi k Lagoon (1975) (Griffiths et al. 1975 and 1977).

Temperat ure and Salinity

Seasonal changes in the physi cal envi ronment present stringent conditions for life in Si mpson Lagoon. Summer salinities run the gamt fromfresh to saline water, and in winter the water may becone hypersaline (up to 68 ppt, Crane 1974). Vater temperat ures range from summer hi ghs of $10-13^{\circ} \mathrm{C}$ to winter lous of $-2^{*} \mathrm{C}$. A generalized seasonal pattern for these physical characteristics is as follows:

Spring (I ate June-early July): waters cold ($0-5^{\circ} \mathrm{C}$) and nearly fresh ($1-10 \mathrm{ppt}$) because of melting ice and ri ver floodi ng.
Summer ($\mathbf{m i d}$-July-mid-August): waters rel ativel y warm (7$10^{\circ} \mathrm{C}$) and brackish (18-25 ppt).
Fal I (I ate August-Sept enber) : rapid cooling ($0-6^{\circ} \mathrm{C}$), waters bracki sh (18-25 ppt).

Winter (mid-October-Early June): water cold (1 to-2 ${ }^{\circ} \mathrm{C}$) and initially brackish (25-30 ppt), becoming saline or hypersaline (35-60 ppt.) by winter's end.

Lagoon waters are generally warner ($2-4^{\circ} \mathrm{C}$) and less saline ($4-5$ ppt) than waters outside the barrier islands. Because of the warming effect of the sun on shallow I agoon waters and because coastal circulation patterns tend to hold di scharge from North Sl ope rivers near the coastline, waters becone progressi vel y cool er and nore sal ine with increasing distance fromthe nai nl and shore (Figs. 2 and 3). An exception to this pattern was observed in 1977 when an apparent upwelling brought cold marine water agai nst the outsi de of the barrier islands.

Little vertical stratification of temperature or salinity occurs in the I agoon. In 1978 bot tom conditions were generally within $1^{\circ} \mathrm{C}$ and 3 ppt salinity of surface conditions. In the deep channel (3-4 m) between Spy and Leavitt islands, however, a tongue of col d hypersaline water was recorded (C. Mungall, pers. comm). Si milar hypersaline pockets of water were recorded in deep (4 n) pool sin Kaktovik Lagoon in summer (Griffiths et al. 1977).

In wi nter, water temper at ures are cold(-2 to $\left.+1.5^{\circ} \mathrm{C}\right)$ and salinities increase through the winter as ice cover thickens (Table 1). Underice water may becore hypersaline in shallow encl osed areas where there is Iimited exchange with offshore waters. Si mpson Lagoon becane hypersaline by I ate winter (Fig. 4).

Turbi dity
Lagoon waters are turbid to varying degrees for al nost the entire open- water period. Because of variations in wind-gener ated turbulence, nearshore turbi dity readi ngs fluct uat ed widel y (1-146 NTU recorded 80 m from shore) from day to day. Wive- washed waters around the I agoon edges are generally nore turbid than waters el sewhere; there is of ten a band of marky water al ong the shoreline (Fig. 5). Maxi mum turbidities occurred during and after periods of hi gh wi nds; the correl ation bet ween turbi dity (measured al nost daily in 1978, 80 mfromthe shorel ine) and wi nd speed was hi ghl y si gni ficant (correl ation coefficient $r=0.629$, $P<0.001, n=56$). After winds slacken, turbi dity readi ngs fall rapi dly as the sedi nents qui ckly settle out.

Figure 2. Seasonal variation in temperatures and salinities at Stations 1-5, 1977.

Figure 3. Seasonal variation in temperatures and salinities at Stations 1, 3, 5, 6 and 7, 1978.

Table 1. Physi cal conditions at sampling stations during early and mid-winter (see Figs. 6 and 7 for locations).

Station	Depth (m)				Uater Temp. ("C)	Sal inity (ppt)
	Date		Ic \mathbf{e}	Vater		
Colville A	5 Apri.	78	2	1. 5-4.5	-1.0 to -1.3	18-25
Colville B	5 Apr.	78	2	10.7	-1.0 to -1.7	19-32
Thetis Island	11 Nov.	78	0.7	3. 0	-1.0 to -1.2	24-28
	26 Feb.	79	1.6	2. 1		28.0
Si mpson Lagoon	11 Nov.	78	0. 7	2. 4	-1.5 to-2.0	24.0
	24 Feb.	79	1. 6	1.2	-2.0	36.0
Boul der Patch	11 Nov.	78	0.7	5. 8	1.5	23.0
	27 Feb.	79	1.6	4.9		28.5
Narwhal I sl and	11 Nov.	78	0.7	12. 1		
	25 Feb.	79	1. 6	10.6		28.0

Figure 4. Late winter salinities (ppt) in nearshore coastal waters,

$$
\begin{array}{l}12-14 M a y 1979 .\end{array}
$$

Figure 5. Turbidity profiles on east side of Milne Point, 1978. Whter depths were shal low 0.9 m deep at 20 m of f shore; 1.4 mdeep at 200 m offshore.

Si mpson Lagoon, despite its shallow nature, is not a honogeneous mixture of wind-churned water. SCUBA di vers observed that a vertical stratification of water currents occurred in the lagoon center even though the water depth was only 2 m Currents were slower at the bottom and thus the flocculent detrital layer often renai ned in place despite rel ativel \mathbf{y} high vel ocities of overlying water.

Di ssol ved Oxygen

Di ssol ved oxygen concentrations remai ned high at all stations during the open- water period. The average summer val ue in 1977 was 9.8 ml / ℓ (range 7.0-12.0 ml/, $\mathbf{n}=40$).

METHODS AND RATI ONALE OF DATA COLLECTI ON

The fisheries program consisted of both summer and winter field studies in Si mpson Lagoon and nearby waters. Sampling was nost intensi ve during three periods: the open- vater seasons of 1977 and 1978 and the winter of 1978-1979. A chronol ogy of summer and wi nter sampling prograns follows.

Summer Prograns

1977
In order to document fish use of Si mpson Lagoon and identify important areas for fish, the 1977 field program was desi gned to sample representative nearshore habitats intine and space during the open- uater season. Fi ve habitats (Fig. 1) were sampl ed on a regul ar basis:

Station No. (1977)	Habi tat Type	Whter Depth (m)
1	nai nl and shorel i ne	0-1.2
2	I agoon center	2-2.5
3	island shorel ine (lagoon)	0-1.2
4	island shoreline (ocean)	0-1.2
5	offshore ocean	8-10

The temporal sampling schene during 1977 consi sted of (1) a spring breakup period (16 J une- 5 J ul y) when sampling was restricted to openuater I eads around Pi ngok and Leavitt islands, and (2) a summer period when sampl es were taken at approxi matel y 10 -day intervals at all stations. Sampling ended 23 Septenber, when lagoon waters were begi nni ng to freeze. During each sampling period and at each location, the watercol um was sampled by a variety of techni ques to insure adequate collection of fish present.

1978
In 1978, the field camp was noved fromthe west end of Pi ngok Island to Milne Point for ease of logistic support, and the locations of the 1978 sampling program reflect this change (Fig. 1). Mbst fisheries
studies were conducted at Station 1 or at other locations al ong the mai nl and shorel ine ; the remai nder of the stations served primarily as collection sites for invertebrates (Griffiths and Dillinger 1980) although ichthyoplankton samples were taken at nost sites. As in the previ ous year, the 1978 summer sampling program (19 June- 24 Septenber) spanned the open- water season.

1979
A brief sampling effort was carried out in mid-summer (17-28 July 1979). The fisheries objective was to tag arctic and least cisco in order to estimate population sizes. Fyke nets were operated at Milne Poi nt (17-24 July), Kavearak Point (17-29 July) and Pi ngok Island (2527 July). Additional fish were caught by beach sei ne.

Winter Prograns

Al Years

As part of our winter studies, we nonitored the fall commercial fishery in the Colville River; this fishery is operated by Jim Hel nericks each October-Decenber in the lower delta near Anachlik Island (Fig. 6). The Colville is a maj or source of the ciscoes and whitefishes using Si mpson Lagoon in summer-- many fish tagged in Si mpson Lagoon were recaptured here. Through mark/recapture ratios of tagged and untagged fish, ue have estimated the popul ation sizes of arctic and least ciscoes in nearshore habitats.

1977-78
Alate-winter sampling program was conducted in the Colville Delta to determine the use of these brackish waters by anadromous and marine fishes, Under-ice gill nets were set at Stations A and Bin Kupigruak and East Channel s in April and May 1978 (Fig. 6).

Figure 6. Locations of winter gill net samples (Stations A and B) in the Colville Delta, April-May 1978. Al so shown are Nuiqsut Village (residents fish throughout the delta) and Anachlik Isl and where a commercial fishery (Helmericks) operates. Many tagged fish from Si mpson Lagoon were recaptured in this fishery.

An extensi ve sampling program was conducted in nearshore waters during Novenber, February and March- May. Because virtually nothing was known about the wi nter use of nearshore areas of the Beauf ort Sea by fish, we chose to sample a variety of nearshore habitats rather than concentrate efforts only in Si mpson Lagoon. Four principal sampling sites were near Thetis Island, in Si mpson Lagoon, in the "Boul der Patch" in Stefansson Sound, and near Narwhal Island (Fig. 7). Thetis Island was sel ected for investigation because it lies off the nouth of a naj or North Sl ope river where physical and bi ol ogical conditions might be very different than in other coastal areas. The Boul der Patch, a deepwater site protected by the barrier islands, was examined because it supports a bi ol ogi cally di verse assembl age of flora and fauna which differs greatly fromthat occurring in surrounding waters (Dunton and Schonberg 1979). Narwhal Isl and was sel ected for comparati ve purposes because it lies outside the barrier islands. This site was difficult to sample in early winter because of the shifting ice pack.

Summer Met hodol ogy
A diagrammatic comparison of principal sampling gear used along shorel ines during the 1977 and 1978 open- water seasons is shown in Fig. 8; gear di mensions are listed in Table 2.

Gill Nets

GII net \#5 (Table 2) was used in 1977. In shallow waters at Stations 1-4, this net sampl ed the entire water-col umm; both sinking and floating gill nets were used in deeper (10 m) waters at Station 5. Stations were first sampled soon after the ice melted and thereafter at approxi mately 5-12 day intervals. Gill net sets were usually $\mathbf{2 4} \mathbf{h}$ in duration but sonetimes varied (from 10-120 h) because ice and weather conditions interrupted the nornal routine. Total number of sets and days fished between 24 J une and 18 September 1977 are Iisted bel ow

Figure 7. Vinter sampling sites bet ween the Colville Delta and Narwhal Island, 1978-79. Primary stations (solid dots) and incidental sites (open circles) are indicated.

Fiqure 3. Fi sh sampling gear used during open -water studies alone onorel ines.

Tarle \therefore. Sescriptions af sampling gear

Siet Type	Majur Dimensions	Mesn Size (Stretched)	Material, Comment
3111 letal	$\begin{gathered} 4 C O D^{\prime} \times \mathbf{6}^{\prime} \\ (\text { single panel) } \end{gathered}$	2"	Monofi lament
Gly : Set $=2$	$\begin{gathered} : 50^{\prime} \times 6^{\prime} \\ \left(25^{\prime}\right. \text { panel s) } \end{gathered}$	75' x .75", 75' $\times 1{ }^{\prime \prime}$	4210/2 multi-filanent
Gill let : 3	$\begin{gathered} 150^{\prime} \times 6^{\prime} \\ \left(3 \mathbf{5 0}^{\prime}\right. \text { panel s) } \end{gathered}$	$50^{\prime} \times \begin{aligned} & 1 ", 50^{\prime} \times 1.5 " \\ & 50^{\prime} \times 2^{\prime \prime} \end{aligned}$	$\stackrel{769}{\text { Monofi I anent }}$
6 tll Net 54	$\begin{gathered} 150^{\prime} \times 6^{\prime} \\ \left(437.5^{\prime}\right. \text { panel s) } \end{gathered}$	$\begin{aligned} & 37.5^{\prime} \times 1 ", \quad 37.5^{\prime} \times 1.5^{\prime \prime} \\ & 37.5^{\prime} \times 2^{\prime \prime}, \quad 37.5^{4} \times 2.5^{\prime \prime} \end{aligned}$	1", 1.5", 2" 469 Monof i 1 ament 2.5" \#104 Mbnofilament
Gil ${ }^{\text {alet }} 75$	$\begin{gathered} 150^{\prime} \times 5^{\prime} \\ \left(5 \mathbf{3 0}^{\prime}\right. \text { panel s) } \end{gathered}$		Monofi I ament
Traminel let	$\underset{\text { (triple panel) }}{150^{\prime} \times \mathbf{b}^{\prime}}$	Cuter walls - 3" Inner walls . . 75 "	
$\begin{aligned} & \text { Fjxe Het } \\ & \text { 1977 } \end{aligned}$	```Lead net 100' x 4' wing nets 25'\times4" Trap-4'x 4' x 15' (2 throats)```	1" lead \& wing nets .5" trap	-44/5 Green nyl on
fyou iet i973	$\begin{aligned} & \text { Lead net } 200^{\prime} \times 4^{\prime} \\ & \text { wing nets } 50^{\prime} \times \mathbf{x} 4^{\prime} \\ & \text { Mouth }-\mathbf{y}^{\prime} \times 4^{\prime} \times 4^{\prime} \\ & \text { Trap }-12^{\prime} \times 3^{\prime} \times 3^{\prime} \\ & \left\{2 \text { threats } 6^{\prime \prime} \times \times 0^{\prime \prime}\right. \end{aligned}$	-" I ead § wing nets .5" crap	Lead \& wings $\# 63$ knotless nyl on, dark gray Trap - 147 knotless My $10 n$ - dark gray
Foxe Res =1 Under-lce		. ${ }^{\prime \prime}$	Ace knotless nyl on
Fyke : tet =2 Ender-lce	Sane as above except 2^{\prime} deep		
Faber Net	0.5 m di aneter Muth 3 mlong	1. 024 mm	
Eeacn Sei ne	360' $\times 6^{\prime}$	2.51	Equi pped with mid rollers
Pole Seine	$10^{\prime} \times 6^{\prime}$. 25"	Nyl on nesh
yinnow/ Al:phipod Trap	40 cm dianeter 1 ml long One nouth each end	$1 / 8 "$	Knotless nyl on
90X Trap under-Ice	$4^{\prime} \times 4^{\prime} \times 4^{\prime}$ 4 nouths 1. 5^{\prime} di aneter	1/32"	Nyl on nesh

	1977 Seasonal	
Statal s		
(1977)	Net Sets	Days Fished
1	10	10
2	10	19
3	10	10
4	7	10
5	7	10.5

A longer gill net, \#1 (Table 2), was used in 1978 to determine the nicro-distribution of fish relative to the shoreline. The $\mathbf{2}$ in mesh si ze used on this net is particularly effective in catching char and ci scoes in coastal waters (Griffiths et al. 1975). The net was marked at $2 \mathbf{m}$ intervals so that the locations of capt ured fish al ong the net . could be recorded. The net was set perpendi cular to the shoreline with a 2- to 3 m gap bet ween the net and shore. The rationale for leaving this gap was to insure that fish trying to avoid the net would be able to swimaround both ends and thus not bi as our estimates of their distribution by being funnel ed into the net at the shoreward end. Whter depths were typically 0.3 m at the landward end of the net and 1.5 m at the seaward end. The gill net was set for short tine periods (usually 1-3 h) because of the effectiveness of the net at catching fish and to minim me the possibility that fish nould avoid areas where nany fish were al ready caught. In sone cases, a transect longer than $\mathbf{1 2 2} \mathbf{m}$ was sampled by sequentially resetting the net at increasing di stances of $122 \mathbf{m}$ farther offshore for equal tine intervals.

Fyke Nets

Fyke nets proved to be usef ul and efficient in sampling fish, incl uding juveniles too small to be caught by gill nets. The style of net, as well as the location and manner of operating the net, differed bet ween the two summers of operation (Fig. 8, Table 2).

During spring breakup of 1977, fyke nets were operated in openwater leads al ong Pi ngok and Leavitt islands, but catches were small. Per nanent fyke net stations were established at Stations 1 and 3 on 2527 July 1977 and operated al nost daily until 22 Septenber 1977. The
fyke trap was generally situated in 1 mof uater so that the top of the trap was 20 cm out of the water. Nets were checked daily, weather permitting. Fish were emptied fromthe cod end of the trap into a holdir. pen attached to a boat. Speci nens were identified and neasured; ~. hose I arge enough were al so tagged.

In 1978, the design of the fyke net was improved in several respects: (1) lead and wing nets were doubl ed in length, (2) the trap was enl arged, (3) the net col or was changed to gray, and (4) two traps were used si mul taneously so that the di rection of fish novenent could be determi ned (Fig. 8). This net appeared to be nore efficient than the 1977 versi on; nore fish and a wider size range of fish nere caught. On one nenorable occasi on, a si ngle trap hel d over 25, 000 cod (60-140 mm in length) with no observable fish nortality.

Because of the large number of fish caught during 1978, onl y subsamples were measured. Al fish caught were counted, with the exception that during peak catches of arctic cod, numbers of this species were estinated. Estimates were obtai ned by counting the number of cod in a dip net filled to a given level, repeating this for several additional samples, and then appl yi ng the nean number per net-full to the total number of net-fulls in the trap.

The Milne Poi nt regi on was sampl ed by the tho-trap fyke net in 1978. Because wave action on the east side of the point interfered with the operation of the net, and because a subnerged gravel bar extended west ward from Milne Point, the fyke net was located on the west si de of the point approxi natel y 500 m from the tip. The net operated al nost the full length of the open- water season (30 June- 24 Sept enber 1978) . Fi sh caught in this fyke net were assuned to be traveling east or west and parallel to shoreline. However, the subnerged gravel bar of f Milne Poi nt nay have deflected some of the west ward-swinming fish, causing them to miss the trap and thus bi asing our $\mathbf{j u d g n e n t s}$ of the proportion of fish swi ming in each di rection.

Faber Net
A nodified Faber net (Faber 1968) was used to catch planktonic fish (Table 2). In 1977, each tow filtered approxi natel y 82 mof surface
water (i. e., a 5 -rein tow at $1.4 \mathrm{~m} / \mathrm{s}$). Each val ue presented is the average of tho repl icate tows at a sampling site. In 1978, three replicate tows were conducted and the vol une of water filtered was measured directly by a current neter installed in the nouth of the net.

Beach Sei ne

In 1978, a $91.4 \mathrm{~m}(300 \mathrm{ft})$ beach sei ne was used to esti nate numbers of fish in the usually turbid shoreline waters. The net was set with the aid of a Boston Whal er powered by a 50 hp notor. While one end of the net was hel d onshore, the sei ne was set in a curve, returning to shore approxi natel y 35 m down the beach from the starting point. Whter depth on the deep side of the net was generally 1.2 m The net was then pulled onto shore, and capt ured fish were counted, neasured and rel eased; large fish were al so tagged.

The area swept by the sei ne was esti nated in order to cal cul ate fish densities. The encl osed sampling area was bounded by a shoreline I ength of $35 \mathrm{~m}(\pm 3 \mathrm{~m}$) and a 91-m length of net. Usi ng these di mensi ons, the area sei ned was $980 \mathrm{~m}^{2} \mathrm{f}$ rectangul ar in shape or 1019 mif elliptical in shape. The average of these tuo val ues, 1000 mi will be used inthis report. The sampling error for densities of $\mathbf{f i s h}$ derived in this nanner is at least 5% (e.g., if the shoreline distance is 32 m rather than 35 m then the rectangul ar area is $944 \mathrm{~m}^{2}$ and the elliptical area is $947 \mathrm{~m}^{2}$); ot her nore significant sources of error include habitat sel ectivity (shal low areas could not be sampled) and avoidance due to boat di sturbance.

A variety of coastal areas were sampl ed by beach seine during the summer period, 26 July 1 Septenber ($\mathbf{~ F i g . ~ 9) . ~ T h r e e ~ g e n e r a l ~ h a b i t a t s ~}$ were sei ned: nai $n l$ and shorel $i n e$ ($n=44$ sei ne haul s), I agoon- side island shorel ines ($n=11$, and oceansi de i sl and shorel i nes $(n=8)$.

Pol e Sei ne
Fourhorn sculpin young- of-the-year were sampl ed at three di stances (0.2 m 3-5 m 10-12 m) fromthe I agoon shoreline of Pi ngok Island on 3 August 1977. A total of 17 pl ots, each approxi nately $20 \mathrm{~m}^{2}(2 \times 10 \mathrm{~m})$,

Fi gure 9. Sites sampl ed with a 91.4 mbeach sei ne, 26 J uly-1 Septenber, 1978. Synbol s at Milne and Kavearak Poi nts represent one or nore sampling efforts.
uas sampled with a $3.1 \mathrm{~m}(10 \mathrm{ft})$ pole seine. Mst pl ots were sei ned once; however, repeat sei ne haul s in five pl ots showed that the first sweep collected an average of 75% of the fish present; therefore, this correction factor was applied to the data.

Fi sh Tagging
During the summers of 1977, 1978 and 1979, 6412 fish were tagged in Si mpson Lagoon. Large anadromous fish (generally>250 mm) were tagged with Floy dart tags. Small marine and anadromous fish (generally 100$\mathbf{2 5 0} \mathbf{m m}$) were tagged with metal opercular tags. Mbst were caught in the Milne Poi nt fyke net, measured, tagged and rel eased immedi atel y. No nortality was observed anong over 400 tagged fish kept in a pen for 1-7 days.

Other Methods

Other methods were also used to sample fish or otherwise obtain information but none was as successful as any of the previ ously descri bed gear. Bri ef descriptions of other sampling efforts which proved unsuitable nay be of interest.

1. SCUBA di vi ng. In both 1977 and 1978, di vers swam underwater transects about every tho weeks at nost sampling stations (Fi g. 1), princi pally for invertebrate studi es. Athough we had hoped to study fish di stribution and behavi or in this nanner, few fish were si ghted. In 65 $20-m i n d i v e s$, a total of four fourhorn sculpins and one arctic flounder were observed. Poor visibility (often <1 m), low fish densities, and avoi dance behavi or of fish probably account for the dearth of sightings.
2. Aerial surveys. Sone observers report sighting fish during aerial surveys of arctic coastal waters; however, fisheries bi ol ogists who looked for fish during five aerial surveys flown at 30 mASL and $160 \mathrm{~km} / \mathrm{h}$ over the study area saw none. These were fixed-wing surveys flown over nearshore and offshore areas between Harrison Bay and Flaxman Island. Turbid I agoon waters often obscured visibility, although waters were clear in offshore areas and in shore leads during early summer.
3. Oter traw. A 4.9-motter traw was used in 1977 to sample invertebrates. Only 10 fish were caught in 79 tows. Low catches probably resulted fromslow trawing speeds and boat di sturbance in shal low (I-2 m) waters.
4. Purse seine. A large purse seine ($3.7 \times 183 \mathrm{~m}$) was tested in open lagoon waters. Four nen set the net in cal mater at Station 3 on $29 \mathrm{July} \mathrm{1978;} \mathrm{no} \mathrm{fish}$ were caught. It quickly becane apparent that it was not practical to nork a net this size with the snal I boats available (17' Boston Whal er, 15' Zodi ac).
5. Short-term fish rel ease experiments. Two field experinents are briefly described because they illustrate experinental design problens'in studi es- of fish novements, On 15 July 1978, 393 tagged anadromous fish (nostly ciscoes) were rel eased after being retai ned $\mathbf{1 - 7}$ days in a hol ding pen at Milne Point. A gill net was set up at Kavearak Poi nt (located 5 km east of the rel ease point) to intercept those fish during the next 24 h (the fish had been travel ing eastward when captured and it was presumed nost woul d conti nue in that direction). Surprisingly, not one tagged fish was recapt ured al though previ ous taggi ng studi es (Doxey 1977) have shown that some fish could easily traverse thi s di stance in the allotted time.
Results froma second experiment suggest one reason why the fish were not captured. In this experiment, i ndi vi dual fish were followed after rel ease to determine thei r swi ming speed and behavi or. A 3.8 cm fishing bobber, attached by monofilament line and hook to the posteri or base of the dorsal fin, was visible to observers following behind the fish in a tuo- man kayak. Six fish ($\mathbf{3}$ arctic char, 2 least cisco, 1 arctic cisco) were each tracked for 2-3 h. Though this experi nent was di sconti nued due to weather and logistical difficulties, it showed that the initial response of five fish was to head imedi atel y for the deeper waters of the I agoon center (the sixth fish swam nearer the shore). The average swiming rate of these fish, 34 kn day, was consi dered to be nore an escape response rather than a typical rate of novenent for feeding fish.

M nter Met hodol ogy

Under-ice sampling prograns were conducted in the Colville Delta (April-May 1978) and at several nearshore sites between the Colville Del ta and Narwhal I sl and (Novenber 1978, February and March- ApriI 1979). Locations of sampling sites are indi cated in Figs. 6 and 7.

Because of difficulties in collecting fish in ice-covered areas, a variety of nets was used during winter studies. Nets were set at the bottom of the water-col um to avoid freezing with surface ice. Details of net types and time fished are presented in Tables 2 and 3. The overall winter sampling effort in coastal waters was extensive:

Gear		Days Fi shed
gill nets		225
fyke nets		47
minnow traps		14
tramel nets		10
box trap		1

A fathometer (Raytheon Mbdel FR-450W) was al so tested but gave Iimited success in detecting fish distribution and abundance.

Estination of Daily Ration

To determine the effect of fish predation on epibenthic food resources, it is first necessary to estimate the anount of food ingested by fish each day (daily ration). In this study, the daily ration of arctic cod was cal cul ated by determining the proportion of the day that the cod spend feedi ng, the anount of food in their stomachs at various times of day, and the rate at which food is passed through thei \mathbf{r} stomachs (evacuation rate).

Stomach Evacuation Rate

The evacuation rate of food fromstonachs of arctic cod was determined by pl acing freshly-caught fish in a food-free envi ronment and then withdrawing samples of these fish at tined intervals to see how much food remai ned in the stomachs. The sample of arctic cod was caught in the previ ousl y-descri bed fyke net from 10:00-13:00 ADT on 20 August 1978. The fish were placedinalarge, fine-mesh hol ding pen (2 x 2 к $1.2 \mathrm{mdeep} ; 0.8 \mathrm{~mm}$ nesh) located in the lagoon at the fyke net site. Samples of 18-20 fish were taken 0, 2, 4, 7.5 and 20.5 h after renoval fromthe fyke net and di ssected within one hour. Stonachs mere

Table 3. Sampling.dates and gear used during winter surveys. Descriptions of sampling gear are given in Taple 2 . Al 1 netsets were bottom sets.

Sampling Deriod	$\begin{gathered} \text { Siation } \\ \text { (seefig 6, } 71 \\ \hline \end{gathered}$	Net Used (Table 2)	$\frac{\text { Depth }(m)}{\text { les Hacer }}$	Dates Fisned	Toce Days
April. May 1979	Colville A Colville B	$\begin{aligned} & \text { Gill Met } 5 \\ & \text { Gll Met } 5 \end{aligned}$	$\begin{array}{ll} 2: & 1.5-4.5 \\ 2 & 10.7 \end{array}$	$\begin{aligned} & \text { 8-20 Aprí1 } \\ & 9 \text { April- } 22 \text { May } \end{aligned}$	$\begin{aligned} & 13 \\ & 44 \end{aligned}$
Novenber 1978	Thetis isiand	GIII Net 5 Gill Net 2	0.73 .0	9-14 Novenber 9-16 Novenber	5
	Si mpson Lagoon	Glll met 2 Gill Net 3	0.72 .4	4-15 November 4-15 Novenber	$\begin{aligned} & 12 \\ & 12 \end{aligned}$
	Boul der Patch	G111 Net 2 G111 Net 3	0.75 .8	5-10 November, 14-16Moy. 5-16 Novenber	11
	Slarwhal I sl and	Box Trap Mi nnow/Amph i pod Trap	0.712 .1	3-4 Novenber 4-5 Novenber	1
$\begin{aligned} & \text { February } \\ & 1979 \end{aligned}$	Thetis Isiand	GII Net 5 Gill Net 4	1.6.?.1	18-28 February 18-28 February	$\begin{aligned} & 10 \\ & 10 \end{aligned}$
	Sinpson Lagoon	Gill Net 5 Gill Net 2 Gill Net 4	1. 61.2	11-14 Fearuary 12-14 February 24-26 February	3 2 2
	Boul der Patch	GIII Net 4 Gill Net 5 Under-ice Fyke	1. 64.9	14-15 February 14-15 February 15-27 February	$\begin{array}{r} 1 \\ 12 \end{array}$
	Narwnal is sland	GII Net 4 Tramel Net	1.610 .6	19-27 February 19-27 February	8
$\begin{aligned} & \text { March } \\ & 1979 \end{aligned}$	Thetis island	Gill Net 4 GII Net 5		\| March- 1 Apri 1 1-20 March	$\begin{aligned} & 31 \\ & 19 \end{aligned}$
$\begin{aligned} & \text { Apri I -Hay } \\ & 1979 \end{aligned}$	Thetis isiand	Gill Net 2 Gil) Net 4 Minnow/Amphipod Trap Fathometer	1.91 .7	3-7 May 3-11 May 3-7 May 8-9 May	4 8 4 1
	Simpson Lagoon	Fyke Net ${ }^{2} 2$ Minnow/Amphi pod Trap	1.70.5	$\begin{aligned} & \text { 4-14 May } \\ & 1-6 \text { May } \end{aligned}$	10 5
	Bou Ider Patch	G111 Net 4 Fyke Net 1 Minnow/Amphi pod Trap Fathometer	- -	29 April-2 May 29 April - 13 May 4. 8 May 1-8 May	$\begin{array}{r} 3 \\ 15 \\ 4 \\ 1 \end{array}$
	Narwhal I si and	GII Net 4 Tramnel Net Fyke Net	1.9 10.0	30 April- 2 May 30 April-2 Mzy 2 Hay- 12 May	2 2 10
	East Spy	GII Net 4 Gathometer	1. 83.3	$\begin{aligned} & \text { 8-12 May } \\ & 9-10 \mathrm{May} \end{aligned}$	4
	West SPY	Gill ${ }^{\text {Nat }} 4$	- -	8-14 May	6

preserved in 10\% formalin and contents were Iater weighed on a Mettler bal ance. The errors in wei ghts of stomach contents resulting from for-
malin preservation and the time delay (6 whs) between collection and
weighing are not known but are presumably consistent among samples since
all samples were treated similarly. Lagoon water temperatures and
Salinities varied slightly during the course of this experiment (4.5-
$\left.6.5^{\circ} \mathrm{C}, 24-26 \mathrm{ppt}\right)$.

Feedi ng Periodicity
To determine whether arctic cod fed continuously or at particular
times during the day or night, fish samples were collected from the
lagoon at intervals over a $24-\mathrm{h}$ period and their stomach contents $\mathbf{i} \mathbf{n -}$ spected. The experiment was conducted at Milne Poi nt where speci mens were caught by beach sei ne or fyke net operating for short periods. On 23-24 August 1978, 10-15 arctic cod were collected at approximetely 5-h intervals: 10:00, 15:00, 19:00-20:00, 24:00-01:00, 06: oo- o8: ooadt. As the experiment progressed, the rate of catch decreased, presumbly because few cod were in the area. Consequently, later in the sampling period nore effort and tine were requi red to catch at least 10 fish . The experi ment ended when no cod were caught during the last sampling period at 11:00-13:00 on 24 August; the cod had vacated the area. Therefore, data acquired on tho earlier dates (20 August 1978 at 10:00-13:00 and 21 August 1978 at 10:00 h) were incl uded to suppl enent the anal ysi s of feeding periodicity. The 20 August data were the $t=0$ in data from the food evacuation rate experiment; the 21 August data were from the first attempt at a feeding periodicity experinent, which was aborted when rough waters hindered sampling efforts. Stonach fullness data from all dates were obtai ned in a similar fashion. Lagoon water temperatures and salinities were similar during all sampling periods: 2.0 August $\left(6.5^{\circ} \mathrm{C}, \mathbf{2 5} \mathrm{ppt}\right), \mathbf{2 1}$ August $\left(4.5^{\circ} \mathrm{C}, \mathbf{2 5} \mathrm{ppt}\right), \mathbf{2 3} \mathbf{- 2 4}$ August $\left(4.5-5.0^{\circ} \mathrm{C}\right.$, 25-26 ppt).

Physi cal and Chemi cal Measurenents

Whter temperature, salinity, di ssol ved oxygen and turbidity were measured daily 80 m from shore at Station 1 , where the fyke net was operated, and at approxi mately 10-day intervals at ot her stations during both open- water seasons. Sampling instruments used in 1977 incluid. a YSI-33 Salinity/Conductivity Meter (salinity, temperature), Hach Model 2100A Turbidimeter (turbidity) and Hach Portable Oxygen Determination Kit (di ssol ved oxygen). In 1978, equipnent incl uded a Hydro Lab Meter (temperature, conductivity) and DRT-15 Turbidimeter by H.F. instruments. Turbidity is neasured in nephelometric turbidity units (NTu).

Laboratory Anal ysi s of Fi sh

Samples of fish were routinely collected for diet studies and lifehistory analyses. Abundant size classes of fish were generally sampled, but efforts were made to collect a complete size range of fish present, so uncommon sizes of $f i$ sh were sampl ed when encountered.

Fi sh were examined in the field laborat ory within $\mathbf{2 4} \mathbf{h}$ after their capture. Laborat ory anal ysi s incl uded determination of fork or tot al length to the nearest millimeter, wei ght to the nearest gram sex and maturity. Based on a field eval uation of reproductive condition, and ai ded by neasurenents of egg sizes or testes wei ghts, fish were cl assified as "i mature" (have never spanned), "nature green" or "mat ure spawner" (youl d have spawned in the year of capture), or "mat ure nonspawner" (had spawned previ ously but would not spawn agai \mathbf{n} in the year of capture). For some species, the assessment of reproductive status was partially subjective as noted by Craig and Mann (1974); criteria for these assessments are described in fish lifehistory sections of this report.
Fish ages were determined by analysis of otoliths according to the
criteria and methods of Nordeng (1961) and Williams and Bedford (1974).
Although otoliths are a preferred nethod for aging northern or slow-
growng fish species (e.g. Craig and Mann 1974; Mann 1974), the annuli
are occasionally difficult to interpret (Yole 1975; Beamish 1979).

As an indicator of fish condition, the total wei ght of fat on the di gestive tract of each of 33 arctic cisco was determined in the follow ing nanner. Intestinal fat (IF) was wei ghed together with the pyloric caeca (PC), which hel d a consi derable anount of fat (PCF). PC wei ghts were estimated by regressing IF agai nst IF + PC + PCF. On the assumption that PCF nould be zero when IF is zero, an extrapol ation indicated that PC wei ghts were about $\mathbf{7} \mathbf{g}$ for fish under $\mathbf{3 5 0} \mathbf{g}$ and $8 \mathbf{g}$ for larger fish. This wei ght was subtracted fromthe initial figure (IF + PC + PCF) to gi ve wei ght of f at onl y.

Parasites

A preliminary examination of fish parasites nas nade. Fi ve sampl es of 21-25 arctic cisco were collected- two samples from under the ice in the Colville Delta (Novenber 1976 and 1977) and three samples during the open- water season in Si mpson Lagoon ($30 \mathrm{~J} u n e, 27 \mathrm{Jul} y$ and 2 Septem ber 1977). These arctic ciscoes averaged 345 mm fork length (range 275-385, $\mathbf{S D}=\mathbf{2 1}$) and 551 g wei ght (range $265-801 \mathrm{~g}, \mathrm{SD}=\mathbf{1 3 6}$). The gills and viscera were renoved and preserved in 10\% formalin and Iater examined for the presence of parasites. Condition factors for these fish were determined by the equation:
$c=1 \frac{\text { weightc }(19))}{\text { engejth }(\mathbf{c m})^{3}}$

Food Habits
Sumer and winter diets of fish in coast al waters were examined. For each sel ected speci es and sampling period approxi matel y 30 speci mens were collected for anal ysis of stomach contents. Locations and dates of collections were as follows:

Date	Locati on		
	Si mpson Lagoon	Colville Delta	Theti 5 ~, -Nar whal
1977			
Early summer M d-summer Late summer	19 J une- 25 J uly 3-19 August 30 Aug-18 Sept.		
1978			
Late winter		8 April-22 May	
Early winter	26 J une- 3 J uly		
M d-summer	16-30 July		
Late summer	17 Aug-4July		
Early winter			5-16 May
Md-winter			17-27 Feb.
Late winter			7 Mar - 14 May
1979			
M d- summer	17-28 July		

The timing of collections depended partly on the availability of specinens.

Fi sh used in di et studi es were collected by gillnet (87% and fyke net (13%. Fi sh caught in fyke nets were used onl y when sample sizes from gill nets were low si nce those caught in fyke nets may have fed upon invertebrates attracted to or caught by the fyke net. For each species, the fish exam ned were generally from the nost common sizeclass present at the time of sampling (Table 18). However, we exerci sed some sel ection of speci mens to ensure that similar size-classes were st udi ed throughout the summer nonths.

Fi sh stomachs were preserved separately in formalin and Iater anal yzed in the laboratory. Identifiable itens were counted, measured and wei ghed according to the nethods described by Griffiths and Dill inger (1980). One change in nethods shoul d be noted- wei ghts of naj or prey speci es in the 1978 and 1979 sampl es were determined by "reconstructing" their weight prior to partial di gestion by the fish. This was accompl i shed by measuring a sel ected part of the organi sm and then cal cul ating its total wei ght when ingested from length rel ationships between the part and the total organism and fromthe wei ght-length
rel ationshi ps for the species. Weti ghts of earlier (1977) collections were determined by directly wei ghing all identifiable speci mens and fragnents for each species. Limitations and bi ases of these techniques are di scussed by Griffiths and Dillinger (1980).

The degree of food overlap bet ween fish species was determined by the nodified Morisita index (Horn 1966):

$$
C=\frac{2 \sum_{i=1}^{\mathbf{s}} \mathbf{x i} \mathbf{Y}_{\mathbf{i}}}{\sum_{i=1}^{S} X_{i}^{2}+\sum_{i=1}^{S} Y_{i}{ }^{2}}
$$

where S is the total number of food categories, and $X i$ and Y_{i} are the proportions of food itemin the di ets of species X and Y, respectivel y. The index C vari es from O, when the di ets have no food itens in common, to 1 , when the diets are identical in kinds and proportions of food itens. A value of $\mathbf{0 . 6}$ or greater is assumed to indicate a significant overlap (Zaret and Rand 1971).

GENERAL RESULTS

The results of the Si mpson Lagoon programare presented in two sections. The first section describes how fish use nearshore watershabitat utilization and trophic rel ationshi ps are examined. The second section presents additional life-history data for each of the fishes using the study area.

Fish Populations in Si mpson Lagoon

Speci es Composition
During summer (1977 and 1978) and winter (1978 and 1979) sampling periods, a total of 22 fish species were caught in Si mpson Lagoon and nearby coastal waters. These fishes are listed bel ow according to their princi pal life-history pattern:

Anadromous Speci es
arctic char (Salvelinusalpinus)
arctic cisco (Coregonusauturmalis)
I east cisco (C.sardinelza)
Bering cisco (C. Zaurettae)
broad whitefish (C. nasus)
humpback whitefish (c. pidschian)
boreal snel t (Osmerus epertanus)
ni nespi ne sti ckl ebacks (Pungitius pungitius)
pi nk sal non (Orcorhunchusgorbusca)
chum sal non (O.ketä)
threespi ne stickl ebacks (Gasterosteus acuZeatus)
Marine Species
arctic cod (Boreogadus saida)
fourhorn sculpin(Myoxocephalusquadricomis)
arctic flounder (Liopsettaglacialis)
saffron cod (Eleginus gracilis)
capelin (Mallotus villosus)
Pacific herring (clupea harengus)
snailfish(Liparus sp.)
sculpin(Myoxocephatus sp.)
Pacific sand Iance (Ammodyteshexapterus)
Freshwater Species
round whitefish (Prosopium cylindraceum)
grayling (Ihumallus arcticus)

Based on the variety of sampling net hods used and the thorough sampling efforts in time and space (see METHODS), it is felt that this Iist represents virtually all fishes utilizing the lagoon during 1977 and 1978. Al nost 200,000 fish were caught during the course of this study (all but subsamples were rel eased alive). Totals of $\mathbf{1 1}, \mathbf{1 7 3} \mathbf{f i s h}$ were taken during the 1977 open- water season, 179, 937 fish during the 1978 open- water season, and 2734 fish during wi nter studi es.

Three addi tional speci es were caught outsi de Si mpson Lagoon: sockeye sal mon (Oncorhynchus nerka), spotted snailfish (Liparus callyodon) andwattled eelpout(Lycodes palearis). The sockeye was 'caught in the Colville Ri ver and the two other marine fishes were collected seaward of Pi ngok IsI and.

Rel ative Abundance
Summer. Although 22 fish speci es were caught in Si mpson Lagoon, five species accounted for over 91 and 98% of all fish caught during the summers of 1977 and 1978, respectivel y. Tho narine species (arctic cod, fourhorn sculpin) were the numerical dominants in the lagoon, and three anadromous species (arctic cisco, least cisco, arctic char) were the next nost abundant. These speci es al so characterize the fish fauna of nearshore waters al ong nost of the Beauf ort Sea coastline (Oraig and McCart 1976; U. S. Dept. Commerce and Dept. Interi or 1978).

The rel ative abundance of fishes taken in Si mpson Lagoon varies according to method of capture (Table 4). Each type of gear commonl y used to catch fish is strongly bi ased in terns of both the species and the sizes of fish caught. In 1977, for example, the Faber net collected ichthyoplankton, the fyke net caught primarily small and/ or marine fish, and gill nets caught primarily large anadromous fish.

The fyke net data are of particular interest because the naj ority of fish caught by this nethod were snall arctic cod, fourhorn sculpin and arctic cisco. These data and the results of Bendock (1977) from Prudhoe Bay show that snall fish are substantially nore common in nearshore Beauf ort Sea waters than indicated by earlier st udi es that relied on data obtai ned by gill nets (revi ewed by Craig and McCart 1976).

Table 4. Rel ative abundance of $\mathbf{f i} \boldsymbol{s h}$ caught during the open- water season by different methods in Si mpson Lagoon.

Fi sh Speci es	1977			1978	
	Gill Net $\%$	Fyke Net $\%$	$\begin{gathered} \text { Faber } \\ \text { Net } \\ \% \\ \hline \end{gathered}$	Beach Sei ne \%	Fyke Net \%
Arctic cod	0.1	7.6	83.1	7.6	77.9
Fourhorn sculpin	9.2	69.6	0	20.9	17.9
Arctic cisco	56.3	14.7	0	16.7	0.8
Least cisco	11.6	2.3	0	48. 2	1.2
Arctic char	14. 2	3.8	0	3. 6	0.9
Broad whitefish	3.8	0.1	0	1. 1	0.2
Humpback whitefish	2. 2	0	0	0	*
Arctic flounder	0.4	1. 3	0	0.7	0. 3
Boreal smel t	0	0. 2	0	0.7	0.6
Saffron cod	0	0	0	0	0.3
Bering cisco	1. 0	0	0	0	*
Capelin	1. 0	*	0	0	*
Pi nk sal non	0	0	0	0.2	0.1
Ninespine stickl ebacks	0	0. 2	0	0	*
Pacific herring	0	0	0	0	$*$
Snailfish sp.	0	0.1	16.9	0. 2	$*$
Grayling	0	0	0	0	*
Chum sal non	0	0	0	0	*
Sculpin sp.	0	0	*	0.2	0
Three-spi ne sti ckl ebacks	0	0	0	0	*
Pacific sand lance	0	0	0	0	*
No. fish caught	781	10, 026	366	450	179, 487
\% anadromous fish	89	21	0	70	3

* $<0.05 \%$

Fi sh numbers and composition in Si mpson Lagoon changed narkedly bet ween the two years of study. In 1978, all speci es found in 1977 were found agai n and ei ght additional fish speci es were encountered. Three of these species are outside their reported ranges by several hundred kiloneters; the threespi ne stickl ebacks and sockeye sal non have not been recorded previ ously in Beauf ort Sea waters, and the Pacific sand Iance has apparently not been collected between the Chukchi Sea and Herschel Island, Yukon Territory (MtAlister 1962; McPhail and Lindsey 1970; Hart 1973; Scott and Crossman 1973). There was al so a small run of pink sal non in Si mpson Lagoon during 1978, whereas during 1977 no sal mon were caught.

The tremendous numbers of arctic cod (estimated in the millions) that entered Si mpson Lagoon in mid-August of 1978 constituted the nost i mportant difference between years. The actual 1978 catch of 139, 792 arctic cod was approxi matel y 13 times larger than the total nunber of all fish caught during the previ ous sumer. In fact, on four separate occasi ons in 1978, the daily catch of arctic cod exceeded the total 1977 catch. Arctic cod were al so present in the lagoon in 1977, but thei \mathbf{r} numbers were low ($\mathrm{n}=767$ in the fyke net). Bet ween- year differences in sampling nethods undoubtedly affected the size and species composition of the catch. However, the al nost 200-foldincrease in numbers of arctic cod caught in 1978, and thei r over whel ming dominance of the 1978 species composition in fyke-net catches fromthe Iagoon (from 8\% in 1977 to $\mathbf{7 8 \%}$ in 1978), demonstrate that fish numbers and rel ative abundance in the lagoon-barrier island ecosystem may fluctuate dramatically from year to year.

If the numbers of arctic cod in 1978 are excl uded fromthe catch records, and if onl y the data obtai ned from $25 \mathrm{~J} u \mathrm{l}$ y to 22 Septenber (the period that the 1977 fyke net operated) are consi dered, then the rel ative abundances of the naj or speci es becone:

Speci es	$\begin{gathered} 1977 \\ \% \\ \hline \end{gathered}$	$\begin{gathered} 1978 \\ \% \end{gathered}$
arctic cod		
four horn sculpin	75	86
arctic cisco	16	2
l east ci sco	2	3
arctic char	4	2
other speci es	2	7
Total number of fish caught	9, 259	34, 582

It appears that proportions of most maj or species other than arctic cod and arctic cisco were fairly similar in the two years. Catches in both years indi cate that fourhorn sculpin are a maj or component of this nearshore ecosystem Numbers of fish were much hi gher in 1978, but a di rect comparison between years is questionable due to several differences in methodol ogy (e.g., changes in fyke net location and improved efficiency in 1978--see METHODS).

Vinter. In winter, speci es composition changed sharply fromthe summer pattern. Virtually all anadromous species di sappeared from the nearshore marine envi ronnent, leaving 5 marine species and 1 anadromous species (boreal smelt):

Speci es	\% Composition
boreal snel t	57
fourhorn sculpin	37
arctic cod	4
saffron cod	1
snailfish	0.5
arctic flounder	0.4
Total nunber caught	

Tuo species, boreal snelt and fourhorn sculpin, accounted for 94% of the winter catch. Arctic cod nay be under-represented in these figures because of gear sel ectivity (see 'Additional Life-History Data for Fi shes').

Bi onass
When Iagoon popul ations of fish are described in terns if bi onass rather than numbers of indi vi dual s, the doni nance of the system by nari ne species is less pronounced. The princi pal marine species, arctic cod and fourhorn sculpin, are snall fish whose total bi onass is mach less impressi ve than thei r total nunbers. For example, one large arctic cisco is the wei ght equi val ent of 60-70 average arctic cod.

To obtain bi onass estimates for fish in Si mpson Lagoon, it was first necessary to estinate the average wei ght of each speci es taken. Fyke net data were used to estimate nean wei ghts because fish caught in beach sei nes were not wei ghed and gill nets sel ectively caught Iarge fish. For arctic cod, a randomsample of 108 indi vidual staken fromthe fyke net in 1978 were wei ghed to provi de an average. For the renai ni ng species, the average wei ght was estimated from sub-samples of the 1978 fyke catches; these speci mens had been sel ected for life-hi story anal ysis rather than as anbi ased representation of fish sizes taken by fyke net, so the resultant average wei ght may be sonewhat bi ased. The average wei ghts obtai ned in this manner are listed bel ow for species that comprised nore than 1% of the total fish bi onass.

Speci es	Mean Wei ght $\mathbf{~ \{ g)}$
arctic cod	10
fourhorn sculpin	45
arctic cisco	280
least cisco	270
arctic char	760
broad whitefish	700
humpack whitefish	700
arctic fl ounder	140
saffron cod	35
pink sal non	1010

The above neans were multiplied by the number of each species caught during the open- uater season of 1978 in fyke nets to provide an estimate of the rel ative bi onass of each species.

Bi onass cal cul ati ons denonstrate that, during the open- water season, anadromous speci es are nore important as consuners than might have been deduced based on thei rel ative abundance (Fig. 10). During the summer

Fi gure 10. Comparison of rel ative abundance and bi onass for the 1978 fyke net catch (open- water season). Speci es comprising I ess than 1% of the tot al bi onass are not incl uded. For the ni ne species listed, the total number of fish caught was 178, 353 and the esti nated tot al bi onass caught was 5405 kg .
of 1978, anadromous fish accounted for al nost half (46\%) of the estimated total fish bi onass but onl $\mathbf{y} 3 \%$ of the estimated total number. This difference reflects the rel atively large sizes and snall numbers of anadromous fish and the snall sizes and large numbers of narine fish. Three out of every four fish collected in the lagoon were arctic cod, but this species accounted for only $\mathbf{2 6 \%}$ of the total fish bi onass.

A similar situation existed during 1977, when anadromous fish com prised 46% of the total bi onass and 21% of the numbers captured in the fyke net. In that year, the fourhorn sculpin was the nost comonly capt ured species (70% of catch) but because of the small size of individuals, accounted for a lower proportion of the biomass (49\% of tots'] bi omass).

Habitat Utilization

Two prominent trends in the spatial distribution of anadromous fish during the open- water season were evi dent: (1) nost fish were found in nearshore bracki sh waters rather than offshore narinelocations, and (2) within brackish waters, fish numbers were highest al ong shorel ine edges, particularly the mai nl and shoreline. These generalizations are not necessarily valid for narine fishes; the two nost abundant species-fourhorn sculpin and arctic cod--are not restricted in di stribution to nearshore waters.

Nearshore (Brackish Whter) versus Offshore (Marine) Distribution
During the $\mathbf{1 9 7 7}$ gill net program, far nore fish were caught per unit effort in lagoon habitats than in marine habitats (Fig. 11, Table 5). This difference is even more apparent if the seavard shoreline of the barrier islands is considered to be a nearshore habitat. This shoreline may be flooded by I agoon waters when west winds push the Iagoon water mass out through the gaps between the barrier islands. On a catch per unit effort basis, fish were 5-98 times more abundant at various nearshore stations than at the one offshore station. Nearshore catches ranged froma high of 39.2 fish 24 h (species conbi ned, seasonal average) al ong the mai nl and shoreline to a low of $2.1 \mathrm{fish} \mathbf{2 4} \mathbf{h}$ in the Iagoon

Fi gure 11. Cross-section of Si mpson Lagoon study area showing rel ati ve numbers of fish caught at 5 sampling stations, 1977. Numbers of fish represent a seasonal average for conbi ned speci es caught in a standardized 24-h gill net set.

Table 5. Comparisons of gill net data at. fi ve sampling locations during the open- vater season, 1977. (See Fig. 11 for locations.)

	Seasonal Averages of Fish Caught Per 24-Hour Gill Net Set at Stations					Comparison of Stations 1-4 (Fri edman test)
- Fish Species	1		3	4	5	
Arctic cisco	17	1.1	9	0.1	0	$<0.02 *$
Least cisco	8.1	0	0.7	0	0	<0.01
Arctic char	5. 9	0.4	3	2.1	0	<0.2
Fourhorn sculpin	3.4	0. 5	0.8	1	0.1	<0.1
Broad whitefish	3	0	0	0	0	<r. 02
Humpback whitefish	1. 6	0	0	0	0	<0.01
Arctic flounder	0.2	0	0	0	0	<0.1
Capelin	0	0.1	0.8	0.1	0	<0.1
Snailfish	0	0	0.1	0	0.2	
Arctic cod	0	0	0	0	0.1	
Al anadromous spp.	35.6	1. 5	12. 7	2. 2	0	<0.01 **
All marine spp.	3.6	0. 6	1. 7	1. 1	0.4	<0.1
Total s	39.2	2. 1	14.4	3. 3	0.4	
No. Sets	10	10	10	7	7	
No. Days Fished	10	19	10	10	10.5.	

* Friedman critical value test indicates that numbers of fishat station 1 are significartily greater than station 4 ($P<0.01$).
**Station $1>2$ dild $i>4$ di $F<0.04$.
center. In contrast, the average catch in offshore gill nets was only $0.4 \mathrm{fish} / 24 \mathrm{~h}$, and, significantly, no anadromous species were caught (Table 5).

In 1978, several tows with an otter traw were nade 1.6-7.2 km offshore and, agai n, marine speci es were the only fish caught (Table 6). Other fisheries studies have al so documented the absence or very low densities of anadromous fish in offshore Beaufort Sea waters, although the overall sampling effort in this zone has been low (MtAlister 1962; Mann 1974; Griffiths et al. 1975, 1977; Percy 1975; Jones and DenBeste 1977; Frost et al. 1978; Galbraith and Hunter 1979; C. Broad, pers. comm.; K. Tarbox, pers. comm.). Arctic anadromous fish remain in nearshore habitats, foregoing the impressi ve oceanic migrations of sone non-arctic salmonids.

Numbers of fish collected in plankton traws were al so greater inside the I agoon than offshore, but the differences were not statistically si gnificant in either 1977 or 1978 (Table 7). The extrene variability in catch records indi cate the need for a nore extensi ve sampling program bef ore the general significance of Iagoon habitats for planktonic fish is known.

The "Edge Effect"

Within the nearshore bracki sh water regi on, it is apparent that fish are not uniformy distributed but are far nore abundant al ong mainland and island shorelines than inthe lagoon center (Fig. 11). Seasonal - averaged catches al ong the nai nl and shorel ine were 19 ti nes greater than in the lagoon center. This finding is similar to that obtai ned in Kaktovik Lagoon where three pai red shoreline gill nets caught 30 times nore fish than three mid-lagoon sets (Griffiths et al. 1977). Kendel et al. (1975) observed the same pattern along the Yukon coastline.

Although fish catches al ong all shorelines in the Si mpson Lagoon st udy area were hi gher than in open- uater areas, the mai $n l$ and shorel ine was used nore extensi vel y and by nore species of fish than were isl and shorelines (Fig. 11, Table 5). In statistical comparisons of the num bers of fish at the four nearshore stations, the only sampling periods

Table 6. Fish caught by otter traw in marine waters of fshore from Pi ngok I sl and, 13 August 1978.

Fi sh	No. Fi sh/ Traw - Hour Di stance Offshore (km)			
	1.6	3.2	4.8	7.2
Arctic cod	6	6	21	14
Fourhorn sculpin	10	10	9	14
Spotted snailfish*	14	20	14	15
Whttled eelpout**	0	0	0	1
Vhter Depth (m)	10	12	15	14
Actual Traw Tine (h)	0.5	0. 5	1	1
* Liparis callyodon				
**Lycodes paltaris				

Table 7. Seasonal densities of young-of-the-year arctic $\operatorname{cod}^{1,2}(1977)$ and conbi ned planktonic species ${ }^{3,4}$ (1978) collected by Faber Net.

1977	No. Arctic Cod/ 1000 m At Stations (1977)				1978	Total No. Fi sh/ 1000 m At Stations (1978)				
Sampling Dates	1	2	3	5-	Sampling Dates	2	3	4	6	7
11 July		6	0	-	10 Jul y	98	22	2	10	-
22 July		50	0	0	22 July	54	14	12	15	-
31 July		0	31	0	4 August	5	0	0	-	5
14 August		855	694	0	17 August	0	0		-	8
25 August	0	0	0	0	30 August	0	0		-	0
5 Sept enber	0	0	6	0	14 Sept enber	0	0	0	"	7
14 Sept enber	0	0	99	62	23 Septenber		0	1	- 0	-
Means	0	130	119	10		22	5	7	12	5

${ }^{1} 83 \%$ of collection was arctic cod (Table 4).
${ }^{2}$ Pai red t-test on averaged data for stations 2 and 3 vs station 5 gave $t=1.05, d . f .=5, P>0.1$.
${ }^{3}$ Species composition in subsample ($n=\mathbf{5 2}$): 61\% cottidae, $\mathbf{2 5 \%}$ gadidae, $\mathbf{1 4 \%}$ liparidae.
' Paired t-test on averaged data for stations 2, 3 and 4 vs stations 6 and 7 gave $t=1$. 17, d.f. = 5, P> 0.5 .
consi dered were those when all four stations were sampl ed at approxinatel y the same time: $14-16$ and 25-29 July, 3-13 and 18-20 August, 30 August-8 Septenber, and 6-7 Septenber 1977. This procedure minimizes the potential confounding of seasonal and geographic effects. Results of this compari son showed that, for each species tested except fourhorn sculpin, numbers of fish at nearshore stations $\mathbf{1 - 4}$ were significantly different (Table 5), although only a singledifference anong stations could be determined using critical val ues based on Friednan rank suns (Hollander and Wblfe 1973). However, an inspection of able 5 shous that speci es were consi stently nost abundant at Station 1 , and when all anadromous fish were conbi ned, there were significantly nore fish at Station 1 than at either Station 2 or 4 ($\mathbf{P}<0.04$)

Data obtai ned in 1978 by di•ferent sampling gear (91.4 m beach sei ne) followed the same pattern shown \mathbf{n} Fig. 11. Fish densities al ong the mai: land shoreline ($0.0095 \mathrm{f} \cdot \mathrm{sh} / \mathrm{m}$, species conbi ned) were far greater than ot ot locations, averag ng 3.5 and $\mathbf{2 4}$ times greater than densities al ong the lagoon and ocean sides of the barrier islands, respectively (Table 8). The rel ative numbers of fish caught al ong the three shorel ine habitats were very similar during the two years of study, especially if small fish (i.e., char and whitefish <200 mm sculpi $\mathrm{n}<100 \mathrm{~mm}$) are excl uded from the 1978 beach sei ne data (these size classes of small fish are not often caught by gill nets):

Method	Rel ative Number Caught		
	Mainland - Shore	$\begin{gathered} \text { Island } \\ \text { (Lagoonside) } \end{gathered}$	Isl and (Oceansi de)
1. gillnet (1977)	12	4	1
2. beach sei ne (1978) ("I arge" fi sh onl y)	18	6	1
3. beach sei ne (1978) (all fish)	24	6.5	1
Data obtai ned by f gill nets in 1977) corr nai nl and and island shor in 24 h were 160 fish a	ets (which ted the di s (Table mai nl and	to catch s nce in fish n 1977, the and 104 fish	fish than s bet ween age catches he island

Table 8. Beach sei ne data for mai nl and and Barrier Island shorelines during the open- water season, 1978.

Fi sh	Seasonal Mai nl and	Averages of Fi sh/ Sei ne Haul	
		I sland Lagoonsi de	I sland Oceansi de
Least cisco	4.9 (20)*	0.1 (1)	
Fourhorn sculpin	2.0 (17)	0.4 (3)	0.1 (1)
Arctic cisco	1. 4 (16)	1.2 (3)	
Arctic cod	0.8 (6)		
Arctic char	0.1 (3)	0.9 (4)	0.3 (1)
Broad whitefish	0.1 (4)		
Boreal snelt	0.1 (2)		
Arctic flounder	0.1 (3)		
Pi nk sal non	0.02 (1)		
Sculpin sp.	0. 02 (1)		
Li parid sp.		0.1 (1)	
Al anadromous spp.	6. 6	2. 2	0.3
Al marine spp.	2.9	0.5	0.1
Total s	9. 5	2.6	0.4
Density ($\mathrm{Fish} / \mathrm{m}^{2}$)	0. 0095	0.0027	0.0004
No. Sei ne Haul s	44	11	8

*Parent heses indi cate number of sei ne haul s in which each species was caught.

Table 9. Comparison of fyke net data for mainland and Pingok Island sites, \& August tc 21 Septenber 1977. During this period, nets were operated 36 days ($n a i \mathrm{nl}$ and) and 30 days (isl and).

Fi sh	Mean Catch in Mainland Shoreline (Station 1)	/ 24 Hour Island Shorel ine (Station 3)	Pai red Comparison (Wilcoxon test)
Fourhorn sculpin	92	94	$\mathrm{P}=0.1$
Arctic cisco	36	6	$P<0.001$
Arctic cod	15	4	$\mathrm{P}<0.01$
Arctic char	8	1	$\mathrm{p}<0.05$
Least cisco	5	0.03	$\mathbf{P}<0,01$
Arctic flounder	3	0.07	$\mathbf{P}<0.01$
Sne 1 t	0.6	0.07	
N nespi ne stickl ebacks	0.4	0.07	$\mathrm{p}<0.02$
Broad whitefish	0.3	0	$\mathbf{P}<\mathbf{0 . 0 5}$
Snailfish	0.1	0.03	
Capelin	0	0.07	
Al anadronous spp.	50	7	$\mathrm{P}<0.001$
All marine spp.	110	98	$\mathrm{P} \approx 0.07$
Total	160	105	
Daily Range	(2.626)	(0-810)	

site (I agoon si de of Pi ngok Island). Numbers of nost speci es were hi ghest al ong the mainl and shoreline, and these differences were statistically significant for all species compared except fourhorn sculpin (Table 9).

Thus, catches of both Iarge fish (gill net and sei ne catches) and snall fish (fyke net and sei ne catches) are hi gher al ong the nai nl and shorel ine than anywhere else in the study area. This may be a reflection of the fact that the mainl and shoreline is, on the average, warner and less saline than other nearshore habitats (Figs. 2 and 3) (however, see discussi on in 'Effects of Physical Factors').

Tho notes of caution are necessary in regard to the above di scussi on. First, al though fish are concentrated al ong the shorel ine, the I agoon center probably accommodates as nany fish because of its relatively large size. The following cal culation illustrates this point. From Table 5, the average number of anadromous and narine fish caught in each meter of gill net (all nets in 1977 were 45.7 mlong) can be determined for each station. These stations represent particular types of habi tat (nai nl and edge, lagoon center, island edge), and the extent of each habi tat can be esti nated al ong a cross section of the Iagoon from the mai nl and to Pi ngok Island. Using these sets of figures, the relative number of fish can be cal culated for shoreline and Iagoon center:

$\begin{aligned} & \text { 19p7 } \\ & \text { Sta. } \end{aligned}$	Habi tat Type and Estimated Width Across Lagoon	No. Fi sh/m of gill net		Rel ative No. Fi sh in Habitat Type	
ma.		anad.	mari ne	anad.	marine
1	mai nl and edge (100 nm)	0.78	0.08		8
2	I agoon center (4500 m)	0.03	0.01	1:;	45
3	island edge (100 mt)	0.28	0.04	28	4

Al though these cal cul ations are rough, they show that a theoretical gill net set across the whole lagoon would catch $\mathbf{1 0 6}$ anadromous fish in shoreline habitats and 135 anadromous fish in the lagoon center. It appears, then, that the total number of anadromous fish in the Iagoon center is simiar to the total number of fish al ong the shoreline edges.

In contrast, marine fish are nore abundant in the lagoon center than edges (45 fish vs 12 fi sh).

The second note of caution concerns the apparently greater i mportance of the nai nl and shoreline than the barrier island shoreline as a migration corridor. This difference may reflect the large di stance ($4-6 \mathrm{~km}$) bet ween the Pingok I sland sampling site and the nai nl and coast. It is not known if densities of anadromous fish around barrier islands are a function of the distance of these islands from the nai nl and.

Affinity for the nai nl and shorel ine varied anong species, as previ ously noted by Bendock (1977). Least cisco, broad whitefish and humpback whitefish in Si mpson Lagoon were not comonly taken anywhere but in the rel ati vel y warm and bracki sh waters al ong the mai nl and (Tables 5, 8 and 9). Arctic cisco and arctic char were distributed nore widel y and were comonly present al ong the lagoonside beaches of the barrier islands. Char were the nost abundant anadromous fish al ong the seaward beaches of the barrier islands. Bendock (1977) reports that char have been caught as far of fshore as Cross Island which is about 18 km offshore.

The fourhorn sculpin was distributed more evenly through the study area than were other species. Fyke net data (Table 9) showed sculpins to be equally abundant al ong mainland and barrier island (lagoonside) beaches; beach sei nes showed themto be nost abundant aI ong the mai nl and, although this difference was not statisticaly significant (2×3 contingency test, $\chi^{2}=2.30, P>0.25$).

The Shorel i ne Corri dor

Many fish travel parallel to the shoreline al ong a surprisingly narrow corridor. It is a common observation that gill nets attached to the shoreline catch nany fish while nets set only $\mathbf{1 0 0} \mathbf{m}$ seavard of the shorel ine catch few fish (e.g., MtAlister 1962). On sone occasions the fish may even swimithin a few meters of the shore. Griffiths et al. (1975:99) made the following observation at Nunaluk Lagoon, Yukon Territory (abridged and italics added fromfield notebook):
On an unusual ly cal m day in autumn (August 31,
1974), numer ous school s of fish were observed noving
eastuard in shal low water (0.3 to 1.0 m) about 1-5m
from the shoreline adj acent to Nunaluk Spit. These
schools were easily detected by snall, V-shaped sur-
face waves. At least 10 school s, al I headi ng east,
passed by in 30 min . Two of these school s were
sampled by gill net; each was composed of 10 to 20
Arctic cisco and Arctic char. Two additional schoozs
were observed that were not adjacent to the shorel ine;
one was moving eastward about 300 m offshore, another
came perpendicular to shore and turned east.

Furniss (1975:37) also noted that in Prudhoe Bay Iarge numbers of arctic char soneti mes migrated "very cl ose to the shore in extrenel y shal low water".

In 1978, the di stribution of fish rel ative to di stance from shore was examined by recording positions of fish caught in a $\mathbf{1 2 2} \mathbf{~ m i l l}$ net placed perpendicul ar to the shoreline. This long net was set with a 2-3 map bet ween the net and the shorel ine so that fish trying to avoid capt ure nould not be funnel ed into the net at the shoreward end (see METHODS). The catch results show that, under certain circunstances, there is indeed a narrow band of fish adjacent to the shoreline. Although the specific factors invol ved are unknown, catches were greater cl ose to shore under the following conditions: (1) the water was not exceptionally rough, and (2) the sampling location was at or near a prominent land projection into the Iagoon (e.g., Milne Point or Kavearak Po(mf), where water depths fell nore rapidly than in embayments. Two examples are illustrated in Fig. 12.

The nost convi ncing evi dence of fish traveling next to the shóre was recorded at the tip of Kavearak Point on $\mathbf{2 4} \mathbf{~ J u l y} 1978$ in fadrly clear water (3 NTU , or roughly 1 mvisibility). On this occasion 50% of the $\mathbf{3 2} \mathbf{f i s h}$ caught in the gill net were within $\mathbf{3 0} \mathbf{m}$ of the shoreline and all were within $\mathbf{8 0} \mathbf{m}$ Only anadromous species were caught in this 3 -h net set: 13 least cisco, 13 arctic char, 4 arctic cisco, 1 broad whitefish, and 1 humpback whitefish.

A second but less di stinct example was encountered at the Milne Point (East) site, which was located on the eastern side of the point, 0.6 km southward of the tip. Here $\mathbf{8 0 \%}$ of the fish caught during

Fi gure 12. Shoreline di stribution of fish at two sites: (A) Kavearak Poi nt, 24 July 1978, 3 net-h; (B) Milne Poi nt East, 29 July 1978, 4.5 net-h. Actual distributions of fish (dots) are shown rel ative to the shoreline, but depths of fish in nater col um are schenatic.
a 4.5 h set on 29 July were within 61 m of the shorel ine , but there were a few out to at least 120 m from shore. It seens likely in this case that, had the net been longer, at least some fish uould have been caught more than 122 m offshore. Fishes caught in this set were as follons: 42 least cisco, 30 arctic cisco, 4 arctic char, 1 humpback whitefish and 7 fourhorn sculpin. The waters at Milne Point (East) were al so clear (4-6 NTU). In neither of the cases illustrated in Fig. 12 didit appear that the concentration of fish near the shorel ine was a response to any sharp gradi ent in water temperature or salinity.

In all, seven 122-mgill net sets were made off points of Iandin noderatel y cal m weather:

Site	$\begin{gathered} \text { Date } \\ (1978) \\ \hline \end{gathered}$	Duration (h)	Tot al No. Fi sh
Kavearak Point	24 July*	3	32
	8 August	1. 5	61
Mjlne Point	23 August	1	19
	31 August	1	14
	9 September	7	17
Milne Pt. (east)	29 July*	4. 5	84
Pi ngok I sl and**	23 August	1	13

* Di scussed in text and shown in Fig. 12.
** Unnaned SE point in Iagoon.
Total numbers of fish caught in these gill nets were 117 least cisco, 52 arctic char, 45 arctic cisco, 18 fourhorn sculpin, 4 broad whitefish, and 4 humpback whitefish. We conbi ned the data from these seven gill net sets and found that distribution patterns were very different bet ueen anadromous and marine fish (Fig. 13). The fourhorn sculpin, a narine species, uas uniformly di stributed but anadromous fish were nost abundant near the shoreline. Approxi mately six tines as many anadromous fish were caught in the first (landward) $\mathbf{4 0} \mathbf{~ m o f ~ n e t ~ a s ~ w e r e ~ c a u g h t ~ i n ~}$ the last (seavard) 40 m Numbers of anadromous fish caught in three di stances from shore categori es, $0-40 \mathrm{~m} 40-80 \mathrm{~m}$, and $80-120 \mathrm{~m}$ were si gnificantly different (Friednan tuo- nay anal ysis of variance, $x_{r}^{2}=8.64$ $\mathbf{k}=\mathbf{3}, \mathbf{N}=\mathbf{7}, \mathbf{P}$ < $\mathbf{0}$. 016) with numbers of $\mathbf{f i s h}$ at $\mathbf{0 - 4 0} \mathbf{m}$ being significantly greater than numbers at $\mathbf{8 0} \mathbf{- 1 2 0} \mathbf{m}(\mathbf{P}<\mathbf{0 . 0 0 8)}$. The abundance of

Figure? 3. Fish abundance in rel ation to di stance from shore off points of land on seven calm days in 1978. Total numbers of anadromous fish (0) and fourhorn sculpins (0) caught in gill nets are plotted by 10 minter val Noug gill net was set between $0-2$ min 10 mi

Figure 14. Abundances of three anadromous species of fish in re-
lation to distance from Shore of points of I and on spve! calm davsin 1978.
anadromous fish declined steadily with di stance from shore out to about 100 m at which point numbers presumably leveled off. Data from 1977 (Fig. 11) suggested that Iow densities occurred across the center of the I agoon.

Anong the anadronous species, there was a conspi cuous absence of habitat partitioning within 122 m of shore (Fig. 14). This probably reflects the migratory nature of these species. Indeed, it has been observed that arctic cisco and arctic char may formmixed school s (Griffiths et al. 1975:99). Fi sh species that are nore sedentary often demonstrate spatial segregation al ong a shore-to-open- water transect (e.g., Mérner et al. 1977).

It would be erroneous, however, to leave the impressi on that fish are al ways concentrated al ong Beaufort Sea shorelines. There are tines and places where the shoreline concentration of fish does not occur. We encountered tho examples during 1978 (Fi g. 15). During a stormy period with rough waters on 9 August, nost fish caught were several hundred meters offshore at Milne Poi nt (East). On another occasi on (10 August) gill nets set al ong a transect in the enbaynent between Milne and Kavearak Points caught no fish near the shoreline, but sone fish were taken 1. $6 \mathrm{~km}(1 \mathrm{mi})$ offshore. In earlier studies, we observed some school s of migrating fish about $\mathbf{3 0 0} \mathbf{m}$ offshore at Nunaluk Spit (see first paragraph in this section).

Preliminary netting al so indi cated that the shorel ine di stribution of $\mathbf{f i} \mathbf{s h}$ was influenced by under water topographical features such as submerged sand and gravel bars, which characteristically form 100-400 m offshore on the west si de of points of I and. Although comparati ve netting was not perforned, it appeared that fish were nore abundant around these bars than might have been predicted on the basis of di stance from shore al one. For example, 122 mgill nets set 0.5 km offshore al ong the gravel bar of f Milne Point caught rel ativel l Iarge numbers of ci scoes and char in a short time: 39 fish in $2 h(3$ August 1978) and 21 fish in 1. 2 h (5 August 1978).

Our results show that anadronous fish commonly concentrate near shore al ong the Beauf ort Sea coast, but the occurrence and width of

Fi gure 15. Di spersed di stributions of anadromous fish during stormy, rough- uater conditions (top) and in a rel ativel y shal low bay bet ween Milne and Kavearak Poi nts (bottom no nets were set bet ween 550 and 1650 m . The frequent location of the shoreline concentration of fish (see Fig. 13) is indi cated by an asterisk.
this migration corridor are variable, depending on factors such as the conf i gurat i on of the coast, under water topography, and weather.

Why fish concentrate al ong shorelines is not understood, but there are several possibilities:

1. Predator Avoi dance - This is an improbable reason since predator densities are Iow (see 'Predators').
2. Food Abundance - This is not likel y si nce available data indi cate that food is nore abundant in deeper waters away from the shoreline (Griffiths and Dillinger 1980).
3. Navi gation Aid - Perhaps shorel ines are usef ul navi gation ai ds si nce nearshore waters are of ten turbid. Lagoon waters are frequently nost turbid al ong shoreIines, but perhaps fish can orient al ong the topographic boundary even in turbid water.
4. Habitat Preference - Fish may prefer the slightly warner and less saline waters that are generally found al ong shorelines. This possibility is-not entirely satisfactory, however, since waters in the center of the lagoon are slightly warner and less saline than al ong Pi ngok Island shorelines (Figs. 2 and 3), but the catch per unit effort is not correspondingly hi gher in the lagoon center (Fig. 11). Other rel evant habi tat factors may incl ude water depth or slope of substrate. (See 'Effects of Physi cal Factors' for further di scussion.)
5. Habitat "Constriction" Points - Perhaps points of I and that jut into Simpson Laqoon act as "di version Iines" for fish migrating east or west. A proportion of the fish crossing an embayment would encounter the I andmark bel ow its tip and followits shoreline in order to get around the point. Note, however, that fish are al so abundant al ong fairly strai ght stretches of the coast (e. g., see location of and catches at Station 1 in 1977, Figs. 1 and 11).

Summer Distribution
Fi gure 16 depicts general fish distribution during the open- water season. The figure represents a liberal extrapol ation of point-sources of systematically-collected data combi ned with the practical and subjective experience we obtai ned while sampling for fish in Beaufort Sea coastal uaters.

Fi gure 16. Hypothetical density di stribution of nearshore fishes in nearshore portions of the study area. Rel ative densities range from 1 (high) to 4 (low). Refer to Table 5 for di stributions of individual species.

Four zones of fish density, graded from Zone 1 (hi ghest density) to Zone 4 (l owest density), are proposed:

Zone 1. Highest densities of fish, occurring in a narrow band about 100 mwide al ong mai nl and shorel i nes, particularly around points of I and but not in shal low embayments. Anadromous fishes (arctic and least cisco, char, whitefish) and some marine speci es (fourhorn sculpin, arctic cod) are abundant in this zone.

Zone 2. A band of medi um density of fish around mai nl and and barrier island (lagoonside) shorelines, extendi ng perhaps 500 m offshore or to the 1.5 m depth contour. Fi sh speci es al ong the nai nl and are as in Zone 1, but rel ati vel y few anadromous fish other than arctic cisco and char occur in Zone 2 al ong the barrier islands.

Zone 3. Generally lower densities of fish in the Iagoon center and al ong a narrow band about 100 mwide on the ocean side of the barrier islands. Principal species caught on outer shoreline of barrier islands are arctic char and fourhorn sculpin.
Zone 4. Lowest densities of fish (especially low densities of anadromous species) in the col d marine waters seavard of the barrier islands. Marine fishes (e.g., sculpin, cod, snailfish) inhabit these waters. Additional speci es are encountered farther of f shore.

This picture may best describe the distribution of anadromous fish during the open- water season. The depi cted density zones are, of course, generalized and could be refined by further studi es.

Winter Di stribution

Colville Delta. Both anadromous and marine species were found overwintering in the brackish (17.9-31.9 ppt) waters of the Iower Colville Delta during the April and May, 1978, sampling period:

Speci es	Catch Per Unit Effort (No./24-h gill net set)	
	Station	Station B
arctic cisco	1. 9	1.0
I east cisco	1. 0	0.7
boreal snelt	0	0.5
fourhorn sculpin	0.5	0. 2
Bering cisco	0.1	0.1
saffron cod	0	0.02
Gill Net Days	13	44

These catches represent the first records of overwintering areas for anadromous ciscoes in Al askan Beauf ort Sea drai nages. The data al so indi cate that these fishes do not necessarily reside in freshwater habitats during the winter period; however, no ci scoes were found during extensi ve wi nter surveys in nearby coastal waters in 1978-1979.

Coastal Areas. The abundance and di stribution of the fish species utilizing nearshore habitats in the study area change dranatically during the period of ice cover. This change is marked by the di sappearance of all of the dominant anadromous species (cisco, whitefish, and char) that are common during the bri ef summer. In the Novenber 1978 through May 1979 sampling periods six species of fish were caught. In order of decreasing numbers they were boreal smelt, fourhorn sculpin, arctic cod, saffron cod, snailfish and arctic flounder. With the exception of the anadromous boreal smelt, all of these are marine species. A summary of the winter catch data is presented in Table 10; details of catches by date, location and sampling effort are listed in Table 11.

It appears that boreal snel t and fourhorn sculpin are the dom nant fish species in nearshore waters of the study area during winter, and that they are concentrated in Harrison Bay near Thetis Island, which is near the nouth of the Colville River. The boreal snel \mathbf{t} is a springspawning anadromous species (McPhail and Li ndsey 1970), and it is assuned that its apparent concentration in Harrison Bay is a prel ude to a spawning migration into the Colville River. This supposition is supported by the observation that the great maj ority of boreal snelt captured were nature fish in pre-spawning condition. The apparent

Table 10. Summary of winter catch data, 1978-1979. See Fig. 7 for station locations and Table 11 for details of catches by date, location and sampling effort.

Fish	Number of Fi sh Caught				Total s
	Thet is I sl and	Si mpson Lagoon	Boul der Patch	Narwhal I sl and	
Boreal smelt	1539	12	0	0	1551
Four horn sculpin	1022	0	0	0	1023
Arctic cod	6	21	71	9	107
Saffron cod	36	1	0	0	37
Snailfish	0	0	15	0	15
Arctic flounder	1	0	0	0	1
Total s	2605	34	86	9	2734

Tablell. Sullulary of 1978-1979 winter catch by date and location. Catch per unit efforts (CPUE) are listed for fish caught by net (gill net, trammelnet, fyke net or box trap) per day. Sampling gear is listed in Table 3 and sampling stationsin F io.

Date	Fish	CPVE at Stations**			Marwhal Island	Total			
		Thetis Isl and	Si mpson Lagoon	Boul der Patch					
13-16 Novenber 1978	boreal smett	15.2	0.5	0	U	3.6			
	fourhorn sculpin	1.2	0	0	0	0.3			
	arctic cod	0.5	0.9	0.7	0.5	0.8			
	saffron cod	0	0, 04	0	0	0.02			
	Total CPuE Effort (Days)	$\begin{gathered} 16.9 \\ 12 \end{gathered}$	$\begin{aligned} & 1.4 \\ & 24 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 18 \end{aligned}$	U; 5	5 54			
$\begin{gathered} \text { 11-27 February } \\ 1979 \end{gathered}$	boreal smelt	22.2	0	0	11	7.8			
	fourhorn sculpin	6.8	0	0	1	2.4			
	arctic cod	8	8	3.7	11	0.5			
	saffron cod	1.0	8	0	\checkmark	0.3			
	snail_fish . -.	0	0	1.1	11	0.3			
	Total CPUE Effort (Days)	30.0 20	0	$\mathrm{l}_{14} \mathrm{l}^{\prime}$	11)	11.1			
$\begin{gathered} 1 \text { March- } 1 \text { April } \\ 1979 \end{gathered}$									
	boreal snelt	16. 1							
	fourhorn sculpin	13.8							
	saffron cod arctic flounder	$\begin{aligned} & 0.1 \\ & 0.02 \end{aligned}$							
	Total CPUE	30, 0							
	Effort (Days)	52							
$\begin{aligned} & 29 \text { April-14 May } \\ & 1979 \end{aligned}$	boreal smel t	5.8	0	O	1	1.4			
	fourhorn sculpin	11.7	0	0	0	2.8			
	arctic cod	0	0	0.4	0.1	0.2			
	saffron cod	0,9		- -	,	0.2			
	Total CPLE	10.4	0^{*}	0.4	() 5^{*}	4.6			
	Effort (Days)	13	10	17	15	55			
* Catches at thes e times and locations may reflect a change in sampling gear frur qull nets to under-ice fyke nets (see Table 3).									
 (2) Spy Island (VEst) : CPUE = 0.2 bor eal smel t and 0.3 fournorns culpin, effort $($ days $)=6.1$ ($8-14$ May 1979).									

concentration of fourhorn sculpin, a narine species, near the nouth of the Colville River is not readily explai ned by any available infornation.

The data presented in Tables 10 and 11 very likely provide a bi ased representation of the abundance and distribution of arctic cod. Arctic cod, because of their shape, are often difficult to catch in gill nets. In Novenber, nearly all of the cod captured in gill nets had advanced gonadal devel opnent in addition to full stonachs--the resultant obese condition was likely responsi ble for their capture. In February 1979 all of the arctic cod had apparently fini shed spawning, and no capt ures were nade in gill nets. After Novenber, tho new experi nental fishing systens, an under-ice fyke net and a tramel net were used at some l ocations (Table 3). The fyke nets were responsible for capturing nearly all cod, thus accounting for the rel atively high catch per unit effort at the Boulder Patch station.

Saffron cod were al so concentrated in the area of the Colville Ri ver nouth (Thetis Island station) in February. The appearance of sone apparently mature fish in pre-spawning condition suggests that this area nay be a spawning ground for this species.

Snailfish appeared in the under-ice fyke net catches at the Boulder Patch station in February 1979. Si nce this species is apparently vul nerable to capture only by this sampling method, we obtai ned no inf ornation about geographic or temporal patterns in its distribution or abundance. Snailfish were activel y spawning in the area of the Boul der Patch station in February, as indicated by the attachnent of their adhesi ve egg nasses to under-ice sampling gear. The fact that they have demersal adhesi ve egg nasses suggests that a solid substrate, as is comon in the Boul der Patch area in the form of rocks and attached al gae, nay be a requi renent for thei r spawning.

Effects of Physi cal Factors

Mbst nearshore fishes are tol erant of the widel fluctuating tem peratures, salinities and turbidities common in Si mpson Lagoon during the open- water season. For at least short periods of tine, the fish are
able to cope with conditions ranging from nearly fresh to salt water, cl ear to very turbid water, and temperat ures ranging from 0 to $14^{\circ} \mathrm{C}$ (Table 12). Fewer data are available for the winter period, but initial findings for several species suggest a surprisingly wide range of tol erance for salinity--anadromous and marine fish have been caught overwintering in the nearly fresh waters of the Mackenzie Delta (Percy 1975) and the nearly mari ne waters of the Colville Delta and surrounding nearshore habitats (this study).

Tol erance of a wide range of conditions does not imply that these conditions are equally suitable for fish. For example, one speci es nay prefer low salinities and might nove into and out of Simpson Lagoon as salinities change. Such novenents, if they occur, might be responsible for the large day-to- day variations in numbers of fish recorded during thi s study. Ther ef ore, compari sons were made bet ween daily cat ches (fyke net data) and each of three feat ures of the envi ronnent that fluctuated al nost daily--salinity, water temperature and turbidity.

Correl ation coefficients were cal cul ated for data collected at Milne Point during the summer of 1978. To minimize the effects of seasonal novenents of fish and seasonal changes in physical factors, the open- water season was di vided into four time periods for anal yses: 10 19 July ($\mathrm{N}=6$ observations during this period), 20 Jul y - 10 August ($\mathrm{N}=$ 12), 11-31 August ($N=13$), 1-20 Septenber ($N=16$). General changes in temperature and salinity provi ded sone basis for the sel ection of these four periods (Fig. 3). Actual ranges of physical variables during these peri ods were:

Peri od (1978)	Temperat ure (CC)	Salinity (\%o)	Turbidity (NTU)
10-19 J ul y	5-7	?-18	40-87
20 July -10 Aug	4-13.5	9-28	3-47
11-31 Aug	1. 7-7	14-26	4-36
1-20 Sept	0. 5-5	13-29	2-98

Si nce each day's fish catch covered a 24-h period, daily catches of each speci es were compared to average val ues for physi cal data collected at the start and end of each corresponding 24-h peri od. Correl ation

Table 12. observed temperature, salinity and turbidity conditions where fishes were caught. Summer val ues include data from Si mpson Lagoon (1977 and 1978) and Prudhoe Bay (Bendock 1977); winter data are from various coastal and freshwater locations (Kogl and Schel 1 1974; Mann 1974; Percy 1975; Bendock 1977; this study).

Speci es	Sumer Conditions			Winter Conditions	
	$\begin{aligned} & { }^{\text {Temperature }}{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \hline \text { Salinity } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Turbi dity } \\ \text { NTU*} \end{gathered}$	$\begin{aligned} & \text { Temper at ure } \\ & \text { "c } \end{aligned}$	$\begin{gathered} \text { Sal inity } \\ \% \\ \hline \end{gathered}$
Arctic cisco	0-13. 5	2-32	1-146	-1.7	5-32
Least cisco	1-14	2-32	1-146	-1.7--to o	0-32
Arctic char	0. 5-14	2-32	1-146	otol	0
Broad whitefish	1-14	2-30	2-146	0	0
Humpback whitefish	1-12	2-28	4-146	0	0-28
Arctic cod	0-13. 5	3-28	1-146	-2.0	23-31
Fourhorn sculpin	0-13.5	2-31	1-146	-1. 7	5-32
Arctic flounder	0-13. 5	2-31	1-82		5-30
Boreal snelt	1-13.5	1-29	2-140	-2 to-1	1-32

*NTU = 1 represents clear water, > $1 \mathbf{m v i s i b i l i t y ; ~ N T U ~ = ~} 146$ represents very turbid water, about 5 cm visi bility.
coefficients were cal cul at ed or species when at least 20 fish were caught during a period.

Onl y 7\% of the 72 possi ble comparisons between daily catches of fish and physical factors were statistically significant:

Speci es	Statistical		Correl ation	
	Vari able	Peri od*	Coeffici ent	P
fourhorn sculpin	temperat ure	2	- 0.588	<0.05
	turbidity	4	-0. 507	<0.05
arctic cod	sal inity	4	0. 655	<0.01
arctic char	temperat ure	4	0. 865	<0.001
	sal inity	4	0. 693	<0.01

*Periods 2 (20 Jul y- 10 August), 4 (1-20 August).
That so few comparisons were significant (al nost the number expected by chance al one) suggests that there are no strong or consi stent rel ationshi ps bet ween the numbers of $\mathbf{f i}$ sh caught in the range of temperature, salinity and turbidity val ues occurring during the four time periods. Even when statistical probabilities obtai ned for each species and variable during the four time periods were compared by the "wei ghted Z" test (Rosenthal 1978), the resulting probabilities were generally nonsi gnificant. A si gnificant rel ationship was determined in onl y tuo cases-- positive correl ations between salinity and both arctic cod ($\mathrm{P}=$ 0.02) and arctic char ($P=0.002$).

These results are not totally unexpected even if the physical variables do affect fish behavi or because correl ation coefficients are not a particularly sensitive test for this purpose. Several factors could serve to complicate or obscure interpretations and thus result in nonsi gnificant correl ation val ues. Rough seas, for example, apparently cause fish to nove out of shallow water, thereby avoi ding capture regardless of temperature and salinity conditions (Fig.15). Catch data al so do not indicate whether fishes spend nore time in an area when temperat ures/ sal inities are high or low Therefore, experimentation on captive fishes is needed to examine possible rel ationships between fish behavi or and changes in physical factors-a topic of current
interest since industrial activities (e. g., causeways) in the nearshore envi ronment may alter existing temperature and salinity regi nes (Doxey ?977; Bendock 1977).

Fi sh Mbvenents

General features of the temporal distribution of fish in the study area are that (1) nost, but not all, fish use Si mpson Lagoon only during the ice-free season, and (2) within this period, the fish are highly nobile and eval uations of their local abundance are complicated by day-to-day pul ses of novenent and I arger scale novements over several-neek peri ods.

During the brief arctic sumer, both anadromous and marine fish i nvade the shal low water zone of the Beauf ort Sea. Al though nearshore ice nay not completel di sappear until early July, fish have by this time al ready been migrating and feeding under the ice and in leads for up to several weeks. The present study and others (Griffiths et al. 1975, 1977; Bendock 1977) show that fish enter nearshore waters al nost as soon as there is enough unfrozen water in which to swim

In Si mpson Lagoon the first open- water areas in spring were leads al ong mai nl and and i sl and shorel i nes. When sampling prograns began in the I ead al ong the I agoon- si de of Pi ngok Island on 19 J une 1977 and al ong the nai $n l$ and shore at Milne Poi nt on 27 J une 1978, fish were al ready present and actively feeding. First capture dates for naj or species are listed bel ow, for nost species, arrival dates in the two years were within one week of one another:

Speci es	$\begin{aligned} & \text { Date Wher } \\ & \hline 1977 \end{aligned}$	$\begin{aligned} & \text { Caught } \\ & \hline 1978 \\ & \hline \end{aligned}$
four horn sculpin	19 J une	28 J une
arctic cisco	22 J une	27 June
l east cisco	30*J une	29 June
broad whitefish		29 J une
humpback whitefish		29 J une
arctic char	3 July	6 July
arctic cod	12 July	7 July

[^18]Anadronous fish (except boreal snelt) appear to return to freshwater by freeze-up. Marine species, on the other hand, are still present in the lagoon under the ice through Novenber, but di mini shi ng depths of unf rozen water and increasing salinities probably force nost, if not all, fish out of Si mpson Lagoon and into deeper waters by mid-winter (see ' Winter Distribution'). Because of the thickness of ice in late winter (about 2 m), all fish are excl uded fromthe shallow shorel ine habitats that are utilized so extensively during summer nonths. Sone speci es remai ning in the nearshore envi ronment through the winter apparently nove to particular areas--virtually all of the boreal snelt, fourhorn sculpin and saffron cod taken were at the Thetis Island station in Harrison Bay of f the Colville River.

Seasonal Mbvenents

In the following sections, the novenents of maj or fish species through Si mpson Lagoon and adj acent regi ons are descri bed. Infornation was deri ved from three sources: (1) a tagging program to document novements of indi vidual fish, (2) fyke nets which operated daily during the open- water season of 1977 and 1978, and (3) gill nets which were used to sample fish in sumer and winter.

The taggi ng program was conducted to study coastal novenents of fish and their resi dency times in Simpson Lagoon. During the summers of 1977 , 1978, and 1979, 6412 fish were tagged; 3470 large fish (generally >250 mm) were tagged with Floy dart tags and 2942 smail fish (general ly 100-250 mm) were tagged with netal opercular tags (Table 13). The recovery rate was low Excl uding fish recaptured the day after tagging (si nce they might have recentered the fyke net upon rel ease), onl y $\mathbf{0 . 6 \%}$ of the small $\mathbf{f i s h}$ and $\mathbf{4 \%}$ of the I arge fish were recovered. Mst '(84\%) of the latter were caught in the Colville Delta comercial fishery. Additional infornation about movenents was obtai ned by the capt ures in Si mpson Lagoon of 43 fish that had originally been tagged outside the study area by the $\mathbf{A l}$ aska Departnent of Fi sh and Gane (ADF $\mathrm{ar} \mathrm{a}_{\mathrm{a}}$). Mbrtality due to tagging appeared to be minimal (see 'METHODS'). Ail recapture data are listed in Appendix 1. The recapture of 196 fish

Table 13. Summary of fishes tagged in Si mpson Lagoon and recaptured at various locations, 1977-1979。

Speci es	Fish Tagged						
	1977		1978		$\xrightarrow{\text { Fl oy Dart }}$	9	Recapt ured
	$\begin{aligned} & \text { FI oy Dart } \\ & \text { Tag } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Opercular } \\ \text { Tag } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Fl oy Dart } \\ & \text { Tag } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Opercular } \\ \text { Tag } \\ \hline \end{gathered}$		Totalg	Total
Fourhorn Sculpin	0	2381	0	4	0	2385	17
Least cisco	126	46	893	5	873	1943	109 (28)*
Arctic cisco	30	57	369	5	371	832	45 (1)
Arctic char	55	281	349	0	1	686	14 (10)
Broad whitefish	4	1	166	5	17	193	4 (1)
Humpback whitefish	1	0	64	0	62	127	4 (3)
Arctic cod	0	110	0	0	0	110	1
Pi nk sal non	0	0	88	0	0	88	1
Arctic flounder	0	47	0	0	0	47	1
Grayling	0	0	1	0	0	1	0
Total s	216	2923	1930	19	1324	6412	196

[^19]during this study al lows us to speculate about the novenents of fish in coastal waters. However, any patterns inferred fromthese data should be viewed in the context of several factors:

1. Recapture Location. Locations of recaptures will be predi ctably cl unped at the few coastal sites where fishing prograns operate. Such operations occurred in Prudhoe Bay during summers of 1976 and 1977 Bendock 1977; Doxey 1977), Si mpson Lagoon duri ng summers of 1977, 1978 and 1979 (this study), and the Colville Delta in early winter every year (Helmericks' commercial fishery). About 65, 000 cisco and whitefish are harvested annually in the Colville commercial fishery which partially accounts for the large numbers of recaptures at this site.
2. Snall Fish. Recapt ures of snall fish (narked with opercular tags) are not to be expected outside our study area because these fish are not sought by fishernen and snall fish are generally not susceptible to capture by gill net or angling.
3. Di rection of Mbvenent. The net di rection of novenent between release and recapture sites depends on when as well as where fish were tagged. Anadromous fish tend to nove away fromrivers of origin in early summer and return to those rivers in late sumer.
4. Historical Perspective. Arctic char in the Sagavani rktok River were the object of an extended tagging program from 1970 to 1974. The probability of catching a tagged char fromthis drai nage is greater than for other North Sl ope rivers.

Movenents of the maj or fishes in Si mpson Lagoon are descri bed bel ow
Arctic Cisco. The arctic cisco was the first species caught in the study area each spring. During the early breakup period these fish were abundant in open- water leads around Pi ngok Island (Fig. 17). I ndi vi dual s caught at this time were primarily mature spawners, which n my have overwintered in the nearby Colville Delta (see 'Winter Distribution'). It appears that spawners of the year leave their overwintering areas at the first opportunity, feed voraciously in Si mpson Lagoon for about tho weeks (all had stonachs full of amphipods and mysids), and then leave coastal waters.

Fi gure 17. Seasonal abundance of fish caught by gill net al ong nai nl and (sol id dots) and Pingok Isl and (open dots) shorel ine, 1977.

Unlike the nat ure fish that nould spawn in fall, juvenile and mat ure non- spawning arctic cisco were abundant in nearshore envi ronments throughout the open- water season. Figure 17 shows two naj or periods of activity, which probably represent migrations from the Colville River in the latter half of $\mathbf{J u l} y$ and back to the Colville in early Septenber. This bimodal activity pattern uas not observed for arctic cisco at tho locations nore di stant fromthe Col ville: Kaktovik Lagoon (Griffiths et al. 1977) or Prudhoe Bay (Bendock 1977).

Daily fyke net catches of arctic cisco (Fig. 18) indicate tuo poi nts: (1) daily catches varied greatly, suggesting that fish were passing by in pul ses or school s rather than in alarge, even migation, and (2) temporal patterns varied substantially between years. Most arctic cisco intercepted by the 1977 fyke net were small fish (92% of those caught were $<\mathbf{2 0 0} \mathbf{~ m m}$ long); peak novements of these small fish occurred in Iate August and early September of 1977, perhaps indi cating their return to the Colville River. The following year, these snall fish were proportionally much less abundant in the fyke net (55\% of total arctic cisco catch) and the autum peaks of activity were absent. Mbst arctic cisco travel ed eastuard (away fromthe Colville) in early July 1978 and west ward in mid-August 1978, as expected if the Colville Ri ver is the source of arctic cisco in the study area, lt is not known why these fish apparently returned toward the Colville mach sooner (or much later) in 1978 than 1977.

Few arctic cisco were caught by gill or fyke nets in mid-Septenber (Fig. 17 and 18), and none were caught in the Novenber or February winter sampling program Thus arctic cisco had returned to the Colville Delta regi on or other Iocations by the end of Septenber or October.

Of 38 arctic cisco tagged in Si mpson Lagoon during summer and recapt ured the same year, 37 were recapt ured under the ice in the lower Colville Delta during the October-Decenber period (Fig. 19). One was recapt ured at Milne Point, the site of tagging, 29 days after rel ease.

Approxi nately $\mathbf{1 6 \%}(\mathbf{n}=7$) of the total arctic cisco recaptures were made 1-2 years after tagging. The nost interesting of these was a fish tagged on 18 August 1978 in Si mpson Lagoon and recaptured 270 km

Figure 18. Comparison of daily fyke net catches along the mainland shoreline in 1977 and 1978. Nets were located at Milne Point in 1978 (upper graphs) and 6 kmwest of Milne Point in 1977 (lower graphs). Numbers of fish caught are indicated by year: 1978/1977. For 1978 catches, solid lines show fish moving westward; dashed lines show eastward movement. Dark bars along abscissa indicate periods when fyke nets were not in operation in 1977 and 1978.

Fi gure 19. Coastal novements of fish tagged in Si mpson Lagoon and recapt ured during the year of tagging. Numbers of recaptures at each site are i ndi' cat ed.
eastuard on 31 July 1979 at Griffin Pointin a subsistence fishery. Five other arctic ciscoes were recaptured in the Colville Delta in late fall; another caught in Si mpson Lagoon had previ ously been tagged in Prudhoe Bay by ADF\&G.

Least Cisco. In contrast to the arctic cisco described above, al nost all least cisco in the system were large fish; $\mathbf{8 9 \%}$ and $\mathbf{9 8 \%}$ of all least cisco caught in fyke nets in 1977 and 1978, respectivel y, were $>200 \mathrm{mmin}$ length. This species was rare al ong barrier islands but was abundant al ong the nai nl and in mid-summer (Fig. 17). Fyke net catches in 1978 showed that the predom nant direction of novenent was away fromthe Colville (east) in July; fewer fish noved towards the Colville (west) in August (Fig. 18).

The postul ated coastal pattern of novenents for this species is as follous. In spring, least cisco enter coastal waters fromtheir overwintering sites in the Colville Delta and other unidentified locations farther west. Those fish di spersing eastuard nove through Simpson Lagoon in early and mid-summer. Thereafter, there is a build-up of these fish in Prudhoe Bay, with peak numbers occurring there in late August and Septenber (Bendock 1977). Apparently least cisco do not travel much farther eastward, si nce few have been caught between the Canning Ri ver and the Canadi an border (Roguski and Konarek 1972; Uard and Craig 1974; Griffiths et al. 1977). Si nce some of these fish were recapt ured in the Colville Delta in October and Novenber (descri bed bel ow for fish tagged in Si mpson Lagoon; see Bendock (1977) for data fromfish tagged in Prudhoe Bay), it appears that a large mestward novenent of least cisco must occur in late aut um. Few westward-noving I east ciscoes were caught in Si mpson Lagoon by the time sampling ended in late Septenber (Fig. 18), so the mai n west ward novement apparently occurs in October. No least cisco nere subsequently caught in nearshore waters ${ }^{\text {duurnigi }}$ the Novemver, February or March- May winter sampling efforts.

Recapture data are consi stent with the view that the Colville River is a principal source of least cisco in coastal waters east of this ri ver (cf. Craig and McCart 1976; Bendock 1977; Doxey 1977). Most
recaptures (87% of those recovered the same year that they were tagged) were taken in the Colville Delta comercial fishery (Fig. 19). These fish were tagged in Simpson Lagoon in the summer and recapt ured under the ice of the Colville Delta during October-Decenber in commercial and subsi stence fisheries. One other tagged fish was recaptured at a fishing camp near Barrow (specific location unknown) in the fall. Perhaps this least cisco originated in a stream to the west of the Colville.

Al nost half of the 109 least cisco recapt ures were nade 1-3 years after being tagged. Three of these were recapt ured in Simpson Lagoon and 24 in the Colville Delta in subsistence or commercial fisheries. Twenty-ei ght recaptures in Si mpson Lagoon had been previ ously tagged in Prudhoe Bay by ADF\&G.

Based on taggi ng results, Bendock (1977) suggested that l east cisco exhi bit strong schooling behavi or because he noted that fish tagged at the same tine and place were occasi onally recapt ured toget her a Iong tine afterwards at another site. Our own data support the observati on that sone ciscoes stay together. The criteria we used were that fish had to be tagged at or very near the same site within one day of each other, and similar restrictions for their recapture applied. This occurred on 14 occasi ons invol ving two or three fish each time (Appendi x 1). Si x occasi ons invol ved onl y least cisco, one invol ved only arctic cisco and five were with mixures of bothleast and arctic cisco. In nost cases, these fish had been tagged in Si mpson Lagoon in summer and recaptured 2-4 nonths later in the Colville Delta fishery:

Fish Group*	Mont hs El apsed bet ween Taggi ng and Recapture
1. I east cisco onl y	0, 07, 2.5, 3. 5, 3.7, 4, 14.7, 15.8, 23. 9
2. arctic cisco onl y	3, 6
3. I east and arctic cisco	2.5, 3, 3. 1, 3.4, 4.1
*There were tuo or three fish in each group.	
On three occasi on	were recaptured toget her 1-2 years I ater.

Arctic Char. Char noving through the I agoon were generally large fish; 95\% and 75\% of all char caught in 1977 and 1978, respecti vel y, were >200 mmin length. Their widespread di stribution in the lagoon and around the barrier isl ands (Tables 5 and 8) suggest that they are nore tol erant of narine waters than are nost ot her anadromous speci es. Similar patterns of seasonal abundance were evident al ong nai nl and and Pi ngok shorelines (Fig. 17). Char were common in nearshore waters for nost of the open- water period, and fyke net catches showed that they remai ned in the I agoon about 2 weeks I onger in 1978 than in 1977 (Fig. 18).

The di rection of novenent of char, as indi cated by the 1978 fyke net data, was predominantly from west to east. However, in this case the location of the fyke net may have bi ased catch statistics. It is possi ble that the subnerged gravel bar off Milne Point induced sone west bound char to bypass the fyke net (see 'METHODS'). Char caught in gill nets did not exhi bit the preponderance of eastuard novenent evident in fyke net catches. In 11 gill net sets al ong the nai nl and shore during the 15 J uly- 9 Septenber 1978 period, 51% of 163 char caught entered the net from the east side, and 49% entered from the west. It is therefore concl uded that the fyke net data do not accuratel y reflect the di rections of movement of arctic char. (Other species do not lend thensel ves to a similar anal ysis because of apparent reversalsin novement and the timing of gill net sets in rel ation to the timing of peak novenents of fish.)

Recaptures of narked arctic char, though few in number, indi cate that a large proportion of the indi vidual susing Simson Lagoon origi nate from the nearby Sagavanirktok River. Seven char that were recaptured in the lagoon had been tagged 4-7 years earlier in the Sagavanirktok drai nage and one tagged in the lagoon was recapt ured in the Sagavani rktok drai nage. Two additional fish caught in Simpson Lagoon had been tagged 1-2 years earlier in Prudhoe Bay.

Only three char were tagged at Milne Poi nt and recovered the sane yea r. One was caught at Milne Poi nt 25 days later, the second at 0liktok Point, and the thirdinthe Canning Ri ver approxi mately 140 km to the east (Fig. 19).

Arctic Cod. This speci es provided the nost dranatic example of annual variability recorded during this study (Fig. 20). Based on our 1977 findings in Si mpson Lagoon and Bendock's (1977) observations the previ ous year in Prudhoe Bay, a nodest increase in cod numbers was expected as freeze-up approached, but we did not anticipate the massi ve school of cod that swept through the I agoon in mid-August of 1978. During a ni ne-day period (14-22 August), an estimated 124, 200 arctic cod were caught in the Milne Point fyke net. The fish were highly nobile as indi cated by erratic daily catches; for example, approximate daily catches during the period 18 to 22 August were 17, 000, 42, 000, $6,000,40,000$ and 15 . There was no clear directional pattern of novenents at this tine (Fig. 20). These were generally small and young fish (60-160 mm which correspond to ages 1-3; see 'Additional Life History Data for Fishes').

The cod run was not restricted to Si mpson Lagoon, but was al so observed el sewhere al ong the Beauf ort Sea coastine. Very large numbers of this species were reported in August 1978 in Prudhoe Bay on the west si de of the ARCO causeway (C. Broad, pers. comm.); he observed a single school of cod approxi natel y 35 mwide and $\mathbf{3 0 0} \mathbf{m l o n g}$ traveling in the shal low water adj acent to the causemay. Fish densities in this school were high, as indi cated by the capture of 12 cod in a small plankton net ($0.13 \mathrm{~m}^{2}$ openi ng) pulled vertically through 0.5 m of water. A very rough estimate of the number of codinthis school is $\mathbf{1 - 2} \mathbf{~ m i l i}$ ion fish. This estinate is based on the above di nensi ons and corresponding assumptions of $12 \operatorname{cod} / 0.13 \mathrm{~m}^{2}$ surface area of water or $12 \operatorname{cod} /\left(0.13 \mathrm{~m}^{1} \mathrm{x}\right.$ 0.5 m) vol une of water and an average water depth of 1.2 m The tendency of arctic cod to travel in large school s has been observed in other arctic areas (Bain and Sekerak 1978).

Arctic cod continued to occur throughout the nearshore area in Novenber 1978, and were found at the "Boul der Patch" and Narwhal I sl and sites in February and May 1979 (Tables 10 and 11).

Fourhorn Sculpin. Large fourhorn sculpins, generally $\mathbf{1 4 0}$ to $\mathbf{2 4 0} \mathbf{~ m m}$ long, were present in low numbers through nost of the sumer (Fig. 17). Although gill net and beach sei ne data show that these Iarge sculpins

Fi gure 20. Comparisons of daily fyke net catches al ong the mai nl and shorel ine in 1977 and 1978. See Fig. 18 for explanation of synbol s.
were more abundant al ong the nai nl and shorel ine than near the barrier islands (Tables 5 and 8), these differences were not statistically significant; fyke nets caught al nost equal numbers of small sculpins at both locations (Table 9). Numbers of this species increased in both years as the open- water season progressed (Fig. 20), but wi nter data indi cate that these fish leave the lagoon again in winter (Table 11). It appears that they then nove to deeper waters such as those around Thetis Island (Fig. 21). The presence of spawned-out sculpins at the Thetis Island site in February suggests that they may spann in that area. The 17 recapt ures of marked fourhorn sculpins are described in the next section ('Resi dency Ti ne in Si mpson Lagoon' ; see al so Table 14).

BoreaL Snel t. In summer, these fish were rel atively sparse (0-0.7\% of catches, Table 4) and they occurred sporadically in Simpson Lagoon from 11 July- 18 Septenber. Winter data indi cated that they nove into nearshore areas when these areas are covered by ice. A concentration of boreal snel \mathbf{t} was found at the Thetis Island site from Novenber through May 1979 (Fig. . 21); these snelt were presumably gathering for a spring spawning run into the Colville Ri ver. The abrupt di sappearance of bores smelt from the Thetis Island station on 9 May coincides with the arrival of melt water fromthe Colville River and suggests that the spring breakup triggers a spawning run of these fish into the Colville drai nage.

Broad and Humpback Whitefish. Popul ations of broad and humpback whitefish enter coastal waters from the Colville and Sagavanirktok ri vers (Bendock 1977), but little is known about their novenents. One broad whitefish tagged at the Milne Point on 1 Jul y 1978 was recapt ured there after 37 days, and one travel ed from Milne Poi nt to $\mathbf{Q i}_{\text {iktok Point }}$ in early September. Another broad whitefish tagged at Milne Point on 10 July 1978 was taken in the Nuiqsut subsistence fishery in the Iower Colville Delta in October of the sane year.

One broad whitefish and four humpback whitefish were tagged in Prudhoe Bay or Si mpson Lagoon and recaptured 1-2 summers later in Si mpson Lagoon.

Fi gure 21. Under-ice catches of boreal snelt and fourhorn sculpin at the Thetis Island station off the Colville River. Gill nets operated conti nuously during the three periods shown; data points are the average catch per unit effort for 2-5 day intervals.

Pi nk Sal mon. A snall run of pink salmon passed through Si mpson Lagoon in 1978. The run occurred during 4-9 August 1978 when 87% of the total summer's catch of pinks $(\mathbf{n}=166)$ were caught at Milne Point. Most fish (84%) were traveling in an eastuard di rection. One fish tagged in the lagoon on 6 August was recovered the next nonth in a subsi stence net at Barrier Island, about 250 km to the east.

Resi dency Tine in Si mpson Lagoon
Although it is difficult to determine the time that fish spend in an area, there are tuo basic reasons why this infornation is desirable:

1. An implicit assumption in this project has been that estuarine envi ronments, such as Si mpson Lagoon, are bi ol ogi cally special habitats in the arctic, just as they are in temperate latitudes. Does Si mpson Lagoon provide essential habitat for sone fishes? Do fish spend more time in lagoon habitats than in non-lagoon segnents of the Beauf ort Sea coastline?
2. If oil or a toxic chemical accidently spilled into a lagoon, would only those fish al ready present be affected, or would new fish continually nove into the area fromsurrounding waters?

It was not feasible to obtain precise information about residency time, but we obtai ned sone usef ul information by examining (1) patterns of tag recaptures, and (2) average rates of longshore novenent of tagged fish.

Pattern of Recaptures. Numbers of fish that were both tagged and recaptured in Si mpson Lagoon were low but these data provide some indi cation of resi dency time of the fish.

For Iarge anadromous fish (nai nly arctic cisco, least cisco, and arctic char), the paucity of recaptures suggests that these fish do not Iinger in the lagoon. Despite a continued program of fyke and gill netting in 1977 and 1978, and a 12-day fyke net programin 1979, only 15 of the $\mathbf{3 4 7 0} \mathbf{I}$ arge fish marked in the lagoon were recaptured in the I agoon during this study. Of these, 12 were recapt ured the same year they were tagged and 3 were recapt ured one year I ater. Excl udi ng the I atter group, the days el apsed between tagging and recapture were:

Seven of these fish were recaptured at the same site after 2-6 days and one was recapt ured 3.2 km away after 5 days; the renai ni ng four indi vidual s, all recaptured about one nonth after tagging, may well have migrated out of Si mpson Lagoon and back agai n.

The si gnificant point is that these 15 fish represent only $\mathbf{0 . 4 \%}$ of al lagged large fish. Thus, a large portion of these fish either noved qui ckly out of the sampling area or avoi ded recapture.

Tag recaptures of small fish al so provide some information on the novenents of these fish and their residency times in Simpson Lagoon. In 1977, 2923 small fish were tagged and 15 were recapt ured: 13 fourhorn sculpins, one arctic flounder, and one arctic cod. The arctic flounder was recaptured 21 days later at the same site (Milne Point); the arctic cod two days Iater at the same site (al so Milne Point). The following numbers of days el apsed bet neen tagging and recapt ure of the 13 fourhorn sculpins: 2days ($n=5 \mathrm{fish}$), $\mathbf{3 (1) , 5 (3) , 1 6 (1) \text { , } , ~}$ 19(1), 21 (1), 24(I). El even of these fourhorn sculpins were recapt ured at the site where they were originally tagged (Table 14); the other t wo crossed the lagoon fromthe nai nl and and were recapt ured 19 and 21 days Iater at Pi ngok Island. Four of the 2381 fourhorn sculpins tagged in 1977 were recaptured in shallow water in 1978; three of these were recapt ured about 5 km from their tagging site.

Tagging data for the fourhorn sculpin, coupled with what is known about the species, suggest that these narine fish nay reside in a particular regi on for one or nore summers. Andriyashev (1954) comments that this speci es "I i ves permanently near the coast without accomplishing any consi derable migrations". In addition, mal es of this species are known to establish territories during their reproductive periodin fall and winter (Westin 1969). Sculpins apparently leave Si mpson Lagoon in winter, and certainly must abandon the shallow, nearshore area of the

Table 14. Tagging and recapture di stribution of fourhorn sculpins in Si mpson Lagoon, 1977-1979.

Recapt ured	Tagged		
	1977		1978
	$\begin{aligned} & \hline \text { Mi nl and } \\ & (\mathrm{n}=1217) \\ & \hline \end{aligned}$	Pi ngok Island $(n=1164)$	Mai nl and ($n=4$)
1977			
Mai nl and	7	0	
Pi ngok I sl and	2	4	
1978			
Mai nl and	3	1	0
1979*			
Mai nl and	0	0	0
Pi ngok Isl and	0	0	0

I agoon in winter. The recapt ure of four indi vidual s in shallow portions of the Iagoon one summer after narking suggests that at least some individual s return to that area after having spent the winter el sewhere.

Net Rate of Movenent. As fish travel al ong the coastline, their net rate of novenent is a complex function of the frequency, duration and nat ure of feeding, resting, turning, migrating, etc. Recapture data can provide infornation about the net rate of novenent. Fromthis net rate, we can estimate the time that an average fish might spend while traveling the length of Simpon Lagoon.

An estimate of net novenent rates was obtai ned by using all available mark and recapture data for anadromous fish in Beaufort Sea waters. Only the fish both narked and recaptured al ong the coast in a single year were useful for these purposes. Sources of these data are the present study and another conducted by the Al aska Depart nent of Fi sh and Gane (Bendock 1977; Doxey 1977). ADF\&G mai ntai ned several fyke nets in Prudhoe Bay and tagged nearly 5000 anadromous fish in 1976 and 1977. Suitable tag data (i.e., complete details of tagging and recapture dates and locations, or reasonably compl ete data from which tine and di stances could be inferred) were available for $\mathbf{7 8} \mathbf{f i s h}$ in the ADF\&G studies and 8 fish from Si mpson Lagoon. These fish had travel ed net coastal di stances of $0-241 \mathbf{k m i n} \mathbf{1 - 2 1}$ days (typically $0-20 \mathrm{kmin} 1-10$ days). In all cases, a correction factor of $\mathbf{0 . 2 5}$ days was subtracted from the el apsed time between rel ease and recapt ure to al low for the average tine that recaptured fish spent in the ADF\&G fyke net (fyke nets were checked twice daily, weather permitting). A 0.5 day correcti on was used for our own data si nce fyke nets were checked once a day. Data on fish that migrated from coastal waters to spawning sites in North Sl ope ri vers were not included in these cal cul ations.

The average net rate of travel was similar for least cisco, arctic cisco and conbi ned species (49 least cisco, 30 char, 3 humpback whitefish, 2 broad whitefish and 2 arctic cisco):

Fi sh	Net Rate (km/day)			
	Mean	range	SD	n
l east cisco	2.9	0-12	3.1	49
arctic char	2.8	0.1-23	5.4	30
conbi ned speci es	3.1	0-23	4.2	86

These rates nay be bi ased downward si nce the nat ure of the tagging prograns made it more likely to catch a fish that remai ned near the tagging station than one which swam away. However, the rate for conbi ned speci es only doubl es if we anal yze only fish recaptured at least $4 \mathbf{k m}$ anay from thei r tagging site ($\bar{x}=5.6 \mathrm{~km}$ day, $S D=4.6, n=45$).

At these rates of longshore movenent (2.9-5.6 knday), the mean resi dency time for an andromous fish in Si mpson Lagoon ($37 \mathbf{~ k m}$ shorel ine length) would be 7-12 days, assuming that the fish mai ntai ned the same net di rection of travel throughout its period of residency in the lagoon. For those fish that characteristically travel eastwardin early summer and return in late summer, total residency time for the summer would be 14-24 days.

At i rate of 2.9-5.6 knd day, an anadromous fish that entered coast al waters for 2 nonths would be able to travel about $90-170 \mathrm{~km}$ fromits stream of origin before having to turn around. It is not known how realistic this range estimate is, but various tagging studies in the Beauf ort Sea area each provide a few recaptures of anadromous fish that travel ed twice this di stance in coastal waters during a single summer (Glova and McCart 1974; Furniss 1975; Bendock 1977; Doxey 1977; this study).

M grating cisco and char are capable of mach faster swi ming speeds than the net novenent rates cal culated above. Speeds of 0.9 mfs or 78 km day have been recorded in coastal waters when fish apparently were ret urning to fresh water in the fall (re-calculated from data of Giffiths et al. 1975). If fish entered coastal waters and proceeded out ward at the slower rate (2.9-5.6 kmday), but then returned to their North Sl ope rivers at a rapid rate ($50-75 \mathrm{~km}$ day), their coastal range woul d be extended to $200-300 \mathrm{~km}$

It is interesting to note that these rough cal culations nould account for the observed scarcity of least cisco in the Barter Island regi on of the Beauf ort Sea coast (Craig and McCart 1976; Griffiths et al. 1977). Barter Island is about $250-300 \mathrm{~km}$ fromeach of the two rivers (the Colville and Mackenzie rivers) that support maj or stocks of this species. Perhaps this di stance is too great for nost least cisco to travel in the time available. These tuo rivers are al so maj or sources of arctic cisco; honever, there is no similar hi atus in their distribution in the area mid-way between these rivers.

Popul ation Numbers

Popul ation Estimates of "Catchable" Arctic and Least Cisco
In this section, we derive estimates of numbers of "catchable" fish for two of the nost important anadromous fishes in the study area, arctic and least cisco. "Catchable" fish are defined as those ciscoes large enough to be caught in the commercial fishery in the Colville Delta. These include primarily large imature recruits and mature non-spawners, both of which frequent coastal waters in summer and return to overvinter in areas like the Colville Delta. Details of the age structure and maturity of fish taken in coastal waters and the Colville commercial fishery are presentedin 'Additional Life-history Data for Fi shes' .

The taggi ng program conducted in Si mpson Lagoon provi des a preIiminary basis for estimates of the "catchable" segnent of these species. The operation of a comercial gill net fishery for arctic and least ciscointhe Colville Delta during October through Decenber provides recaptures of fish that were originally caught by fyke net and beach sei ne in Si mpson Lagoon. These circunstances provi de an opportunity to estimate numbers of catchable fish using the Petersen single-census procedure for estimating the popul ation size (Ricker 1975). However, we must emphasize that the assumptions upon whi ch the Petersen estimate is based are not necessarily fulfilled and so the resulting popul ation estimates are only rough approxi mations. These assumptions are that
tagged and untagged fish mortalities are equal, that tagged and untagged fish are equally vul nerable to capture, that there is randomming of marked and unnarked fish, and that there is a negligible anount of recruitnent. However, one of the nost important uncertainties of the experiment rel ates to the assumption that tagged and untagged fish are equally vul nerable to capture- - the fish were tagged in coastal lagoons and the nai n poi nt of capture was in the Colville River, so we must assume the following:

> The Colville Ri ver is presumed to be the major source of cisco stocks whi ch enter the Si mpson Lagoon study area.

Although based on limited information, the latter assumption is not unreasonable. The Colville River, Al aska's largest North Slope drainage, lies imedi ately adjacent to the study area. It contains large popul ations of arctic and least cisco, large enough to support the North Sl ope's only commercial fishery (described in 'Influence of Other Organisns') ${ }_{\mathrm{a}}$ It is al so known that some ciscoes in Simpon Lagoon origi nate and/ or overwinter in the Colville, since nost of our tag recaptures were fromthe Colville fishery (although this is partly to be expected, since recapture efforts were greatest at this site-see 'Fish Mbvenents'). Bendock (1977) reached a similar concl usi on about least cisco in Prudhoe Bay-- "tag returns and novenent patterns obtai ned during 1976 indi cate that the maj ority of least cisco capt ured al ong the coast nove out of, and return to, the Colville River". The only other North Sl ope ri vers known or suspected to support ci scoes are a few ri vers near Barrow and the Mackenzie River in Canada. This information is reviewed in more detail in 'Freshwater Sources of Arctic Cisco' and 'Freshwater Sources of Least Cisco' (in 'Additional Life-history Data for Fishes').

Numbers of marked, recapt ured and comercially caught fish are listed for 1976 to 1979 in Table 15. The 1976 data were obtai ned from a tagging program conducted by the Al aska Department of Fish and Game (Bendock 1977). In this case, the fish were tagged in Prudhoe Bay during the 1976 open- water season and were recapt ured in the commercial fishery the sane year. These data requi re the sane assumptions and invol ve the same restrictions as do the Si mpson Lagoon estimates.

Table 15. Estimates of the "catchable" popul ations of arctic and least ciscointhe Colville River seagoi ng popul ation, 1976-1979.

	Arctic Cisco				Least Cisco			
	1976*	1977	1978	1979	1976*	1977	1978	1979
Total tagged	628	30	369	371	3, 185	126	893	873
Correction for size	22\%**	26\%	18.8\%	77. 6\%	25. $3 \% * *$	25. $3 \% * *$	26. 1\%	24. 5\%
Effective number tagged	490	22	300	83	2, 379	94	660	659
No. in commercial catch †	31, 659	31, 796	18, 115	7830^{\dagger}	34, 620	14,961	21, 681	24,175 ${ }^{+}$
No. recapt ured	19	4	26	5	269	3	32	8
Popul ation esti mate (unb ased)	777, 253	146, 266	201, 960	109, 634	305, 178	355, 348	434, 297	1, 772, 907
$\mathbf{9 5 \%}$ confidence limits 1 ower	508, 008	65, 297	139, 818	51, 796	271, 046	145>040	310, 885	1, 009, 884
upper	1, 243, 605	365, 665	302, 940	253, 002	343, 325	888, 369	628, 588	3, 626, 400
Expl oitation rate (R / M)	3. 9\%	18. 2%	8. 7\%	6. 0\%	11. 3%	3. 2%	4. 8\%	1.2\%

* Fi sh tagged by ADF\&G in Prudhoe Bay.
** Arbitrarily assi gned the average of 1977 and 1978 size correction val ues.
***Arbitrarily assi gned the average of 1978 and 1979 size correction val ues.
${ }^{\dagger}$ Catch as of 23 Novenber 1979 (i.e., near end of fishery for this year).
$\dagger \dagger$ A snall but unknown number of fish identified as arctic cisco in the commercial catch were probably Bering cisco; however, Bering cisco were found only in our 1979 sub-sample of the commercial catch.

An adjust nent was made for fish that were either toolarge or snall to be vul nerable to the commercial fishery. Thi s adjustnent is shown in Fig. 22; it is cal cul ated by adding the percentage differences at each size interval when sizes of tagged fish falloutside sizes of recapt ured fish (from Ricker 1975). The number of tagged fish is then reduced by thi s percentage to determine the number of tagged fish susceptible to the fishery. For the 1976 ADF\&G data, we assured that a si milar di screpancy in sizes occurred; the correction factors used in this case are indicated in Table 15.

Popul ation estinates were cal cul ated by the unbi ased estinate of the Petersen nark/ recapt ure formal a (Chapnan 1951, nodi fied by Ricker 1975) :

$$
N=\frac{(M+1)(C+1)}{R+7}
$$

where N is the popul ation size, Mis the number of narked fish in Simpson Lagoon or Prudioe Bay (corrected for size), C is the sample taken for census (i.e., the commercial catch), and R is the number of recaptured fish in the sample.

Apparent trends in popul ations of catchable fish suggest largescale changes in anadromous cisco popul ations over the past several years (Fig. 23). Arctic ci sco numbers appear to have dropped roughly 86\% from 1976 to 1979 while least ci sco increased 82% during the same peri od.

Are these figures or trends neani ngful? On the one hand, the data suggest that recent changes have occurred in cisco stocks. This contention is supported by (1) I arge changes in the age structure of commercialIy caught arctic cisco (di scussed in 'Additional Life-history Data for Fi shes'), and (2) a reduction in the 1979 commercial catch of arctic ci sco to onl y 25% of its average during the previ ous ni ne-year period; 1979 I east cisco catches were 115\% of their average over the same period (see 'Influence of Other Organi sns'). On the other hand, these popul ation estinates would be misleading if there were other si gnificant sources of arctic cisco. In this case, there would be an open- ended systemwith mixures of stocks, with the result that an unknown

Figure 22. Comparison of sizes of arctic and least cisco tagged in Si mpson Lagoon with sizes caught in the Colville Delta commercial fishery. Shaded areas represent the percentage (Δ) of tagged fish which were too large or snal 1 to be caught in the commercial fishery.

Figure 23. Estimates of "catchable" arctic and least cisco in the Colville River seagoi ng popul ations, 1976-1979. Bars indi cate 95\% confi dence limits of mark/ recapture esti mates.
proportion of fish tagged in Si mpson Lagoon nould not be recoverable in the Colville Delta. Under such conditions our estimates of numbers of cisco in the Colville River nould be too high.

In addition to suggesting that there might be large-scale popul ati on changes, the foregoi ng exerci se points out that maj or data gaps regarding the distribution and bi ol ogy of Al askan Beaufort Sea ciscoes exist. Because of the importance of these fish in subsistence and com nercial fisheries, we suggest that the infornation presented herein underscores the need for a better understanding of the bi ol ogy of these species bef ore any fisheries managenent or future nonitoring prograns for these fish can proceed. This problemis further di scussed for arctic cisco in 'Additional Life-history Data for Fi shes'.

Esti nated Densities of Conbi ned Speci es

In order to compare the available supply of invertebrate food resources in Si mpson Lagoon with the total food requirenents of all fish usi ng the Iagoon (see Griffiths and Dillinger 1980), we must (1) estimate how many fish are in the lagoon system and (2) find out how much food each fish consumes. In this section total fish numbers are estimated; food requi rements are described Iater in 'Feedi ng Ecol ogy'. The estimates of fish densities are based on several sources of infornation acquired in the field and presented inthis report. Steps in the derivation of these sonewhat rough estinates are as follous:

1. To cal cul ate fish densities we separated fish into "large fish" and "snall fish" categories because of obvi ous differences in the amount of food consumed by indi vi dual s in each size range and the suspected difference in food consumed per unit wei ght. Based on a preliminary revi ew of life-history data, i ndi vi dual s in each si ze category were assi gned a mean wei ght which is later used by Griffiths and DilI i nger (1980) to cal cul ate daily food intake: 470 g for large anadronous fishes (speci es conbi ned: arctic ci sco, least ci sco, arctic char, broad and humpback whitefish); 15 g for small anadronous fish and marine speci es (speci es conbi ned: fourhorn sculpin, arctic cod, arctic cisco, etc.).
2. To cal culate fish densities, we stratified the Iagoon by habitat, a $100-\mathrm{m}$ wide edge of the lagoon ($7 \mathrm{~km}^{2}$) and a I agoon- center habitat (153 km). We did this because fish concentrations were generally high al ong shoreline edges and low in the center portion (Figs. 11 and 13). The average abundance of laroe fish al ong nai nl and and lagoonside shorel i nes of the barrier islands was about 10 tines greater than in the lagoon center (Table 5).
3. The density estimates for I arge anadromous fish were deri ved from beach sei ne data (Table 8). Density estimates were 0.006 I arge $\mathrm{fish} / \mathrm{m}^{2}$ al ong nai nl and shorel ines and 0.002 large fish $/ \mathrm{m}^{2}$ al ong inside isI and shorel i nes. The average of these val ues, 0.004 Iarge $\mathrm{fish} / \mathrm{m}^{2}$, was then assi gned to edge habitats during the mid-sumner period when fish were nost abundant in the Iagoon (see Fig. 17); 1/ 10 these val ues were used for central lagoon habitats (Table 16).
Beach sei ne dat a appeared to underesti nate densities of snall fish because our fyke net data showed that snall fish were many times nore numerous than large fish. Therefore, densities of small fish were assumed to be 5-6 ti nes greater (as indi cated by fyke net catches) than densities of large fish (estimated from Table 4). Si nce our fyke net catch records showed that numbers of snall fish, particularly the numerically dominant arctic cod and fourhorn sculpin, increased during the Iatter hal f of the sumer (see Fig. 20), we have correspondi ngly changed our density estimates for snall fish in Table 16. Densities are assumed to be lowest in early summer, increasi ng thereaf ter.

Numbers of arctic cod inhabiting the lagoon during thei r approxi nate ni ne-day run in mid-August were estimated in three ways, all of which provi de estimates between 12 and 27 million cod:
a) The 61-mlong fyke net sampled about 2% of the di stance al ong a transect across the I agoon from Milne Poi nt to Pi ngok Isl and (3300 m). During the cod run, the fyke net caught 124, 200 cod. If we assume that the cod were uni formity di stri buted across the lagoon and that the efficiency of the fyke net was 50% then the total run yould be about 12 milli on cod.

Table 16. Estinated densities of small fish (15 g assumed wei ght) and Iarge fish (470 g assumed wei ght) in two habitats in Si mpson Lagoon, 1978.

Date	Small Fish ($\mathrm{No}. / \mathrm{m}^{2} \times 10^{-4}$)		Large Fish ($\mathrm{No} . / \mathrm{m}^{2} \times 10^{-4}$)	
	Edge*	Center**	Edge*	Center**
July 1-10	5	0.5	5	0.5
11-20	20	2	20	1. 5
21-30	50	5	40	4
Aug. 1-10	50	5	40	4
11-20	1250	1200	40	4
21-30	70	7	40	4
Sept. 1-10	100	10	40	4
11-20	100	10	10	1
21-30	100	10	5	0.5

* 100 m wide band al ong shoreline edges (from Fig. 13) $=7 \mathrm{~km}^{2}$.
** $\mathbf{A} \mathbf{I}$ of Iagoon except edges $=153 \mathrm{~km}^{2}$.
b) If we assune that the observed decline in i nvertebrate bi onass during the cod run was I argel y caused by consumption by the cod, we get a sonewhat si milar estimate. Griffiths and Dillinger (1980) report that the standing crop of available food dropped $0.015 \mathrm{~g} / \mathrm{m}^{2} /$ day (ash-free dry wei ght) during the period 18-30 August 1978. 01dsquaw requi rements were $0.0046 \mathrm{~g} / \mathrm{m}^{2} /$ day and I ar ge fish requi renents were $0.0011 \mathrm{~g} / \mathrm{m}^{2} /$ day, I eavi ng a decrease of $0.01 \mathrm{~g} / \mathrm{m}^{2} / \mathrm{day}$. The dai I y food requi rement of each cod was 0.5 g wet wei ght or 0.06 g ash-free dry wei ght (8 g fish and $\mathbf{6 \%}$ daily ration-see 'Feeding Ecol ogy'). Usi ng these val ues, there were approxi natel y 27 million $\operatorname{cod}(27,000,000 \operatorname{cod} \times 0.06 \mathrm{~g} / \mathrm{cod} \div 160,000,000 \mathrm{~m}$ in I agoon $=0.01 \mathrm{~g} / \mathrm{m}^{2} /$ day).
c) A final estimate is derived by extrapol ati ons from the nark/ recapt ure dat a of other species. In 1978, the total population of large arctic cisco entering coastal waters was esti nated to be 239, 928 fish (201, 960 fish pl us 18. 8% due to si ze class corrections). If we assume that one half of these fish went eastward fromthe Colville Ri ver and the other hal f went west ward (and there are no data to i ndi cate this uould be unreasonable), then 119, 964 I arge arctic cisco passed through Si mpson Lagoon in 1978. Of these, approxi natel y 650 (0.5' 2) were caught in the fyke net. By simiar cal cul ations, we esti nate that 0.8% of all least cisco were caught in the fyke net. If we assune that the fyke net caught a roughl y equi val ent portion of the arctic cod that passed through the I agoon ($n=124,200$ cod caught in fyke net), then about 19 milli on cod were in the I agoon. Cod densiti es would then be 19 mili on cod/ $160 \mathrm{~km}\left(0.12 \mathrm{cod} / \mathrm{m}^{2}\right)$ if the fish were equally di spersed throughout the I agoon. A density of $0.12 \mathrm{cod} / \mathrm{mis}$ onl y 0.1% of that esti nated for a school of cod observed at Prudhoe Bay which contai ned roughly 1-2 milion fish (see 'Mbvenents and Mgrations').

It is clear that nany of these assumptions and cal cul ations are rough and so Table 15 must be interpreted accordingly. This exerci se does, however, allow us to estimate the total anount of food consumed by fish in the lagoon. An anal ysis of food resources in rel ation to predation is presented by Griffjths and Dillinger (1980).

The approach used in trophic studi es was to exami ne naj or components of the food chain "fromthe top down", that is, from consumers to producers. Theref ore, the nearshore food chai \mathbf{n} was examined by anal yzing di ets of principal vertebrate consumers and determining rel ationships bet ween their nutritional requi renents and the available food base. This section emphasi zes the feeding habits of fishes, but an attempt is made to present a broader pi cture of vertebrate consumers in Si mpson Lagoon. Large numbers of birds al so feed in the study area and, toget her with fish, are the princi pal consumers of secondary production in the Iagoon. (Use of the study area by narine nammal is i nci dental .)

I mportant speci es in Si mpson Lagoon incl ude five fishes (arctic cisco, least cisco, arctic char, arctic cod, fourhorn sculpin) and tno bi rd groups (oldsquaw ducks, phalaropes). Another speci es, boreal smel t, is al so incl uded in food habit studies because these fish are abundant in winter. General aspects of consumers are compared in this section, but detailed accounts are presented el sewhere: fish ('Additional Life-hi story Data for Fi shes') and birds (Johnson and Ri chardson 1980). The invertebrates in Si mpson Lagoon are anal yzed by Griffiths and Dillinger (1980) who al so compare food requirements of fish and bird predators with prey resources.

The examination of fish feeding habits in Si mpson Lagoon and surrounding waters is based on a sample of 703 stomachs of 7 speci es collected during summer and wi nter seasons 1977-1979 (Table 17). Al summer samples are from Simpon Lagoon in the vicinity of Milne Point and Pingok Island. Winter samples are conbi ned froma wider nearshore region shown in Figs. 6 and 7: arctic cisco, least cisco and fourhorn sculpin (Colville Delta, April/May 1978), fourhorn sculpin (Thetis Island, Novenber 1978 and March/ April 1979), boreal smelt (Si mpson Lagoon and Thetis Island, Novenber 1978) and arctic cod (Thetis Island to Narwhal I sl and, Novenber 1978 and February 1979).

Table 17. Number of fish st onachs exam ned during summer and wi nter sampling periods.

Fi sh	Summer 1977	Vinter 1977/ 8	Summer 1978	Winter 1978/ 9	$\begin{gathered} \text { Summer } \\ 1979 \\ \hline \end{gathered}$	Total
Arctic cisco	55	40	57			152
Least cisco	51	23	27			101
Arctic char	60		17			77
Arctic cod	34		20	84	47	185
Fourhorn sculpin	65	9		45		119
Boreal snelt				39		39
Arctic flounder			31			31
					TOTAL	703

Si nce a fish's diet may change seasonally, a composite estinate of a speci es' di et was obtai ned by pool ing and anal yzing approxi matel y equal numbers of samples collected during early, mid- and late periods of summer and winter, whenever possible (see 'METHODS'). Si nce the variety of food itens in stomach contents of indi vidual fish was low (Fig. 24) and the rel ative proportions of maj or food groups did not vary greatly (Fig. 25), a sample of $10-20$ stomachs appeared adequate to describe the ki nds and proportions of important food itens consumed during any one sampling period. It is therefore felt that the pool ed data from the three summer and three wi nter periods (depending on availability of speci nens) reflect the general diets of each fish species in nearshore waters. Si ze cl asses of fish used in dietary anal yses were those nost common in the study area-in general, medi um to largesized fish of nost species prevailed in catches and in samples used for stomach anal yses (Table 18).

Trophic Spectrum

In order to identify which components of possible food sources are utilized by fish, we have categorized the invertebrates and other potential food groups according to functional habitat or taxonomic units. This list incl udes food groups known to be important to fish in the study area and, for compl eteness, several basic food groups which are eaten by fish in non-arctic areas. This range of foods potentially available to fish is called a trophic spectrum (Darnell 1961) and the one used here is a slightly nodified versi on used by Cailliet et al. (1978).

Fi ve general sources of food are recogni zed: (1) water col um organi sns (i ncl udi ng fish and zoopl ankton), (2) nobile epi bent hos (crustacea and polychaetes), (3) sedentary epi benthos (crustacea, molluscs, tuni cates and eggs frominvertebrates or fish), (4) inf auna (worns such as pol ychaetes, and molluscs) and (5) flora (al gae, vascul ar plants and detritus).

Figure 24. Cumul ative number of preyspecies or groups in pool ed fish stomachs.

Fi gure 25. Cumul ative percent composition (by wet wei ght) of maj or food groups in the di et of arctic cisco collected during three time periods during the 1978 open- water season.

Table 18. Sizes of fish used infoodnabit studies.

Ei sh	$=\frac{\text { Sumaer 1911 }}{\overline{\mathrm{x}}(\text { range })}$	$\frac{\text { Winter } 1977 / 78^{*}}{\overline{\bar{x}}(\text { range })}$	SD	$\text { n } \quad \frac{\text { Sumin }}{\bar{x}}$	$\text { mer } 1978$	SD		$\begin{aligned} & \text { Winter } 1978 / 79 \\ & \overline{\bar{x}} \text { (range) } \end{aligned}$	$\text { - Sumner } 1979$	SD
Arctic cisco	55360 (290-410) 29	$\begin{array}{lll} 24317 & (226-368) \\ 16173 & (148-204) \end{array}$	$\begin{aligned} & 26 \\ & 18 \end{aligned}$	57342	(205-419)	49				
Least cisco	51307 (211-412) 35	23267 (146-357)	21	27302	(222-366)	37				
Arctic char	$60475(236-690) 142$			17331	[264-609)	95				
Arctic cod	34160 (93-221) 35			20109	(91-139)	11	84	125 (50-253) 29	4/92 (60-155)	25
Fourhorn sculpin	65150 (56-248) 52	9193 (175-?65)	66				45	$184(130-253) 32$		
Arctic flounder	31216 (148-265) 32									
Boreal smelt							39	251 (190-305) 30		

*Colville Uelta (April/May 1978).

When the trophic spectrumis examined, it is apparent that the diets of vertebrate consumers (including bi rds) are surprisingly simin Iar (Fig, 26). A single category, mobile epi benthic crustacea, is by far the nost important food group for nost fish and birds. This group accounts for over 90% of the di et for arctic cisco, least cisco, arctic char, arctic cod and ol dsquave The renai ning three predators feed heavily on this food category ($44-64 \%$ of the diet) but additional preferences are al so apparent. Two feed on "water col um" organi sns--boreal snelt eat fish (41\%) and phalaropes eat zooplankters (36\%). One predator feeds on "sedentary epibenthos"--fourhorn sculpin eat a bottomcrawing isopod (449).

What is conspi cuously absent anong vertebrate consuners in the lagoon are species that rely on infaunal organisns, sedentary benthos or flora. This apparent voidis only partly explainable by the reduced variety of organi sns inhabiting rigorous envi ronnents like Si mpson Lagoon. Harsh physi cal feat ures of the I agoon (shal low and wi nd-churned waters, widel \mathbf{y} fluct uating temper at ures and salinities, lack of solid substrates for attachnent of plants or ani mals, and winter ice conditions) provide unsuitable conditions for all but a few kinds of organi sns. There are, for example, no vascular plants growing in the lagoon and very little macrophytic al gae is present. However, a reduced vari ety of speci es does not, by itself, account for the observed reliance on nobile epi benthic crustaceans. Sone infaunal organi sns (bival ve molluscs, polychaetes) and sedentary epi benthos (isopods, tuni cates, stal ked polychaetes and hydroids) are abundant but little utilized. Thei r bi onass in Si mpson Lagoon is similar to the bi onass of the nobile epi benthic crustaceans:

i nf auna and sedentary epibenthos	g/ miash- free dry wei ght
nobile epi bent hos	$0.5^{*}-2 . \mathbf{1}^{* *}$
$\mathbf{0 . 3 - 2 . 5 * * *}$	

[^20]| TROPHIC SPECTRUM | $\begin{aligned} & 0 \\ & E \\ & \hline \end{aligned}$ | | $\begin{aligned} & 0 \\ & \vdots \\ & 0 \\ & \alpha \\ & \mathbb{\alpha} \\ & \mathbb{A} \\ & \hline \end{aligned}$ | $\begin{aligned} & \frac{y}{a} \\ & \frac{1}{2} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \frac{0}{1} \\ & \underset{\sim}{x} \\ & \frac{x}{4} \\ & \hline \end{aligned}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WATER COLUMN $\left[\begin{array}{l}\text { Fish } \\ \text { Zoo plankton }\end{array}\right.$ | | | - | | | | | m |
| $\begin{aligned} & \text { MOBILE } \\ & \text { EPIBENTHOS } \end{aligned} \quad\left[\begin{array}{l} \text { Crustacea } \\ \text { Polycheetes } \end{array}\right.$ | | $\underline{\square}$ | | | | - | | |
| SEDENTARY EPIBENTHOS $\left\{\begin{array}{l}\text { Crusioced } \\ \text { Mollusco } \\ \text { Tunicetes } \\ \text { Eggs }\end{array}\right.$ | - | - | | | | - | | |
| In FAUNA $\quad\left[\begin{array}{l}\text { "Worms" } \\ \text { Mollusco }\end{array}\right.$ | | | | | | | | |
| FLORA $\left\{\begin{array}{l}\text { Algoe } \\ \text { Vascular Pionts } \\ \text { Detritus }\end{array}\right.$ | | | | | | | | |
| Number of stomachs examined | 147 | 101 | 77 | 126 | 185 | 39 | 113 | 72 |

Fi gure 2F. Trophic spectrum of vertebrate consuners in Si mpson Lagoon for combi ned dates and locations, 1977-1979. For each species, proportions of foods in the diet are indi cated by bands; the sum of hei ghts of all bands within each spectrum equal s 100%.

It is understandable that sone infaunal organi sns are not vul nerable to predation by shorebirds due to lack of tidal exposure, but this potential food source appears accessibe to di ving ducks and fish. However, only ol dsquaw eat them (approxi mately $\mathbf{1 0 \%}$ of diet). A slight increase in use of infauna is concei vable if the polychaetes classified as "epibenthos" were actually "infauna" when eaten, but indi rect evi dence-the lack of virtually any detrital material in fish or bird stomachs--suggests this is not the case.

Even the arctic flounder, a fish which sonetines eats infaunal organi sns (Andriyashev 1954), feeds prinarily on amphipods and isopods in Si mpson Lagoon. Nb bi val ves were found in their stomachs, and polychaetes accounted for onl y 3% of their diet.

If alternate sources of food are plentiful, there are energy-effici ency reasons why a consumer might not seek infaunal organi sns as part of its overall feeding strategy:

1. buried organi sns nay be hard to find, especially in shal low I agoon waters (l ess than 2 mdeep) where the inf auna is very sparse (Crane 1974; Broad 1978), or
2. prey size-cl asses vul nerable to predation nay not be abundant or available at suitable depths.

An alternate food source is indeed available-the nobile epi benthic crustaceans represented by mysids and amphipods in Si mpson Lagoon. We suspect that these organi sns are numerous enough to satisfy the food requirenents of nost predators, thereby accounting for the observed reduction in partitioning of food resources anong consumers. This contention will be addressed further in the 'GENERAL DI SCUSSI ON (' I mplications of Feding Ecol ogy').

General Food Habits and Food Chai \mathbf{n}

Mysids and amphipods are the nost significant foods of fish in Si mpson Lagoon. During the 1977-1979 open- water seasons, these invertebrates accounted for $\mathbf{9 0 - 9 9 \%}$ of all identifiable food ingested by four of the five speci es examined (Table 19). Copepods, isopods and snaller fish are usually of secondary importance and the renai ning groups

Table 19. Food groups eaten by I agoon fi shes during the open- water period, 1977-1979.

Food Item	\% Composition (net wei ght)												
	$\begin{array}{ll} \text { Arctic Cisco } \\ \hline 19771978 \end{array}$		$\frac{\text { Least } \mathrm{Ci} 5 c 0}{1977} 1978$		Arctic Char 19771978		Fourhorn Sculpin 1977	Arctic Cod					
			1977	1978			1979						
mysid	70	87			69	66		16	89	10	88	38	59
amphi pod	25	11	21	33	78	4	81	9	18	39			
copepod	4	*	9	*	1	*	*	2	44	1			
i sopod	*	*	*		*		6						
fish		*	*	*	2	6	3	*					
other taxa**	*	*	*	*	-3	*	*	*		*			
No. St onachs*** Exami ned	55	52	51	27	60	17	65	34	20	47			

* <1.0\%.
** Includes: polychaetes, bi val ves, pteropods, cumaceans, chaetognaths, hydroids, decapods, euphausiids.
***Stomachs containing food,
(polychaetes, euphausiids, decapods, bi val ves, pteropods, cumaceans, chaetognaths and hydroids) are incidental food itens. For the two cisco species, proportions of the food groups eaten are generally similar between years of study. Large changes in di et are noted for the char and cod, however. Char switched from amphi pods in 1977 to mysids in 1978, and arctic cod ate nore copepods and fewer mysids in 1978 than 1977.

The fish continued feeding through the winter nonths. Mysids and amphi pods were again heavily utilized by fish but other food groups were al so i mportant (Table 20). Fourhorn sculpin eat nostly isopods, and boreal snelt eat fish.

A generalized food chai \mathbf{n} for Si mpson Lagoon is shown in Fig. 27. The chain is very short. Fi sh and birds feed primarily on epi benthic i nvertebrates (mysids and amphipods), and these invertebrates feed di rectly or indi rectly on phytoplankton and detritus (Schnei der and Koch 1979). Schell's (1979) isotopic studi es indi cate that approximatel y 60-70\% of the carbon in fish tissues origi nates from nodern narine primary production. Terrestrially-deri ved carbon (from river runoff and shorel ine erosi on) accounts for the remai nder.

Princi pal Prey

Maj or food groups, mysids and amphipods, have been identified to the speci es level. For one predator, arctic cisco, the list of prey speci es is long, although only a few speci es form the bulk of the diet (Table 21). Apherusa glacial-is and Onisimus glacialis account for 95\% of the total weight of identified amphipods, and Mysislitoralis and M. relieta account for 100% of the total wei ght of identified mysids. A vast number of small mysids (Mysis sp.) were al so eaten and it seens a safe assumption that these are the young of the identified species. A summer average of 4,092 of these snall mysids was found in each arctic ci sco stonach, but nost ($\bar{x}=13,100$ per stonach, range $1,400-45,000$) were eaten in spring when newly-rel eased mysids were abundant.

In order to compare foods of fish and birds in nore detail, prey itens have been anal yzed in the following nanner. Food itens ingested by each predator are listed as percent wet weight of identifiable

Table 20. VInter foods of nearshore fishes, 1977-1979.

Food Item	\% Composition (wet weight)					
	Colville Delta			Nearshore Vaters		
	Arctic Cisce	Least Cisco	Fourhorn Sculpin	Fourhorn Sculpin	Arctic Cod	Boreal Snel t
mys i d	*			3	93	39
amphipod	99	100	31	5	3	20
i sopod			60	78		*
fish				*	2	40
fish eggs			9	5		
polychaete	*			2		*
other taxa	*			6	2	*
No. st omachs examined**	40	23	9	45	84	39
* < 1.0%						
**Stonachs cont	ng food.					

Fi gure 27. Nearshore food chai n .

Table 21. Species composition of amphipods and mysids eaten by arctic cisco, summer 1977.

B. AMPH PODS

Apherusa glacialis Onisimu: ;Zacialis
Onisimas
Uni dentified gammarid
Gammarus setosus
Uni dentified amphipod
Acanthostepheia behringiensis
onisimus litoralis
Parathemisto libeliuza
Gammaracanthus loricatus
Acanthostepheia incarinata
onisimua nanseni
Gammarue sp.
Weyprechtia pinguis
Pontoporeia affinis
Apherusa sp.
Uni dentified lysianassid
Monoculodes sp.
Uni dentified hyperiid
Uni dentified caprellid
111.
94. 1
62. 6
0.37
32. 6
96.8
0. 46
$48.5 \quad 0.10$
$2.4 \quad 0.03$
2. $8 \quad 0.02$
$\begin{array}{ll}0.8 \\ 0.6 & *\end{array}$
0.3 *
0.2 *
0.1 *
0.7 *
0.3 *
0.3 *
$\begin{array}{ll}0.1 & \text { * } \\ 0.1 & \\ * *\end{array}$
$* *$
$* *$
** *
** *
contents. Then, on the assumption that nost of the naterial not identified to the speci es level, e.g., "gammarid amphipods", is actually the renai ns of the identified gammarid species, the uni dentified gammarids have been allocated to the prey speci es known to be present in the proportions al ready determined for that predator. Laboratory taxonomists who identified these samples felt that the assumption is reasonable, although a snall percentage of the broadl y-based categories contai ned uncommon species. For the present uses of these data, it is felt that this procedure provi des a better base for comparison than either del eting or retaining all broadl \mathbf{y}-based categories for mysids and amphipods. In any event, contributions of the broadl y-based categories are generally snall (usually less than 5% of contents). Alist of prey for each consumer is presented in Table 22. Principal prey are arbitrarily defined as species or groups which constitute 10% or nore (by wet wei ght) of the total diet.

Princi pal prey of vertebrate consumers in Si mpson Lagoon consist of two mysid species, six amphi pod species and four additional taxonomic groups--copepods, isopods, bi val ves and fish (Fig. 28). Several interesting points energe in comparing di ets anong the consumer.

1. The number of princi pal prey eaten by the common vertebrate speci es is low (2-7) during any si ngle sampling peri od, reflecting consi derable di etary overlap anong predators.
2. Tho mysids, Mysisititoralis and M. relicts, are clearly the favored prey in the system of the 40 entries listed in Fig. 28 for summer and winter, the breakdown of princi pal prey was:

	$\frac{\%}{1}$
Mysis litoralis	30
Mysis relicta	2.2
Onisimus glacialis	15
Pontororeia affinis	8
Apherusa glacialis	5
Gammarus setosus	3
Pontoporeia femorata	3
Gammarocanthus loricatus	3
copepods	3
i sopods	5
bi val ves	3
fish	3

3. The common vertebrate species tended to eat similar prey during the summer but different prey in winter.

Table 22. Modified list of foods in fish and bird stomachs whereby broadly-based categories (e. g., "unidentifledgammarldamphipods") are converted to existing proportions of taxonomically-appropriate prey alieadylisted(sec Text). Abbreviations: ARCS (arcticcisco), LSCS (least
cisco), CHAR (arctic char), ARCD (arctic cod), FHSC (fourhornsculpi?), OIDs (oidsquaw), PHAL (phalaropes), BORS (boreal smelt).

PRINCIPAL PREY		SUMMER 1977						$\begin{gathered} \text { SUMMER } \\ 1978 \\ \hline \end{gathered}$						WINTER 1977/8			WINTER 1978/9		
		$\begin{aligned} & p \\ & \frac{\varrho}{\bar{\circ}} \\ & \hline ᄋ \end{aligned}$	8 8 8	$\begin{aligned} & > \\ & \text { 옥 } \end{aligned}$	$\begin{aligned} & \eta \\ & n \\ & \stackrel{n}{c} \\ & \stackrel{\rightharpoonup}{\square} \\ & \underset{z}{2} \end{aligned}$	$\begin{aligned} & p \\ & 8 \end{aligned}$		$\begin{aligned} & P \\ & \frac{O}{0} \\ & \delta \end{aligned}$	$\begin{aligned} & \Gamma \\ & \frac{\varrho}{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { P } \\ & \text { 옹 } \end{aligned}$		$\begin{aligned} & \text { ㅇ } \\ & 8 \\ & \frac{2}{2} \end{aligned}$	꾼	$\begin{aligned} & P \\ & \frac{0}{0} \\ & 8 \end{aligned}$	$\begin{aligned} & \text { r } \\ & \frac{\Omega}{历} \\ & 8 \end{aligned}$	$\begin{aligned} & \pi \\ & 0 \\ & \stackrel{n}{C} \\ & \stackrel{0}{2} \end{aligned}$		$\begin{aligned} & > \\ & \text { ó } \end{aligned}$	m \cdots n \vdots \cdots -1
MYSIDS		\times	\times	\times		\times						\times	\times						
	Mysis relicta	\times	\times			\times	X	X	\times	\times	\times							\times	
AMPHIPODS	¢Apherusa glacialis	\times		\times															
	Onisimus glacialis	\times		\times	\times				\times		\times	\times	\times						
	Gammarus setosus			x	X														
	Gammaroconthus loricatus				\times														
	Pontoporeio affinis													\times	\times	\times			
	Pontoporeia femorata																		\times
	BIVALVE						\times												
	COPEPOD										\times								
	ISOPODS															\times	\times		
	FICH																		\times

Figure 28. Principal prey ${ }^{-}$- 10% by weight) of nearshore fishes and birds

The degree of similarity between predator diets was cal culated by the Morisita overlap index (Horn 1966) whi ch compares the rel ati ve proportions of prey groups in the diets of the predators. During both sums ners of study, di etary overlap was hi gh even when anal yzed at the speci es Ievel of detail for maj or prey (Table 23). Of the 15 possible comparisons of predators during each summer , 27\%(in 1977) and 40\% (in 1978) showed that predat ors expl oited similar (C>0.6) species or groups of food organi sns. In 1977, overlap was very high between oldsquaw and three fishes (arctic cisco, least cisco, arctic cod) and bet ween least cisco and arctic cod largel y due to the importance of Mysis litoralis and M. relicta in their diets (Table 22). Overlap between consumers was hi gher the following summer. Diets of oldsquaw and the anadromous fishes were all similar, again reflecting the heavy usage of the tno nysid species whi ch dom nate the I agoon's epibenthic commity of invertebrates (Griffiths and Dill inger 1980).

Diets of sone predators showed little annual variation. Arctic $\operatorname{cisco}(C=0.94)$, least $\operatorname{cisco}(C=0.84)$ and ol dsquaw ($C=0.74)$ each ate essentially the same food itens in the sane proportions during both summers. Diets of arctic char were dissimilar bet ween years ($C=0.26$) and arctic cod diets varied during three summer sampling periods:
$1977 \quad 1978 \quad 7979$

1977
1978
0.54 -

1979
$0.48 \quad 0.50$
In winter, fish changed their diets as indicated by very low overlap val ues obtai ned in a summer-winter comparison: arctic cisco ($\mathrm{C}=$ 0.0), least cisco ($C=0.06$), fourhorn sculpin ($C=0.12$). Arctic cod al so ate different foods between sumer 1978 and wi nter 1978-79 (C = 0.24) but similar foods bet ween winter 1978-79 and summer 1979 ($\mathbf{C}=0.71$). The tuo ciscoes overwintering in the Colville Delta fed al nost exclusi vely on a single amphi pod species, Pontoporeia affinis, accounting for an overIap of 1.00 at this time:

Table 23. Indi ces of di etary overlap anong fish and birds in Simpson Lagoon cal cul ated by the Morisita overlap index (Horn 1966).

	Summer 1977					
	arctic cisco	$\begin{aligned} & \text { Teast } \\ & \text { cisco } \end{aligned}$	oldsquaw	arctic char	fourhorn sculpin	arctic cod
Arctic cisco						
Least cisco	. 55	-				
01dsquaw	. 82	. 84				
Arctic char	. 36	. 22	. 29	-		
Fourhorn sculpin	. 15	. 28	. 30	. 52		
Arctic cod	. 40	. 93	. 72	. 12	. 18	

	Summer 1978					
	arctic cisco	$\begin{aligned} & \text { least } \\ & \text { cisco } \end{aligned}$	oldsquaw	arctic char	arctic cod	phalaropes
Arctic cisco						
Least ci sco	. 87	-				
Oldsquaw	. 90	. 68	-			
Arctic char	. 96	. 73	. 97	-		
Arctic cod	. 45	. 58	. 32	. 28	-	
Phalaropes	. 12	. 43	. 06	. 29	. 17	

	arctic cisco	I east cisco	fourhorn scul pin
arctic cisco	-		
least cisco	1.00		
four horn sculpin	0.42	0. 42	

The sculpin at this location al so ate P. affinis but overlap val ues were low because it ate isopods as well.

In nearshore coastal uaters, overlap in winter diets was variablevery low bet ween fourhorn sculpin and other fishes, but roughly similar between arctic cod and boreal smelt due to their use of mysids:

	arctic cod	boreal smel t	four horn sculpin
arctic cod boreal smelt	0.59		
fourhorn sculpin	0.05	0.06	

It is difficult to generalize about the winter data. Dietary overlap was variable but seens lower at this time than in summer, suggesting a greater partitioning of food resources. This is apparent in coastal waters where the three commonly captured fishes relied in large part on different prey: arctic cod (mysids), fourhorn sculpin (isopods), boreal snelt (fish and mysids). However, the ciscoes and sculpin in the Colville Delta all relied heavily on one prey item

Sel ecti vity

The diet of arctic cisco was compared with the available food supply to determine if the fish selected particular prey species. Ivlev's (1961) electivity index was used for this purpose:

$$
E=\frac{r_{i}-P \cdot j}{r_{i}+p_{i}}
$$

where E is the neasure of electivity, \mathbf{r}_{i} the relative abundance of prey itemi in the gut (as a percentage of wet weight) and pi the relative abundance of the same prey itemin the envi ronment. The index has a
possible range of -1 to +1 , with negative values indicating avoi dance or inaccessibility of the prey item zero indicating random sel ection from the envi ronment and positive val ues indicating active selection.

The results indicate that arctic cisco sel ect the two mysid species whi ch form the bulk of their diet, but the strength of this sel ection is not great as indi cated by Iow overalle val ues of 0.20 and $\mathbf{0 . 2 1}$ (Table 24). This suggests that mysids were abundant enough to neet the needs of the arctic cisco without the fish having to actively seek them out much beyond their rel ative proportion anong the Iagoon's epibenthos. That is, if mysids had been rare, fish would have to strongly sel ect for them (high E) because mysids account for nearly 75% of $\mathbf{t h e i} \mathbf{r}$ diet, but this was not the case.

It is interesting that one common epi benthic species, Onisimus glacialis, is either avoided by or inaccessible to arctic cisco (electivity index $=\mathbf{- 0} \mathbf{~} \mathbf{7 8}$). Fi sh may indeed dislike this amphipod, since ne watched arctic char in a field aquari um routinely spit them out after attacking them However, o.glacialis of ten burrous into the I agoon bottom so we suspect that the inaccessibility of this amphipod defin.. itely contri butes to the I ow E val ue.

Do sone arctic cisco sel ect only mysids while others sel ect amphipods? The answer is no, since virtually al ltomachs examined contai ned both groups toget her (92% of 52 stomachs). In fact, very few fish (6% ate only one food group (i.e., major taxonomic groups.--mysids, amphipods, copepods etc.) while 46% had three or nore groups in their stomachs at one time.

Throughout the summer, arctic cisco tend to eat the sizes of prey available as opposed to catching only particular size groups (Fig. 29). This is particularly evident for Mysis Iitoralis and Onisimusglacialis, but less so for Mysis relicta--arctic cisco appear to eat the smaller sizes of this species. In general, a hi gh degree of overlap (Horn 1966) is apparent between the sizes eaten by arctic cisco and the sizes available in Simpson Lagoon:

Table 24. Comparison of proportions of mysids and amphipods in diets of arctic cisco and in the I agoon. Collection dates and sample sizes are indicated in Fig. 29.

Prey	\% of	Total	Di et	Electivity I ndex				
				Station 1				Stations 1-5
				early summer	$\begin{aligned} & \text { mid- } \\ & \text { summer } \end{aligned}$	$\begin{gathered} \text { I ate } \\ \text { summer } \end{gathered}$	summer conbi ned	summer conbi ned
Mysis Zitoralis		47		0.07	0.53	0. 19	0. 30	0. 20
Mysis relicts		29		0. 12	-0.44	0. 10	0.11	0.21
Uni dentified mysids		8		0. 23	- 1. 00	-0. 10	0. 36	0.58
Onisimus glacialis		4		-0.47	-0.95	-0.99	-0.77	-0.78
Parathemisto spp.		1				1. 00	1.00	0.69
Halirages mixtus		1				1.00	1.00	0.52
Apherusa glacialis		1				1.00	1.00	0.86
Gammarus setosus		*			-1.00		-1.00	-1. 00
Pontoporeia affinis		*		-1.00	-1.00	-0.99	-1.00	-1.00

Figure 29. Compari son of prey sizes eaten by arctic cisco with prey sizes avain able ill Si mpson Lagoon,
 conbi ned samples (but not nunber neasured due to sub-s ampl ing procedures)

Speci es	Overlap Index for Prey Si ze Class		
	early summer fish di et	ni d- summer fish diet	late summer fish diet
Mysis litoralis	0.61	0.75	0.96
Musis relicts	0.26	0.55	0.76
Onisimus glacialis	0.94	0.86	0.77

Of these ni ne possiblecomparisons, 78% indicate broad overlap ($C \mathbf{0 . 6 0}$).
If we extend this comparison to other consuners and their prey, the results are generally similar to those shown for arctic cisco. The trend is for a high degree of overlap between the prey sizes available and the prey sizes eaten (Table 25). Of the available season/prey speci es comparisons, nost indi cated a broad overlap:

Speci es	\% of Compari sons with $\mathrm{C} \geq \mathbf{0 . 6}$
	$\mathbf{8 0}$
arctic cisco	67
oldsquaw	75

Though the overall overlap for oldsquaw was high, it appears that this result does not apply to the mid-summer period (19 July, Table 25). At this tine, ol dsquaw sel ectivel y ate large prey itens, thus accounting for a very low overlap index. Johnson and Richardson (1980) al so report that oldsquaw tended to eat the Iarger size classes of prey available.

Feedi ing Areas

Based on the di stribution of fishes in the study area (see 'Habitat Utilization'), it is reasonable to conclude that fish, particularly the anadromous species, feed primarily in brackish nearshore waters si nce few were caught in offshore narine waters. It is al so probable that most fish feed within a narrow band along mainland and island shorelines, since catch rates are highest in these habitats throughout the summer. If this were not the case, and fish darted into either offshore waters or the lagoon center to forage, catch rates in these areas would be much hi gher than recorded. Furthernore, it is reasonable to assume that fish

Table 25. Comparison of prey sizes availableinlagoon with prey sizes eaten by various fish and birds using the Morisita overlap index (Horn 1966). Collection dates of fish and birds were sel ected for those within one week of the invertebrate sample dates. The number of stonachs examined varies according to the occurrence of the prey speci es present.

	Overl ap Indi ces duri ng Invertebrate Sampl ing Peri ods (1978)							
	8 July		19 Jul		3	ugust	18 August	30 August
	Least Cisco	$\begin{aligned} & \text { Least } \\ & \text { Ci sco } \\ & \hline \end{aligned}$	Arctic Char	O dsquaw	$\overline{\text { Arctic }}$ Char	Ol dsquaw	O dsquaw	01dsquaw
Mysis litoralis		. 92	. 68	. 12	. 86	. 90	. 82	. 83
Mysis relicta	. 15	. 66	. 07	. 21	. 21	. 64	. 85	. 71
Onisimus glacialis	. 88	. 75	. 78	. 37	. 87	. 65	. 75	. 82
$N o$. Stonachs with Prey Speci es	17-18	6	5-8	8-14	6-9	5-12	5-13	10-13

sel ected for diet anal ysis actually fed in Si mpson Lagoon si nce their average rate of movenent in coastal waters (see 'Residency Ti ne in Simpson Lagoon') and rate of food passage through their gut (see 'Gastric Evacuation Rate') suggests that nost fish probably ate within $\mathbf{3} \mathbf{k m}$ and 24 h of the time and pl ace of capture.

Beyond these generalizations, little is known about specific locations that might be important feeding areas for fish. We do not know, for example, whether fish feed throughout this nearshore zone or in specific habitats where food organisns mightactivel or passi vel y concentrate.

It is not clear why fish feed in this restricted shal low zone because the di stribution of $\mathbf{f i}$ sh does not reflect the di stribution of prey. The food supply is much nore abundant in the center of the lagoon where fish numbers are rel atively low Griffiths and Dillinger (1980) report that \quad, nore abundant (approxi matel y 3-8 times) in the center of the Iagoon (Stations 2, 3 and 4) than al ong the lagoon edges (Stations 1 and 5).

In addition to having lower prey densities, shallow waters are generally more turbid than central lagoon waters. If the fish are visual feeders, it might be expected that turbid waters nould hinder their feeding, but this apparently is not the case, si nce some fish caught in turbid waters have full stomachs and sone caught in clear water have empty stomachs. While this nay be an artifact of sampling, it may al so indi cate that fish feed successfuly in turbid naters, perhaps due to a reduced escape response of the prey (an escape response by mysids was observed in field aquaria).

Feedi ng areas of birds differ sonewhat fromthose of fish. Phalaropes tend to feed very close to shore, often within $\mathbf{1 0} \mathbf{m}$ of the shoreline, and they make more use of island shorelines than do fish. 01dsquaw ducks have been observed feeding throughout the lagoon and in offshore marine areas, but nost feeding occurs in open waters of the I agoon rather than close to the shoreline (i.e., not within 500 m).

Food Requi rements of Fi sh

To exam ne the rel ationship bet ween consumers' food requi rements and the available food in Si mpson Lagoon, infornation on the following three points is needed:

1. number of fish in the lagoon (see 'Population Numbers'),
2. amount of food a fish eats each day (this section), and
3. functional response of fish to changes in prey density.

Points 1 and 2 al low a cal cul ation of the daily food requi renents of fish in the lagoon. This value, when compared to the food supply available, indicates the proportion of food eaten. Point 3, which is an experimentally difficult project, was not addressed in this study; consequently, it is difficult to predict the effect of alarge reduction in the standing crop of mysids. That is, even though there might appear to be an adequate food supply leftin the lagoon should the density of prey drop, a level will eventually be reached whereby the predators nould not find or catch an adequate anount to neet their needs. For present purposes, however, estimates of Poi nts 1 and 2 and the available food supply suggest that the prey density in the Si mpson Lagoon ecosystem are far above the levels at which fish might have difficulty acquiring enough food (see 'I mplications of Feeding Ecol ogy' in 'GENERAL DI SCUSSI ON).

Thi s section di scusses the food requi rements of an important fish species in Si mpson Lagoon, the arctic cod. The anount eaten each day (daily ration) by an average arctic cod was estimated usi ng three types of information obtai ned under field conditions during the summer of 1978; these were (1) the proportion of the day that the fish spent feeding (feeding periodicity), (2) the rate at which food passed through their stomachs (gastric evacuation rate), and (3) the anount of food in their stonachs at various times of day. Experi nents were conducted using sizes of $\mathbf{j u v e n i l e}$ arctic cod representative of those found in Si mpson Lagoon. Si ze ranges and numbers of cod used for tests are shown bel owe

Test Series	Fork Length (mm)				Wei ght (g)		
	n	\bar{x}	(range)	S.D.		(range)	S.D.
Feeding Periodicity	78	99	(60-127)	13. 6	7.7	(1.5-17.9)	2. 9
Evacuation Rate	96	104	(89-139)	10. 2	8. 7	(4. 8-20.3)	2. 6

Theșe lengths of fish correspond to arctic codin age classes 1-2 (see (Additional Life-hi story Data for Fi shes').

Feedi ng Periodicity. Mbst feedi ng occurred during norni ng and early afternoon, tapering off by late afternoon and early evening (Fig. 30A) . Stonach contents averaged 2.2% of the body wei ght of the fish at mid-norning (10:00-11:30 ADT), and increased to 4.8\% of body wei ght by early afternoon ($15: 00$). Thereafter, it appears that feedi ng diminished or ceased si nce stomach full ness steadily decreased until late evening or early norning. Sone feedi ng resuned during early norni ng hours since st onach contents were not further depleted. This feeding pattern, particularly the decline in feeding at ni ght, was sonewhat unexpected since arctic sod are known to feed during the prol onged "ni ghttine" of the arctic wi nter except during spawning (Moskalenko 1964).

Th? observed diel pattern of stonach fullness appears to be a reasonable reflection feedi ng behavi or despite the complication that all data were not gathered during a single 24-h peri od (see 'METHODS'). The norning data gat hered on the three dates (20, 21 and 24 August) did not differ si gnificantly bet ween each ot her (Pai red Student's t Test, al $P>0.01$, but the pool ed norning data differed significantly fromthe 15:00 ADT data ($\mathbf{P}<\mathbf{0} 0$). Therefore, these observations will be assum ed to represent the di el feedi ng pattern of cod during their late-summer i ncursi on into Si mpson Lagoon.

Gastric Evacuation Rate. Freshl y-caught arctic cod were hel d under field conditions ($4.5-6.5^{\circ} \mathrm{C}$, salinity 24-26 ppt) to nonitor the depletion of nat ural foods (mysids, amphipods and copepods) from their stomachs. An approxi nate evacuation rate of 0.1% of total body weight/h was estimated fromthe data presented in Fig. 31A However, this val ue is al nost certainly anderestinate of the actual nean evacuation rate.

rigure 30. Feedingperiodicity and daily ration of juvenile arctic cod in Simpson Lagoon. (A) Sample means ($n=10-20$) and standard error bars are indi cated for collections on 20 August 1978 (open circle), 21 August 1978 (x) and 23-24 August 1978 (closed circles). (B) Diagrammatic method used to calculate dativyation of arctic cod where two digestion rates (© , (2)) are indicated (see text for explanation).

hours after CAPTURE

Figure 31. Evacuation of food from stomachs of juvenile arctic cod. (A) Means and standard errors for samples of fish($n=$ 18-20) hel din a food-free pen in Si mpson Lagoon, 20-21 August 1978. (B) Evacuation rate as a function of stonach fullness, based on results from other studi es of other speci es (see text).

Although the experiment was conducted when cod stomachs appeared reasonably full, I ater I aboratory neasurenents showed that stomach contents of these fish at the time they were captured averaged only 1.9% of body weight, a low value compared to the peak of 4.8% of body weight recorded at 15:00 during the feeding periodicity experi ment (Fig. 30A). It appears, then, that due to the feeding periodicity of the fish, or ot her unknown factors, the evacuation experi ment began when the cod stomachs were only half full. The significance of this point is that food does not pass through a fish's stomach at a constant rate-the rate varies according to the full ness of the stomach (e.g., Magnuson 1969; Tyler 1970; Windell et al. 1976). The rate is fastest when the stonach is full, slowing down as the stomach empties. Thus, nost gastric evacuation occurs during the initial hours following a meal, and consequently, cal cul ation of the evacuation rate with less than ful stomachs, as occurred in the present study, underestimates the rate at which nost evacuation actually occurs. This point is illustrated on a schenatic di agram of an evacuation pattern observed in other fishes (Fig. 31 B).

Evi dence that the observed rate of 0.1% of body wei ght/ h is unrealistically low is shown in Fig. 30B where this evacuation rate (indicated by the synbol 1 in Fig. 30B) is applied to the daily pattern of stomach fullness. It is apparent that, during the period 15:00-00:30 ADT, stonach contents were depl eted at a rate that consi derably exceeded the estimated evacuation rate.

A more realistic evacuation rate can be estimated in two ways:

1. Data from various studi es (e.g., Tyl er 1970; Windell et al. 1976) show that the rate of gastric evacuation is approxi mately twice as fast during the first half of the evacuation process (fromfull to hal f full stomach) than during the second half (half full to empty). Using this rough conversion factor, the initial evacuation rate for arctic cod then becones 0.2% of body wei ght / h.
2. Data gathered to assess the feedi ng peri odi city of arctic cod al so provide a minmesti mate of the evacuation rate. During the period 15:00-00:30, the average stomach fullness declined al nost 50\% in a seemingly linear fashi on (Fig. 30B). This decline, which is 0.2% of body weight/h, represents
a mini mum esti nate of the evacuation rate because the actual rate must have been hi gher if the fish were feeding during this interval.

Both of these nethods provide a similar estimate of evacuation rate, and this rate of 0.2% of body wei ght/his used in subsequent cal cul ations.

Cal cul ati on of Daily Ration. Cal ation of the daily ration of arctic cod is based on the changing anount of f ood in their stonachs over a 24-h period and the rate of evacuation of this food fromthe st onach (Fi g. 30B). As descri bed bel ow, the daily ration is cal cul ated as the sum over a 24-h period, of differences between the observed quantity of foodin the stonachs versus the quantity that nould have remai ned if the fish had di gested what was present in the stonachs previ ously but eaten no additional food.

At the start of the feeding peri odicity experi nent, the stonach contents averaged 2. 2\% of the body nei ght of the fish (Fig. 30B). If no additional food had been ingested before the next sampling period, the stonach contents woul d have di mi ni shed at the rate of gastric evacuation, 0.2% body wei ght/h (indi cated by symbol 2 in Fig. 30B), to approxi nately $\mathbf{1 . 2 \%}$ body wei ght. I nstead, the stomach fullness rose to 4. $\mathbf{8 \%}$ body wei ght, representing an actual increase of $\mathbf{3 . 6 \%}$ body wei ght for this period. During the next tuo tine periods, bet ween 15:00 and 00:30 ADT, the decline in stonach full ness natches the estimated gastric evacuation rate-primarily because the evacuation rate was determined, in part, fromthese data and the assumption that no feeding occurred in this interval. The next naj or period of feeding occurred in the norning hours, sonetime after 00:30. During this period, it is estinated that an additional 2. 3\% body wei ght was consuned (note that Fig. 30B is extrapol ated to 10:00 on 24 August in order to compl ete a 24-h period). Suming these cal cul ations, the anount of food eaten per day is 3.6\% of body wei ght $+2.3 \%$ of body wei ght $=$ about 6% of body wei ght.

In view of the assumptions and potential sources of error associ ated with each stage of the cal cul ation of daily ration, it is clear that the val ue determined during this exercise is an approxi nation. On the other hand, this is the only known estimate for any species of fish in the

North Anerican Arctic. Furthernore, these arctic cod data are particuIarly rel evant si nce the experi nents were conducted in field conditions using natural foods.

Daily rations of species like arctic cisco, arctic char and fourhorn sculpin are unknown, but estimates are necessary to compare the food requi rements of consumers with available food supplies in Simson Lagoon. It is therefore necessary to assign val ues for daily ration; the arctic cod data of 6% body uei ght will be used for all small fish (generally $100-250 \mathrm{~mm}$ in length). Large fish (generally $\mathbf{2 5 0 - 5 0 0} \mathbf{~ m m}$) and the rel atively sedentary sculpins presumably requireless food and so will arbitrarily be assi gned 5% body wight/day as a daily ration. Using these val ues for daily food requi rements of fish and the estimated densities of Iarge and small fish in Si mpson Lagoon (see 'Estimated Densities of Combined Species'), Griffiths and Dillinger (1980) calculate that the available food supply (i. e., mysids and amphi pods) in Si mpson Lagoon was roughl y 150-1,000 times greater than the total daily food requirements of fish in 1977 and $\mathbf{1 0 - 1 0 0}$ times greater in 1978. It appears, then, that there is an ample supply of mysids and amphipods for fish to eat.

Influence of Other Organi sns "

Three potential sources of nortality to fishes are exam ned: fishing pressure, predation and parasites. It appears that, with the possi ble exception of man, other organi sns do not strongly influence popul ation sizes of fishes in nearshore waters of the Beauf ort Sea.

Human Use of Fi sh Resources

Anadromous fish, particularly cisco, whitefish and char, are the focal point of several fisheries al ong the Beaufort coastline in Al aska. Princi pal areas where fish are taken incl ude (1) donestic fisheries near Barrow the Colville Delta (Nuiqsut Village) and Barter Island (Kaktovik Village), (2) a commercial fishery in the Colville Delta (Helmericks) and (3) sport fishing at villages, DEWIine stations and oil camps.

Thi sinfornation is of direct interest to the present study because all these fisheries catch at least sone fish that pass through Si mpson Lagoon during the open- water season. Tagging data from our study (Fig. 3.2) show that some fish passing through Simpson Lagoon are caught \mathbf{i} nets from Barrow to Barter Island, a di stance encompassing much of the Beauf ort coastline in Al aska. Theref ore, these fisheries must be vi ened as sources of mortality to the study populations.

In the following sections, the commercial and donestic fisheries nearest the Si mpson Lagoon study area are described. At this stage, however, it is not possible to determine the effects of human harvest rates on Simpson Lagoon fish populations because (1) fish population sizes are not known, (2) harvest rates are usual ly not wel 1 -documented and (3) proportions of "Simpson Lagoon fish" killed in the various fisheries are not known.

Commercial Fi shery. The only continuing comercial fishery operating on Al aska's North Sl ope is located adj acent to the study area in the Colville Delta. It is operated by a single family (Helmericks) during the summer and fall nonths. Of these two fishing periods, the fall fishery accounts for the greatest anount of effort and yield.

Fall fishing takes place in the Kupigruak and East channel s adj acent to Anachilik Island (Fig. 6) starting in the early part of October. When the ice becones thick enough to wal k on, hol es are drilled and gill nets are set in a continuous series al ong the deep bottom of the channel. The nets are usually $\mathbf{2 ~ m x ~} 50 \mathrm{~m}$ and mesh size is $\mathbf{7 . 6}$ or $\mathbf{1 0 . 2} \mathbf{~ c m}$ (stretched di mensi ons). The smaller mesh size is used in both channels, but the Iarger is used excl usi vel y in the nain channel where humpack whitefish occur nore commonly. The total number of nets in each channel varies dependi ng upon daily catch trends (i.e., nets are noved back and forth to where the fishing is best). Daily fish catches vary widely. The number of fish caught early in the season is low steadily rising to a peak in early Novenber. Thereafter, a steady decrease occurs until early Decenber when the catch is again low and fishing is terminated.

Figure 32. Fi sh tagged in Si mpson Lagoon and recaptured in comercial, donestic or sport fisheries. Specific mark and recapture data are listed in Appendix 1. Abbrevi ations: ARCS (arctic ci sco), LSCS (I east cisco), CHAR (arctic char), BDW (broad whitefish), PI NK (pink sal non).

Catch records (ADF\&G 1977) show the annual harvest from 1964 to 1976 has been as follous:

Speci es	Average Catch			
	Number	L	Average Véi ght of $\mathrm{Fi} \mathrm{sh}(\mathrm{H})$	$\begin{gathered} \text { Total } \\ \text { Weight (l b) } \end{gathered}$
arctic cisco	37, 284	65	1.0*	37,284
least cisco	16, 682	29	0.6*	10, 009
brodd whitefish	2, 816	5	5. 1**	14, 362
humpback whitefish	701		5. $1^{* *}$	3,575
Tota 1				65, 230

* from subsample of commercial catch.
**ADF\&G 1977.
These records excl ude 1967 and 1969, when the commercial fishery di d not operate.

Arctic cisco is the nost important cash product in the fishery. This species, al ong with broad and humpback whitefish, is sold for human consumption in Fai rbanks and Barrow Numbers of arctic cisco harvested have varied greatly over the years (Fig. 33), with the lowest recorded harvest occurring in 1979. This apparent decline in numbers of arctic cisco, as well as implications of the age structure and maturity of the comercial sample, have been di scussed in other sections of this report (see 'Popul ation Numbers' and 'Additional Life-history Data for Fishes'). The average exploitation rate of arctic cisco in the commercial fishery is estimated at 9.2% (range $3.9-18.2 \%$) based on preliminary mark-recapture estimates of "catchable" fish during the years 1976-1979 (Table 15),

Least Cisco are also taken in large numbers (Fig. 33), but these fish are less desi rable for human consumption because of their lean body. Most are sold for dog food and al so for ani nal s kept at the Naval Arctic Research Laboratory in Barrow Descriptions of estinated num bers and life-history characteristics of comercially-caught least cisco are presented el sewhere (see 'Popul ation Sizes and Additional Lifehistory Data for Fishes'). The average expl oitation rate of least cisco in the comercial fishery is estimated at 5 . 1% (range 1.2-11.3\% based

Fi gure 33. Commerci al catches of arctic and least ciscoin the Colville Delta, 1970-1979. Fishing effort was not necessarily equal each fall.
on preliminary mark-recapture estimates of "catchable" fish during the peri od 1976-1979 (Table 15).

Domestic Fishery. The Colville Delta al so recei ves fishing pressure from a donestic fishery at the village of Nuiqsut. Although the native population has been quite small until recently, summer fishing camps (e.g. , Wbods Camp on the Nechel ik Channel) have been in operation for sone tine. For example, in 1951, 10, 000 pounds of whitefish were transported fromthe Colville Delta for use in Barrow (Wilimovsky 1956). The recent estabishment of NuiqSut at the head of the delta in 1973 has created a local denand for fish.

In the same fashi on as the Helmericks' commercial fishery, fishing for donestic use is largel y within the Colville Ri ver and takes place in both summer and fall. Fish are caught primarily with gill nets, 3.1 to 12.7 cm nesh size (stretched), of variable panel lengths. Summer fishing takes place at a variety of places around the village incl udi ng the Nechelik Channel and a deep pool at the confluence of the Itkillik and Colville Rivers. Fall fishing takes place in the lower parts of the delta channel s where the catch of migrating ciscoes is comparatively greater. Sone fall jigging for burbot al so takes place in the previ ously mentioned deep pool.

Very little is known of the numbers of fish taken annually for donestic use at Nuiqsut, since subsi stence fishermen are not requi red to report catch statistics. Two rough estinates (outlined bel ou) suggest that the harvest is probably similar to that taken in the previously mentioned comercial fishery:

Estimate \#1. Wilimovsky (1956), speaking in general about fishing practices of North Sl ope inl and fish camps, estimates that the summer catch is "in the nei ghborhood of 1500 pounds per fishing group (a family with sled and/ or boat and two to five nets)"; fall or winter fishing catches per fishing group are somewhat greater. Using these figures, a conservative estimate of annual catch per fishing group nay be 3500 pounds. The number of Nuiqsut families known to fish during the summer of 1978 was about 7 (Verstratt 1978 pers. comm.). This means that a very rough estimate of donestic catch by Nuiqsut is in the nei ghborhood of 24,500 pounds (7 groups $\times 3500$ lbs/group).

Two points of caution must be taken concerning this estimate. Many fishing groups may not fish if other sorts of occupation are available. This was the case in 1978 when the Nuiqsut High School was under construction, empl oyi ng nany peopl e who would otherwise be fishing. Secondly, Colville fish may al so be taken by subsi stence fishernen from Barrow and other communities who cone to the Colville to fish. Consequently, the number of fishing groups nay be greater than that at Nuiqsut al one. Theref ore, 24,500 I bs is consi dered an underesti nate.

Estinate \#2. Another neans of esti nating Nuiqsut's annual fish harvest is by using data obtai ned at the village of Aklavik, another delta village (Mackenzie River) on the Beauf ort Sea coast. Brakel (1977) determined that the average Aklavik family of six people, with 1.5 dogs, consuned 2, 649 pounds of fish. Appl ying these figures to Nuiqsut, whi ch has a popul ation of 157 (Pederson 1979)-the equi val ent of 26 si x-nenber groups--the annual village requi renent would be 68, 874 pounds.

Predators
Predator pressure on fishes in the nearshore envi ronment appears to be surprisingly low Athough beluga whal es, seals, birds and sone fish are all known to feed on Beaufort Sea fish, predators tend to be scarce in areas where anadromous fish are abundant. And, when predators are taken in lagoons and other nearshore areas, stomach analyses show they often f eed on invertebrates in summer, al though ringed seal s eat sone arctic cod in winter (Lowry et al. 1978). Msst fish recorded in whale and seal stomachs are marine species rather than the anadromous species of nearshore habitats (e.g., Fraker et al. 1978; Lowry et al. 1978).

Few potential predators were si ghted in the Si mpson Lagoon study area during the 1977 open- water season. Johnson and Richardson (1980) report that a total of only 16 seal s, nostly ringed seal s, were si ghted inside the Iagoon during 21 aerial surveys flown during the summers of 1977-1979. During this sane period, beluga whal es were sighted twice in the ocean near Pingok Island, but none was seen in the Iagoon itself. Fi sh-eating bi rds were not abundant; Johnson (pers.comm.) estimated the density of loons to be approxi natel y 0.3-0.4 birds $/ \mathrm{km}^{2}$ in the who"le I agoon system during three summers, 1977-1979. Even potential fish
predators fed infrequently on small fish in Si mpson Lagoon (see 'Feedi ng Ecol ogy'). Only boreal snelt, which were locally abundant off the Colville Riverin winter, fed heavily on marine fish (arctic cod).

Parasites
A preliminary examination (see 'METHODS') of fish parasites was initiated during this study because parasite infections of coregonid fishes may cause deterioration in physical condition and reduce growth of fish (revi ewed in Bauer 1970 and Lawler 1970), or affect the ability of fish to resist the envi ronmental effects of chemical pollutants (Boyce and Yamada 1977; Perevozchenko and Davydov 1974 cited in Boyce and Yamada 1977). Theref ore, arctic cisco, an ecologically and economically im portant fish species, was examined for potentially detrimental parasite species. Speci fic objecti ves were to (1) eval uate the significance of parasitismin the energy budget of the fish population, (2) determine if parasite infections caused deterioration in fish condition, (3) determine if there is any period when parasites are especially preval ent and could be a factor affecting the ability of the fish to withstand additional stress, and (4) determine if these economically important fish hosted any parasite species potentially dangerous to man or other nammal s.

Results. No parasites were found on the gills. The viscera were infected with three types of parasites that occurred in sufficient num bers to be of interest in terns of study objectives: (1) an adult tapenorm (Diplocotyleotrikii), (2) atapenormintermedi ate stage (Diphyzlobothrium sp.), and (3) an adult acanthocephalan (Neoechinorhyncus tumious).

The adult tapeworm Diplocotyle olrikii, occurred in the lumen of the pyloric caeca and intestine. Bauer (1970) reports that in Russia this species infects fish in marine waters but perishes when the host migrates into fresh water. The pattern of infection in the study population (Fig. 34) coi nci des with that observation. Fi sh collected' in the bracki sh lagoon waters during mid- and late summer peri ods were highly infected (84-92\%) in contrast to those fish that had returned in early

Pigure 34. Intestinal parasites of arctic cisco from Si mpson Lagoon and the Colville River Delta. Percent infection (solid dots) and nean number of parasites per infected fish (open dots) are indicated. On each date, 21-25 arctic cisco were examined.
winter to fresh water in the Colville Delta (O\%infection). Average number of tapeworns per fish (35.6) was highest on 27 Jul y . These were small tapenorns about 1 cmin length, which grew to 304 cm by 2 Septem ber, though they were few in number by that tine (5.7 per infection). The absence of D. olmikii in Novenber samples both in 1976 and 1977 indicate an annual cycle of infection. Lawler (1970) reports that D. olrikii may retard fish growth and cause general deterioration, but apparently this requires mach higher infection level sthan we found in this study.

A second tapeworm DiphyZZobothrium sp., occurred as a plerocercoid (first internedi ate stage) on the stomach wall, pyloric caeca walls and nesenteric tissue, Mbst speci nens measured $\mathbf{2 - 3} \mathbf{~ m m i n ~ d i a n e t e r . ~ T h i s ~}$ parasite probably matures in fish-eating birds, although there have been reports of D. dendriticum, a species infecting man, occurring in arctic cisco (Bauer 1970). It is possible, therefore, that this fish does harvest a harnful parasite, and eating the whole fish (including the stomach) could be dangerous. The infection level of this parasite does not appear high enough to adversely affect the fish (Fig. 34).

The acanthocephalan found in the intestine was identified as Neoechinorhynous tumios. These adult parasites are "spiny-headed worms", $0.5-1 \mathrm{~cm}$ in length, which probably have a lagoon amphipod as their intermediate host. Acanthocephalan (Echinorhynchus spp.) infections have been reported to cause deterioration in coregonid fishes when infections of over 250 per fish occur; however, infections of 30 or less per fish have shown little effect (Bauer 1970). Consequently, it seens likely that infection levels in the Si mpson Lagoon samples are toolow to be harnf ul (Fig. 34).

In general, the infection levels of all parasites in arctic cisco from Si mpson Lagoon are Iow and do not appear to detrinentally affect the health of the fish. There was no si gnificant correl ation bet ween the condition factor of a fish and its total intestinal parasiteload at these level s of $i \operatorname{lnfecti}$ on ($r=0.06, P>0.1, n=25$) during Septem ber, when parasite infections were maxi mum for the season.

Concl usions. On the basis of this survey three species of intestinal parasites, two cestodes and an acanthocephalan, occur frequently enough to warrant eval uation in this study. Apparently none of these three occur at sufficient infection intensities to either affect the energy budget or decrease the condition or grouth of the arctic cisco. Pending positive identification, the plerocercoid-stage cestode must be regarded as potentially dangerous to man or ot her nam nals, such as dogs, that may eat the viscera. There is a marked seasonality in infection levels of the cestode D. olrikii, with maxi mum infection level s fromabout mid-July until the fish enters fresh water. If parasite infections do increase the susceptibility of arctic cisco to other stresses, such as chemical pollutants, the popul ation would be most vulnerable during this mid-July period.

Additional Life-history Data for Fishes
Si nce the nature of our program has been to examine fishes froma comminity and ecosystem vi eupoint, much of the infornation about particul ar speci es gat hered during the study has been presented in previ ous sections on fish di stribution, novenents, popul ation sizes, feedi ng ecology, predation and parasites. Additional life-history data concerning indi vidual species are presented in this section. Age, I ength and maturity are principal topics but other types of new infornation are al so presented.

Arctic Cisco

By several standards, the anadromous arctic cisco, Coregonusautumnalis, ranks as an important species in Alaska arctic waters. It is one
of the nost abundant and widel y di stributed fishes al ong the Beauf ort Sea coastline, and it plays an important role in donestic fisheries from Barrow to Barter Island. Al aska's only North Sl ope comercial fishery, which is located in the Colville Delta, also focuses on this speciesarctic cisco account for 41-72\% of the annual catch (Alaska Dept. Fi sh and Gane 1977).

Available information on the biogy of arctic cisco has been obtained largely as a result of coastal studies of the anadromous segment of the population. In addition to the present study, Bendock (1977) describes arctic cisco in Prudhoe Bay, and Craig and McCart (1976) sum marize earlier studies. Mnimal data exist for the freshuater segnent of this species, a point which is emphasized in this account because our understanding of the bi ol ogy of this species remains very speculative in some respects.

Freshuater Sources of Arctic Cisco. Two large rivers, the Mackenzie and Colville, are considered to be the naj or sources of arctic cisco that enter coastal waters of the Beaufort Sea. Other Al askan Nbrth Sl ope ri vers nay support this speci es but available data are incompl ete,

Arctic cisco are reportedly taken in subsistence fisheries in several rivers near Barrow (T. Bendock, ADF\&G, pers. comm.; F. Hobson, North Sl ope Bureau, pers. comm.). However, this speci es was not caught during a recent survey of streans in the Barrow area (Hablett 1980) al though Hablett (pers. comm.) cautions that there nay have been conf usi on in the identification of cisco species during this particular survey. Another complicating factor is that the coastal regi on at Barrow represents the area of di stributional overlap for the arctic cisco and its I ook-alike, the Bering cisco (McPhail 1966; see di scussi on under 'Bering Cisco'). McPhail (1966; his Fig. 3) anal yzed a sample of about 43 ciscoes fromElson Lagoon and found that only $\mathbf{3 0 \%}$ were actually arctic cisco; the rest were Bering cisco. Thus, it would be necessary to confirmtaxonomically which species is actually present in rivers like the Meade, Anaru and Chi pp.

A askan streans to the east of the Colville have recei ved more survey efforts but no river was found to support arctic cisco (e.g., Yoshihara 1973; Ward and Craig 1974; Crai g 1976). Yoshihara (1973) reports that several arctic cisco were caught in the Sagavanirktok River but this drai nage has been surveyed extensively in recent years and few, if any, other arctic cisco have been reported.

The Colville Ri ver lies adj acent to the study area, and tagging studies indicate that nost, if not all, of the arctic cisco utilizing the Si mpson Lagoon study area probably origi nate fromthis drai nage. Of the 832 arctic cisco tagged in Si mpson Lagoon, 41 were recaptured in the commercial fishery in the Colville Delta and only 2 were recaptured el sewhere (Appendix 1). Similar results were obtai ned for this Species in Prudhoe Bay (Bendock 1977); of the 628 arctic CiSCO tagged there, 19 were recaptured in the Colville fishery and onl y 2 were recaptured el sewhere. However, as previously described in 'Fish Movements' it is understandable that most fish were recaptured in the Colville since recapture efforts were nost intense at this site.

Very little is known about the freshwater phase of this important species. Even in the Colville $\mathbf{R i}$ ver, the presuned source of many arctic cisco in Al aska, data are sparse. Appendi $\mathbf{x} 2$ describes our efforts to locate the spawning grounds of arctic cisco in the lower Colville drai nage.

Size Distribution. Arctic cisco in Si mpson Lagoon ranged in size from very small to very large fish (54-419 m) but the size di stributions of fish which were obtai ned depended on the sampling gear used. Fyke nets caught nostly small arctic cisco $\mathbf{6 0 - 2 0 0} \mathbf{~ m m l o n g , ~ a n d ~ g i l l ~ n e t s ~}$ caught larger fish $\mathbf{2 8 0} \mathbf{- 4 0 0} \mathbf{~ m m l o n g ~ (F i g . ~ 3 5) . ~ T h e ~ f o r m e r ~ s i z e ~ g r o u p ~}$ corresponds to \mathbf{j} uveniles ages 0.3 and the I atter to ol der $\mathbf{j u v e n i l e s ~ a n d ~}$ mat ure fish ages 5-10 (Table 26). While sampling bias associ ated with these tuo capture methods may contribute to the apparent scarcity of the fi sh in the internedi ate size ranges, the comple absence of age 4 fishin the 1977 sample (Fig. 36) suggests that the bimodality in size nay al so be a consequence of a poor 1973 year-class. Ages of the 1978 sampl es were not determined, but the size gap appears to be at a length

Figure 35. Length frequencies of arctic cisco caught in Si mpson Lagoon, 1977-1978.

Table 26. Age-length rel ationship (derived from otoliths) and age-specific maturity of arctic cisco in Si mpson Lagoon, 1977. I mmature fish (I) and mature fish that would (S) or noul d not (NS) spawn in the year of capt ure are indi cated.

Age	n	Fork nean	$\begin{array}{r} \text { ength (mm) } \\ \hline \text { (range) } \end{array}$	S_D	Maturity							
					Mal es				Fenal es			
					n	\%1	\%s	\%NS	n	\% I	\%s	\% NS
0	18	73	(54- 96)	11								
1	40	112	(65-145)	15	23	100	0	0	7	100	0	0
2	15	155	(129-188)	22	7	100	0	0	6	100	0	0
3	9	175	(151-227)	23	7	100	0	0	2	100	0	0
4	0	-			0	-	-		0	-	-	
5	14	293	(261-318)	15	5	100	0	0	6	100	0	0
6	24	310	(290-340)	16	7	100	0	0	17	100	0	0
7	13	348	(330-398)	20	7	57	43	0	7	100	0	0
8	63	352	(292-394)	21	36	47	53	0	27	73	19	8
9	121	364	(333-400)	16	63	6	71	22	54	22	24	54
10	35	368	(349-390)	10	17	0	58	42	17	0	65	35
11	0	-			0	-	-		0	-	-	
12	0	-			0	-	-		0	-	-	
13	0	-			0	-	-		0	-	-	
14	1	410		-	-1	. 0	100	0	0	二	-	
Overal I	352				173	43\%	45\%	12\%	143	54\%	20\%	26\%

ARCTI C CISCO

Figure 36. Age frequency of arctic cisco in simpson Lagoon, 1977. Open and shaded bars each total 100'...

Figure 37. Length frequency of arctic cisco caught in late winter in the Colville Delta, 8 April- 22 May 1978.
whi ch would generally correspond to age 5 fish, thus supporting the likelihood of a poor 1973 year-class.

A comparison of the 1977 and 1978 size di stributions al so shows that small fish, 60-79 mmin length, corresponding to age $\mathbf{O f i s h}(f r y)$, were much less abundant the second summer. Reasons for this or the lack of fish in the $120-159 \mathrm{~mm}$ size categories are not known. The fact that nore large fish were caught by fyke net in 1978 than 1977 may reflect the larger fyke net used the second year (see 'METHODS').

Fyke net data fromthis study and Bendock's (1977) study at Prudhoe Bay show that small arctic cisco are nore comon in nearshore Beauf ort Sea waters than indi cated by earlier studi es that relied on data obtai ned by gill nets. Fi gure 35 cl early indi cates that variable-mesh gill nets underestinate numbers of snall arctic cisco, even when sone gill net panel s have nesh sizes as snall as $1.25 \mathrm{~cm}(0.5 \mathrm{inch}$ bar nesh).

In late wi nter, medi um and large size arctic cisco were caught in the I ower Colville Delta. Under-ice gill nets caught fish 148-398 mm in length (Fig. 37), but it is clear fromthe foregoing that snaller fish, if present, uould not have been caught by the gear used.

Age at First Seaward Mgration. Arctic cisco smelt at an early age. In 1977, sone entered the bracki sh waters of Si mpson Lagoon as young- of-the-year, and age 1 fi sh were the nost abundant age class of all arctic cisco caught by fyke net. Bendock (1977) reports that age 1 arctic cisco were al so present in Prudhoe Bay, thus indicating that some snall arctic cisco di sperse at least 70 km fromthe Colville River. The proportion of \mathbf{j} uveniles that smel \mathbf{t} at these early ages is not known.

Age, Growth and Maturity. Ages of arctic cisco in Si mpson Lagoon cover the known age range for the Colville population; ages of the subsample of fish ranged from 0 -14, with a distinctly bimodal distribution (Fig. 36). Grouth of the Si mpson Lagoon fish (Table 26) is generally similar to that of other populations of this species al ong the Beaufort Sea coastline (cf. Craig and McCart 1976). For the 1977 study population, tuo growth phases are apparent; (1) rapid grouth for immare
fish of ages 0-6, and (2) markedly slower growth as fish attain sexual maturity (Fi g. 38) .

Several differences were noted in the reproductive status of nale and fenale arctic ciscoes in Si mpson Lagoon. Mal es tend to reach naturity one year earlier than femal es. Most mal es mature at ages 7-9, fenal es at ages 8-10 (Table 26). It shoul d be noted that the spawning cycle of this speci es is not clearly understood, and accordingly, assessments of reproductive status are somewhat subjective (Craig and Nann 1974). The problemis basically as follows. Fi sheries bi ol ogists catch nany I arge and rel atively old arctic cisco in coastal waters. Gonads in these fish exhi bit an internedi ate degree of development which distingui shes themfrom both imat ure fish and mat ure fish in a spawning condition. Researchers have been generally uncertain whether these fish represented (1) immature fish which, perhaps, nould spawn in a year or so, (2) nature fish whose gonads would quickly increase in size in ti ne for fall spawning, or (3) mature fish which spawned previ ously but would not spawn in that particular year (Nikolskii [1961] reports that thi s species does not spawn annually in Si beria). Various terns have been used to describe these fish and their state of naturity-some-devel opment, potential spawner, non-spawner and nat ure non-spawner (Roguski and Konarek 1972; Kogl and Schel 1 1974; Crai g and Mann 1974; Griffiths et al. 1975, 1977).

In fact, we do not know whether arctic CiSCO in the study area spawn more than once during their lifetime, and, if so, whether they spawn annually, in alternate years, or some combination of both. Spawring populations have yet to be located for this species and virtually no spawned- out fish have been caught. Theref ore, it has been necessary to examine seasonal patterns in gonad development in order to assess the field bi ol ogi sts' assessnents of naturity. Three categories have been used to describe the reproductive condition of arctic cisco in the study area (after Craig and Mann 1974): "i mature" (negligi ble gonad devel opment and no evi dence of a previ ous spawning), "nature green" (sufficient gonadal development to indicate that the fish would span during the year of capture), and "mature non-spawner" (some gonadal

Figure 38. Growth of arctic cisco caught in Si mpson Lagoon, 1977. Mean, range and percent nat ure (sexes conbi ned) are indi cated for each age class.
devel opment but woul d not spawn during the year of capture). We emphasize that no di rect evi dence of a previ ous spawning was found in the coastal fish classified as mature non-spawners, Dissection procedures i ncl uded a search for retained eggs, but none was found. In general, Craig and Mann (1974) found that there was sone difficulty indistinguishing (1) large immatures from small mature non-spawners, and (2) mature green f ish from mat ure non-spawners, early in the season when gonadal devel opnent was si milar.

Seasonal patterns of egg sizes and testes: body wei ght ratios indi cate that there is considerable overlap in reproductive conditions of fish judged to be immature, nature spawners and nat ure non-spawners (Fig. 39). The mal es with the nost devel oped testes, in terns of gonad: body wei ght ratio ($0.3-1.2 \%$, were caught at the begi nning of the openuater season. Sone femal es with rel atively large eggs (0.7-1.2 mm) were al so taken at this tine. Si zes of eggs at spanning time are not known for North Anerican popul ations of arctic cisco; perhaps egg sizes are similar to those of least cisco (1.4-1.9 mm Mann 1974) but Berg (1957) reports that eggs of spawning arctic cisco in Si beria are 2.5 mm It is possible that femal es with the Iarger egg sizes in Simpson Lagoon would spawn later that year. A similar pattern of egg sizes was recorded for arctic cisco caught at Barter Island (Griffiths et al. 1977).

It appears, then, that spawners are present in early sumer, presumably returning to the Colville or other spawning streans by early Jul y . Juveniles and mature non-spawners remain in coastal waters for a longer ti ne.

Mbvenents in Fresh Whter. To provide a more complete picture of the life cycle of arctic cisco, a brief summary of their movements after. leaving coastal waters is presented. Data are fragnentary and cur understanding is speculative:

1. Spawners. Previous studies documented no summer or early fall spawning runs up the Colville and so it was suggested that "spawriers enter the Colville Delta late in the summer and spawn in the lower reaches of the river" (Kogl1972) However, the data presented above suggest that most spawners return to fresh water, presumably the Colville, by early July. We do not know

Figure 39. Seasonal patterns of egg sizes and testes:body ratios for arctic cisco in Simpson Lagoon, 7977 . Onlymales 3200 man Jong were used in this analysis since smaller immature males occasfonally give erratically high values.
where, specifically, these fish spawn; spawning arctic cisco have yet to be caught in any \mathbf{A} askan waters (revi ewed in Appendi x 2). Nb post-spawning dounstream run has been recorded either, al though, of the hundreds of arctic ciscoes caught in the del ta in winter, fi ve apparently spawned- out indivi dual s have been caught (3 in this study; 2 by Kog 1 and Schell 1974).
2. Sea-run Immatures and Mature Non-Spawners. The evidence indicates these fish move between the Colville Deltain winter and coastal waters in summer.
3. Young Juveniles. Presumably the novenents of these fish are similar to those described in (2) above, but at least some spend the summer in the Colville as well (Kogl 1972). These snall fish have not been caught in winter (Fig. 37), probably because they are not vul nerable to capture by gill net.

Length- wei ght. The following lengt h - wei ght rel ationshi p was obtained for conbi ned coastal collections of arctic cisco:
\log Kêi ght $(\mathrm{g})=-5.617+3.279 \log$ Length $(\mathrm{mm}), \mathrm{n}=785, r=0.99^{*}$
Sex Ratio. Male and female arctic cisco were present in al nost equal numbers in the 1977 Si mpson Lagoon sample ($\mathrm{n}=529$, 51. 2\% nal e, $x^{2}=\mathbf{0} .32, \mathbf{P}, \mathbf{0} .5$). Unlike other species (particularly arctic char), fenale arctic cisco do not have a greater tendency than mal es to becone anadr onous.

Overvintering Areas. A conmon bel i ef anong fisheries biol ogist is that anadronous fish overwi nter in fresh water during the prol onged arctic winter and feed very little during this time because of lowered netabolic needs and scarcity of prey. Thus, fish uould tend to be in their poorest physical condition after surviving the wi nter and best condition after summer feeding in coastal waters. It was surprising. theref ore, that arctic cisco caught during the 1977 spring breakup in Si mpson Lagoon were not thin, but heal thy-looking, robust fish. As early as 30 J une- $\mathbf{2} \mathrm{J}$ uly (two weeks bef ore Si mpson Lagoon was free of all ice), the fish had an abundance of fat al ong the intestinal tracts. Intestinal fat accounted for an average of $\mathbf{1 . 7 \%}$ of the total body wei ght at this time; and this early season val ue was al ready one-half the total anount present by the end of the open- water season:

[^21]| Date | n | $\frac{\text { Intestinal Fat }(\%)}{\text { Mean (Range) }}$ | Fork Length (mm) | | | Wei ght (g) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Mean | (Range) | S.D. | Mean | (Range) | S.D. |
| 30 J une- | | | | | | | | |
| 2 July | 18 | 1.7 (0.9-3.4) | 360 | (339-383) | 14 | | (463-723) | 66 |
| 7 Sept | 15 | 3.6 (1.8-5.5) | 369 | (331-395) | 17 | 664 | (464-848) | 103 |

Thus, these fish had either survi ved the winter with nore than adequate food reserves, or had al ready had the opportunity to fatten up in the spring before entering the lagoon.

Two additional pieces of evidence, besi des the foregoing results, suggested that arctic cisco may overwinter in nearshore or del ta waters rather than, or in addition to, freshwater: (1) Helmerick's commercial fishery catches arctic cisco under the ice in the brackish waters of the Colville Delta until mid-Decenber when fishing ceases, and (2) invertebrates ("shri mp") were acti ve and abundant throughout the 1976-1977 winter in a hole through the ice opened by crevs on an expl oratory drill rig just off the Colville Delta. It appeared, on the basis of data availablein 1977, that arctic cisco are present inthe delta well into wi nt er and that food (probably mysids and amphipods) is available at this time and in this area.

During the following two winters (1977-78, 1978-79) we found that arctic cisco do indeed overwinter in the brackish waters ($18-32 \%$) of the Colville Delta although none was caught in coastal waters (see ' W'inter Distribution'). During 8-20 April 1978, 67 arctic cisco (45\% of the total catch) were caught under the ice in the lower Colville Delta near Anachilik Island (Fig. 6). These fish ranged from 148 -398 mm: in length (Fig. 37), 2-10 years in age (Table 27), and al nost all were judged to be imature fish:

	Nunber of Fi sh		
	I mature	Mot ure Non- Spawner	Mat ure Green
	37	0	0
memal es	26	0	$2 ?$
uni dentified	2	0	0

Table 27. Age composition of wier-caught arctic cisco in the Colville Delta.

Age	Late VInter Survey	$\frac{\text { Fal I }}{1976}$	Commercial Catch (Helmericks)	
	April/May 1978		1977	1978
2	15. 2\%	0\%	0\%	0\%
3	6.1	0*	0	1.4
4	7.6	0	0.5*	10.7
5	3. 0	3. 2	57.7	10. 2^{*}
6	45.4	54.8	15.4	74.0
7	7.6	6.4	23.6	0.9
8	12.1	29.0	1. 6	2.8
9	1. 5	6.4	0.5	0
10	1. 5	0	0.5	0
n	66	31	182	215

Gonads of these fish were not very devel oped. For nal es, the average testes: body wei ght percentage was only $0.06 \%(n=21$, range $0.02-0.2 \%$ for fish > 200 mmlong), and for fenales egg sizes were 0.2 mmor less except in two femal es (nat ure green) with 0.4 and 0.5 mm eggs.
These indi ces of sexual maturity are far lower than those of nat ure spawners in June \{Fig. 39), and so it is thought that nost nould not spawn in the year of capture (1978).

In sumary, many arctic cisco (and least cisco) do not requi re freshyater habitats for overwi ntering. A large non- spawning segnent of the popul ation overwi nters in the bracki sh waters of the Colville Delta, and during this time they continue to feed on invertebrates (see bel ou). To date, no ciscoes have been caught in coastal waters in winter except in Si beria (Berg 1957) and in the nearly fresh waters off the Mackenzie Delta. Galbraith and Hunter (1979) report catching four arctic ciscoes in Kugmallit Bay, N.W.T. (12 Decenber 1974); Percy (1975) caught a si ngle arctic cisco in Mallik Bay, NWT., in slightly brackish waters (4.9-7.9\%, on 10 March 1975; and Kendel et al. (1975) caught three arctic cisco in Mackenzie Bay in April 1974. Together, these data indicate tol erance of a wide range of salinities (4.9-32\%) by overwintering arctic cisco.

The Commercial Fishery in the Colville Delta. For comparative purposes, samples of fish were purchased each year (1976-1979) from Helmericks' commercial fishery in the Colville Delta. These samples consisted of arctic cisco caught in aut um (October-Decenber) under the ice in brackish delta waters. Subsamples were anal yzed for age ($\mathrm{n}=428$), reproductive status ($n=689$) and stomach fullness ($n=289$).

Most fish caught in the comercial fishery are noderately large fish, 260-380 mmin length (Fig. 40). Reasons for year-to-year variability in sizes of fish in these harvests are not known, but nay incl ude differences in sampling dates, locations or gear (i.e., the proportions of 3 and 4 inch nesh gill nets used each year). The large mesh sizes probably account for the absence of snall arctic cisco fromthe catch; fish snaller than those caught in the comercial fishery are present in the Colville Delta, at least during late winter (Fig. 37).

Fi gure 40. Length frequenci es of samples of arctic cisco caught in the commercial fishery in the Colville Delta, 1976-1979.

The commercial catch ranged from 3 to 10 years in age with ages 5 to 8 comprising the bulk of the catch (Table 27). Sone of the annual variation in the dom nant age classes caught probably reflects the previ ously descri bed poor year cl ass of 1973 as it increased in age (size) and becane vul nerable to the fishery. The recent decline in numbers of arctic cisco caught in the fishery (see 'Population Numbers') began prior to the entry of the 1973 year-cl ass into the fishery, but the I ack of fish in this year-cl ass certainly contributes to the reduced catches.

Fi sh taken by the commercial fishery were j udged to be imat ure fish or nature non-spawners:

Year	n	\% Composition		
		1 mature	Mat ure Non- spawner	Mature Green
1976	59	88	12	0
1977	196	43	57	0
1978	227	51	49	0
1979	207	45	54	0.5

Only a single nale out of 689 comercially-caught fish was consi dered a possi ble mature green fish which might spann in the year of capture. As in the arctic cisco caught during late winter in the delta (see previ ous section), gonads of these fish were not well-devel oped at the tine of year when the species presumaly spawn: in males the average testes: body weight ratio was only 0.07% ($n=16, r a n g e=0.04-0.14 \%$), and egg di aneters of fenal es uere only 0.2-0.5 mm ($\mathrm{n}=11$) in immature females and 0.5-0.8 mm ($\mathrm{n}=9$) in mature non-spawners. These indices of sexual maturity are much I ower than those of mature green fish in June (Fig. 39). Nb nat ure spawners or spawned- out fish were present in our samples; however, one spawned- out male and two possibly spawned- out femal es were examined by us out of a total of ni ne apparently spawned- out fish set aside by the comercial fishermen during the 1979 fall catch.

It appears that during autum the commercial fishery in the Colville Delta harvests essentially the non-spawning segnent of the arctic cisco popul ation. Domestic fishing at the village of Kaktovik al so harvests the non-spawning segnent of the arctic cisco population (Griffiths et al . 1977), and the situation is presumably the same for the village of

Nuiqsut (Upper Colville Delta) since at least a portion of their fishing occurs in the lower Colville Delta (see ' Donestic Fisheries'). Effects of domestic and comercial fishing pressure on the Colville stock are not known.

JimHelmericks, the commercial fisherman, al so provides interesting information about the distribution of fish and ting of fish runs in the Colville Delta. Over the years, he has observed that arctic cisco run heavi est in the "east Channel" (Station A, Figure 6) in early winter while least cisco and humpack and broad whitefish tend to use the "Main Channel" (Station B, Fig. 6). He also notes that the arctic cisco run starts about the third week of October with a few peaks of activity through early November.

Additional information on the commercial fishery is presented in 'Influence of Other Organisms'.

Food Habits. Princi pal foods of arctic cisco in the Si mpson Lagoon area are mysids (Mysis litoralis, M. relicta) and amphipods (Apherusa glacialis, Pontoporeia affinis). Mysids accounted for 70-87\% of their summer di et in 1977 and 1978, whereas a si ngle amphipod speci es (Pontoporeiaaffinis) was the maj or prey eaten in winter (Table 28). At other coastal locations, the diet of arctic cisco is generally similar to that found in the present study al though proportions of food groups vary and additional food itens are sonetimes important in the diet; these other groups incl ude copepods, I arval fish, chironomid larvae, and polychaetes (Furniss 1975; Kendel et al . 1975; Griffiths et al. 1975, 1977; Percy 1975).

In the Mackenzie Delta, it has been observed that arctic cisco cease feeding while on spawning runs (Stein et al 1973; Percy 1975); however, many fish in the non-spawning segnent of the Colville population conti nue feedi ng through the winter. The percentage of fish with sone food in their stomachs in early winter was $\mathbf{4 7 \%}$ ($\mathrm{n}=289$ for 1976-79 combi ned) and $95 \%(n=42)$ in late winter.

Table 28. Foods of arctic cisco in summer (Simpson Lagoon) and winter (Colville Delta, April/May 1978).

Food Item	\% Composition (Wet Vei ght)			
	Summer		Winter	
	1977	1978	Large Fish	Medi um Fi sh
MYSIDS				
Mysis litoralis	19. 4	49. 1		*
Mysis relicta	5. 4	29. 8		
Remnants	45. 0	8. 0		
AMPH PODS				
Apherusa glacialis	10.5	0.8		
Halirages mixtus		1. 0		
Onisimus glacialis	5.4	4. 3		
Onisimus spp.	6.8			
Garmarus setosus	0.5	*		
Parathemisto spp.	0.1	1.1		
Pontoporeia affinis			68. 2	94.7
Pontoporeia femorata				
Gcmmarocanthus Zoricatus	*	*		
Gammaridae	1. 6			
Remmants	0.5	4.1	31. 8	3. 0
COPEPODS	4.5	0.6		
I SOPODS	0.3			
CUMACEAN	*	*		
EUPHAUSIID	*	0.7		
FISH		0.2		
M SCELLANEOUS SPP	*	0.2		2. 2
No. Stonachs Exani ned	55	52	24	16
Mean Size Fish (mm)	360	342	317	173

*< 0. 1\%

Bering Cisco
The Bering cisco (Coregonuslaurettae)is a species similar in appearance to the arctic cisco. The taxonomical distinction between these two coregonids is briefly reviewed in order to establish their relative importance in the study area.

The North Anerican di stributions of these fishes are al nost allopatric (McPhail 1966). The Bering cisco occurs primarily al ong the Bering Sea coast' and the arctic cisco is found al ong the Beauf ort Sea coast. The species overlap only between Poi nt Barrow and the Colville River.

McPhail (1966) found that a single meristic character, the number of gill rakers on the lower limb of the first arch, differentiated arctic $\operatorname{Cisco}(26-30$ gill rakers) from Bering cisco (21-25). Furthernore, when the cisco were subsequently di vided into two groups on this basis, they were al so found to differ significantly in nean numbers of lateral line scal es and pyloric caeca. Mbst importantly, in the coastal area where these two groups overlapped, the frequency di stribution of gill rakers remai ned bimodal, suggesting that the "two groups of autumazis ciscoes do not intergrade along the arctic coast in \mathbf{A} aska, but exist sympatrically and therefore, should be considered as valid species".

Data fromthe present study support this taxonomic di stinction (Fig. 41). Almost all ciscoes from Simpson Lagoon had high gill raker counts (arctic cisco), but a sel ected group of fish from the Colville Del ta had low counts (Bering cisco).

GII raker counts for 241 Si mpson Lagoon fish ranged from 22 to 31. While this range exceeds the previ ously reported range forarctic cisco (26-30) and overlaps with that for Bering Cisco (21-25), the sample is as unimodal as one could expect in a nat ural popul ation. It is biologi cally unreasonable to di vide this sample into two groups on the basis of a 25-26 gill raker criterion. These data indicate that, with increased sample sizes, the intraspecific range of gill raker numbers in arctic cisco is larger than formerly reported. Probably all but the one fish with only $\mathbf{2 2}$ rakers from $\mathrm{Si}_{\mathrm{mps}}$ Lagoon are arctic cisco.

Fi gure 41. Frequency distribution of number of gill rakers (lower linb, first arch) for samples of arctic and Bering cisco caught in Si mpson Lagoon and a sel ected sample fromthe Colville Del ta.

The Colville Delta sample represents 23 fish we obtai ned fromthe commercial fisherman (J. Helmericks) after we requested a sample of "Bering cisco". Helmericks caught these fish during the fall of 1978. GII raker counts of these fish correspond to the previously reported counts for Bering cisco with the exception of one fish that had 27 gill rakers. What is significant here is that 22 of the 23 fish were "correctly" sel ected by eye out of the fishery's catch, which consisted predominantly of arctic and least ciscoes.

A noticeable difference between the two species is that Bering cisco are stouter or thicker than arctic cisco. This observation is substantiated by a comparison of length- uei ght rel ationships for the two species. Rel ationships for the tuo species caught together in the Colville Delta fishery are:

> Bering cisco: Log Weight (g) = 4. $737+2.961$ Log Length (mm) $n=23, r=0.98$
> arctic cisco: Log Weti ght $(\mathrm{g})=5.909+3.390$ Log Length (mm) $\mathrm{n}=78, \mathrm{r}=0.95$

These regressi ons are significantly different (ANACONA; F adj usted neans = 26.1, $P<0.001$; t sl ope $=\mathbf{- 1 . 1 3 , ~} P>0,05$); Bering cisco are heavier for a gi ven length.

Least Cisco

The least cisco (Coregonus sardinella) is a comon anadromous species al ong portions of the Beauf ort Sea coastine. It is generally abundant from Barrow to Prudhoe Bay and al so near the Mackenzie River,
but scarce between these two areas. The fish were noderatel y abundant in Si mpson Lagoon. They accounted for l-48\%' of fish catches by various gear during the open- water season (Table 4). The rel ative abundance of this speci es in the lagoon may be hi gher if, as postul ated in the 'Fish Mbvenents' section, a late season run of fish back to overwintering sites occurred after sampling efforts ended.

Freshwater Sources of Least Cisco. Several Beauf ort Sea drai nages support popul ations of anadromous least cisco. The best known of these is the Colville River where a snall commercial fishery has caught least cisco for years (see 'Commercial Fishery' in 'Influence of Other Organi sns'). This study al so documented that least cisco overwinter in the Colville drai nage and, nore importantly, that least cisco spawn in the Iower reaches of this river (Appendix 2).

A askan streans to the east of the Colville do not support popul ations of least cisco (e. g., Whrd and Craig 1974; Craig 1976; Bendock 1977), but runs of this species occur in several streans to the west of the Colville. Recent surveys in this western regi on found that least cisco were abundant in nany lakes and streans (Hablett 1980).

Taggi ng data fromthis study and from nearby Prudhoe Bay (Bendock 1977) suggest that many least cisco captured in mari ne waters of the study area origi nate in the Colville River (see 'Fi sh Mbvenents' \}. In addition, one fish tagged in Si mpson Lagoon was recapt ured at a fishing camp near Barrow (specific recapture site unknown) late in the fall. Perhaps this fish originated in a streamto the west of the Colville.

Size Distribution. The size range of least cisco captured in Si mpson Lagoon was $\mathbf{8 0 - 4 1 4} \mathbf{m m}$; nost fish neasured $\mathbf{2 8 0} \mathbf{- 3 4 0} \mathbf{~ m m i n}$ both 1977 and 1978 (Fig . 42). Fyke nets sampl ed a wider size range of fish than gill nets, but both methods caught primarily large fish. Snall least cisco were not abundant, in contrast to the numerous snall arctic cisco found in the study area.
least CISCO

Figure 42. Length frequencies of least cisco caught in simoson Lagoon, 1977 and 1978. Open and shaded bars in the 1977 di agram each total 100°.

Age, Grouth and Maturity. Though least cisco ages in the sample cover a wide range (Table 29), no fry or age 1 fish were present, and ol der fish aged 7-11 comprised nost of the catch. The grouth rate of these fish is generally similar to that reported for least cisco at other Beauf ort Sea coastal stations.

Age at naturity was 6-7 for males and 7-10 for femal es (Table 29). Of the fenal es capt ured, 73% were nat ure (64% spawners and 36% nonspawners); of the nal es, 55% nere nature (88% spawners and 12% nonspawners). Because the spawning cycle of least cisco is not fully understood, assessments of their state of maturity are subject to the same problens previ ously outlined for the arctic cisco. Thus, field assessnents of maturity were ai ded by anal yses of seasonal patterns in gonad devel opment (Fig. 43) which are similar to those recorded forthis species at Kaktovik Lagoon (Griffiths et al. 1977).

It is apparent that some femal es capt ured in coastal waters during summer hould spawn in fall since their egg sizes werelarge (0.9-1.8 mm) and similar to those of known spawners caught in a Septenber survey in the Iower Colville drai nage (Fig. 43 and Appendi \mathbf{x} 2). Li kewi se, many nalles in the coastal sample uould spann in fall since their stage of gonad devel opment was similar to that of known spawners in fall. Mat ure green least ci sco renain in coastal waters later in the sumer than do nature green arctic cisco (cf. Fig. 39).

Sone Age and Maturity Comparisons with Arctic Cisco. A comparison of age structure and maturity of least and arctic ci sco indicates sonewhat different life strategies for the two closely rel ated species. Least cisco tend to grow nore slow y, nature sooner and live longer than arctic cisco (Fig. 44). \quad der least cisco average $\mathbf{5 0 - 6 0} \mathbf{~ m m s n a l l e r ~ a t ~}$ each age than arctic cisco. Perhaps sone of this difference reflects the slightly earlier age at which least cisco reach sexual naturity, in that energy would be di rected towards reproductive tissue rather than grouth. Ages at which approxi mately 50% of the fi (sh (sexes conbi ned) reached naturity were 7 for least cisco and 8 for arctic cisco (Tables 26 and 29). Age structures of the coastal popul ations al so indicate that few arctic ciscolive longer than age 10 while 27% of the least cisco were ol der than that.

Table 29. Age-I ength rel ationship (deri ved from otoliths) and agespecific maturity of least cisco in Si mpson Lagoon, 1977.

f!9_S-	Fork Length (mm)			SD	Maturity				
				Mal es	Fena 1 es				
	n	nean	(range)		n	\% Mature	n	\% Mature	
2	10	126	(95-154)		19	7	0	3	0
3	5	154	(128-180)	20	2	0	3	0	
4	5	197	(163-260)	38	2	0	2	0	
5	5	227	(188-291)	38	2	0	3	0	
6	5	261	(229-297)	30	2	50	3	0	
7	13	277	(239-320)	24	2	100	11	55	
8	10	303	(279-320)	12	2	100	8	75	
9	19	304	(268-380)	26	3	100	16	81	
10	19	305	(263-354)	24	4	100	15	100	
11	18	327	(288-399)	24	4	100	12	100	
12	8	329	(302-346)	14	0	-	8	100	
13	4	322	(305-331)	12	0	-	3	100	
14	2	370	(328-412)	59	0	-	2	100	
15	1	371			1	100	0	-	
16	0	-			0	-	0	-	
17	0	-			0	-	0	-	
18	1	414	-		0	-	-	100	
Overal 1	125				31	55\%		73\%	

Figure 44. Comparison of arctic and least cisco grouth patterns. Arrous indi cate ages at which approxi matel y 50% of the fish have reached sexual naturity.

Spawning Locations. Spawning least cisco from both anadromous and Iake-resi dent stocks were taken at several locations in the lower Colville drai nage during Septenber 1979. These data are presented in Appendi x 2.

Length- Wêi ght. The foll owing length- wei ght regressi on was obt ai ned for combi ned coast al collections of least cisco:

$$
\begin{aligned}
& \text { Log Wei ght }(\mathrm{g})=-5.151+3.070 \text { Log Length }(\mathrm{mm}) \\
& n=384, r=0.97
\end{aligned}
$$

Sex Ratio. Fenal es were si gnificantly more abundant than mal es in the 1977 Si mpson Lagoon sample ($\mathbf{n}=121,75 \% \mathrm{fenal} \mathbf{e} ; \chi^{2}=\mathbf{2 8 . 8}, \mathbf{P}<$ 0.001). These results indicate either that fenal es have a greater tendency than males to becone anadromous or that fenal es live longer than nal es, si nce nost ol der fish were fenal es (Table 29).

Overwintering Areas. Overwintering infornation is similar to that described for arctic cisco. In our area, the brackish waters (18-32\%o) of the Colville Delta are used by both species during winter nonths. Least cisco are present in the del ta during early winter (October-Decem ber), as docunented by the commercial fishery, and al so in late winter, as shown by our results from 8 April- 22 May 1978 near Anachilik Island. During the latter period we caught 42 least cisco under the ice (Stations A and Bin Fig. 6; described in 'Winter Distribution').

Length-frequencies of the I ate winter catch (Fig. 45) indi cate that the predomi nant size cl asses here were sonewhat snaller than those in Si mpson Lagoon. Si milarly, there were proportionally fewer fish ol der than age 8 in the late winter sample compared to the coastal sample (Table 30). Part of this difference bet ween samples may reflect the novenents of some nature green fish (i.e., ol der and larger fish) found in Si mpson Lagoon during sumer to upstreamspanning and overwintering sites in the Colville drai nage.

Both mature and immare fish were present in the late winter sampl e:

LEAST CISCO

Figure 45. Length frequencies of least cisco caught in the Colville Delta in winter,

Table 30. Age composition of winter-caught least cisco in the Colville Delta.

Age	\% Composition	
	Late Winter Survey	Fal I Commercial Catch (Helmericks)
	April/May 1978	1978
2	4.8	
3	7.1	
4	7.1	
5	2. 4	
6	16.7	7. 4
7	9.5	14.8
8	38.1	28.4
9	2.4	8.6
10	2.4	7.4
11	4.8	7. 4
12		11.1
13	2. 4	4.9
14		4. 9
15	2. 4	
16		2. 5
17		1. 2
18		1. 2
No. Fi sh	42	81

	Number of Fish		
	Imat ure	Mat ure Green	Mat ure Non- spawner
fenal es		5	10
nal es	18	5	3

However, assessments of maturity are especially tentative at this time of year si nce devel opmental stages of gonads appear similar for the various life-hi story stages of fish (Fig. 43).

The only other Beauf ort Sea data regarding overwintering least cisco are fromthe Mackenzie River regi on. Least cisco overwinter in the Iower Mackenzie Delta (Mann 1975) and a few have been caught in nearby coastal waters: Shingle Point (Steigenberger et al. 1975), 3 km offshore of Tibjak Point al ong the Tuktoyaktuk Peni nsula (Galbraith and Hunter 1979), Kugmallit Bay and Mallik Bay (Percey 1975). Sal inities at the Iast two sites, 0.2% and $4.9-7.9^{\circ} / 00$, were much lower than in the Colville Delta ($\mathbf{1 8} \mathbf{- 3 2 0 / 0 0)}$, indicating a wide salinity tolerance for overwintering least cisco.

The Commercial Fishery in the Colville Delta. The commercial fishery (Helmericks) catches large least cisco similar in size to those in Si mpson Lagoon (Fig. 45). These fish ranged 6-18 years in age but nost were ages 7-12 (Table 30). They tended to be ol der than the arctic cisco taken in the same fishery (cf. Table 27).

Al though measurements of egg sizes and testes wei ghts were not made, nost least cisco were judged to be nature fish in non-spawning or spawned- out condition:

Year	n	\% Composition			
		Inmat ure	Mat ure Non- Spawner	Mature Green	Mat ure Spawned-out
1978	213	7	84	0	9
1979	224	1	46	13	40

It thus appears that the comercial fishery harvests princi pally the non- spawni ng and spawned- out segnent of the least cisco popul ation.

Additional information on the commercial fishery is presented in 'Influence of Other Organi sns'.

Food Habits. The foods eaten by least cisco are very similar to those eaten by arctic cisco. Mysids(Mysis relicta, M. Zitoralis) accounted for 66-69\% of their summer diets in Si mpson Lagoon during 1977 and 1978; amphipods (especi ally Pontoporeia affinis) were the naj or prey in the Colville Delta during winter (Table 31). These data are similar to those obtai ned at other coastal locations although proportions of food groups in other areas varied and additional food groups, especially copepods, larval fish and insects, were occasionally important (Furni ss 1975; Kendel et al. 1975; Griffiths et al. 1975, 1977; Percy 1975).

Many least cisco in the Colville Delta continued eating during winter months. The percentage of fish with some food in their stonachs was $65 \%(n=224)$ in October-Decenber 1979 and $97 \%(n=33)$ in April and Nay 1978.

Arctic Char

The arctic char, Salvelinusalpinus, is a common species of North Sl ope rivers and the Beauf ort Sea coastline. It is a prized sport fish and is al so important in native donestic fisheries. The life history of this species has been revi ewed be several authors (Craig and McCart 1976; Craig 1977; MCCart 1980).

Table 31. Foods of least cisco in summer (Si mpson Lagoon) and winter (Colville Delta, April/May 1978).

Food Item	\% Composition (Vet Vei ght)		
	Summer		$\frac{\text { Vinter }}{1978}$
	1977	1978	
MYSIDS			
Mysis litoralis	8. 9	29. 8	
Mysis relicts	28.5	33.5	
Remnants	31.7	3.1	
AMPH PODS			
Apherusa glacialis	0.7		
Onisimis glacialis	4.6	19.1	
Onisimus sp.	1. 0		
Gammarus setosus	$1_{*} 0$	0.4	
Parathemisto spp.			
Pontoporeia affinis	0.4	5. 8	42. 9
Pontoporeia femorata	1. 3		
Gammarocanthus loricatus	2.6	0.2	
Gammaridae	3.2	-	-
Remmants	6.3	7.7	57.1
COPEPODS	8.7		
ISOPODS	0.1	0. 2	
CUMACEAN	0.6	*	
FISH	0.3	0.2	
M SCELLANEOS SPP.	0.2		
No. St onachs Exami ned	51	27	23
Mean Si ze Fi sh (mm)	307	302	267

Char caught in Si mpson Lagoon during this study probably originated fromseveral North Sl ope drai nages, but it is likely that many are from the nearby Sagavanirktok River. This river supports one of the Iargest char popul ations on the Al askan North Slope and tagging evi dence shows that sone Sagavanirktok char do enter Si mpson Lagoon (Appendi \mathbf{x} 1). Urdoubtedly, sone char in Si mpson Lagoon are al so fromthe Colville River, al though the size of the Colville char popul ation appears to be relatively small (Hablett 1980). Beaufort Sea drai nages west of the Colville do not appear to support char popul ations (Hablett 1980); these streans apparently lack groundwater habitats, which play an important role during char spawning and overwi ntering (e. g., Craig 1977).

Si ze Distribution. Fork lengths of char in Si mpson Lagoon ranged from 120-703 mm Fyke nets caught primarily snall char $\mathbf{2 0 0} \mathbf{~ 2 6 0 ~ m m l o n g , ~}$ corresponding to \mathbf{j} uveniles aged 3-5. GII nets al so sampled this group of j uveniles, but caught large char as well (Fig. 46). A di stinctly bimodal size di stribution is evident; since gill nets caught both small and Iarge char, it is probable that intermedi ate-sized fish were not present. These missing intermediate size-classes correspond to fish ages 5-8, sone of which would be first-tine spawners. Their poor representation in Si mpson Lagoon may be due to weak year classes and/ or a tendency, hypot hesi zed by sone investi gators, for sone spawning char to remain in fresh water during the year they will spawn.

Age, Grouth and Maturity. Age, grouth and reproductive condition of arctic char in Si mpson Lagoon are generally similar to those of char taken in other coastal areas in Alaska and the Yukon Territory. Si mpson Lagoon char ranged in age from 3-15 (Table 32). Here, as in other areas, char younger than age 3 were generally absent in coastal waters since juveniles spend several years in fresh water bef ore snelting. Char aged 4 and 10 were especi ally abundant in Si mpson Lagoon.

Fenale char exhi bit a greater tendency than nales to becone anadromous (Craig and MECart 1976), thus accounting for the predominance of fenal es in our samples ($\mathbf{n}=143,71 \% \mathrm{femal} \mathrm{e} ; \chi^{2}=\mathbf{2 4 . 3} \mathbf{P} \mathbf{P} \mathbf{0} \mathbf{0} \mathbf{0 1}$). Fenale char attain naturity at ages 7-8, and nal es by age 9 (Table 32).

Fi gure 46. Length-frequency of arctic char caught in Si mpson Lagoon, 1977. Gill net and fyke net data are presented separatel y.

Table 32. Age-I ength rel ationshi p (derived from otoliths) and agespecific maturity of arctic char in Si mpson Lagoon, 1977.

Age	Fork Length (mm)				Maturity			
					Mal es		Fenal es	
	n	mean	(range)	SD	n	\% Mature	n	\% Mature
3	14	233	(181-315)	34	5	0	9	0
4	31	254	(189-329)	35	9	0	19	0
5	18	298	(238-364)	33	7	0	11	0
6	5	356	(305-473)	70	3	0	2	0
7	5	390	(298-454)	63	0	-	5	40
8	5	507	(473-539)	30	0	-	5	100
9	9	524	(475-614)	47	1	100	8	100
10	21	554	(480-640)	42	7	100	14	100
11	12	586	(527-662)	46	3	100	9	100
1.2	6	582	(542-680)	51	2	100	4	100
13	5	608	(520-703)	79	2	100	3	100
14	2	643	(595-690)	67	1	100	1	100
15	1	668	-		1	100	0	-
Overal 1	134				41	41\%	90	51\%

Approxi natel y hal f of the char caught in Simpson Lagoon were mature fish (51\% of the fenal es and 41% of the nal es were nature).

Seasonal patterns in egg devel opnent and testes wei ght for the various life-history stages of char are shown in Fig. 47. The Iarge eggs of sone fenales (up to 3.0 mm) in early summer nere nearly the size of eggs at spawning time (3.5-4.5 mm) indicating that these fish would spawn in the coming fall. Craig (1977) al so reports that at least some fenale char enter coastal waters for a short period during the same year in which they will spawn. Fi sh which had previ ously spawned but would not spawn in the coming fall were al so caught in early summer. Egg sizes of these fish were 1.0-2.0 mm of the nature fenal es caught in summer, 46% were spawners and 54% were non- spawners.

The pattern of gonad condition for nale char was similar to that of femal es (Fig. 47). Mature green fish nere present in coastal waters for the first part of the summer. The percent testes: body wei ghts of these fish ranged from 0.9-3.3\% compared to val ues of $0.05-0.45 \%$ for i mat ure fish and nat ure non-spawners. Of the nat ure nal es, 29\% were spawners and 71\% non- spawners.

Food Habits. In 1977, the di et of arctic char consi sted largel y of amphipods (78%, but nysids were the naj or food item of char (89%) the following summer. Principal species eaten nere Carmarus setosus, Apherusa glacialis, Onisimus glacial-is, Mysis litoralis and Mysis relicta (Table 33).

Bor eal Snel t

Fi gure 47. Seasonal pattern of egg size and testes:body wei ght ratios of arctic char in Si mpson Lagoon. Synbol s: immare fish (open circles), mature green fish (closed circles), nature non- spawners (x).

Table 33. Foods of arctic char in Simpson Lagoon in summer, 1977 and 1978.

	\% Composition (Wet	Wei ght)
......Eood .ltem	1977	1978
MYSIDS		
Musis litomulis	3.8	54.4
Musis relicta	1.1	16.7
Remnants	10.6	18. 3
AMPHIPODS		
Apherusa glacialis	3. 9	
Apherusa sp.	5.0	
Halirages mixtus		*
Onisimus glasialis	4.8	1.1
Onisimus 5p.	2.2	
Garmarus setosus	9.7	0.5
Gammaridae	18. 3	
Parathemisto spp.	3.0	*
Pontoporeia affinis	0.2	*
Pontoporeia femorata	0.1	
Cammarocanthus Zoricatus	0.3	0.1
Remnants	30.6	2.6
COPEPODS	1. 3	
I SOPODS	0.2	0.1
CUMACEAN	0.2	*
EUPHAUSIID	2.8	
FISH	1.6	5.8
POLYCHAETE	*	0. 2
M SCELLANEOUS SPP.	0.3	
No. St onachs Exami ned	50	17
Mean Size Fish (mm)	475	331

* 0.1%

In our study area, boreal snel the anadromous fish that live in marine waters and enter fresh water in springtime to spawn. Though a relatively minor component of the nearshore fish community in summer, boreal snel \mathbf{t} were one of the nost abundant species caught in winter.

Taxonomists do not agree on the naming or stat us of this speci es; we will accept the convention suggested by McPhail and Li ndsey (1970), wherein al I North Anerican forms are included in the species complex Osmerus eperlanus. Others, notably Scott and Crossman (1973), prefer to desi gnate two subspecies-- the Pacific-Arctic form (Osmerus eperZanus dentex) and the Atlantic form (O.eperlanusmordax). Another common nane for this fish is the rai nbow snelt.

The Pacific and arctic distribution of boreal snelt is essentialy continuous from Vancouver Isl and around Alaska to Cape Bathurst in the Canadian arctic. In the Atlantic regi on they occur from Labrador to Virginia, and I arge popul ations are found in the Great Lakes watershed (McPhail and Li ndsey 1970; Scott and Crossman 1973). Coastal populations of O.eperlanus are anadromous; however, complete freshwater life cycles occur in many landlock popul ations.

Rel ativel y few boreal snel \mathbf{t} were caught in Simpson Lagoon during the open-water season. The 22 fish caught in 1977 and the 1049 fish caught in 1978 constituted less than 1% of the total catch each summer. Fi sh using nearshore waters at this time tended to be snall, immat ure fish (Fig. 48). In winter, larger boreal snelt were caught and they accounted for a hi gher percentage of the total catch in the Colville Delta (13%) and coastal areas of the Beauf ort Sea (57%.

In the winter, boreal snel t gathered near the nouth of the Colville River. The catch per unit effort at this location ranged from 5.8-22.2 fish compared to 00.5 fi sh at other coastal sites (Table 11). Presumably these fish migrate into the Colville Delta in springtine to spawn. A similar concentration of boreal snelt al so occurs off the Kuk Ri ver Delta near Wainwright in winter (Bendock 1977). In Si beria, anadromous popul ations ascend the Yenisei River before the ice breaks and spawn in the river in May or June (McPhail and Li ndsey 1970). It appears that the Colville Ri ver population follows aimilar schedule.

BOREAL SMELT

Figure 48. Length freau encies of boreal sme?t.

Age and Grouth. Ages of boreal smelt were determined by otoliths (Table 34). Data are presented for conbi ned sexes, si nce size at age did not differ significantly for males and females.

Boreal smel tinthe study area are slow growing and long-li ved. Grouth of these fish is generally similar to other northern popul ations but sl ower than fish from Lake Superior (Fig. 49). The Si mpson LagoonThetis Island fish grow sl ow y and steadily, reaching naxi mumsizes of about 300 mm at ages 13-15. The I ongevity of these fish is markedl y greater than in other popul ations of this species. Fi sh aged 5, 8 and 9 were the oldest fish caught, respectivel y, inthe Miramichi River, N.B. (MtKenzie 1964), the Mackenzie Delta (Percy 1975) and Prudhoe Bay (Bendock 1977). Reasons for this difference are not known but a contributing factor is probably the season of capture-the ol der fish taken in our study were caught in winter, a time when rel ativel y fewfish were taken in other studies. Our summer catches were, like those of ot her workers, nostly fish aged 1-6, but our winter catches were predom i nantly fish aged 7-12.

The foll owing length- wei ght regressi on was cal cul ated for 362 fish in the study sample ($r=0.96$, si ze range $130-305 \mathrm{~mm}$):

$$
\log _{10} \text { Wei ght }(g)=-5.81+3.32 \log _{10} \text { Lengt } h(\mathrm{~mm})
$$

Thi s length- wei ght rel ationship is very similar to that for an anadromous popul ation in the Parker River Estuary in Massachusetts where Murawaski and Cole (1978) found the relationship to be

$$
\log _{10} W=-6.03+{ }_{34{ }^{36} 1} \mathbf{0}^{2}
$$

However, it is quite different from the rel ationship

$$
\log _{10} W=2.58+2.95 \log _{10} L
$$

that Bailey (1964) reported for Lake Superior smelt. The two anadromous popul ations both increased in wei ght at a greater rate than the fresh water popul ation (slopes 3. 32 and 3.36 compared to 2.95).

Reproduction. Mal es reach sexual naturity by age 5 and fenal es at ages 5 (possibly 4) to 7 (Table 34), These ages are generally ol der than the ages at naturity reported for other populations of boreal

Table 34. Age-l ength rel ationship and age-specific naturity of boreal smel t in coastal waters near the Colville River, 1978-79. Ages were determined by otoliths.

Age	n	Fork Leng'th '(mm')			Mat urity			
					Mal es		Fenal es	
		$\overline{\bar{x}}$	(range)	SD	n	\% Mature	П	$\%$ Mature
1	22	74	(56-89)	9	0	-	0	-
2	4	116	(90-142)	21	0	-	1	0
3	2	148	(143-152)	6	0	-	1	0
4	4	166	(159-172)	5	1	0	0	-
5	24	186	(163-211)	15	8	100	11	18
6	6	206	(170-222)	20	0	-	5	60
7	11	230	(210-258)	14	4	100	5	100
8	37	241	(198-270)	16	12	100	22	100
9	8	251	(227-272)	18	3	100	5	100
10	3	276	(262-295)	17	0	-	3	100
11	14	271	(243-290)	12	4	100	10	100
12	4	290	(285-300)	7	1	100	2	100
13	2	287	(270-304)	24	0	-	2	100
14	1	285	-		0	-	0	-
15	1	305	-		0	-	\pm	100
Total s	143				33		68	

Figure 49. Comparisons of grouth patterns of boreal smelt fromthe Si mpson Lagoon - Thetis Island area with populations from ot her areas.
snelt: age 2 (Miramichi River), ages 3-4 (Yenisei Ri ver, Si beria; McPhail and Li ndsey 1970), age 4 (Prudhoe Bay), and age 6 (Mackenzie River).

Al of the nature fish taken in our study area had well-devel oped gonads by early winter. Ovary wei ghts increased through the winter to 16-20\% of body weight while testes weights remai ned fairly constant at $3-5 \%$ of body wei ght:

Ti me	$\overline{\mathrm{x}}$ Gonad : Body Wei ght			
	Mal es		Fenal es	
	\%	(n)	\%	(n)
August 78	4.9	(6)	2.3	(6)
Novenber 78	3.5	(12)	6.4	(23)
February 79	4.2	(28)	13.1	(26)
March 79	3.6	(29)	16. 0	(40)
*April 78	3.4	(6)	20. 0	(15)
Pl ay 79	3.7	(1)	17.1	(7)

*Colville Delta

Several of these fish (1 male, 7 femal es) possessed paired gonads of very different sizes.

Egg di aneters of nature fenal es increased steadily fromlate summer to late winter: $0.3-0.5 \mathrm{~mm}$ in August $(\mathrm{n}=5), 0.5 \mathrm{~mm}$ in Novenber ($\mathrm{n}=$ 22), 0.8 - 0.9 mm in February ($\mathrm{n}=17$), and $\mathbf{0 . 8 - I} .0 \mathrm{~mm}$ in April ($\mathrm{n}=15$). Bailey (1964) reports that the eggs are $0.9-1,0 \mathrm{~mm}$ in dianeter at spawning tine.

Boreal snelt spawninfresh or brackish water but not in marine water, which kills their eggs (Bigelow and Schroeder 1963). The timing of the spawning run depends on local conditions. In general, they ascend spawning streans bef ore or at spring breakup and commence spawning when the freshets slacken (MtKenzie 1964). In the Beauf ort Sea near the Colville River, boreal smelt continued to be abundant at the Thetis Isl and station through the first week in May. They then abruptly disappeared, an event that coi nci ded with the arrival of nelt water from the Colville (see 'Fish Movenents'). If the breakup of the Colville does induce an upri ver migration with subsequent spawning, this popul ation would not spawn until sometime in June under normal conditions. The
mel t- uater run-off experi enced in May 1979 was an unusually early event; : nel t-nater normally reaches the sea early in June.

Food Habits. Principal foods of winter-caught boreal smelt were mysids (Mysis litoralis,M. relicta), amphipods(onisimus glacialis) and fish (arctic cod). These data are presented in Table 22, 'Feeding Ecol ogy'. Many fish in this November 1978 sample from Thetis Isl and had food in their stomachs. However, fewer fish continued eating as the winter progressed:

	$\frac{\%}{\%}$ empty	st onach (n)	
	Novenber	20	(84)
February	67	(61)	
March	97	(35)	
May	100	(51)	

Other workers have al so noted a high incidence of empty stomachs in this species, particularly around spawning time (Percy 1975; Stern et al. 1973).

Fourhorn Sculpin

Of all the narine fishes found al ong the Beauf ort Sea coastline, the fourhorn sculpin (Myoxocephalus quadricornis) is anong the nost widespread and numerous. These denersal sculpins are found in virtually al I nearshore habitats, incl udi ng the deeper waters not frequented by anadromous speci es.

Fourhorn sculpins in the 1977 Si mpson Lagoon sample ranged in total I ength from 18-265 mm and thei \mathbf{r} I engt h - frequency di stri bution largel y reflected the sampling methods used in this study. Sei nes collected young- of-the-year al ong the shoreline, fyke nets caught primarily internedi ate-size sculpins, and gill nets caught large fish (Fig. 50). This bi as in sampling nethods accounts for sone of the observed variations in size di stributions of this species at other coastal locations where only one or two of the above- nentioned gear types were used to collect fish. It does appear, however, that Iarge sculpins are less abundant in Si mpson Lagoon than in areas to the east of the study area. Mdal sizes of fish taken by gill net in Si mpson Lagoon were 160-200 mm compared to 200-240 mm at Nunaluk Lagoon (Griffiths et al. 1975), Kaktovik Lagoon (Griffiths et al. 1977) and the outer Mackenzie Delta (Percy 1975). In addition, naxi mumsizes of fourhorn sculpins were snaller in Si mpson Lagoon.

Four horn sculpin young- of-the-year averaged 21.4 mm in length (range 18-26 mm $\mathbf{n m}$ 5) on 3 August 1977. At this time, their distribution al ong the I agoon shore of Pi ngok Island was exam ned. Densities were determined by sei ning seventeen $20 \mathrm{~m}^{2}$ pl ots (see 'METHODS') at three di stances from the shoreline:

Di stance from Shore (m)	$\begin{aligned} & \text { Whter Depth } \\ & (\mathrm{cm}) \end{aligned}$	Nb. Pl ots Sampl ed	$\begin{gathered} \text { Sculpin Fry } \\ \text { Density (No. } / \mathrm{m}^{2} \text {) } \\ \hline \text { Mean (Range) } \end{gathered}$
0-2	0-10	7	1.5 (0.1-3.0)
3-5	10-25	5	3.9 (0.3-9.6)
10-12	30-35	5	0.1 (0-0.2)

The capt ure data showed that the young- of - the-year were di stri buted close to shore, with greatest densities recorded 3-5 mfromthe shoreline.

Grouth and Maturity. Grouth and maturity patterns of fourhorn sculpins in Si mpson Lagoon (Table 35) differed in several ways from patterns in Nunaluk and Kaktovik lagoons (Griffiths et al. 1975, 1977). Age-I ength rel ationshi ps indi cated a faster grouth rate for the study

Fi gure 50. Length-frequenci es of fourhorn sculpin caught by three sampl ing nethods in Si mpson Lagoon, 1977.

Table 35. Age-I ength rel ationship and age-specific naturity of four horn sculpin in Si mpson Lagoon, 1977. Ages were determined by otoliths.

Age	Total L		ength (mm)	SD	Maturity				
			Mal es		Femal es				
	n	$\overline{\mathrm{x}}$			(range)	n	\% Mat ure	n	\% Mat ure
1	55	63	(46-81)	8	7	0	22	0	
2	46	94	(74-160)	15	15	20	26	0	
3	34	134	(102-167)	17	14	86	20	0	
4	31	169	(133-208)	17	10	100	21	71	
5	31	193	(168-224)	14	10	100	21	95	
6	24	211	(176-248)	18	2	100	21	100	
7	5	222	(197-258)	25	0	-	5	100	
8	3	236	(220-265)	25	1	100	2	100	
9	1	226	-		1	100	0	-	
Overal I	231				60	65\%	138	47\%	

popul ation, and these fish reached sexual maturity 1-3 years earlier than those in Nunaluk or Kaktovik Iagoons.

Sexual maturity was determined on the basis of field examination, ai ded by an anal ysis of grouth trends in egg sizes and testes wei ghts (Fig. 51). Fenal e sculpin mat ured bet ween the ages of 4-6 and appeared to spawn annually thereafter. Their egg si zes increased through the open- water season, reaching sizes of $1.0-2.2 \mathrm{~mm}$ in Septenber and November. Eggs neasure 2.0-2.9 mm at spawning (Andriyashev 1954; Westin 1968).

Sone male fourhorn sculpins were mature as early as age 2 and all were nature by age 4. Although testes of the snallest nature nal es wei ghed onl y 1.0 g , these fish were j udged to be nat ure because of the appearance of the gonads and rel atively large proportion of the body cavity filled by the testes. These general criteria were al so followed in the Nunaluk and Kaktovik I agoon studies (Griffiths et al. 1975, 1977). Testes wei ghts of the Si mpson Lagoon sample, as a percentage of body weight, varied from $2.6-16.7 \%$ in summer. After spawning, this percentage dropped to 1.0-3.2\%

Reasons for the accel erated grouth and rel atively early maturity in the study popul ation are not known. Percy (1975) reports an even faster grouth rate for fourhorn sculpins in the Mackenzie Delta.

Sex Ratio. As in studi es el sewhere al ong the Beauf ort Sea coast, nore fenale than male fourhorn sculpins were caught in Simpson Lagoon ($n=225,67 \%$ fenal e; $x^{2}=26.4, P<0.001$).

Length- Wei ght. The length- wei ght regressi on for a sample of fourhorn sculpins from Si mpson Lagoon (1977) was:

$$
\begin{gathered}
\text { Log Wei ght }(\mathrm{g})=-6.016+3.46 \text { Log Length }(\mathrm{mm}) \\
n=272, \quad r=0.98
\end{gathered}
$$

Spawning and Overwintering. During the winter program fourhorn sculpins were caught only in the western portion of the study area (see 'Winter Distribution'). The catch per unit effort (CPUE, number of fish per 24 h gill net set) was greatest of the Colville River near Thetis Island:

Vinter Station	Total Numbers Caught	CPUE
Theti s Island	1021	$\mathbf{1 0 . 5}$
Spy Island West	2	0.3
Colville Del ta	13	0.2
Oher Stations	0	0

Sculpin apparently noved into the Thetis Island area throughout the winter as indi cated by an increasi ng CPUE: 1.2 (Novenber), 6. 8 (February), 13.8 ($\mathbf{M r c h}$), $\mathbf{1 1 . 7}$ (April) (Table 11). Spawning occurred in mid-winter at the Thetis Island station-the few fish examinedin late Novenber, were not yet ripe but 211 were spawned-out by I ate February (Fig. 51). Fourhorn sculpin overwi nter throughout the bracki sh waters of the Colville Delta. They were caught in the lower del ta during our study (Stations A and B, Fig. 6) and Kogl and Schell (1974) caught some overwintering in the upper delta. Areas around the Mackenzie River are al so used by fourhorn sculpin in winter. This species has been caught in Mallik and Mason Bays (Percy 1975) and at Shingle Point (Kendel et al. 1975). Salinities at these Iocations were Iow (4.9-9. 6%) compared to the Colville Delta ($18-32 \%$) or Thetis Island (24-32\%o), indicating a wide salinity tolerance for overwintering fourhorn sculpin.

Food Habits. Fourhorn sculpin eat primarily amphi pods and isopods (Table 36). During summer, amphi pod speci es accounted for 81% of the di et; secondary foods were mysids (10%) and isopods (6%. In winter, isopods were the nain prey (60-78\%); Iesser anounts of amphipods (5-31\%) and fish eggs ($5-9 \%$ were eaten.

Fourhorn sculpin at other coastal locations eat similar food groups, particularly i sopods and amphi pods (Percy 1975; Kendel et al. 1975; Griffiths et al. 1975, 1977). The sculpin is, in turn,foodfor a variety of bird and fish predators ,(MAlister 1961).

Table 36. Foods of fourhorn sculpin in summer (Si mpson Lagoon) and winter (Colville Delta, April/May 1978; nearshore coastal waters bet ween Thetis and Narwhal Islands, November/February/April/May 1978-79).

Food Item	\% Composition (net Weight)		
	$\begin{gathered} \text { Sumer } \\ \hline 1977 \end{gathered}$	W nter	
		19/T-78	1978-79
MYSIDS			
Mysis litoralis	1.7		1.8
Mysis relicts	1,9		
Remmants	6.1		1. 2
AMPH PODS			
Apherusa glacialis	*		0.3
Onisimus glacialis	13.8		
Onisimus sp.	4. 9		
Garmarus setosus	4. 5		
Gammaridae	3.1		
Parathemisto spp.	1.7		
Pontoporeia affinis	0. 2	13. 8	1. 2
Pontoporeia femorata	0.1		1.5
Garmarocanthus Zoricatus	3. 3		
Remmants	49.1	16.8	1.4
COPEPODS	*		*
I SOPODS	6.1	60.2	78.4
CUMACEAN	*		0.7
FISH	3. 3		0.5
FREE EGGS	*	9. 2	5.0
POLYCHAETE	*		2. 3
M SCELLANEOUS SPP,	0.2		5.6
No. Stomachs Examined	65	9	45
Mean Size Fi sh (mm)	150	193	184

The arctic cod (Boreogadus saida) is an integral el enent in trophic pathways of the Beauf ort Sea. It has been described as a "key species in the ecosystem of the Arctic ocean" because of its abundance, widespread di stribution and importance in the diets of narine mamals, birds and other fish (Andri yashev 1964; Quast 1972; Bradstreet 1977; Bai n and Sekerak 1978). Coastal residents at Barrow and Kaktovik al so catch arctic cod in early winter for human and dog food.

Distribution and Mbvenents. Although the di stribution of arctic cod is often associated with the occurrence of ice, catch data show that these fish are present in ice-free nearshore waters. During summer nonths, young- of-the-year were collected in the study area (Table 7), Prudhoe Bay (Bendock 1977) and Kaktovik Lagoon (Griffiths et al. 1977). Young- of-the-year al so occur at di stances approxi nately $\mathbf{5 0} \mathbf{- 1 5 0} \mathbf{~ k m}$ offshore in the Beauf ort and Chukchi seas (Quast 1974; Honer 1978).

Older arctic cod (principally juveniles ages 1-3) were abundant in
Simpson Lagoon in August and September. These fish accounted for 8% of the total fyke net catch during the 1977 open-water season and $\mathbf{7 8 \%}$ int 1978 (Table 4). Arctic cod were also common in nearby Prudhoe Bay in 1975 and 1976 (Bendock 1977) and they were the nost numerous speci es caught in offshore waters of the northeastern Chukchi and western Beaufort seas (Frost et al. . 1978). The arctic cod has not been reported to be an abundant species in nost other studi es al ong the coastlines of northern Al askan and the Yukon Territory, probably because the earlier
studies utilized sampling gear (i.e., gill nets) which infrequently capture this species.

The seasonal occurrence of arctic cod in Si mpson Lagoon was qualitatively similar during 1977 and 1978 in that few were caught during the first half of the open-water season while many were taken during the second half (fig. 20). This pattern agrees with that observed in other arctic regi ons where arctic cod have been observed to migrate from offshore to coastal areas in fall (Andriyashev 1954; Bain and Sekerak 1978). In addition to this late summer increase in cod numbers, alarge school of cod swept through Si mpson Lagoon in 1978 (see 'Fish Mbvenents'). During 14-22 August, approxi matel y 124, 200 arctic cod were caught in the Milne Point fyke net (Fig. 20) and this val ue was used in rough calculations whi ch suggested that there were 12-27 milion cod in the I agoon at this time (see 'Estimated Densities of Conbined Species').

Some arctic cod remai ned in Si mpson Lagoon in early wi nter (see ' Winter Distribution') but all apparently vacated these shallow waters by February. However, nearby deeper coast al areas (Stef ansson Sound) were inhabited by cod through the winter.

Size Distribution. Arctic cod caught in Si mpson Lagoon and surroundi ng nearshore waters ranged in length from 6-29 mmfor young-of-the- year and from 45-257 mm for ol der fish. Most of the ol der fish were 60-180 mminlength and similar sizes were caught during open- water and winter periods (Fi g, 52). Al nost all of these fish were captured in fyke nets but sone were al so taken by gill net in early winter. At that tine, thei r body shape changed enough (as their gonads increased in size) so that sone were susceptible to capture by gill net.

The sizes of arctic cod in Si mpson Lagoon are similar to those recorded in Prudhoe Bay in 1975 and 1976 (Bendock 1977) but are substantially larger than those caught in offshore waters by Frost et al. (1978). Mbst of the offshore cod, whi ch were caught by otter traw in water depths of $40-400 \mathrm{~m}$ measured $60-110 \mathrm{~mm}$ (total range $45-180 \mathrm{~mm}$).

Age and Grouth. Young- of-the-year arctic cod were caught in Faber traw sin Si mpson Lagoon and in marine waters seaward of Pi ngok Island in 1977 (Table 7). Early catches (21 Jul y) averaged 7.8 mmin length

Fi gure 52. Length frequenci es of arctic cod (excl uding young-of-year) in Simpson Lagoon (July-September 1977 and 1978) and nearshore waters between Thetis and Narwhal islands (November 1978; February, April , May 1979).
(range 6-11 mm, $\mathrm{n}=12$ preserved speci nens), whereas I ate season cat ches (14 Sept enber) aver aged 19.0 mm (range 12-29, $\mathrm{n}=17$ preserved specimens). On one occasion when young- of-the-year were collected both inside Simpson Lagoon and 2 km offshore in col der narine waters (14 September), there was no si gnificant difference in the size of the fish (Si mpson Lagoon: $n=12, \bar{x}=18.1, S D=4.2 ;$ offshore: $n=6, \bar{x}=21.2$, $S D=3.0 ; t=1.6, P>0.1)$. Thus, there was no evi dence that grouth conditions were better in one area or the other. Older arctic cod in Simpson Lagoon ranged from 1-6 years old but nost were young fish, ages 1-3 (Table 37). Fish aged 4-6 comprised only 7% of the fish collected for age analysis and this is an overestimate of the population value since large fish were sel ectively chosen for age anal ysis. Inspection of the length frequencies shows that the sizes corresponding to age $1-3$ fish ($<170 \mathrm{~mm}$) account for nost of those caught (Fig. 52).

Age-length data for samples of arctic cod caught during the summers of $1977(n=199)$ and $1978(\mathbf{n}=113)$ and $\mathbf{t h e}$ winter of $\mathbf{1 9 7 8 - 7 9 (n = 9 9)}$ are presented for combined samples (Table 37) and separately (Table 38) to illustrate ages of fish present in summer and wi nter. The sexes were conbi ned si nce no si gnificant differences were found in the sizes of males and femal es at age (t tests, P; 0) during each of the three sampling periods. Size at age was al so compared for the two summer periods; the cod tended to be slightly larger at ages $1-5$ in 1978 but the difference was significant in the case of only one age class--age 2 cod averaged 15 mm larger in 1978 ($\mathrm{t}=3.6$, $\mathrm{P}<0.001$).

The grouth rate of cod in Si mpson Lagoon is similar to that reported for other popul ations of this speci es caught in Prudhoe Bay (Bendock 1977) and nearshore uaters of the Canadi an Arctic (Bain and Sekerak 1978). However, the Si mpson Lagoon fish were, on the average, $\mathbf{1 0 - 2 8} \mathbf{~ m m l a r g e r ~}$ at each age compared to fish caught during the same period (AugustSeptenber 1977) in offshore waters of the Beauf ort Sea (Frost et al. 1978). It is tempting to specul ate that the warner coastal waters provi de nore favorable growing conditions than offshore waters, but the

Table 37. Age-length rel ationship (deri ved by otoliths) and sex ratio of conbi ned samples of arctic cod caught in Si mpson Lagoon and adj acent coastal waters, 1977-79.

Age	Fork Length (mm)				Sex Ratio	
	n	区	(range)	SD	n	\% Fenal e
1	196	84	(54-110)	13	0	
2	101	128	(88-177)	20	87	52
3	86	162	(120-196)	19	86	71
4	16	182	(129-203)	21	15	80
5	8	212	(153-250)	36	7	100
6	4	240	(198-257)	28	4	75
	411				199	64\%

「able 38. Age-furk length (1111) comparison for arctic cod caught in summer (simp ison Layoon) and whiter (mearshore oastal water, between Thet is and Narwhallshands), 1977-79

observed difference nay simply reflect a bi as in sampling nethodol ogy (i. e., nearshore fyke nets versus offshore otter trawls).

The length-weight relationship for summer-caught arctic cod in Si mpson Lagoon is

$$
\begin{aligned}
\log \text { Weight }(g) & =-5.196+3.0310 \mathrm{~g} \text { Length }(\mathrm{mm}) \\
n & =27,7 . \mathrm{r}=\mathbf{0 . 9 8}
\end{aligned}
$$

Sex Ratio. Fenal es out-numbered mal es during the open- water season but nal es were nore abundant in winter:

Season	n*	\% Fenal e	\mathbf{x}^{\prime}	P
1977 summer	62	79	20.9	<0.001
1978 summer	69	80	24.4	4). 001
1978-79 wi nter	68	35	5. 9	<0.025
Total s	199	64\%		

*excl udes age 1 fish (see text).
Oder fish in the study popul ation were primarily fenal es, which accounted for 74% of the $\mathbf{3 - 6}$ year olds. The sex ratio was approxi natel y equal at age 2; younger fish were not incl uded in these anal yses since devel oping ovaries in these small fish appeared easi er to identify than testes.

Maturity. Assessment of age at sexual maturity was complicated by two factors: (1) nost fish caught appeared to be immare, and (2) reproductive organs of mature fish were poorly devel oped in August and Septenber when nost cod were caught. Therefore, age at naturity was determined by consi dering only those fish that were known spawners or very probable spawners. Known spawners were ripe or spawned- out fish collected during the winter program Very probable spawners appeared to be approaching spawning condition in late summer and early winter samples. Thi s assessment was based on anal yses of egg sizes for fenales and the ratio of testes wei ght: body wei ght for males (Fig. 53).

For the fenal es, estinated egg di aneters were generally $0.2-0.5 \mathrm{~mm}$ in August and early Septenber. By mid-Septenber, I arger eggs (0.8-1.5 mm) were found in 12 female cod. These were considered to be maturing fenal es si nce the eggs of the only ripe female caught nearly 5 nonths

Fi gure 53. Scasonal pattern of egg sizes and testes: body weight ratics of arctic cod in summer (Simpson Lagoon) a n d winter (conbi ned nearshore locations).

I ater (February) neasured 1.3 mm Andriyashev (1954) reports that arctic cod eggs reach $1.6-1.8 \mathrm{~mm}$ at spawning tine in Decenber and January.

For the nales, the ratio of testes weight:body wei ght showed little increase in August and Septenber. At that time, testes typically accounted for $4-8 \%$ of tot al body wei ght but these val ues increased to 10-27\% for mal es \mathbf{j} udged to be nature in Novenber.

The ages of these known or probable spawners were as follows:

Age	Number of Spawners	
	Mal es	Fenal es
1	1	0
2	13	3
3	12	10
4	2	1
5	0	2
6	1	1
Total s	29	17

Most mature mal es were ages 2 and 3 whereas most nat ure femal es were age 3. These ages at maturity are earlier than reported (age 4) for this speci es in the Sovi et Uni on (Andriyashev 1954). The proportion of Simpson Lagoon fish maturing at these young ages is not known. Sone male fish classified as definite immatures in Novenber were age $\mathbf{3}(\mathbf{n}=\mathbf{4})$, and sone imma ure fenal es were age $3(n=5), 4(n=1)$, and $6(n=1)$.

Si zes of mat ure mal es were generally snaller than for nature fenal es (Fig. 54), as one would expect fromthe sex differential in ages of maturity. Pr or to spawning, nost mat ure nal es neasured 107-160 mm I ong and thei r testes wei ght ranged from 1.4 to 56 g . Mat ure fenal es tended to be 140-180 mmin length and their ovary wei ghts were 1.2-5.1 g. These fi sh sizes are consi derably snaller than the 200-230 mm(total length) range reported for spawners in Sovi et waters (Andri yashev 1954).

Spawning Period and Area. The time of spawning was not pinpointed, but spawning occurred soneti ne bet ween late Nbvenber and early February. Fi sh nearing spawning condition were caught in early winter (5-16 Novem ber 1978) and by the next sampling period in February, spawni ng was essentially complete At that time (17-23 February 1979), one ripe and two

Figure 54. Size composition of sexually mature arctic cccl.
spawned out femal es and 12 spawned- out mal es were collected under the ice. On the final winter sampling trip (30 April- 12 May 1979), another spawned- out fenal e was taken.

Fi sh judged to be potential spawners were di stributed throughout the study area in Novenber (Fig. 7, Table 11), but all ripe ($\mathrm{n}=1$) and spawned- out ($n=18$) cod taken later in the wi nter were in Stefansson Sound. In general, few arctic cod (spawning or otherwise) were collected at sites other than Stefansson Sound in February and May. The catch per unit effort (CPUE) for this species at principal winter sampling locations was (Table 11):

Date	CPUE (fish per 24-h gill or fyke net set)			
	Thetis Island	$\begin{aligned} & \text { Si mpson } \\ & * \end{aligned}$	Stef ansson Sound	Narwhal I sl and
Novenber	0.5	0.9	0.7	0.5
Febr uary	0	0	3.8*	0
May	0	0*	0.4*	0.5*

*fyke net
The apparent concentration of arctic cod in Stefansson Sound may be an artifact of sampling techniques. In February all cod were caught in fyke nets which were used only at Stefansson Sound. GII nets apparently did not catch cod after spawning.

The rel ative importance of nearshore sites compared to regi ons farther offshore for spawning by arctic cod remains unknown.

Food Habits. Maj or food itens of arctic cod in nearshore waters are mysids (Mysis litoralis, M. relicta), amphipods (Onisimus glacialis) and copepods (Table 39). The di etary importance of these groups varied consi derably between years-- each was a maj or and minor component at one tine or another:

Prey	\% Composition (range) in Diet
Mysis litoralis	$5.6-67.0$
Mysis relicta	$8.2-35.5$
Onisimus glacialis	$0.4-34.5$
copepods	$\mathbf{0 . 4 - 4 4 . 0}$

Table 39. Foods of arctic cod in summer (Si mpson Lagoon) and winter (Thetis Isl and to Narwhal Island).

As described in 'Feeding Ecol ogy', this variability yielded noderatel y low index values for dietary overlap between years of study.

Saffron Cod

The Beaufort Sea is the northern limit of di stribution for the saffron cod (Eleginus gracilis). These fish are widespread along the Beaufort coastline butnot generally abundant. Small numbers have been caught in Prudhoe Bay (Bendock 1977), along the Yukon mast (MAIIster 1962; Kendel et al. 1975), in the Mackenzie Delta (Percy 1975) and al ong the Tuktoyaktuk Peni nsula (Jones and Den Beste 1977). Saffron cod are occasi onally i mportant food itens for bi rds and mammals (Percy 1975; Lowry et al. 1978; Springer and Roseneau 1978).

The occurrence of saffron cod in Si mpson Lagoon was variable. None was caught in 1977, but 463 were taken the following summer. A few were also caught in winter at Thetis Island ($n=36$), in the Colville Del ta ($n=1$) and in Si mpson Lagoon ($n=1$) (Table 11).

Mbst saffron cod caught were small fish of lengths $\mathbf{8 0 - 2 2 0} \mathbf{~ m m}$ (Fig. 55). Consi derably I arger saffron cod have been taken at other Beauf ort Sea locations: 300-413 mat Tuft Point (Jones and Den Beste 1977), $310-450 \mathrm{~mm}$ in the Mackenzie Delta (Percy 1975). Sone of the size difference at various 'locations may be a reflection of the sampling gear used to catch the fish. The fyke nets used in Si mpson Lagoon tend to collect snaller fish than the gill nets used at the other locations. However, gill nets were also used in Si mpson Lagoon but no saffron cod were caught by this nethod.

Ages of the study popul ation were determined by otoliths. A very clear pattern of annuli was obtai ned when the otoliths were broken in half and lightly burned across the exposed edge. The saffron cod in Si mpson Lagoon were all young fish, princi pally ages 1 and 2:

		Fork Length (mm)		
Age	H	\bar{x}	Range	$\frac{\text { S.D. }}{21}$
	108	125	$79-192$	21
2	69	198	$145-242$	21
3	1	247	-	-
4	3	256	$200-303$	52

Fi gure 55. Lengit frequencies of saffron cod caught by fyke net in Si mpson Lagoon, open- water season 1978.

The grouth rate of these fish is generally similar to that reported for the young of this species in Si beria (Andriyashev 1954).

The length- wei ght rel ationship for the study sample ($n=180, r=$ 0.94 , si ze range $=79-305 \mathrm{~mm}$) is as follows:

$$
\text { Log Weight }(\mathrm{g})=-5.610+3.233 \text { Log Length (} \mathrm{mm})
$$

The state of maturity was difficult to assess because of the limited size range and the youth of fish in Si mpson Lagoon. There were indi cations that a few mal might spawn in the year of capt ure. Testes in these fish appeared uell devel oped in September when the ratio gonad:body weight exceeded 10% in 12 of 41 males. Egg diameters of females caught in late August were as Iarge as $0.4-0.6 \mathrm{~mm}$ these sizes confirmneither maturity nor imaturity at this tine of year.

Kotzebue Sample. Si nce the bi ol ogy of saffron cod is not well known, we took advantage of a sample of this speci es collected outside our study area. The sample was part of a subsi stence catch of "tomcod" jigged through the ice just offshore fromthe village of Kotzebue, Southeast Chukchi Sea, on 15-30 Novenber 1978).

The sample consi sted al nost entirely of large, nature fish that were approaching a spawning condition. The average fork length was $238 \mathrm{~mm}(\mathrm{n}=33, \mathrm{SD}=17$, range $=207-283 \mathrm{~mm}$). Mbst were fenal es (79\%) and all but one of each sex were nature. Egg di aneters of fenal es aver aged $0.9 \mathrm{~mm}(\mathrm{n}=11, \mathrm{SD}=0.16$, range $=0.6-1.1 \mathrm{~mm})$.

Only three fish (9\%) in the Kotzebue sample had empty stomachs; the rest had eaten fish, mysids and decapods:

Food	\% Wet Véi ght
$\mathbf{f i s h}$	$\mathbf{6 8}$
msi ds	
Neomysis rayii miscel laneous	15
decapods	3

Broad Whitefish
Anadromous broad whitefish (Coregonus nasus) are common in summer al ong the coastline near the nouths of larger rivers such as the Colville,Sagavanirktok and Canning (Kogl 1972; Kogl and Schell 1974; Craig 1977; Bendock 1977); however, they were not particularly abundant in Si mpson Lagoon in 1977 or 1978 (Table 4).

In the study area, sizes of broad whitefish captured varied according to sampling gear used (Fig. 56). The size range, 66-548 mm was bimodal with all fish in the $\mathbf{6 0} \mathbf{- 2 0 0} \mathbf{~ m m}$ or $\mathbf{2 6 0 - 5 2 0} \mathbf{~ m m s i z e}$ groups. Si milar data were obtai ned for this speci es caught the previ ous two years in Prudhoe Bay (Bendock 1977). It is not known why nedi umsize fish were either absent or not caught in these coastal waters.

Broad whitefish in Simpson Lagoon are long-lived, slow growing and I ate-nat uring (Table 40). They ranged in age from 1-22 years and appeared to reach sexual maturity between ages 9 and 14. Most of the broad whitefish in coastal waters were imature fish (51\%) or nat ure nonspawners (36%, but a few nature green fish (13%) were al so present. The Iatter were femal es whose egg sizes indicated they hould spawn in the fall (Fig, 57). For compari son, egg sizes of two mature green femal es caught during our surveys in the Iower Colville River at Ocean Poi nt were 1.9 and 2.1 mm on 21 August 1978. Spawning tine for Mackenzie River fishis in October (Jessop et al. 1974).

Al mal es in coastal waters were immatures or nat ure non-spawners. This is especially evi dent when the ratio of testes:body wei ght of the coastal fish is compared to that of five nature green fish caught in the Colville River at Ocean Point and near the Anukt uvik Ri ver on 21 August 1978 (Fig. 57).

In general, data regarding the reproductive cycle of anadromous broad whitefish are sparse, but the Si mpson Lagoon data we have presented are in basic agreenent with the infornation obtai ned at other Beauf ort Sea locations (de Graaf and Machniak 1977; Bendock 1977).

A length-wei ght regression for the coastal sample of broad whitefish is:

$$
\begin{gathered}
\text { Log Weight }(g)=-4.976+3.011 \text { Log Length (mm) } \\
n=65, r=0.97
\end{gathered}
$$

Figure 56. Length frequencies of broad whitefish caught by two methods in Simpson Lagoon, summer 1977 and 1978.

Table 40. Age-I ength rel ationship (otolith-based) and maturity of broad whitefish caught in Si mpson Lagoon in summer, 1978.

Age	n	Fork Length (mm)		SD	\% Mat ure
		nean	(range)		
1	2	114	(104-124)	14	0
2	5	141	(98-186)	34	0
3	0				
4	0				
5	0		-	-	
6	2	332	(314-351)	26	0
7	3	330	(311-364)	30	0
8	0		-	-	
9	3	378	(331-406)	41	33
10	6	376	(348-394)	16	17
11	6	414	(410-431)	9	50
12	4	422	(403-450)	21	50
13	0		(403-450)	-	-
14	5	468	(420-548)	48	100
15	3	446	(432-461)	15	100
16	2	438	(411-465)	38	100
17	3	453	(424-471)	26	100
18	0				
19	0				
20	0				
21	2	478	(470-485)	11	100
22	1	466			100
Total	47				49\%

Fi gure 57. Seasonal changes in egg size and testes:body weight ratios of broad whitefish in the loner Colville River (triangles) and Si mpson Lagoon (symbol s ot her than triangles), 1978 and 1979. Onl y mal es > $200 \mathbf{~ m m}$ long were used in these anal yses si nce smaller imature mal es occasi onally give erratically high val ues.

Humpback Whitefish
Rel ativel y few anadromous humpack whitefish (Coregonusclupeaformis) were caught in Simpon Lagoon (Table 4). Those caught by gill net were large fish, 280.461 mm in length (Fig. 58). A few smaller fish nay have been present, but none was caught by fyke net in 1977, and those caught in 1978 by fyke net ($n=73,0.04 \%$ of total catch) were not measured. Bendock (1977) caught similar si zes of this species in Prudhoe Bay, 1975 and 1976.

A length- wei ght regressi on for the coast al sample of humpback whitefish is:

$$
\begin{aligned}
& \text { Log Wei ght }(g)=-5.750+3.318 \text { Log Length (mm) } \\
& n=41, r=0.97
\end{aligned}
$$

Arctic Fl ounder

The arctic flounder (Liopsetta glacialis) is a shallow water flatfish which frequents brackish coastal waters. In Beauf ort Sea waters, little is known about this species other than its nearshore di stribution; rel atively small catches have been taken at several locations bet ween the Colville and Mackenzie Ri vers. Bendock (1977) noted that thei r numbers were greater around the Colville Ri ver than in coastal waters farther east; our own data support this trend, since 578 were caught in Si mpson Lagoon over two summers compared with only 37 over two summers in the Prudhoe Bay area (Bendock 1977). Low numbers of arctic flounders reported at other coastal sites nay be a reflection of the sampling gear used. In our study, fyke nets caught virtually all flounders (98\%) in our 1977 collection when both fyke and gill nets were used extensi vel y.

Arctic flounders in Si mpson Lagoon were 96 - 267 mm long (Fig. 58). Similar sizes of fish have been recorded at other coastal locations (Griffiths et al. 1975, 1977; Percy 1975; Kendel et al. 1975; Bendock 1977).

Princi pal foods of this species were identified by the Hynes Point met hod (Hynes 1950). Anphi pods, nostly Onisimus, and isopods were the main prey in Si mpson Lagoon:

Figure 58. Length frequenci es of humpack whitefish and arctic fl ounder caught in Si mpson Lagoon, summer 1977 and 1978.

Bendock (1977) obtai ned similar results in Prudhoe Bay, where the flounders ate primarily amphipods with some mysids and isopods.

Capelin

Capelin (Mallotus villosus) may migrate into shallow coastal naters of the Beaufort Sea to spann in mid to late summer. Their numbers are generally low although Iarge spawning runs occur occasionally. McA! ifster (1962) recorded such an event at Herschel Island in 1960.

Few capelin were caught in Si mpson Lagoon in 1977 ($n=8$) or 1978 ($\mathbf{n}=\mathbf{5 8}$). \quad They ranged in size from 109-137 mm(Fig. 59).

The capelin is probably the only species of fish that spawns in Si mpson Lagoon. Ripe nal es and fenal es were caught at Milne Point between 19 August and 1 Septenber. At this time, egg sizes of fenal es averaged 0.8 mm (range $0.6-1.0 \mathrm{~mm} \mathbf{n}=13$). Mbst of these $\mathbf{f i} \mathbf{s h}$ had m) recently fed (73\% empty stomachs, $n=49$).

Sal non

Sal non are not often abundant in Beaufort Sea waters. Rel ativel y small populations of churn (imeorhyneusketa) andpinksalmon(o.gor, $w_{i} \cdot h_{i}$) occur in the Mackenzie and Colville Rivers, and a few of these speci es occasi onally enter other North Sl ope drai nages such as the Sagavani rktok River.

No sal mon were caught in Si mpson Lagoon in 1977, but there was a run of pink sal non in 1978 (see 'Fish Mbvenents'). The run occurred during 4-9 August 1978 when 87% of the total sumer's catch of $\mathbf{p i n k}$

Figure 59. Length frequenci es of capelin and pink salmon caught in Si mpson Lagoon, summer 1978.
sal mon ($\mathbf{n}=166$) were caught at Milne Point. These fish ranged from 388 to 540 mm in length (Fig. 59). Two pink salmon were also caughtin the Colville Ri ver at Ocean Poi nt on 21 August 1978.

Three ot her sal non speci es were caught in 1978. Two chum sal non, 600 and 622 mm in length, were caught in Si mpson Lagoon; a chi nook (king) was caught in the Colville Delta on 11 August 1978; and a 308 mm male sockeye (37 gill rakers) was caught in the Colville Ri ver about $1 \mathbf{k m}$ bel ow the Anukt uvi k Ri ver on 21 August 1978. Sockeye sal non have not previ ously been recorded in Beaufort Sea drai nages.

Other Speci es

Grayling and round whitefish are occasi onally caught in nearshore waters, especially when salinities are low Five grayling and three round whitefish were collected at Milne and Kavearak Points when salinities were $1-9 \%$ ($19-28 \mathrm{Jul}$ y 1979). Another round whitefish had ventured out as far as Pi ngok Island. Lengths of the round whitefish were 120325 mm.

Other fishes caught in Simpson Lagoon during the summers of 1977 .
1979 were:

	n
ninespine sticklebacks	56
Snailfish	10
Pacific herring	6
threespine sticklebacks	3
Pacific sand lance	1

Occurrences of the last two speci es represent apparent range extensi ons. The threespi ne sticklebacks had not been previ ously recorded in Beaufort Sea waters, and the Pacific sand Iance had not been collected between the Chukchi Sea and Herschel Island, Yukon Territory (McAllister 1962; McPhail and Lindsay 1970; Hart 1973; Scott and Crossman 1973).

GENERAL DI SCUSSI ON

The unifying thene of this report has been to exam ne the role of fishes in a barrier island-lagoon ecosystem of the Beauf ort Sea. This exam nation has invol ved a di verse array of topics concerning habi tat usage in summer and winter, trophic rel ationships, and often descriptive features since the life-cycles of sone species are poorly understood. By identifying the biol ogical si gni ficance of nearshore habitats to fish, we are in a better position to predi ct how fish may be affected by industrial devel opments in coastal waters. The following is a general review of arctic fish populations, their use of nearshore habitats, and factors that might affect these uses.

- Characteristics of Arctic Fish Popul ations

Fi shes in arctic envi ronments are exposed to bi otic and abiotic conditions that differ fromthose encountered in sub-arctic, temperate, and tropical environments. Compared to more southerly communities, arctic communities differ in having lower species diversities and reduced trophic compl exities (e.g., Dunbar 1973; Quast and Hall 1974; MtAlister 1977). Controlling abiotic conditions are extreme in arctic ecosystems, where fishes must cope with very cold temperatures and icecovered waters. Arctic fishes have devel oped life-history, behavi oral, physi ol ogical, and popul ation characteristics that enable them to exist in these conditions (MEAlister 1977), and assessments of impacts on arctic fish populations must consider these characteristics.

Arctic fish commities, like other arctic animal commities, have fewer species than their lower latitude counterparts. In the arctic narine envi ronment, approxi nately 85-104 species are found in $\mathbf{2 3}$ families (Quast and Hall 1974; MEAlister 1977). This is considerably lower than the 298 species and 40 families reported for the Bering Sea, or the 287 species and 55 families reported in the Gulf of Alaska (Quastand Hall 1974).

One method of examining lifehistory strategies of arctic fishes is to compare arctic species with ecol ogically and taxonomically similar species from sub-arctic or temperate ecosystens. Arctic char (Salvelinus
alpinus) may be compared with its congener, Dolly Varden (S.malma) to provide sone insightintolife-history characteristics of arctic anadromous speci es. Table 41 summarizes the available inf or nation in important life-hi story characteristics for the two species.

Arctic char and Dolly Varden differ markedly in reproductive biology and age-growth patterns. The arctic species becones sexually mat ure at a mach later age than does the temperate species; also, it skips one or two years between spawning episodes. The arctic char also tends to grow sl ower and live Ionger than the Dolly Varden. Several authors (Mrphy 1968; Wilbur et al. 1974) contend that species that exhi bit reproductive potential over many years (iteroparity), as observed in the arctic fishes, have an advantage when the survi val rate of prespawners is uncertain; harsh or fluct uating envi ronnental conditions occasi onally cause hi gh nortality of eggs or juveniles. Craig and McCart (1976) di scussing the survi val advantages of the reproductive strategies of arctic anadromous fishes, note that these fishes
are to sone extent adapted to withstand at least short-term fluctuations in the envi ronnent, nat ural or nan- nade (e.g., Johnson 1972). As a result of the great longevity, I ong period of naturity, and the habit of repeat spawni ng, there is a great variation in the ages of fish spawning in any single year. This overlap neans that popul ations are not dependent on the survi val of any si ngle year-cl ass . . . An additional factor ensuring popul ation survival is the fact that for many anadromous species, there are major differences in the migration patterns of various life-history stages, so that an entire population may not be concentrated in a single locality during the course of the year. This reduces the possibility that an entire population can be destroyed by a single, local ized event.'

Less is known about nost arctic narine fish species, and, as a result, finding suitable comparable arctic and non-arctic species within this group is not as easy as it is for the anadromous species. In Table 41, life-history data for arctic cod are compared to silar data for the Atlantic cod, the Greenl and cod and the Pacific cod. It is i mmedi at el y apparent that species differences inthis case are almost the opposite of those found in the anadromous species pair. The arctic

Table 41. Growth and reproductive comparisons between some arctic and sub-arctic fishes. Fi sh speci es: Dolly Varden(Salvelinus malna), arctic char (S. alpinus), arctic cod (Boreogadussaida), Atlantic cod (Gadusmorhua), Greenl and cod (c. ogac), Pacific cod (G. macrocephalus). Data sources: Leim and Scott 1966; Hart 1973; Scott and Crossman 1973; Mbore and More 1974; Bain and Sekerak 1978; thi s study.

		Anadromous Fi sh			Marine Fish			
		Dolly Varden		Char High Arctic	Arctic Cod	Atlantic Cod	Greenl and Cod	cific Cod
$\stackrel{O}{-}$	Max i mumage	7-11	15	24+	6	16	11	13
N	Maxi mumsize (cm)	62	63	82	23-38	71	64-102	76-89
	Size at age $5(\mathrm{~cm})$	25-46	30-34	11	21-30	44-52		54-61
	Age at maturity	3-6	7-9	10-13	2-3	3-4	5-6	5
	Annual spawning	yes	no	no				
	$\text { Fecundi ty }\left(\begin{array}{ll} x & 10^{3} \\ (x & 0^{6} \end{array}\right)$	1. 3-3, 4	3. 2-3.9	2. 2-3.5	0, , 01		1-9	2-6

marine species matures sexually at an earlier age than its sub-arctic counterparts, it has a shorter life span, and it achi eves a mach smaller maxi mumsize. As expected, the fecundity of the rel atively snall arctic cod is much less than the larger Gadus speci es.

It is clear that, at least in this example, the arctic narine species has a very different life-hi story strategy than the arctic anadronous species. Unfortunatel y, there are no other arctic-temperate pairs of marine speci es in which enough life-history infornation is available to corroborate or ref ute the trend seen in the cods. Arctic marine species tend to be snall, and often arctic species do not reach sizes as large as their sub-arctic or tenperate congeners. For example, the arctic fourhorn sculpin, Myoxocephalusquadricomis, reaches a maxi mum length of about $25-\mathbf{3 0} \mathbf{c m}$ while its north Atlantic congeners M. octodecemspinosus and M. scorpius have naxi mum lengths of $36-45 \mathrm{~cm}$ and 60 $\mathbf{9 0} \mathbf{~ c m}$ respectivel \mathbf{y}, and the north Pacific species M. polyacanthocephalus reaches a naxi mumsize of 76 cm

Fi sh Use of Nearshore Habitats

To put the fisheries importance of Simpson Lagoon into perspective, it is useful to compare the important biol ogical activities of fish that occur in this habitat with those that occur el sewhere. Four broad categori es of fish activity are (1) spawning, (2) feedi ng, (3) novenents and migration, and (4) overwintering. The I ast category, though less an activity than a requirement for suitable habitat, represents an annually critical event in the lives of arctic freshwater and anadromous fish.

With minor qualifications, shallow coastal waters (<2.5 m) are used only for feedi ng and migrating by both anadromous (A) and marine (M) speci es:

Activity	Nearshore Vaters	
	shal l ow (<2.5 m)	deeper (>2.5 m)
f eedi ng	A M	$\mathrm{A}^{*}, \mathrm{M}$
migrating	A M	A*, M
spawni ng		M
overwi ntering		M

[^22]One of the principal advantages of anadromy is that fish have access to the abundant food resources in the narine envi ronment (McCart 1970; Craig and McCart 1976). The arctic anadronous fish obtain mach of thei r annual food budget during their brief summer visit to coastal waters. These fish are al so hi ghly nobile once they reach coastal uaters; al though novenents of indi vidual fish are not known in detail, tagging data suggest that fish cruise al ong the coastline rather than renain in one area for a long tine. Anadromous fish are distributed throughout nearshore waters, but are nost abundant al ong shorelines, and greatest concentrations of ten occurred within 100 m of the mai nl and shore. There is no indication that this distribution is associated with particul ar substrate or vegetation types since shal low nearshore waters provi de little diversity in this respect.

Our winter studi es indi cate that spawning and overwi ntering by anadromous speci es (except boreal snelt) do not occur in the marine envi ronnent in arctic Al aska. However, spawni ng and overwintering are indirectly tied to nearshore waters in that the food reserves acquired during the summer are probably essential to the reproductive success and overwintering survi val of anadromous fish. It should be noted that overwintering in marine habitats does occur in other regi ons of the arctic where flow from very large rivers provides an underice pl une of freshwater into the ocean (Berg 1957; Percy 1975).

Use of shal low waters by marine fishes (sculpin, cod) is basically similar to that described for anadromous fish, although there are sone exceptions. Fourhorn sculpin are less mobile than anadromous speci es and they apparently may reside in one general regi on of the coastline for a long period of tine. A nore consequential difference is that marine fish may inhabit nearshore areas during early winter until increasing ice thi cknesses force theminto deeper waters.

Spawning and overwintering by marine species take place largely in deeper nearshore waters (> 2.5 m deep) and in of fshore waters. The boreal snelt, an anadromous species, al so overwinters in nearshore waters.

I mpl i cations of Feeding Ecol ogy

Inf ornation deri ved from the fish and bird feeding studi es supports the following concept ual view of community and trophic structure in Simpson Lagoon, and suggests how petrol eum rel ated activities may affect fish, birds and their prey.

Food Supplies
Several lines of evi dence indi cate that there is a superabundance of food available to fish and birds during the summer period. Invertebrate studi es in the lagoon show that roughly 10-50 times nore food (mysids and amphipods) is available than is required daily by all vertebrate consumers in the system (Griffiths and Dillinger 1980). This relativel y high level of food is maintai ned through the open- water period. During summer, it is also generally accessibe to predators because the prey is epibenthic in habit (as opposed to infaunal) and the Iagoon bottom provi des little structural di versity (e.g., rock crevices or vegetated areas) for refuge from predation, al though some prey may escape into the detrital mat on the lagoon bottom Furthernore, this high level of food abundance is not restricted to the lagoon envi ronnent itself but al so occurs in the rel ati vel y shal l ow marine envi ronment seavard of the I agoon (Griffiths and Dillinger 1980).

The high di et overlap anong consumers is al so a strong indication that food is superabundant. Overlap is not si mply a reflection of a reduced variety of species in the arctic, for there are several sources of food in the lagoon which predators do not appreciably exploit. Few vertebrates eat molluscs, pol ychaetes, isopods, tunicates or hydroids, yet these groups comprise a large proportion of the potential supply of food in Si mpson Lagoon. Instead, consumers feed prinarily on the abundant epibenthic invertebrates and there is a high degree of overlap anong consuner diets. Because the available food supply is not finely partitioned by the predators, the implication is that, in general, there is a lack of competition for food in the nearshore envi ronment. If the food resources had been in limited supply, general ecol ogi cal theory (Competitive Excl usi on Principle) hol ds that competition for food nould
be hi gh and theref ore we shoul d observe specialized and non- overlaping feeding habits anong predators. There are no reasons to suspect that the high food level s observed during the 1977 and 1978 open- water seasons were unusual events.

Sone exceptions to this generalized pattern of di et overlap occur. Fourhorn sculpin, for example, eat nore isopods than other consuners, and boreal snelt eat nore fish. Differences in the sizes, shapes and positions of fish mouths of different species al so indicates a degree of feeding specialization anong nearshore fishes. Despite these differences, the epibenthic food resource remains the princi pal diet of nost fishes.

Sone consuners al so di splay differences in feeding habitat preferences. However, recognition of this partial partitioning of lagoon habitat shoul d not obscure the point that the Iagoon's supply of epibent hos (especially mysids) is highly dependent on imigration or dispersal fromoutside areas (Griffiths and Dillinger 1980). Thus, both the ol dsquaw ducks (whi ch feed nai nly in open lagoon waters) and fish (whi ch probabl y feed near shorelines) are feeding on the sane food supply but at different points al ong its pathway through the Iagoon.

Can the premise that food is superabundant be extrapol ated to other nearshore areas al ong the Beauf ort Sea coastline? The available data suggest that the kinds of fish using Si mpson Lagoon are generally similar to those all al ong the Beauf ort Sea coastline, and at all locations studied the fish rely on epibenthic invertebrates as their principal food resource (e. g., Kendel et al. 1975; Furniss 1975; Griffiths et al. 1975, 1977; Bendock 1977). However, it is prenat ure to extrapol ate the 'food superabundance' premise to other localities or even other years. In August 1978, an event occurred in Si mpson Lagoon whi ch suggested that fish nay, on occasi on, reduce the food supply to lowlevel s. The event was the brief entry into the lagoon of alarge school of arctic cod (see 'Fish Movenents'). They consumed a large quantity of mysids during their ni ne-day visit and this nay have contributed to a decline in mysid densities at this time (Griffiths and Dillinger 1980). This decline did not substantially affect the food base, but it is concei vable that the large school of cod, 'given its estimated size and food
consumption rate, could have seriously deplet the lagoon's food supply if it had remai ned in the lagoon an extra two weeks or so.

A second note of caution is that a highincidence of empty fish stonachs has been recorded at some coastal locations (Table 42\}. While the occurrence of enpty stonachs nay reflect a number of factors (e.g., diel periodicity in feeding, regurgitation of digestion of food after fish capture, reduced feeding for anadromous fish on return migration to fresh water), the data al so are consi stent with either of tho very different interpretations: (1) fish nay not have to feed continuously in order to satisfy their nutritive requirements, or (2) fish are not getting enough to eat at sone locations or in sone years.

Factors Contributing to Food Abundance
I migration. Despite the large standing stocks of epibenthos in Si mpson Lagoon in sumer, birds and fish could theoretically consune the entire stock within 2-6 weeks (Griffiths and Dillinger 1980). But a steady decline of food does not occur-- the food supply is naintained at its rel ativel y highevel throughout the summer, despite an increase in consumer denand as the summer progresses. Potential reasons are (1) grouth of the invertebrates present in the lagoon and/ or (2) imigration of new invertebrates into the lagoon. Reproduction does not occur during summer. Griffiths and Dillinger (1980) show that the factor (2) is probably the nore important. Mysis litoralis, the naj or prey speci es, noves into the lagoon in early summer; this 'inocul ation' and the continuing imigrations that follow, are critical events for the fish and birds. Thus, we see that shal low nearshore habitats becone ' food rich' only after being repopul ated each year by key invertebrates and renain food rich only by continued imigration. If these immigrations are obstructed by either natural events or man-caused structural al terations in the nearshore envi ronnent, the lagoon night remin a poor feeding area for that particular sumer.

Productivity in Si mpson Lagoon is, perhaps, linked to offshore areas in even a more fundanent al way. Preliminary isotopic studies of organi sns collected in the lagoon indicate that fish ultinately obtain

Table 4z. Fropurtion of empty stomachs from fish collected at severallocations in beauforthedcodstalwaters.

Location	Time	$\begin{gathered} \text { Arctic } \\ \text { Cisco } \\ \underline{(n)} \end{gathered}$	Leas: Cisco $\xrightarrow{\sim}(n)_{-}^{-}$	Arctic Char $\%(n)$	Fourhorn Sculpin I (n)	Arctic Cod $\because-.(n)-$				Saffron Cod $\therefore \quad(n)$	Reference
Yukon Coast	June-Aug. 1973	15 (41)	13 (259)	22 (36)	11 (37)						Craig 8 Mann 1974
Alaska Coast	July-Aug.) 973	0 (30)	0 (20)	20 (95)	5 (22)						+ unpubl i shed data
Nunal uk Lagoon	June-Sept. 1974	25 (344)	6 (34)	33 (206)	17 (314)		47	(19)	-		Griffithsetal. 1975
Prudhoe Bay	July -Aug. 1974	26 (53)	24 (70)	27 (52)	20(10)						Furniss 1975
Kaktovik Lagoon	July - Sept. 1975	5 (301)	5(21)	4 (137)	20 (275)						Griffiths et al. 1977
Si mpson Lagoon	July-Sept. 1977	10 (326)	17 (94)	6 (114)	10 (220)	- (90)	48	(31)	-		This study
Colville Delta	A pr-May 1978	5 (64)	2(42)	-	0 ($1(J)$						This study
Si mpson Layoon		27 (190)	19 (118)	34 (38)		is (133)	-		55 (31)	6 (33)	This study
Alaska Coast	Hu v. Apr.: 1978				26 (110)	7 (104)	-		59 (170)	6 (35)	This study

60-70\% of the carbon in their tissues from modern marine primary produc-tion-ice al gae and phytoplankton (Schell 1979). Rel atively little of the I arge $i n p u t$ of terrestrially-deri ved organi c carbon appears to enter trophic pathways leading to fish. This finding underscores the i mportance of the rel ati onshi ps bet ween the I agoon and outsi de nari ne waters.

Seasonally Linited Availability. A factor that contributes to the abundance of epibenthos is that these invertebrates are not accessible to nost vertebrate consuners for almost ni ne nonths of the year, Birds and anadromous fish have the opportunity to eat them only during the short open- water period. Marine fish, however, have al nost year-round access to the epi benthos, although not in shallow lagoon waters.

Habitat Disturbance. Ecol ogi cal successi on, the orderly process of community change, is mai ntai ned at an early stage in Simpson Lagoon. The Iagoon is a 'pioneer commity’ because periodic physical disturbance permits only a few invertebrate species to occur as pernanent residents. Several feat ures of the Iagoon make life difficult. The I agoon is essentially a shallow wind-churned and turbid channel of water. Its nearly feat urel ess bottomis covered with an unstabe mudsand substrate-an envi ronment that typically supports a low di versity of organi sns. Sumertine water temperatures and salinities are highly vari able and a rapid flushing rate insures that the systemis influenced by events outside its borders. In winter, portions of the Iagoon freeze solid and little free water remains under the ice el sewhere; at this time water nay becone hypersaline. In springtime, there nay be some ice-gouging of substrates as well as rapid and extrene fluctuations in salinity. Allin all, the lagoon requires that organisns cope with fluctuating physical conditions on both daily and seasonal bases.

Speci es di versity in early successi onal stages is typically low but those speci es present are often represented by very large numbers. In Si mpson Lagoon, it appears that the numerical success of the epibenthic invertebrates may be attributed to their nobile life style and tol erance of a wide range of physical conditions. Mbility is an essential asset;it allows mysids and amphipods to repopul ate annually
the nearshore that freezes solid each winter. These invertebrates are wi despread and seem to utilize virtually the entire nearshore zone.
They are tol erant of the wide ranges of water temperature and salinity (Busdosh and Atlas 1975; Broad et al. 1979) that occur in the nearshore envi ronment, and sone are even moderatel y tol erant of oil contami nation at least on a short-term basi s (Fey 1978, 1979). As a generalization, the epibenthic invertebrates share attri butes with 'col onizing species', i.e., those species that are characteristically the first occupants in recently di srupted habitats. Willians (1969) describes col onizers as ' versatile speci es-creat ures of the ecotone, physiol ogi cally and ecol ogically tolerant of many conditions and requiring of few.

The contention that Simpson Lagoon is a 'di srupted' envi ronment due to widely fluctuating physical conditions is reflected by the high degree of food overlap anong consumers. As natural (or human) di sturbance to an ecosystemincreases, the anount of dietary overlap al so increases (Tyler 1978). Tyler found that overlap is lowin systens that are physically constant, i.e., systens with rel atively little physical di sturbance or fluctuation. In Dease Strait, a deep- nater arctic area with year-round constant temperatures and almost year-round ice-cover, the assenbl age of fishes has a very strong partitioning of food resources (l ow overlap). In contrast, fi shes from physically di sturbed habitats tend to have a meak partitioning of food resources (high overlap). Thi s rel ationship is shown in Fig. 60. Tyler suggests that regul arly repeated perturbations to a system would allow the persi stence of high turn-over r-type speci es (Gadgil and Solbrig 1972) in abundance, accom pani ed by weakening of food resource partitioning and co-existence of predators that nould otherwise not be possible.

To compare the Simpson Lagoon data with Tyler's findings, the percent overlap was cal culated from principal prey di agrans (Fig. 28) si nce this was the method used by Tyler (1978). For the summer of 1977, there are 7 entries of princi pal prey (R rows) and 6 consumers (C col ums). The possible number of reoccurrences of principal prey in consumer di ets is $\mathrm{Rx}(\mathrm{C}-1)$ or 35 . Since there are 11 actual reoccurrences, the overlap was $11 / 35=31 \%$ There was a 50% overlap the following summer. Anal yzed in this fashi on, the Si mpson Lagoon data fall into the

Fi gure 60. Rel ati onshi p between di etary overlap anong vertebrate consumers and the degree of habitat di sturbance in the system (Tyler 1978). Data are ranked by percentage overlap; solid dots indi cate overlap anong fish communties at various locations, and open circles indi cate overlap anong maj or consumers (fish and bi rds) in Si mpson Lagoon, summers 1977 and 1978. Redrawn from Tyl er (1978).
category of ' nost di sturbed' habitats during the summer nonths (Fig. 60).

In winter, one might predi ct that overlap would be low si nce icecover nould presumaly y dampen physi cal fluctuations; however, the widel y separated overlap val ues obtai ned at different places and times during this period make interpretation dificult. Overlap was lowin coastal waters (10%, 1978-79 winter) but highinthe Colville Delta ($\mathbf{5 0 \%}$ 197778 winter). Reasons for this difference are not known but may reflect several factors (e.g., different fish species, different habitats, small sample sizes). In any case, it is interesting that the low overlap in coastal waters for winter-caught marine fishis similar to that obtained by Tyler for sumer-caught marine fish from deeper arctic waters.

In summary, it would appear fromseveral different vi ewpoints that Si mpson Lagoon is a rigorous habitat due to fluctuating physical factors (substrate, gougi ng and resuspension, turbidity, salinity and peri odi c freezing). This, in turn, suggests that--at least in summer--the few speci es successfully tol erating these conditions nould not be overly sensitive to rel ated types of snall-scale perturbations to the physical envi ronment which might result from petrolcumrel ated activities.

Factors Influencing Fish Activities

In previ ous sections, we identified the activities of fish that occur in nearshore waters (feedi ng, migration, spawning, overwintering). Certain characteristics of the nearshore nari ne envi ronment are undoubtedly critical to these activities, while others are perhaps of lesser importance to their successf ul completion. In an attenpt to assess possi ble impacts of oil-rel ated devel opment on nearshore fish activities, it is necessary to eval uate which activities are nost vulnerable to di sturbance. In the following sections, we di scuss the im plications of our findings, and, where data are lacking, evidence from st udi es conducted in other locations or other species is examined.

Feedi ng and Grouth
The process of finding and capturing prey and incorporating it into bi onass is a primary activity of fishes in the shallow nearshore arctic envi ronnent. While this aspect of fish biology is obviously dependent on the presence of adequate densities of suitable prey organisns, successful energy incorporation depends on factors besi des food availability. First, the ability of fish to locate prey efficiently nay depend on visibility (turbidity). Second, ingested food must be converted to usable and, in the case of nany arctic species, storeable energy. The ability to do this requires efficient physiol ogi cal nechanisns, which in fishes are in turn dependent on physical envi ronmental conditions such as temperature and salinity.

Temperature has been shown to be an especially important factor in all aspects of fish energy budgets. Temperature influences the anount of food ingested (Kinne 1960; Brett and Higgs 1970), the rate at which food is di gested in the gut (e.g., Brocksen and Bugge 1974; Jobling et al. 1977), and the general metabolic rate (e.g., Beamish 1964; Dwyer and Kraner 1975). In general, each of these variables increases with increasing temperat ure up to sone level. Salinity al so affects netabolismin fishes; in euryhaline species, the lowest rate of oxygen consumption (n etabol $i \mathbf{s m}$) usually occurs in brackish water at salinities near the fish's iso-osmotic point (e.g., Rao 1968; Hettler 1976).

Perhaps the best indicat or optinal physical conditions is grouth rate. This characteristic integrates a broad spectrum of indi vidual processes and should provide the nost reliable neasure of the combi ned effects of factors such as temperature and salinity.

There is extensi ve evi dence that temperat ure has alarge effect on fish growth rates (see Brett 1956, 1970; Ki nne 1963). In all fishes studi ed, grouth rate-temper at ure rel ationshi ps follow a consi stent pattern: as the temperature increases fromlower linits of the tolerance range, the grouth rate increases until an optimutemperature of nost rapid grouth is reached; above this level, a noderate or sharp decrease in grouth occurs and sone speci es exhi bit negative growth (wei ght loss). This rel ationshipis unlike the rate changes of specific physiologic
processes such as di gestion or respi ration, which may increase continuously up to lethal temperatures.

A prevailing concern in temperature studies is the value of preference data. Grouth studi es are more meani ngf ul in determining potential impacts of alterations to thernal conditions, but they are much nore difficult to perform It is of interest, therefore, to compare results of growth and preference studies where both types of information are available for the sane species. Table 43 summarizes such data for ten species. It is apparent that preferred temperatures generally do approxi mate grouth optina.

Salinity levels must al so affect grouth and, consi stent with observations of metabolic optim, maximm grouth in euryhal ine fishes occurs at internedi ate salinities near iso-osmotic levels (Otwell and Merringer 1975; Hettler 1976). Temperature, however, has been identified as having more effect on grouth than does salinity (Otwell and Merringer 1975; Peters et al. 1976), although salinity changes may alter the opti mum growth temperat ure (Kinne 1960).

Of specific concern in the Beauf ort Sea is the importance of the band of warner, less saline water that occurs immedi atel y adj acent to the coastline and inside the barrier islands. Data indicate a strong correl ation bet ween the presence of this water and anadromous fish. Summer is a period of intense feeding activity for these fish, and they increase their stores of body fat and presumably acconplish much of their year's grouth during summer. The availability of the warner brackish water may be crucial to these fish if it enables themto grow at a faster rate than nould be possiblein the col der surrounding water.

In the available literature, every measure of a fish's well-being, such as di gestion rate, respi ration and grouth, decreases rapidly as the temperat ure drops bel ow $\mathbf{1 0}^{\prime \prime} \mathrm{C}$, and decreases nost sharply in the range around $5^{\circ} \mathrm{C}$ or lower. These observations suggest that there are physi ol ogi cal advantages to occupying warner water, especialy during a season of high food availability when alternative temperature regi nes are near $0^{\circ} \mathrm{C}$. It must be noted, however, that many fish speci es occupy habitats that are conti nually near $0^{\prime} C$, yet they grow and reproduce.

Table 43. Comparison of temperatures preferred by various fish species with temperatures optimal for growth.

Speci es	Life Stage	Opti nal Grouth Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Sel ected Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Reference
Sockeye sal non Oncorkynchus nerka	young young	15	14.5	Brett et al. 1969 Brett 1952
Brook Trout Salvelinus fontinalis	young young adul t	12.4-15.4	$\begin{aligned} & 16 \\ & 14.8 \end{aligned}$	MCOrmick et al . 1972 Peterson 1973 Spigarelli 1975
Eneral d shi ner Notropis atherinoides	young young	28. 9	22-23	MtCormick and Kleiner 1976 Barans and Tubb 1973
Yellow perch Perca flavescens	young young	22	22.5-23.3	Huh et al. 1976 Neil and Magnuson 1974
Wal 1 eye Stizostedion vitreum	young adul t	22	$\begin{array}{r} 20.6 \\ 23.6 \end{array}$	Huh et al. 1976 Hile and Juday 1941 Dendy 1948
Largemouth bass Micropterus salmoides	fry sub-adul t	$\begin{gathered} 27.5-30 \\ 26-28 \end{gathered}$	29	Strawn 1961 Coutant and Cox 1976 Neil and Magnuson 1974
Smallmouth bass Micropterus dolomieui	juveni le spring young winter young	26	$\begin{gathered} 19-24 \\ 18 \end{gathered}$	Horni ng and Pearson 1973 Barans and Tubb 1973 Barans and Tubb 1973
Bl uegill sunfish Lepomis macrochimus	young young	30	$\begin{gathered} 31.2 \\ 29.4-31.6 \end{gathered}$	Lemke 1977 Beiti nger 1974 Nei I and Magnuson 1974
Pupfish Cyprinodon macularius	adult adul t	30	35. 5-36. 5	Ki nne 1960 Barl ow 1958
Channel catfish Ietalurus punctatus	fingerling adul t adul t	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 25.2 \\ & 30.5 \end{aligned}$	Andreus and Sti ckney 1972 Reutter and Herdendorf 1975 Cherry et al. 1975

Unf ort unatel y, there appear to be no studi es on temperature preference or on temperature effects on physiol ogi cal processes or grouth in species that occupy very cold water during all or part of their lives. Swift (1964) did a growth study on arctic char (Salvelinus alpinus) from an isol ated Iake in Engl and and found a grouth optimum at $12-16^{\circ} \mathrm{C}$; however, that popul ation probably had adapted to prevailing temperatures that were presumably warner than in the arctic. Thus, it is uncertain that, in arctic species, as sharp an increase in metabolic processes nould occur above $5^{\circ} \mathrm{C}$ as occurs in temperate species.

Until preference studi es or, preferably, grouth studies have been done on the anadromous speci es in question, the importance of the warner near shore water to their well-being will remain questionable. However, the importance of temperat ure effects on grouth in other fish species, and the correl ation of sel ected temperat ures and grouth optim, suggests that these fish are gaining a real benefit fromtheir selection of the warner part of the nearshore envi ronnent. It does not seem unlikely that the availability of brackish or marine water above $5^{\circ} \mathrm{C}$ is important to these speci es.

Possible Devel opmental Effects. Industrial activities in nearshore waters may affect fish feeding and grouth in two general ways. First, if the ability of fish to locate prey is dependent on visibility, then their feeding success may be affected by construction activities (e.g., dredging) whi ch increase the turbi dity of surroundi ng waters. However, the overall effect on fish feeding is probably localized and/or negligi ble si nce nearshore waters of the Beauf ort Sea are frequently turbid due to wi nd-generat ed turbul ence.

Second, solid-fill causeways may alter nearshore current patterns, and, consequently, change nearshore temperature and salinity regi mes. For example, the Atlantic Richfield causenay in Prudhoe Bay deflects some west ward-flowing bracki sh water away fromthe coastline and this water is repl aced by col der, nore saline water on the west side of the causeway (Mungall 1978). Assuming that warner, less saline waters are indeed important to nearshore fishes, any large-scale change in nearshore temperatures and salinities nay reduce their grouth rate.

Mgration
The presence of many anadromous fishes in the nearshore Beauf ort Sea during the open- water season is an important feat ure of the arctic nearshore fish commity. It is apparent from the winter sampling programthat all of the anadromous species, with the exception of boreal snel t, leave marine water to overwinter in fresh or bracki sh river systens. Si nce few riverine habitats provide suitable spawning grounds or overwintering sanctuaries (many drai nages freeze solid during the winter), this yearly novenent requires accurate migrations by anadromous fishes. While the pattern of novements of anadromous fish in the study area is understood in a general sense, the behavi oral or navi gati onal mechani sns underlying these novenents are not known (for example, see 'Effects of Physical Factors'). However, Beaufort Sea fishes probably have migratory habits or nechani sns that do not differ markedly from anadromous speci es in sub-arctic envi ronnents, and the recent use of ultrasonic tracking of indi vidual fishes has resulted in sone observations that nay have general applications to fish migration. One general observation is that fish do not show hi ghly oriented di recti onal novenent but tend to wander in many directions while soneti mes attaining a net novenent in one direction. This has been observed in Atlantic sal mon (Stasko 1975), where fish attai ned net novenents by drifting with flood tides and hol ding agai nst ebb tides, and sockeye sal non whi ch showed a great variety of novenent patterns, but tended to follow axes of tidal currents (Stasko et al. 1976).

Much of what is known about gui dance nechani sns of fish migration is based on extensi ve work with Pacific sal non species, al though a variety of other fishes have been studi ed (see revi eus by Harden Jones 1968; Hasler 1971; Leggett 1977). Early work documented the accuracy of sal non homing and resulted in the Parental or Hone Stream Theory. A number of hypotheses, often based on nechani sns known to operate in ot her ani mal s, were proposed and tested (e.g., inertial navi gation, sensing of magnetic fields, sun-compass orientation and responses to pol arized Iight). However, as Leggett (1977) points out, nost of these hypotheses are not adequatel y supported by observational or experi nental
evi dence or are known in only one or a few species. Recent work has suggested more parsi noni ous expl anations of homing success in fishes. Rather than highly di rected novenents and preci se orientation, a number of investigators argue that fish attain homing through very low level responses to envi ronmental variables (Saila and Shappy 1963; Patten 1964; Harden Jones 1968). Under this hypothesis, fish nove in apparently random patterns that are altered by responses to environmental conditions. Such nechani sns are consi stent with information on \mathbf{j} uvenile sal non migration fromfresh to salt water (McInerney 1964; Byrne 1971; Brannon 1972), and have al so been used to expl ain seasonal novenents in two coregonid speci es, Leucichthysartedi (Fry 1937) and Coregonus muksun (Leggett 1977). A number of envi ronmental variables may be invol ved in the responses of fishes that result in these 'di rected' seni-random novenents; temperature and salinity are obvi ous possibilities (Favorite and Hanavan 1963; Konstantinov 1965; Banks 1969). Fujii (1975) has denonstrated that the timing and direction of miation of sockeye sal non in Bristol Bay result fromselection of temperature and salinity regi mes.

Athough fish migrations are likely to be di rected by the modified random wal k nechani sm described above, it is still necessary for a fish to recognize its hone or destination when it is encountered. Conviricing experi nental evidence from salmon species indicates that olfaction is the sensory mechani sm used to recogni ze hone streans (Fagerlund et al. 1963; Cooperet al. 1976). This olfactory recognition may be based on chemical characteristics of hone stream nater (Hasler and Wisby 1951) or on intraspecific recognition (pheronones) (Hoglund and Astrand 1973; Doving et al. 1974).

Possible Devel opnent Effects. The migration cues used by Beauf ort Sea anadronous speci es have not been identified; however, each of the two general types of migrations (navi gation or nodified random wal k) have characteristics that nould have implications for assessnent of possible impacts. If fish responded precisel y to extrinsic navigation aids such as the sun, magnetic fields or pol arized light, nost envi ronmental impacts would have little effect on their navigational cues. However,
recent studies and revi eus of fish migration suggest that the nodified random walk hypothesis is often invol ved. If fish novenents are indeed i mpreci se responses based on water conditions such as temperat ure and salinity or on odors, alteration of the nearshore marine envi ronment might have a detrimental impact on their success in returning to overwintering and spawning locations. Al tered current patterns could not only affect temperature and salinity patterns, but could prevent waterborne olfactory cues from reaching areas where they may now be used by fish.

A second way that devel opment in nearshore waters might affect the \mathbf{m} gration of $\mathbf{f i}$ shes $\mathbf{i s}$ through direct obstruction of mation corridors. Concern has been rai sed that causeways which \mathbf{j} ut several kiloneters into coastal waters nay impede the longshore novenents of fish. One such causeway now exi sts in Prudhoe Bay. A preliminary report concl udes that it is not a barrier to fish novenents (Doxey 1977); however, nore com pl ete anal yses of exi sting data are requi red bef ore this concl usi on will be convi nci ng.

Spawning and Overwintering

Marine nearshore waters of the Beauf ort Sea are important to marine species of fish (arctic cod, fourhorn sculpin, saffron cod and snailfish species) for spawning (primarily in winter) and overwintering. One anadromous species, the boreal snelt, al so inhabits nearshore waters during the winter.

For marine fishes with demersal adhesi ve eggs, such as the snailfish, availability of substrates suitable for egg deposition may limit spawning success. For others with planktonic eggs (e.g., arctic cod), there should be virtually unlimited spawning habitat, si nce environment al variables such as under-ice conditions, temperature and salinity are probably rel atively uniform over extensi ve areas. However, in shalI ow areas like Si mpson Lagoon, bottomfast ice, hypersaline conditions and minimal anounts of free water probably excl ude these areas as suitable winter habitats for either spawning or overwintering.

Another factor that affects fish use of nari ne nearshore envi ronnents in winter is freezing resistance. Fi sh are normally iso-osmotic at salinities of 7.5-11 ppt; their freezing points are, therefore, hi gher than the surrounding water in areas of higher salinity. It has been observed that mari ne speci es have adapted physi ol ogi cally and behavi orally to cope with this problem(DeVries 1974). However, there is no evi dence that freshwater or anadromous species have compensated physi ol ogi cally for freezing temperat ures; therefore, their winter migration into brackish and fresh waters nay be essential. For example, both arctic and least cisco show a preference for habitats with brackish uater during the ice-free period and this trend continues during the winter when they nove into the brackish waters of the Colville Delta. Brackish waters of the del ta nay be less of a physi ol ogi cal stress than hi gher-salinity nearshore marine water in winter. Strawn and Dunn (1967) have shown that euryhaline fish subj ected to cold stress shift salinity preference toward the salinity levels of their habitats of evol utionary origin; fish fromfresh water shift their preferences in that direction and marine-originating species shift preferences to hi gher salinities. Arctic and least cisco have freshwater antecedents; theref ore, it nould be expected that under cold stress their salinity optim would be Iowered.

Athough winter infornation is limited, several general observations can be nade about nearshore habitats and their use by fish. First, fishes are not evenly di stributed throughout the nearshore zone in winter. Even within the rel ativel small area sampled, differences in di stribution were noted during the present study. Most boreal snelt, fourhorn sculpin and saffron cod were caught in Harrison Bay, while nost arctic cod and snailfish were caught in Stef ansson Sound (although these catches may reflect differences in the sampling gear used). Second, si nce there is a continual process of ice deposition through the winter, characteristics of nearshore nari ne habitats slow y change and di stributions of fishes may change accordingly. For example, Si mpson Lagoon is used by arctic cod and boreal smelt in Novenber, but it is apparently devoid of fish by February, probably in response to decreasing anounts of free water and/ or increasi ng salinities.

Thi rd, for the anadromous speci es which leave marine waters and return to rivers to spawn and overwinter, impacts on freshwater systens are likely to be nost critical if they occur during the winter period. In summer, various components of the cisco, char and whitefish populations are widel y di stributed in coastal and fresh waters. However, in winter, they are concentrated in rivers, generally in rel atively snall, soneti mes isol at pockets of water whi ch remain unfrozen during the extended winter period. It is generally thought that these fish are vul nerable to adverse impacts during the winter, perhaps more so than at any other stage of their life cycle. The importance of overwintering areas to northern fish popul ations and the land-use conflicts that have arisen concerning overwintering fish and industrial devel opment (e.g., winter water withdrawal, gravel renoval, pi peline trenching, contaminants) have been described in recent studi es and revi eus (Crai g and McCart 1974; Bendock 1976; Kard and Peterson 1976; Wilson et al. 1977). Fromthis vi eupoint, it is likely that onshore effects, rather than offshore effects, pose the greater threat to anadromous fishes.

CONCLUSI ONS

1. Nearshore Fi sh Popul ations

Although 22 fish species were caught in Si mpson Lagoon, five filsh species accounted for over 90% of al fish caught during the summers of 1977 and 1978. These incl ude tho marine speci es (arctic cod, fourhorn sculpin) and three anadromous speci es (arctic cisco, least ci sco, arctic char).

Fi sh numbers and speci es composition changed narkedly bet ween the tho sumers. Catches in 1978 incl uded al I speci es caught in 1977 pl us ei ght additional speci es, i ncl udi ng pink sal non. Massi ve numbers of arctic cod, many ti mes nore than were encountered in 1977, swept through the lagoon system during a ni ne-day period in mid-August of 1978.
In winter, the species composition in nearshore waters changes, largel y because nost anadromous fish leave coastal waters. Several marine species (principally arctic cod and fourhorn sculpin) and one anadromous speci es (boreal snelt) inhabit deeper nearshore areas under the ice.
2. Habitat Use

The rel ati vel y warm and brackish waters lying adj acent to the coastline provi de important summer habitat for anadromous fishes and sone nari ne species. Fi sh rapidly i nvade previ ousl y frozen regi ons of Si mpson Lagoon each summer. Numbers of anadromous fish in col der and nore sal ine offshore waters are negligible; it is postulated that there are physi ol ogi cal advantages, and perhaps requi rements, for these fish to remain in the warner nearshore envi ronnent.

Fi sh were di stributed throughout nearshore waters in summer, but anadromous fish were nost abundant al ong the nai nI and shorel ine where waters were rel ati vel y warm and bracki sh. The densest concentrations often occurred within 100 m of the shoreline. Anadromous speci es were less abundant al ong barrier island shorelines and in the central part of the lagoon; marine speci es tended to be nore evenly di stri buted.
In wi nter, several speci es use nearshore habitats for spawning and/ or overwintering. Fish are eventually excl uded from shal low areas ($<\mathbf{2} \mathbf{m d e e p}$) as ice thi cknesses and salinities increase. Differences in wi nter di stributions of marine fishes in nearshore waters were observed.
3. Mbvements and Mgration

Anadromous fish arrive with the first signs of spring breakup, di sperse al ong the coastline, and return in fall to river drai nages to spawn and/ or overwinter. Marine speci es tend to increase in abundance in nearshore waters as the open- water season progresses. For all species, numbers of $j u v e n i l e$ and adult fish constantly change because of day-to-day pul ses of novement and I arge-scal e popul ation novenents over periods of several weeks. Numbers of fish caught daily were usually not correl ated si gnificantly with daily changes in water temperature, salinity or turbidity, but experimental data are requi red to investigate these rel ationshi ps.
Interpretation of tagging results indi cated that the summer resi dency times for indi vi duals of anadromous speci es in Si mpson Lagoon probably averaged 14-24 days if fishes travel ed through the lagoon during novements from and back to their rivers of origin. On the ot her hand the fourhorn sculpin, a mari ne species, is rel ati vel y sedentary and i ndi vi dual s may resi de in the same general area for a year or nore.
4. Feedi ng Ecol ogy

Dietary overlap anong fishes was high. A few epibenthic mysids (Mysis litoralis, M. relicta), amphi pods (Onisimus glacialis), and other invertebrates accounted for nost of the fishes' diets.

The available suppl y of invertebrate food in the I agoon averaged about 1-2 orders of nagnitude greater than the total daily food requi renents of all vertebrate consumers (fish and birds) in Si mpson Lagoon (Griffiths and Dillinger 1980). It is postulated that this high food Ievel is mai ntai ned principally by continued invertebrate imigration, seasonally limited access to prey, and growth of prey. Chronic natural fluctuations in the physical habitat apparently perpetuate an early successi onal stage characteristic of 'pi oneer' comminities.
The daily food ration of arctic cod was estimated under field conditions to be 6% of body wei ght per day. At this rate, it is likely that the large numbers of this speci es that entered Si mpson Lagoon in August 1978 may have contributed to the decline in mysid bi onass described by Griffiths and Dillinger (1980).
5. Fi shing Pressure, Predation and Parasites

Due to thei r coastal migations, anadromous fish passing through Si mpson Lagoon are harvested by man at wi despread Iocations. Fish tagged in Si mpson Lagoon were recaptured in donestic, commercial and sport fisheries across nost of the Al askan Beauf ort Sea coastline. The commercial fishery in the Colville Delta harvests an estimated 9\% of the arctic cisco which are susceptible to the fishery and 5% of the least cisco. Donestic fishing by the vilI age of Nuiqsut, also located in the Colville Delta, is thought to harvest a similar anount.

Popul ations of fishes in the nearshore envi ronment do not appear limited by predation pressure or parasite loads. Mammal, bird and fish predation was negligible in areas where fish were abundant. Parasite loads of arctic cisco were I ow and did not appear to detrimentally affect thei r heal $t h$.
6. Cisco Popul ation Sizes

Based on Peterson nark/recapture procedures, popul ation estimates were made of two anadronous fishes important to man, arctic and I east cisco. These esti nates incl ude onl y indi vi dual sthat were of a size (> 250 mm length) vul nerable to the comercial fishery in the Colville Del ta but excl udi ng spawners. Data indi cate that popuIations of arctic cisco fromthe Colville Ri ver have decl ined roughl y 86\% from 777, 000 fish in 1976 to 110, 000 fish in 1979; I east cisco have increased roughl y 83\% from 305, 000 fish in 1976 to 1, 773, 000 fish in 1979. Reasons for these apparent changes are not known.

RECOMMENDED FURTHER RESEARCH

Several topics requi ring further research are briefly descri bed bel owe

1. Critical habitats. Maj or gaps exist in our understanding of the life-histories of several key fish species that nay be affected by industrial devel opnents in the arctic. Ue cannot at this tine identify where sone of these species spawn or overwinter.

The arctic cisco is especially poorly known. The Colville Ri ver is probably the major source of arctic cisco along the A askan Beauf ort Sea coastline, yet we do not know where these fish spawn. No spawners were found by us during a reconnai ssance of potential spanning areas. Si milarly, little is known about where this species overwinters except that the Colville River is used. Our studies al so indi cate that the popul ation size of this i mportant speci es has decli ned markedl y over the past two years. The implications of this reduction, in vi ew of the annual harvest by subsi stence and comercial fi sheries, must be exam ned.
Spawning and overwi ntering areas are al so poorly known for arctic cod and other marine fishes.
2. Habitat requi renents. The importance of nearshore waters to anadromous fish popul ations has been docunented. These fish apparently do not stray far from the rel ativel y warm and bracki sh waters al ong the coastline. These nearshore temperature and salinity regi nes nay be affected by i ndustrial devel opnents, such as causeways, which alter nearshore current patterns. It is important, therefore, to determine how fish will be affected by changes in these physical factors. Experi nental assessments of the temperature and salinity preferences and tolerances of sel ected anadromous fishes are needed.
3. Regi onal data gaps. Fi sh use of tuo Beaufort Sea regions is poorly documented. The first of these regi ons incl udes all offshore waters, especially those in the 3-20 m depth zone. Virtually all fisheries studi es to date have emphasized fishes, particularly the anadromous species, inhabiting shal low nearshore waters-typically less than $\mathbf{3} \mathbf{m}$ deep. Al though industrial devel opments will take place in the 3-20 mzone, little is known about the importance of this regi on to fish popul ations. Arctic cod spawn and overwinter in these waters, but specific important areas are not well known.

The second regi on requi ring investigation is the coast bet ween the Colville River and Barrow This regi on lies 'downstream of the proposed lease area due to prevailing nearshore currents of the Beaufort Sea. Preliminary evi dence indi cates that the species composition of fish in this area nay differ from that bet ween the Colville and Mackenzie ri vers. Streans draining into the former regi on support inportant a nadromous whitefish and least cisco populations, whereas in the latter regi on streans support arctic char popul ations. This regi onal difference in fish usage largely reflects hydrol ogical differences between the two areas. It is thought that char are absent from streans between Barrow and the Colville Ri ver because these coastal drai nages generally lack the perenni al springs that are associ ated with the spawning grounds of char. Given these differences bet ween drai n ages and fish popul ations in these tho regi ons, it is difficult to extrapol ate coastal data from one regi on to the other. We ther ef ore recomend that the coastal regi on bet neen Barrow and the Colville Ri ver be examined.
4. Fish versus nearshore obstructions. Concern has been rai sed that causeways whi ch jut into coastal uaters may affect arctic fish populations in several ways. By altering prevailing nearshore currents, causeways may affect tenperature and salinity regi nes in areas where fish concentrations are hi ghest (addressed above), or di srupt the rate at whi ch the food organi sm of fishes (mysi ds, amphipods) di sperse into nearshore areas (addressed in Griffiths and Dillinger 1980). Causeways may al so affect migrations of anadromous species through physi cal blockage or possi bly through di sruption of orientational processes. Although a summary report regarding this concern was prepared by the Al aska Department of Fi sh and Gane (Doxey 1977), the probl em requi res revi ew and compl ete data anal ysis before this issue will be resol ved. Further field experimentation may be requi red.

LI TERATURE CI TED

Al aska Department Fish \& Game. 1977. Colville River commercial catches as reported by Harmon Helmericks, 1964-1976. File data (1 page). (pers. comm. F. Andersen, Commerci al Fi sheri es, ADF\&G, Fai rbanks, Dec. 1977).
Alt, K.T. and D.R. Kogl. 1973. Notes on the whitefish of the Colville Ri ver, Al aska. J. Fi sh. Res. Board Can. 30(4):554-556.
Andrews, J.W. and R.R. Stickney. 1972. Interactions of feeding rates and envi ronnental temperatures on grouth, food conversi on, and body composition of channel catfish. Trans. Am Fish. Sot. 101: 94-99.
Andriashev, A.P. 1954. Fi shes of the northern seas of the U.S.S.R. Izdatel'stvo. Akad. Nauk. SSSR, Msskva- Leni ngrad. Transl ation from Russian, Israel Program for Scientific Translations. Jerusal em 1964. 617 p.

Bailey, M 1964. Age, grouth, maturity, and sex composition of the Anerican snelt, Osmerus mordax (Mtchell), of western Lake Superior. Trans. Am Fish. Sot. 93:382-395.
Bain, \mathbf{H} and A.D. Sekerak. 1978. Aspects of the bi ol ogy of arctic cod, Boreogadus saida, in the central Canadi an Arctic. Unpubl. Rep. by LG. Limited for Pol ar Gas Project. 104 p.
Banks, J.W. 1969. A revi ew of the literature on the upstream mination of adul \mathbf{t} salmonids. J. Fish. Biol. 1:85-136.
Barans, C.A. and R.A. Tubb. 1973. Temperat ures sel ected seasonally by four fishes from western Lake Erie. J. Fish. Res. Board Can. 30: 1697-1703.
Barl ow G.W. 1958. Daily novements of the desert pupfish Cyprinodon macularius in shore pools of the Salton Sea, California. Ecol ogy 39:580-587.
Bauer, O.N. 1970. Parasites and di seases of USSR coregoni ds. In: Li ndsey, C.C. and C.S. Wbods (eds.). Bi ol ogy of coregonid fishes. Uni versity of Manitoba Press, Winni peg: 267-278.

Beamish, F.W.H. 1964. Respi ration of fishes with special emphasis on standard oxygen consumption. II. Influence of wei ght and temperature on respiration of several speci es. Can. J. Zoo 1. 42:177-188.
Beamish, R.J. 1979. Differences in the age of Pacific hake (Mertuccins productus) using whole otoliths and sections of otoliths. J. Fish. Res. Board Can. 36:141-151.

Beitinger, T.L. 1974. Ther noregul atory behavi or and diel activity patterns of bluegill, Lepomismacrochirus, following thermal shock. U. S. Fi sh Wildl. Serv. Bull. 72:1087-1093.

Bendock, T. 1976. De- uatering effects of industrial devel opment on arctic fish stocks. Unpub. Rep. by Al aska Dept. Fi sh and Gane for Al aska Board of Fi sheri es. 13 p.

Bendock, T. 1977. Beauf ort Sea estuarine fishery study. Res. Unit 233. In: :nvir. Assess. Al askan Cont. Shel f., Fi nal Rep. Prin. I nvest. March 1979, Vol. 4, p. 670-729. BLM/NOAA, OCSEAP. Boul der, Colo.
Berg, L.S. 1957. Omul--Coregonus autumalis (Pallas). In: Commercial Fi shes of the USSR. Mbscow 1949. 789 p. Fi sh. Res. Board Can., Transl ation Series, No. 110. 4 p.
Bigelow, H and W. Schroeder. 1963. Family Osmeridae. p. 533-597. In: Fi shes of the western North Atlantic. Mere. Sears Found. Mar. Res. 1(3). 630 p.

Bolotova, T. 1976. Dynamics of fatness in the Ludoga whitefish Coregonus Zavaretus Iudoga from Lake Ludoga in connection with nat uration of the gonads. J. I cht hyol ogy. 16:828-834.
Boyce, N.P. and S.B. Yamada. 1977. Effects of a parasite, Eubothrium salvelini (Cestoda : Pseudophyl I idea), on the resistance of \mathbf{j} uvenile sockeye sal non, Oncorhynchus nerka, to zi nc. J. Fi sh. Res. Board Can. 34:706-709.
Bradstreet, M.S.W. 1977. Feedi ng ecol ogy of seabi rds al ong fast-ice edges in Uellington Channel and Resol ute Passage, N.W.T. Unpubl. Rep. by LG. Ltd. for Polar Gas Project. 149 p.
Brakel, W 1977. The socio-economic importance of wildife resource utilization in the southern Beauf ort Sea. Beauf ort Sea Tech. Rep. No. 32. 91 p.
Brannon, E.L. 1972. Mechanisns controlling migration of sockeye sal non fry. Bull. I nt. Pac. Sal non Fi sh. Comm. 21:l-86.
Brett, J.R. 1952. Temperat ure tol erance in young Pacific sal mon, genus Oncorhynchus. J. Fi sh. Res. Board Can. 9:265-323.
Brett, J.R. 1956. Sone principles in the thernal requi renents of fishes. Quart. Rev. Biol. 31:75-87.
Brett, J.R. 1970. Temperat ure: Fi shes. I n: O. Ki nne (cd.). Mari ne Ecol ogy. Wiley-Interscience. New York. p. 515-616.
Brett, J.R. and D.A Higgs. 1970. Effect of temperature on the rate of gastric di gestion in fingerling sockeye sal non, Oncorhynchus nerka. J. Fi sh. Res. Board Can. 27:1767-1779.
Brett, J.R., J.E. Shelbourn and C.T. Shoop. 1969. Grouth rate and body composition of fingerling sockeye sal non, Oncorhynchus nerka, in rel ation to temperature and ration size. J. Fish. Res. Board Can. 26:2363-2394.

Broad, C. 1978. Reconnai ssance characterization of littoral biota, Beauf ort and Chukchi Seas. p. 1-84. In: Envi r. Assess. Al askan Cont. Shel f, Annu. Rep. Pri n. Invest. March 1978. Vol . 5. BLM NOAA, OCSEAP. Boul der, Colo.

Broad, C., A Benedi ct, K Dunton, H Koch, D. Mason, D. Schnei der and S. Schonberg. 1979. Envi ronnental assessment of sel ected habitats in the Beauf ort and Chukchilittoral system In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. Invest. (in press). BLM/NOAA, OCSEAP. Boul der, Colo.
Brocksen, R.W. and J.P. Bugge. 1974. Preliminary investigation on the influence of temperature on food assimilation by rai nbow trout Salmo gairdneri Ri chardson. J. Fi sh. Biol. 6:93-87.

Bureau of Land Managenent. 1979. Beauf ort Sea, envi ronmental impact statenent. Proposed federal/state oil and gas lease sal e, Beaufort Sea. vol. 1-3.

Burns, J. (cd.). 1978. Probable impacts and consequences of oil developnent. Chap. 10. In: Weller, G, D. Norton and T. J ohnson (eds.) I nt erim Synthesis:Beaufort/Chukchi. NOAA OCSEAP Envi ronnental Research Lab., Boul der, Col orado. 362 p.
Busdosh, M. and R. Atlas. 1975. Response of two arctic amphi pods, Garmarus zaddachi and Boeckosimus (Onisimus) affinis to vari at i ons in salinity. J. Fish. Res. Board Can. 32:2564-2568.
Byrne, J.E. 1971. Photoperiodic activity changes in \mathbf{j} uvenile sockeye sal non (Oncorhynchusnerká). Can. J. Zool. 49:1155-1158.
Cailliet, G. M, B. S. Antrim and D. A. Anbrose. 1978. Trophic spectrum anal ysis of fishes in Elkhorn Sl ough and nearby waters. p. 118-128. In: Lipovsky, S. and C. Si menstad (eds.). Fish Food Habits Studies: Gut Shop 78. Proc. 2nd Pacific Northwest Tech. Wbrkshop, 10-13 October 1978 (Maple Valley, Whsh.). Wish. Sea Grant Pub. 222 p.
Chapman, D.G. 1951. Sone properties of the hypergeonetric di stribution with applications to zool ogical sample censuses. Uni v. Calif. Publ. Stat. 1:131-160.

Cherry, D. S., K.L. Di ckson and J. Cai rns, Jr. 1975. Tenperatures sel ected and avoi ded by fi sh at vari ous accl i nation temperatures. J. Fish. Res. Board Can. 32:485-491.

Cohen, D.M. 1954. Age and grouth studi es on two species of whitefishes from Poi nt Barrow, Al aska. Stanford Ichthy. Bul I. 4(3):168-187.

Cooper, J.C., A Schalz, R.M. Horrall, A.D. Hasler and D.M. Madi son. 1976. Experimental confirnation of the olfactory hypothesis with homing, artificially imprinted coho sal non (oneorhynchus kisutch). J. Fish. Res. Board Can. 33:703-710.

Crai g, P. 1976. Preliminary fisheries survey al ong the Coastal Alternative Corridor (Arctic National Villdife Range). Unpubl. Rep. by Aquatic Envi ronnents Ltd. for Alaskan Arctic Gas Study Co., Anchorage, Al aska, with revi sed figures (30 Dec. 76). 5 p.

Crai g, P.C. 1977. Ecol ogi cal studi es of anadromous and resi dent popuI ations of Arctic char in the Canning Ri ver drai nage and adj acent coastal naters of the Beaufort Sea, Alaska. Arctic Gas Biol. Rep. Ser. 41(1). 116 p.

Oraig, P.C. and G.J. Mann. 1974. Life history and di stribution of the Arctic cisco (Coregonus autumalis) al ong the Beaufort Sea coastline in Al aska and the Yukon Territory. Arctic Gas Biol.Rep.Ser. 20(4). 33 p.
Crai g, P.C. and P. McCart. 1976. Fi sh use of nearshore coastal waters in the western arctic: emphasis on anadromous species. Chap. 23: 361-388. In: Hood, D.W. and D.C. Burrell (eds.). Assessment of the arctic marine envi ronment: Sel ected topics. Occas. Publ. no. 4, I nst. Mar. Sci., Uni v. Al aska, Fai rbanks.
Crane, J. 1974. Ecol ogi cal studies of the benthic fauna in an arctic estuary. Unpubl. M. Sc. thesi s, Uni v. Al aska (Fai rbanks). 105 p.
Coutant, C.C. and D.K. Cox. 1976. Grouth rates of subadult largemouth bass at 24 to $35.5^{\circ} \mathrm{C}$. In: G.W. Esch and R.W. McFarlane (eds.). Therman Ecol ogy 11. Tech. Info. Center. E.R.D.A

Darne11, R. 1961. Trophic spectrum of an estuarine community based on studi es of Lake Pontchartrain, Loui si ana. Ecol ogy. 42:553-568.
de Graaf, D. and K. Machniak. 1977. Fi sheries investigations al ong the cross Delta Pi peline Route in the Mackenzie Delta. Arctic Gas Biol. Rep. Ser. 39(4). 169 p.
Dendy, J.S. 1948. Predicting depth distribution of fish in three TVA storage type reservoirs. Trans. Am Fish. Sot. 75:65-71.

DeVries, A.L. 1974. Survi val at freezing temperatures. In: Malins, D.C. and J.K. Sargent (eds.). Bi ochemical and biophysical perspectives in marine bi ol ogy. Vol. 1. Academic Press. New York.
Doving, K. B., H Nordeng and B. Oakl ey. 1974. Si ngle unit di scrimination of fish odours rel eased by char (Salmoalpinus L.) populations. Comp. Biochem. Physiol. 47A:1051-1063.
Doxey, M 1977. Fi shery i mpact survey of the ARCO causeway. Unpubl. Rep. by Al aska Dept. Fi sh \& Gane for Atlantic Richfiel d Co. 38 p.

Dunbar, M 1973. Stability and fragility in arctic ecosystens. Arctic. 26:179-185.

Dunton, K. and S. Schonberg. 1979. An arctic kel p community in Stefansson Sound, Al aska: A survey of the flora and fauna. 189 p. In: Broad et al., Envi ronnental assessment of sel ected habitats in the Beaufort and Chukchi Iittoral system In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. I nvest. , March 1979, BLM NOAA OCSEAP. Boul der, Colo.
Dwyer, W.P. and R.K. Kraner. 1975. The influence of temperature on scope for activity in cutthroat trout, Salmoclarki. Trans. Am Fi sh. Sot. 104:552-554.

Faber, D. 1968. A net for catching limnetic fry. Trans. Am Fi sh. Sot. 97:61-63.

Fagerlund, u.im, J.R. MBBride, M Smith and N Tomlinson. 1963. Ofactory perception in migating sal mon. III. Stimul for adult sockeye in hone stream waters. J. Fi sh. Res. Board Can. 20: 14571463.

Favorite, F. and M.G. Hanavan. 1963. Oceanographic conditions and salnon di stribution south of the Al aska Peni nsula and Aleutian Islands, 1956. Int. N. Pac. Fi sh. Comm. Bul I. 11:57-72.

Foy, M 1978. Acute Iethal toxicity of Prudhoe Bay crude oils and Corexit 9527 on four arctic marine invertebrates. Rept. by LG Ltd. Envi ron. Res. Assoc. for Envi ron. Protection Servi ce, Fi sh. and Environ. Can. (Hul I, Quebec). 98 p.

Fey, M 1979. Acute Iethal toxicity of Prudhoe Bay crude oil and Corexit 9527 to arctic marine invertebrates and fish from Frobisher Bay, N.W.T. Report by LG. Ltd. Envi ron. Res. Assoc. for Envi ron. Protect. Serv., Dept. Fish and Envi ron. (Hull, Quebec). 90 p.
Fraker, MA, D.E. Sergeant and W Hock. 1978. Bowhead and white whal es in the southern Beauf ort Sea. Beauf ort Sea Project, Tech. Rep. No. 4. 114 p.
Frost, K, L. Lowry and J. Burns. 1978. Offshore demersal fishes and epibenthic invertebrates of the northeastern Chukchi and western Beauf ort seas. p. 231-365. In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. Invest. , Merch 1978, Vol. 1. BLM/NOAA, OCSEAP. Boul der, Colo.

Fry, F.E.J. 1937. The sumer migration of the cisco Leucichthyes artedi (Le Sueur) in Lake Nipissing, Ontario. Publ. Ont. Fish. Res. Lab. 55:1-91.
Fujii, T. 1975. On the rel ation bet ween the homing migration of the western \mathbf{A} aska sockeye sal non, Oncorhynchus nerka (Walbaum) and oceani c conditions in the eastern Bering Sea. Mere. Fat. Fish. Hokkaido Uni v. 22:99-192.

Furniss, R. 1975. I nventory and catal oging of arctic area waters. A aska Dept. Fi sh \& Game, Annu. Rep. 16. 47 p.
Gadgil, M and O. Solbrig. 1972. The concept of \mathbf{R} and K sel ection: evi dence from wildflows and sone theoretical consi derations. Am Nat. 106:14-31.
Galbraith, D. and J. Hunter. 1979. Fi shes of of fshore waters and Tuktoyakt uk vi ci nity. Beauf ort Sea, Tech. Rep. Nb. 7. 47 p.
Glova, G and P. McCart. 1974. Life hi story of Arctic char (Salvelinus alpinus) in the Firth River, Yukon Territory. Arctic Gas Biol. Rep. Ser. 20(3). 37 p.
Griffiths, W and R. Dillinger. 1980. Beaufort Sea barrier islandI agoon ecol ogi cal process studi es: Fi nal report, Si mpson Lagoon. Part 5. Invertebrates. Res. Unit 467. In: Envi ron. Assess. A askan Cont. Shelf, Fi nal Rep. Prin. Invest. (Thi s Vol.). BLM NOAA, OCSEAP. Boul der, Colo.

Griffiths, W, P.C. Crai g, G Walder and G. Mann. 1975. Fi sheries investigations in a coastal regi on of the Beauf ort Sea (Nunaluk Lagoon, Y. T.). Arctic Biol. Rep. Ser. 34(2). 219 p.

Griffiths, W., J. DenBeste and P. Craig. 1977. Fisheries investigations in a coastal regi on of the Beauf ort Sea (Kaktovik Lagoon, Barter Island, Al aska). Arctic Biol. Rep. Ser. 40(2). 190 p.

Hablett T. 1980. Fi sh inventories conducted within the National Petrol eum Reserve on the North SI ope of Al aska, 1977-78. Rep. by U.S. Fi sh \& Wildl. for Bureau Land Management.- 89 p.

Hardin Jones, F.R. 1968. Fi sh Mgration. St. Martins, New York. 325 p.
Hart, J. 1973. Pacific fishes of Canada. Fish. Res. Board Can., Bull. 180. 740 p.

Hasler, A.D. 1971. Orientation and fish migration. In: Hoar, W.S. and D.J. Randal I (eds.). Fi sh Physi ol ogy. Vol . VI. Academi c Press. New York.

Has ler, A.D. and W.J. Vishy. 1951. Di scrimination of stream odors by fishes and its rel ation to parent stream behavi or. Am Nat. 85": 223-238.

Hettler, W.F. 1976. Influence of temperature and salinity on routine metabol ic rate and grouth of young Atlantic menhaden. J. Fish. Biol . 8:55-65.

Hile, R and C. Juday. 1941. Bathynetric di stribution of fish in Iakes of the northeastern hi ghl ands, Wisconsin. Trans. Wis. Acad. Sci., Arts. Lett. 33:147-187.
Hogl und, L.B. and M Åstrand, 1973. Preferences anong juvenile char (Salvelinusalpinus L.) to intraspecific odours and water currents studi ed with the fluvarium technique. Rep. Int. Farsuw. Res., Drottingholm. 53:21-30.

Hollander, M and D. Wblfe. 1973. Nonparametric statistical methods. John Wiley and Sons, N.Y. 503 p.

Horn, H.S. 1966. Measurements of "overlap" in comparative ecol ogi cal studi es. Am Nat. 100:419-429.

Homer, R. 1978. Beauf ort Sea pl ankt on studi es. p. 175-191. In: Envir. Assess. Al askan Cont. Shel f, Interim Synthesi s: Beaufort/ Chukchi. National Oceanic and At nospheric Administration. 326 p.
Horni ng, W.B. II and R.E. Pearson. 1973. Grouth temperat ure requirements and lower lethal temperatures for juvenile smallmouth bass (Micropterus dolomieui).J. Fi sh. Res. Board Can. 30:1226-1230.

Huh, H. T. H.E. Cal bert and D.A. Stuiber. 1976. Effects of temperature and light on grouth of yellow perch and walleye using formI ated feed. Trans. Aner. Fish. Sot. 105:254-258.

Hynes, H.B.N. 1950. The food of fresh water stickl ebacks (Gasterosteus aculeatus and Pygasteus pingitius), with a revi ew of methods used in studies of the food of fishes. J. Anim. Ecol. 19:36-58.

Jessop, C.S., K.T.J. Chang-Kue, J.W. Lilley and R.J. Percy. 1974. A further eval uation of the fish resources of the Mackenzie River valley as rel ated to pi peline devel opment. Fish. and Mar. Serv. Northern Pi pel ines Report No. 74-7. Info. Can. Cat. No. R-72-13674. 95 p.

Jobling, M, D. Gwyther and D.J. Grove. 1977. Sone effects of temperature, neal size and body wei ght on gastric evacuation time in the dab Limonia Limanda (L.). J. Fish. Biol. 10:291-298.

Johnson, L. 1972. Kel ler Lake: characteristics of a cultural ly unstressed salmonid community. J. Fish. Res. Board Can. 29:731-740.
Johnson, P. and C. Hartman. 1969. Envi ronnental AtI as of Al aska. Inst. Arctic Envi ronnent al Engi neering, Inst. Whter Resources, Uni v. Al aska (Fai rbanks).
Johnson, S. and W.J. Ri chardson. 1980. Beauf ort Sea barrier islandlagoon ecol ogi cal process studi es: Fi nal report, Si mpson Lagoon. Part 3. Bi rds. Res. Unit 467. In: Envi r. Assess. Al askan Cont. Shel f, Fi nal Rep. Prin. Invest. (Thi s Vol). BLM/NOAA, OCSEAP. Boul der, Colo.

Jones, M and J. DenBeste. 1977. Tuft Point and adjacent coastal areas fisheries project. Unpubl. Rep. by Aquatic Envi ronment Ltd. (Cal gary) for Imperial 0 I Ltd. 152 p.
Kendel, R., R. Johnston, V. Lobsiger and M Kozak. 1975. Fi shes of the Yukon Coast. Beauf ort Sea Tech. Rep. No. 6. 114 p.

Ki nne, O. 1960. Grouth, Food intake, and food conversion in a euryhaline fish exposed to different temperatures and salinities. Physiol. Zool. 33:288-317.
Kinne, \mathbf{O} 1963. The effects of temperature and salinity on marine and bracki sh water ani mals. 1. Temper at ure. Oceanogr. Mar. Biol. A Revi ew 1:301-340.

Kogl, D.R. 1972. Mbnitoring and eval uation of Arctic uaters with emphasis on the North Sl ope drai nages: Colville River. Al aska Dept. of Fi sh and Gane. Annu. Rep. 12:23-61.

Kogl, D. and D. Schell. 1974. Colville River Delta fisheries research. p. 483-504. In: Envi ron. studies of an arctic estuarine systemFinal Report. U. S. Envi ron. Protect. Agency, Ec. Res. Ser. EPA660/ 3-75-026.
Konstantinov, K.G. 1965. Whter temperature as a factor guiding fish during their migrations. Int. Comm. N.W. At]. Fi sh. Spec. Pub. 6:221-224.
Lawler, G.H. 1970. Parasites of coregonid fishes. In: Li ndsey, C.C. and C.S. Wbods (eds.). Bi ol ogy of coregonid fishes. Uni versity of Mani toba Press, Vinni peg. p. 279-309.

Leggett, W.C. 1977. The ecol ogy of fish migrations. Ann. Rev. Syst. Ecol . 8:285-308.

Lemke, A.E. 1977. Optimm temperature for grouth of juvenile buegills. Prog. Fi sh. Cult. 39:55-57.

Leim, A.H. and W.B. Scott. 1966. Fi shes of the Atlantic coast of Canada. Fi sh. Res. Board Can. Bull. 155.485 p.

Lewellen, R. 1970. Pernafrost erosi on al ong the Beaufort Sea coast. Uni v. Col orado, Geography and Geol ogy Dept. 24 p.

Lowry, L., K. Frost and J. Burns. 1978. Trophic relationships among ice inhabiting phocid seals. p. 161-230. In: Envir. Assess. Alaskan Cont. Shelf, Annu. Rep. Prin. Invest. (Vol . I) BLM/NOAA, OCSEAP. Boul der, Colo.

Magnuson, J. 1969. Di gestion and food consumption by shipjack tuna Katsuwonus pelemis. Trans. Am Fish. Sot. 98:379-392.
Mann, G.J. 1974. Life hi story types of the least cisco (Coregonus sardinella, Vallenciennes) in the Yukon Territory, North Sl ope, and eastern Mackenzie Ri ver delta drai nages. Arctic Gas Biol. Rep. Ser. 18(3). 160 p.
Mann, G.J. 1975. Vinter fisheries surveys in the Mackenzie Delta. Arctic Gas Biol. Rep. Ser. 34(3). 54 p.
MEAlister, D.E. 1961. The origin and status of the deepwater sculpin, Myoxocephalus thompsonii, a nearctic glacial relict. Nat. Mis. Can. Bull. 172:44-65.
MEAlister, D.E. 1962. Fi shes of the 1960 "SalveZinus" Program from western Arctic Canada. Nat. Mus. Can. Bull. 185:17-39.

MEAlister, D. 1977. Ecol ogy of the marine fishes of arctic Canada. p. 49-65. In: Section II. Marine Ecol ogy. Circumpolar Conf. on Northern Ecol ogy Proceedi ngs, 15-18 Sept. 1975. Nat. Res. Council Canada. Ottava.

McCart, P. 1970. A pol ynor phi c popul ation of Oncorhynchus nerka at Babine Lake, B. C. invol vi ng anadromous (sockeye) and non-anadromous (kokanee) forns. Ph. D. Thesis. Uni versity of British Col unbia. 135 p.

McCart, P. 1980. A revi ew of systematic and ecol ogy of SalveZinus alpinus in the western arctic. Tech. Rep. by Aquatic Envi ronnents Ltd. to Fi sh. and Mr. Serv., Fi sheries and Oceans, Can. (in press).

MtCormick, J.H., K.E.F. Hokanson and B.K. Jones. 1972. Effects of temperature on grouth and survi val of young brook trout, Salvelinus fontinalis. J. Fish. Res. Board Can. 29:1107-1112.
MECornick, J.H. and C.F. Kleiner. 1976. Grouth and survi val of young-of-the- year emerald shi ners (Notropisatherinoides) at different temperatures. J. Fi sh. Res. Board Can. 23:834-842.

MtI nerney, J.E. 1964. Sal inity preference: an ori entation mechani sm in sal mon migration. J. Fi sh. Res. Board Can. 21:995-1018.

MKenzie, R. 1964. Smelt Iife history and fishery in the Miramichi Ri ver, New Brunswi ck. Fi sh. Res. Bd. Can. Bull. 144. 77 p.

McPhail, J. 1966. The Coregonusautumnalis complex in Alaska and northwestern Canada. J. Fish. Res. Board Can. 23:141-148.

McPhail, J.D. and C.C. Li ndsey. western Canada and Al aska.
1970. The freshuater fishes of northFi sh. Res. Board Can. Bull. 173. 381 p.

Milne, A and B. Smiley. 1976. Offshore drilling for oil in the Beaufort Sea: a preliminary envi ronnent al assessment. Beauf ort Sea Techn Rep. No. 39. 43 p.

More, J.W. and I.A. Moore. 1974. Food and grouth of arctic char, Salvelinusalpinus (L.), in the Cumberland Sound area of Baffin Island. J. Fi sh. Biol. 6:79-92.

Moskalenko, B. 1964. On the bi ol ogy of the pol ar cod Boreogadus saida. Voprosy Ikhtiologii. 4(3) 32:433-443.
Mungall, C. 1978. Oceanographic processes in a Beauf ort Sea barrier isl and-I agoon system-numeri cal nodel ing and current measurements. p. 732-830. In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. Invest. , Vol. 10. BLM/NOAA, OCSEAP. Boul der, Colo.

Murawski, S. and C. Col e. 1978. Popul ation dynami cs of anadromous rai nbow snel t, osmerus mordax, in a Massachusetts ri ver system Trans. Am Fish. Sot. 107:535-542.

Mrphy, G.I. 1968. Pattern in life-history and the envi ronnent. Am Nat. 102:391-403.

Nei I, W.H. and J.J. Magnuson. 1974. Di stributional ecol ogy and behavi oral thernoregul ation fishes in rel ation to heated effluent from a power plant at Lake Monona, Wisconsin. Trans. Am Fish. Sot. 103:663-710.

Nikolskii, G. 1961. [Special Ichthyol ogy] 2nd ed. (In Russian, English trans1. by Israel Program for Sci. Transl., Jerusal em 1961). 538 p.
Nordeng, \mathbf{H} 1961. On the bi ol ogy of char (Salvelinusatpinus) in Salangen, \mathbf{N} Norway. Zoologi. 10:67-121.
Otwell, W.S. and J.V. Merringer. 1975. Survi val and growth of juvenile striped bass, Morone sakatilis, in a factorial experinent with temperature, salinity and age. Trans. Am Fish. Sot. 104:560-566.
Patten, B. C. 1964. The rational deci si on process in sal mon migration. J. Cons. Perm. Int. Explor. Mer. 28:410-417.

Pedersen, S. 1979. Regi onal subsi stence I and use, North Sl ope Borough, Al aska. Uni v. Al aska, Occas. Paper No. 21.

Percy, R. 1975. Fi shes of the outer Mackenzie Delta. Beauf ort Sea Tech. Rep. No. 8. 114 p.

Perevozchenko, 1.1. and C.N. Davydov. 1974. DDT and its metabolizes in sone cestodes in fishes. Gidrobiol. Zh. 10(6):86-90. (in Russi an).

Peters, D., M Boyd and J. Devane. 1976. The effect of temperature, salinity and food availability on the growth and food- conversion efficiency of post larval finfish. In: Essch, G and R. McFarlane (eds.). Proceedi ngs of a Symposi um Tech. Info. Cent., Energy Resources and Devel opnent Admin.
Peterson, RII. 1973. Temper at ure sel ection of Atlantic sal non (Salmo salar) and brook trout (Salveiinus fontinalis) as influenced by vari ous chl ori nated hydrocarbons. J. Fi sh. Res. Board Can. 30: 1091-1097.
Quast, J.C. 1974. Density distribution of \mathbf{j} uvenile Arctic cod, Boreogadussaida, in the eastern Chukchi Sea in the fall of 1970. Fish. Bull. U.S. 72(4):1094-1105.
Quast, J.C. and E.L. Hall. 1974, List of fishes of Al aska and adj acent waters with a guide to sone of their literature. NOAA Tech. Rep. NMFS SSRF-658. 47 p.
Rae, G.M.M. 1968. Oxygen consumption of rai nbow trout (SaZmogairdneri) in rel ation to activity and salinity. Can. J. Zool. 46:781-786.
Reutter, J.M. and C.E. Herdendorf. 1975. Laboratory estinates of the seasonal final temperature preferenda of some Lake Erie fish. Proc. 17th Conf. Great Lakes Res. 1974:59-67.
Ricker, W.E. 1975. Computation and interpretation of ol ogical statistics of fish populations. Fish. Res. Board Can. Bull. 191. 382 p.
Roguski, E.A. and E. Komarek. 1972. Monitoring and eval uation of arctic waters with emphasis on the North Sl ope drai nages. Al aska Dept. Fi sh and Gane. Annu. Rep. 12:1-22.
Rosenthal, R. 1978. Conbi ni ng results of independent studi es. Psych. Bull. 85:185-193.
Saila, S.B. and R.A. Shappy. 1963. Random novenent and orientation in sal non migration. J. Cons. Perm. Int. Explor. Mer. 28:153-166.

Sche11, D. 1979., Nutri ent dynamics in nearshore Al askan Beauf ort Sea waters. Res. Uni t 537. In: Envi ron. Assess. Al askan Cont. Shel f, Annu. Rep. Prin. Invest. (in press). BLM/NOAA, OCSEAP. Boul der, Colo.
Schnei der, D. and H. Koch. 1979. Trophic rel ationships of the arctic shal I ow water marine ecosystem 189 p. In: Broad et al., Envi ronnental assessment of sel ected habitats in the Beauf ort and Chukchi Iittoral system In: Envirn. Assess. Al askan Cont. Shelf, Annu. Rep. Prin. Invest. (in press). BLM NOAA, OCSEAP. Boul der, Colo.
Scott, W.B. and E.J. Crossman. 1973. Freshwater fishes of Canada. Fi sh. Res. Board Can. Bull. 184. 966 p.

Slaney, F.F. and Co. 1974. Envi ronmental program Mackenzie Delta, N.N.T., Canada. Aquatic Resources. Vol. 6. Unpubl. Rep. by F.F. Slaney and Co. Ltd. for Imperial Oil Ltd., Cal gary, Al berta.

Spigarelli, S.A. 1975. Behavi oral responses of Lake Mchi gan fishes to a nucl ear power plant di scharge. In: Envi ronnental effects of cooling systens at nucl ear power stations (IAEA) Int. At onic Energy Agency, Vi enna. p. 479-498.
Springer, A and D. Roseneau. 1978. Ecol ogi cal studi es of col oni al seabirds at Cape Thompson and Cape Lisburne. p. 839-960. In: Envir. Assess. Al askan Cont. Shel f, Annu. Rep. Priri. Invest. vol. 2. BLM NOAA OCSEAP. Boul der, Colo.

Stasko, A.B. 1975. Progress of migrating Atlantic sal non (Salmo salar) al ong an estuary, observed by ultrasonic tracking. J. Fish. Biol . 7:329-338.
Stasko, A. B., R.M. Horrall and A.D. Hasler. 1976. Coastal movenents of adult Fraser Ri ver sockeye sal non (Oncorhynchus nerka) observed by ultrasonic tracking. Trans. Am Fish. Sot. 105:64-71.
Steigenberger, L., R. Robertson, K. Johansen and M Elson. 1975. Biol ogi cal engi neeri ng eval uation of the proposed pi pel ine crossi ng sites in northern Yukon Territory. Fish. and Mar. Service (Vancouver). PAC/T-75-1 1.

Stein, J. N, C.S. Jessop, T.R. Porter and K.T.J. Chang-Kue. 1973. Fi sh resources of the Mackenzie River valley. Interim Report II. Fi sh. Serv. Dept. of the Envir. 260 p.
Strawn, K. 1961. Grouth of largemouth bass fry at various temperatures. Trans. Am Fi sh. Sot. 90:334-335.
Strawn, K and J.E. Dunn. 1967. Resi stance of Texas salt- and fresh-water-marine fishes to heat death at various salinities. Texas J. Sci ence. 19:57-76.

Truett, J. 1980. Beauf ort Sea barri er island-I agoon ecol ogi cal process studi es: Fi nal report, Si mpson Lagoon. Part 7. Synthesis, I mpact Anal ysi s, and Mbnitoring Approach. Res. Unit 467. In: Envir. Assess. Al askan Cont. Shel f , Fi nal Rep. Prin. I nvest. (This Vol.). BLM/NOAA, OCSEAP. Boul der, Colo.

Tyl er, A.V. 1970. Rate of gastric emptying in young cod. J. Fi sh. Res. Board Can. 27:1177-1189.

Tyl er, A.V. 1978. Apparent influence of fluctuations in physical factors on food resource partitioni ng: a speculative overvi ew p. 164169. In: Li povsky, S. and C. Simenstad (eds). Fi sh Food Habits Studi es: Gut Shop 78. Proc. 2nd Pacific Northwest Tech. Wbrkshop, 10-13 Oct ober 1978 (Mapl e Valley, Vish.). Whsh. Sea Grant Pub. 222 p; al so Tech. Paper No. 5050, Oregon Agricultural Expt. Station.
U. S. Dept. Commerce and Dept. Interior. 1978. Envi ronnent al assessment of the Al askan continental shel f. Interim synthesis: Beaufort/Chukchi. National Oceanic and At nospheric Administration. 362 p.

Whrd, D. and P. Crai g. 1974. Catalogue of streans, I akes and coastal areas in Al aska al ong routes of the proposed gas pi pel ine from Prudhoe Bay to the Al askan/ Canadi an border. Arctic Gas Biol. Ser. 19. $\quad 381 \mathrm{p}$.

Whrd, D. and L. Peterson. 1976. A summary of water use problens reI ated to North SI ope petrol eum devel opment. Proc. 27th Al aska Science Con'f. p. 53-57.
Vell er, G, D. Norton and T. Johnson (eds.). 1978. I nterim synt hesi s: Beaufort/Chukchi. NOAA/OCSEAP Envi ronnent al Research Laboratori es. Boul der, Col orado. 362 p.

Werner, E.E., D.J. Hall, D.R. Laughl in, D.J. Wagner, L.A. Wilsmann and F.C. Funk. 1977. Habitat partitioning in a freshwater fish community. J. Fi sh. Res. Board Can. 34:360-370.

Vestin, L. 1968. The fertility of fourhorn sculpin, Myoxocephalus quadricomis (L.). Fish. Board Sweden, Inst. Freshwater Res. (Drott.) 48:66-70.
Westin, L. 1969. The node of fertilization, parental behaviour and ti me of e!g devel opnent in fourhorn sculpin, Myoxocephalus quadricomis (L.). Fi sh. Board of Sueden, Inst. Freshwater Res., Drott. Rep. 49:175-182.

Will bur, HM, D.W. Ti nkle and J.T. Collins. 1974. Envi ronnental certainty, trophic level, resource availability and life-history evol ution. Am Nat. 108:805-817.

Wilimovsky, N 1956. The utilization of fishery resources by the Arctic A askan Eski no. Occas. Pap. of the Nat. Hist. Mus. Stanford. Univ. No. 2:1-8.
Willians, E. 1969. The ecol ogy of col oni zation as seen in the zoogeography of anoline lizards on small islands. Quarterly Rev. Biol. 44:345-387.

Willians, T. and B. C. Bedford. 1974. The use of otoliths for age determination. Proceedi ngs of an Inter national Symposi um on the Agei ng of Fi sh, Uni versity of Readi ng, Engl and, 19-20 July 1973.
Villson, WJ., E.H. Buck, G.F. Pl ayer and L.W. Dryer. 1977. Winter water availability and use conflicts as rel ated to fish and wildlife in arctic Al aska--a synthesis of information. U.S. Fi sh and Wildl. Serv. Rep. No. FWS/OBS-77/06. 220 p.
Windell, J., J. Kitchen, D. Norris, J. Norris and J. Foltz. 1976. Temperature and rate of gastric evacuation by rai nbow trout, Salmo gairdneri. Trans. Aner. Fish. Sot. 105:712-717.
Wohlschlag, D.E. 1954. Grouth peculiarities of the cisco, Coregonus sardinella (Val.) in the vicinity of Point Barrow, Al aska. Stanford Ichthyol. Bull. 4:189-209.
Wohlschlag, D.E. 1956. Infornation from studies of narked fishes in the Al askan Arctic. Copeia 4:237-242.

Yole, F.Y.E. 1975. Methods of aging fish species common to rivers and I akes of the northern Yukon Territory. 1972-1974. 57 p. Chapter 5. In: Steigenberger, L.W, M.S. Elson, P.G. Bruce and Y.E. Yole (eds.). Northern Yukon Fi sheries Studi es, 1971-1974. Vol. 2. Enviro. Can. Fish. and Mar. Serv. PAC/T-75-23.

Yoshihara, H.T. 1973. Monitoring and eval uation of arctic waters with emphasis on the North Sl ope drai nages. Al aska Dept. Fi sh and Gane. Ann. Rep. 14:1-83.

Zaret, T.H. and A.S. Rand. 1971. Competition in tropical stream fishes: support for the competitive excl usi on principal. Ecol ogy. 52: 336342.

APPENDICES

APPENDI X 1

APPENDIX 1. Tag and recapture data (as of Novenber 1979) for fish recovered during this study, Si mpson Lagoon 1'377-79. Site abbreviations are listed bel ow

E-	Tag		Recapt ure		F.L. ${ }^{-}$	Tag		Recapt ure	
	Site	Date	Site	Date		Site	Date	Sfte	Date
-. LEAST CISCO									
345	MP	15-3-77	:AP	17-8-78	320	MP	14-7-78	CD	16-11-78
295	MP	7- 8-78	MP	9-8-78	290	MP	22-7-78	©	18-11-78
295	MP	7- 3-73	MP	9-8-78	315	MP	16-8-77	CD	31-10-77
310	MP	17-7-78	MP	15-8-78	315	MP	15-8-77	CD	31-10-77
280	MP	15-7-79	CD	13-10-78	300	MP	18-8-77	CD	25-11-77
315	Atp	22-7-78	CD	14-10-78	298	MP	15-8-77	8	24-10-77
340	: 1 P	19-7-78	CD	14-10-78	336	*P8	1-8-76	: 19	6- 8-77
290	M ${ }^{\text {P }}$	7- 8-78	CO	14-10-78	319	*P8	1-8-76	MP	23-3-77
330	MP	17-7-78	ccl	16-10-78	355	- P8	10-8-76	MP	23-8-77
355	MP	19-7-78	CD	16-10-78	330	*P8	31-8-76	MP	1-7-78
320	MP	22-7-78	CD	19-10-78	310	*PB	23-7-76	: 4	3-7-78
330	MP	15-7-78	©	19-10-78	330	*P8	23-7.76	MP	8-7-78
310	MP	10-7-78	CD	19-10-78	352	*P8	21-7-76	MP	S-7.78
	MP	7-78	CD	21-10-73	345	\bigcirc PB	31-7-77	MP	15-7-78
325	KP	8- 8-78	CD	23-10-78	320	*PB	17-8-76	MP	15-7-78
315	MP	8-7-78	CD	23-10-78	350	*P8	15-8-76	MP	15-7-78
325	KP	8- 8-78	CD	23-10-78	340	*PB	23-7-76	MP	15-7-78
255	HP	4-8-78	©	25-10-78	-	*P8	31-7-76	MP	17-7-78
360	MP	8-7-78	©	26-10-78		- PB	1-8-76	MP	17-7-78
3213	MP	17-7-78	CD	28-10-78	343	*P B	13-8-76	MP	19-7-78
310	MP	17-7-78	CD	313-10-78	349	*PB	24-7-77	MP	20-7-78
315	MP	15-7-78	©	30-10-78	323	*PB	25-8-76	1 P	21-7-78
310	MP	15-7-78	CD	1-11-78	350	OP B	16-8-76	MP	22-7-78
335	MP	19-7-78	CD	4-11-78	335	*PB	3-8-76	MP	1-8-78
235	AP	22-7-78	CD	6-11-78		*PB	28-7-77	${ }^{4}$	2- 8-78
330	MP	2.2. 7.78	ccl	6-11-78	320	*PB	19-7-76	MP	7- 8-78
325	MP	7-8-78	©	7-n-7a	320	*@	20-7-76	KP	8-, 8-78
330	MP	17-7-78	CD	7-11-78		*PB	10-8-76	MP	15-8-7a
335	MP	11-7-78	$C D$	7-11-78	325	- PB	23-7-77	HP	13-8-78
290	MP	15-7-78	CD	7-11-78		*P8	31-7-76	KP	15-7-78
325	MP	17-7-78	CD	11-11-78	325	*P B	25-7-77	MP	19- 8-78
320	MP	15-7-78	CD	13-11-78		*PB	7-8-77	OP	5-8-78

APPEND X 1. (cent'd).

F.L. ${ }^{+}$	Tag		Recapture		F.L.	Tag		Recapture	
	Site	Date	Site	Date		site	Date	Site	Cate
1. LEAST CISCO (Cent'd).									
310	MP	11-7-78	CD	10-78	305	MP	21-8-77	CD	19-11-79
320	MP	14-7.78	CO	10-78	315	MP	17-7-78	CD	17-11-79
310	MP	15-7-78	CD	10-78	300	MP	17-7-78	CD	17-11-79
320	MP	24-7-78	CD	10-78	350	MP	19-7-78	CD	19-11-79
320	MP	27-7-78	KP	21-7-79	350	MP.	17-7-78	CO	23-11-79
375	MP	8-7-78	KP	28-7-79	345	MP	8-7-78	CD	15-11-79
315	KP	18-7-79	KP	22-7-79	310	KP	17-7-79	CD	19-11-79
295	KP	18-7-79	KP	24-7-7 3	305	MP	18-7-79	CD	12-11-79
260	KP	22-7-79	KP	26-7-79	315	MP	28-7-79	CD	9-11-79
285	i/P	18-7-79	UP	23-7-79	340	MP	22-8-77	CD	10-11-79
320	*P8	31-7-76	MP	23-7-79	340	MP	19-7-78	CD	10-11-79
320	*PB	12-8-76	MP	23-7-79	2. \mathbf{A}	C Cl			
285	MP	22-7-78	co	14-10-79	321	MP	16-8-77	co	31-10-77
290	KP	17-7-79	CD	16-10-79	298	MP	15-8-77	co	26-10-77
322	MP	8-7-78	CD	20-10-79	365	MP	15-8-77	CD	10-11-77
310	KP	18-7-79	CD	20-10-79	308	MP	15-8-77	CD	19-11-77
325	MP	18-8-77	CD	22-10-79	350	MP	10-7-78	MP	9- 8-78
295	MP	17-7-78	CD	22-10-79		*PB	8- 8-77	MP	4- 7-78
295	MP	17-7-78	CD	22-10-79		MP	8-78	CD	13-10-78
305	MP	18-7-79	CD	22-10-79	340	MP	15-7-78	CD	14-10-78
315	MP	10-7-78	CD	23-10-79	295	MP	?4- 8-77	co	16-10-78
310	KP	8-8-78	CD	23-10-79	277	MP	17-8-77	co	16-10-78
300	MP	7- 8-78	CD	23-10-79	345	MP	22-7-78	CD	16-10-78
	MP	11-7-78	CD	23-10-79	310	MP	13-7-78	CD	16-10-78
335	MP	19-7-78	CD	26-10-79	355	MP	17-7-78	CD	17-10-78
	MP	7-78	CD	26-10-79	320	MP	15-7-78	CD	17-10-78
320	MP	19-7-79	CD	31-10-79	320	MP	20-7-78	CD	20-10-78
325	MP	7- 8-78	CD	5-11-79	315	MP	17-7-78	CD	21-10-78
290	MP	15-7-78	CD	6-11-79	320	MP	19-7-78	CD	25-10-78
325	KP	24-7-79	CD	7-11-79	345	MP	20-7-78	CD	27-10-78
340	MP	17-7-78	CD	8-11-79		MP	8-78	CD	30-10-78
335	MP	24-7-78	CD	8-11-79	340	MP	17-7-78	CD	30-10-78
3.25	MP	24-7-78	CD	8-11-79		MP	8-78	co	1-11-78

APPENDIX1. (cent'd).

F.L. ${ }^{+}$	Tag		Recapture		$\text { F.L. }{ }^{+}$	Tag		Recapture	
	Site	Date	Site	Date		Site	Date	Site	Date
2. ARCTIC CISCO (cont'd)					3. ARCTI C CHAR (cent'd)				
330	MP	11-7-78	CD	1-11-78	680	*IR	14-7-74	MP	26-8-78
	MP	8-78	CD	4-11-78		*IR	13-9-72	KP	16-8-78
	MP	8-78	CD	4-11-78	555	*IR	19-9-71	MP	19-7-78
310	MP	19-7-78	CD	'8-11-78		*P8	29-7-77	P	8-7-78
\cdots	MP	8-78	CD	10-16-78	600	*PB	31-7-76	MP	6- 8-78
	MP	8-78	CD	13-11-78	620	*PB	8- 8-76	MP	18-8-78
325	MP	17-7-78	CD	14-11-78	560	*SR	21-8-71	MP	26-8-78
$3 ? 5$	MP	20-7-78	CD	16-11-78	4. 8 R	WH	SH		
340	MP	17-7-78	CD	18-11-78	434	*PB	9-8-76	MP	30-6-78
	MP	8-78	CD	21-11-78	380	MP	1-7-78	MP	7-8-78
330	MP	15-7-78	CD	21-11-78	403	MP	3- 9-78	OP	5- 9-78
310	MP	20-7-78	CD	5-12-78	340	MP	10-7-78	CD	10-78
360	MP	14-7-78	CD	15-12-78	5. H	ЗАСК	TEFI SH		
320	MP	13-7-78	CD	10-78	400	*PB	16-7-76	MP	25-7-77
	KP	18- 8-78	GP	31-7-79	408	*PB	19-7-76	MP	5-8-77
350	MP	20-7-78	CD	22-10-79	402	*PB	2- 9-76	MP	1-7-78
295	MP	19-7-79	CD	22-10-79	425	MP	10-7-78	KP	19-7-79
355	MP	8-7-78	CD	27-10-79	6. FO	HORN	LPIN		
295	MP	17-7-78	CD	27-10-79	144	PI	24-8-77	PI	29-8-77
250	MP	18-7-79	ccl	27-10-79	207	PI	27-8-77	PI	27-8-77
300	KP	18-7-79	CD	5-11-79	129	MP	21-8-77	MP	23- 8-77
285	KP	17-7-79	CD	5-11-79	134	PI	15-8-77	PI	1-9-77
320	KP	18-7-79	CD	6-11-79	212	MP	17-8-77	PI	4- 9-77
260	KP	18-7-79	CD	19-11-79	160	MP	17-8-77	PI	6- 9-77
ARCTI C CHAR					168	MP	27-8-77	MP	16-9-77
252	MP	25-7-78	MP	19-8-78	114	MP	23-8-77	MP	28-8-77
360	MP	4- 9-78	OP	5-9-78	160	MP	23-8-77	MP	28-8-77
380	MP	19-7-78	CR	9-78	162	PI	1-9-77	PI	3-9-77
575	MP	4- 8-78	IR	9-8-79					
333	${ }^{*}$ IR	17-9-72	LI	3- 8-77					
549	* R	9- 9-72	LI	26-7-77					
300	*IR	24-8-72	MP	18-8-78					

APPENDIX 1. (cent'd),

APPENDI X 2

APPENDI X 2

A Fish Survey in the Lower Colville River Drai nage with an Anal ysis of Spawning Use by Arctic and Least Cisco

Howard I. McElderry and
Peter C. Craig
LG. Limited
2453 Beacon Avenue
Si dney, British Col unbia, Canada

Page
ABSTRACT ""I"
ACKNOVLEDGEMENTS
INTROOUCTION
STUDY AREA
METHODS AND MATERI ALS
RESUTS
DI SCUSSI ON
Coast al LakesColville River Mai nstream
Tributaries
CONCLUSI NSS
LITERATURE CI TED

Abstract

A survey was conducted for arctic and least cisco (Coregonus autumnalis and C. sardine $I Z a$) spawning grounds in the lower Colville River and nearby drai nages during fall 1978 and 1979. A total of 28 locations were sampled and several spawning habitats were identified for least cisco, incl uding deep coastal lakes, the Colville Delta and river upstream as far as Ocean Point. However, only 8 arctic cisco were collected and none was in a spawning condition. Possiblelocations of arctic cisco spawning grounds are deduced from a review of available survey data for the Colville drai nage.

ACKNOWLEDGEMENTS

The authors wish to thank L.J. Haldorson for his efforts in field work. James W Helmericks, our pilot and guide, provi ded val uable advice during the pl anning and sampling stages of the project.

I NIRODUCTI ON

Least cisco (Coregonus sardinella) and arctic cisco (C. autumnalis) are anong the nost abundant speci es in the nearshore waters of the Beaufort Sea and are the nai n target for local subsi stence and comercial fishery operations. Both species are anadromous; they range widely across the Beaufort Sea coast in summer and return to spawn and/ or overwinter in North Sl ope drai nages. Based on tagging studi es and the location of fall fishing operations, the Colville River is believed to provide winter habitat for many of the ciscoes found in summer within the petrol eum lease area near Prudhoe Bay (revi ewed by Craig and Haldorson 1980).

There is a consi derable anount of information describing these species after they enter coastal waters (see Craig and Haldorson 1980), but in view of their importance to humans, it is surprising that little is known of their fresh water habits. For example, specific areas of spawning and overwi ntering are poorly known for both species. A need to identify and characterize these areas is essential for future fisheries managenent policy. Know edge of this is also important for industrial concerns, since it is generally assuned that freshwater and anadromous fish are nost vul nerable to di st urbance during the winter period (Crai g and McCart 1974; Bendock 1976; Ward and Petersen 1976; Wilson et al. 1977).

The objectives of this study were to survey areas in the Colville River drai nage to assess their importance for spawning and overwintering ci scoes. Si nce previ ous survey work concentrated within portions of the delta (Kogl 1972; Kogl and Schell 1974) and upper reaches of the ri ver (Kogl 1972; Bendock 1979), I ocations sel ected for this study were intended to fill sone of the remaining regi onal gaps. These areas incl uded the Colville Ri ver nai nstem bet neen the del ta and Umiat, tributaries such as the Itkillik, nei ghboring drai nages of the Colville, and an array of deep coastal lakes.

STUDY AREA

The Colville River, the I argest Alaskan North Sl ope river, flows 67 kmfromits headuaters in the Brooks Range to Harrison Bay in the Beauf ort Sea. The drai nage encompasses an area of $62,160 \mathrm{~km}$ and incl udes several maj or tributaries. The Colville is uni que anong Al askan North Sl ope rivers in that it supports the largest and nost di verse (22 species) popul ation of freshwater and anadromous fishes (Table 1). Six species of whitefish are found, five of which are anadromous. Tno of these, arctic and Bering cisco, are usually allopatric in their di stribution (McPhail 1966). Four species of sal non are known to occur; however, thei popul ation sizes are snall. Resident and anadromous forns of arctic char are found, but in lesser numbers than in the snaller rivers to the east, possi bly due to the occurrence of fewer spring-fed tributaries which are important spawning and rearing areas for char (Crai g and McCart 1974).

METHODS AND MATERI ALS

The survey of cisco spawning and overwintering areas was conducted primarily in the Iower Colville Ri ver drainage, al though several nearby drai nages were al so investigated. Sampling was conducted during 20-21 August 1978, 8-9 Septenber 1978 and 4-15 Septenber 1979. Lake sampl ing was limited to lakes deeper than 2 msince shallowlakes freeze solid by Iate winter. Identification of deep lakes in the lower Colville drai nage was si mplified through the use of LANDSAT photo-inagery for band 7 , which readily di sti ngui shes ice from water. Deep lakes generally retain their ice cover longer than shallow lakes; thus, the presence of ice cover in early sumer (July) is indicative of lakes which do not freeze to the bottom during winter. Whter depths were checked with a soundi ng line when sites were visited.

Access to sampling locations was limited to lakes and stretches of river large enough to accomodate a float plane; the snallest accessibe area was about 1.5 km in length. These constraints did not limit sampling in lakes, since deep waterbodies are typically large in size. However, snall channel s in narrow meandering streans and isol ated pools in brai ded streans were not accessible.

Table 1. List of fish species collected in the Colville Ri ver drainage. Data sources: Kogl 1972; Kogl and Schell 1974; Bendock 1979; Hablett 1980; Craig and Haldorson 1980; the present study.

Common Nane	Scientific Nane	Abbrevi ation
Salmonidae		
Arctic cisco	Coregonus autumnalis	ARCS
Broad whitefish	C. nasus	BDW
Humpback whitefish	C. pidschian	HBWF
Least cisco	C. sardinelza	LSCS
Pi nk sal non	Oncorhynchus gorbuscha	PKSN
Chumslamon	O. keta	CHUM
Red sal non	O. nerka	RDSN
King sal non*	O. tshowytscha	
Round whitefish	Prosopirm cylindraceum	RDWF
Arctic char	Salvelinus alpinus	CHAR
Lake trout*	s. namaycush	
Arctic grayling	Thymallus arcticus	GRAY
Osmeri dae		
Boreal snelt	Osmerus epertanus (=mordax)	BORS
Gadi dae		
Saffron cod	Eleginus gracilis	SFCD
Burbot	Lots Zeta	BURB
Gasterosteidae		
Ni nespi ne stickl ebacks*	Pungitius pungitius	
Cottidae		
Stimy sculpin*	Cottus cognatus	
Fourhorn sculpin	Myoxocephalus quadricomis	FHSC
Umbridae		
A aska blackfish	Dallia pectoralis	BKFH
Esoci dae		
Northern pi ke*	Esox Zucius	
Cat ost omi dae		
Longnose sucker	Catostomus catostomus	LNSR
Pleuronectidae		
Arctic flounder	Liopsetta glacialis	ARFL

[^23]Fi sh were sampled by gill nets ($2 \times 50 \mathrm{~m}$) comprised of four panel s of mesh sizes 2.5, 3.8, 5.1 and 6.4 cm (stretched). Nets were usually set froma point of Iand; one end was tied to shore and the ot her anchored to the bottom Weather permitting, nets were left overnight and retrieved the following day. Laboratory anal yses incl uded neasurenents of fork length ($\pm 1.0 \mathrm{~mm}$), wei ght ($\pm 1.0 \mathrm{~g}$), gonad wei ght ($\pm 0.1 \mathrm{~g}$) and visual assessment of reproductive condition. Fish were classified as i mat ure (have never spawned), nature green or mat ure spawner (would spawn in the year of capture), or nature non-spawner (have spawned previ ously but mould not spawn in the year of capture).

RESULTS

The 28 sampling locations were located in the Colville drai nage, Fish Creek, Ikpikpuk River, and unnaned drainages (Table 2 and Fig. 1). Many of the lakes sampl ed were unnaned; for ease in reference, sone of these locations have been gi ven unoffici al nanes which are differentiated by quotes.

Most of the fish species in the Colville were represented in our collections (Table 1). Two species, red sal mon and saffron cod, have not previ ously been recorded within the drai nage. However, five species (king sal non, I ake trout, ninespine stickl ebacks, slimy sculpin and northern pike) reported to occur by Bendock (1979) were not found in this survey.

Least cisco and broad whitefish were the nost abundant species collected and were found throughout the study area (Table 3). For all I ocations combi ned, these two speci es comprised 60 and 14% of the total catch, respecti vel y. The renai ning speci es were much less abundant and found at fewer sites. Only 8 arctic cisco were taken, all from waterbodi es in the lower del ta adj acent to Harrison Bay. During 1978 surveys, three speci es of sal non ($\mathbf{p i n k}$, chum and red) were found indifferent spawning phases; no sal mon were found in the 1979 surveys.

The catch per unit effort (CPUE) at sampling sites ranged from 0 to 10 fish per gill net hour (Table 3); however, these val ues should be used with some caution, since net efficiency at different locations varied. For example, nets set in lakes generally fished more efficiently than those in streans, since noving water carries debris which eventually

ble 2	Descriptionand location of gillnet sample locations. Abbreviations used to describe fish access to waterbody: \mathbf{O} (outlet open), \mathbf{X} (outlet appears unsuit able for fish passage due to shallow intermittent, or no flow).				
$\begin{aligned} & \text { Site } \\ & -N o \end{aligned}$	Wa, terbody	nate Sanpled	Location	Drainage	Fish Access
1.	Unnaned Lake	05 Sep 79	$70^{\circ} 25^{\prime N} \mathrm{~N} 150^{\circ} 11^{\prime \prime} \mathrm{W}$	Harri son Bay	x
2.	Unnaned I ake	05 Sep 79	$70^{\circ} 22^{\prime} \mathrm{N} 150^{\circ} 30^{\prime} \mathrm{W}$	Colville Delta	x
3.	"Gas" l.ake	05 Sep 79	$70^{\circ} 18^{\prime} \mathrm{N} 150^{\circ} 30 \mathrm{~W}$	Colville Del ta	x
4.	"Blackfish" Lake	05 Sep 79	$70^{\circ} 12^{\prime} \mathrm{N} 150^{\circ} 40^{\prime} \mathrm{W}$	Colvilie Delta	0
5.	Unnaned Lake	06 Sep 79	$70^{\circ} 09^{\prime} \mathrm{N} 150^{\circ} 43^{\prime \prime W}$	Colville Delta	0
6.	"I oon" Lake	06 Sep 79	$70^{\circ} 11^{\prime \prime N} 150^{\circ} 43^{\prime} W$	Colville Delta	0, x
7.	"Sucker" Lake	06 Sep 79	$70^{\circ} 08^{\prime} \mathrm{N}$ 151 ${ }^{\circ} 03^{\prime} \mathrm{W}$	Colville Delta	$0, x$
8.	Unnaned Lake	07 Sep 79	$69^{\circ} 53^{\prime \prime} \mathrm{N} 151^{\circ} 20^{\prime \prime} \mathrm{W}$	Colville Del ta	X
9.	Colville River	07 Sep 79	$69^{\circ} 58^{\circ} \mathrm{N} 151^{\circ} 366^{\prime} \mathrm{W}$	Harrison Bay	0
10.	Colville River	07 Sep 79	$70^{\circ} 01{ }^{\prime} N 151^{\circ} 34^{\prime W}$	Harri son Bay	0
11.	Unnamed Lake	07 Sep 79	$70^{\circ} 17{ }^{\prime}$ N $150^{\circ} 52^{\prime} \mathrm{W}$	None apparent	x
12.	Colville River	08 Sep 79	$70^{\circ} 03^{\prime} \mathrm{N} 151^{\circ} 34^{\prime} \mathrm{W}$	Harrison Bay	0
13.	"Least" Lake	08 Sep 79	$70^{\circ} 23^{\prime N} \mathrm{~N} 150^{\circ} 51^{\prime} \mathrm{W}$	Harrison Bay	0
14.	"'b 1 fway" Lake	08 Sep 79	$70^{\circ} 24^{\prime} \mathrm{N} 150^{\circ} 47^{\prime} \mathrm{W}$	Harrison 8ay	0
15.	"Sculpin" Lake	08 Sep 78	$70^{\circ} 26^{\prime} \mathrm{N} 150^{\circ} 45^{\prime} \mathrm{W}$	Harri son Bay	0
16.	"Leach" Lake	09 Sep 79	$70^{\circ} 18^{\prime N} \mathrm{~N} 151^{\circ} 33^{\prime} \mathrm{W}$	Fi sh Creek	x
17.	Unnaned Lake	09 Sep 79	$70^{\circ} 18^{\prime} \mathrm{N} 151^{\circ} 37^{\prime} \mathrm{W}$	Fish Creek	x
18.	"Salt" Lake	09 Sep 79	$70^{\circ} 24^{\prime N} \mathrm{~N} 151^{\circ} 30^{\prime} \mathrm{W}$	Harrison Bay	0
19.	Unnaned Lake	09 Sep 79	$70^{\circ} 24^{\prime}$ N $150^{\circ} 45^{\prime} \mathrm{W}$	Harri son Bay	0
20.	"FI ounder" Lake	09 Sep 79	$70^{\circ} 25^{\prime} \mathrm{N} 151^{\circ} 41^{\prime} \mathrm{W}$	Colville Delta	0
21 a .	Teshekpuk Lake (west)	10 Sep 79	$70^{\circ} 39^{\prime} \mathrm{N}$ 153 ${ }^{\circ} 54{ }^{\prime} \mathrm{W}$	Ikpikpuk River	0
21b.	leshekpuk Lake (north)	10 Sep 79	7038'N 153"11'W	Ikpikpuk River	0
22.	Fish Creek	10 Sep 79	$70^{\circ} 21^{\prime N} 151^{\circ} 18^{\prime} \mathrm{W}$	Harrison Bay	0
23.	Colville River	21 Aug 78	$70^{\circ} 51^{\prime N}$ N $151^{\circ} 21^{\prime} \mathrm{W}$	Harrison Bay	0
24.	Colville River	21 Aug 78	$69^{\circ} 51{ }^{\prime} \mathrm{N} 151^{\circ} 04{ }^{\prime} \mathrm{W}$	la rri son Bay	0
25.	Colville River	21 Aug 78	$69^{\circ} 31 . \mathrm{N} 151^{\circ} 26^{\prime} \mathrm{W}$	Harri son Bay	0
26.	ltkillik River	09 Sep 78	$69^{\circ} 09^{\prime} N 150^{\circ} 53 ' \mathrm{~W}$	Colvil le River	0
27.	Itkillik River	09 Sep 78	$69^{\circ} 53^{\prime} \mathrm{N} 150^{\circ} 48^{\prime} \mathrm{W}$	Colville River	
28.	Itkillik River	09 Sep 78	$69^{\circ} 34^{\prime} \mathrm{N} 150^{\circ} 53{ }^{\prime} \mathrm{N}$	Colville River	0

Figure 1. Study area, Colville Delta (A) and lower reaches of Colville River (B).
Sample locations are indicated by collection numbers.

Table 3. Summary of fish species caught at sampling locations. Abbreviations for fish species are 1 is ted n Table 1 .

*Hets became tangled and debri s-fi 1 led.
fills the net. Teshekpuk Lake and Fish Creek CPUE's are not listed, since nets were in place for 5 days due to incl enent weather and they becane tangled and filled with debris.

A summary of lengths and maturity of fish sampled is shown in Table 4. In nost cases, only adult-sized fish were exam ned for state of gonadal development; small fish were assumed to be immature. This assumption is reasonable for anadromous fish but not necessarily for fish resident in fresh water. Duarf popul ations of least cisco and arctic char are known to occur in Beauf ort Sea drai nages (e.g., Mann 1974; Craig 1977). None of the arctic cisco captured uas judged to be nat ure- green, al though there were several mature non-spawners. Mat ure green least cisco were common throughout the sampling locations.

DI SCUSSI ON

The results of this study contribute to our understanding of least cisco spawning areas but offer "little positive information for arctic cisco. During previ ous surveys and the present study, no mature-green arctic cisco have been found in the Colville River at a time when these fish are suspected to be on their spawning grounds. In view of these findings, the question arises as to whether arctic cisco sel ect an ternate drai nage for spawning. While this possibility is not entirely unreasonable, use of different drai nages by the spawning and non-spawning segnents of arctic cisco popul ations has not been reported el sewhere (e. g., Berg 1957; Scott and Crossman 1973). Furthernore, this species is associ ated with large arctic rivers; the Colville is the I argest river on the \mathbf{A} askan North Sl ope and it contains enough arctic cisco to support both comercial and donestic fisheries in its delta. It does not seemlikely that the arctic cisco in question would use the Colville drai nage on sone occasi ons during their life cycle (overwintering) but base their reproductive potential on snaller nearby rivers. Ther ef ore, in the following sections, we revi ew all available data in order to determine the overall di stribution and potential spawning sites of arctic and least cisco in the Colville drai nage (Figs. 2 and 3).
Table 4. Length and maturity of fish collected. Numbers in parentheses indicate sample size for length measurements.
Subsamples of fish, usually adult size, were examined for reproductive condition.

$\begin{aligned} & \text { Site } \\ & \mathrm{No} . \\ & \hline \end{aligned}$	Waterbody	Species*	Number Caught	Length (mm)					
				Range	$\bar{\chi}$	$\begin{aligned} & \text { Subsample } \\ & \text { Size } \\ & \hline \end{aligned}$	$\begin{gathered} \text { MAIURITY } \\ \hline \text { : Spawners } \end{gathered}$		\% Inmature or Mature Non- 5 pawners
1.	Unnamed Lake	None	0						
2.	Unnamed Lake	GRAY	2	<150		0			
3.	"Gas" Lake	GRAY	1	150		0			
		BDWF		137		1	-	-	00
4.	"Blackfish" Lake	GRAY	21			0			
		LSCS	40	88-395	204	40	3		85
		BDWF	15	107-600	440	15	0	-	100
		RDWF	2	186-295	240	2	0	。	100
		BKFH	2						
5.	Unnamed Lake	None	0						
6.	"Loon" Lake	None	0						
7.	"Sucker" Lake	80WF	27	109-495	273	27	0	0	100
		LSCS	132	105-298	196	23	17	17	65
		ROWF	15	305-429	374	6	50	17	33
		LNSR	1	380		0			
		BURB	1	810		0			
$\begin{aligned} & 8 . \\ & 9 . \end{aligned}$	Unnamed Lake Colvilie River	None	0						
	Colvite River	GRAY	2	250-270	263 178	0			
		RDWF		250-350	296	0			
10.	Colville River	CHAR	1			0			
		GRAY	1			0			
		LSCS	4	225-284	262	4	25	50	25
11.	Unnamed Lake	BDWF	5	130-555	383	5	0	0	00
		HEWF	1	${ }^{460}$		1	0	0	00
		RDWF	3	225-405	293	3	0	33	67
		LSCS	217	105-330	184	217	0	0	100
13.	"Least" Lake	LSCS	83			83	2		
14.	"Hal fway" Lake	ARCS	1	$195{ }^{-367}$	22	1	0	0	-90
		BDWF	41	85-300	136	41	0	0	∞
		LSCS	59	87-372	191	59	0	3	97
		BORS	8	103-280	202	1	0	00	
		FHSC	1			0			
		SFCD	1			0			
15.	"Sculpin" Lake	CHAR	1	287		0			
		ARCS	2	269-307	288	$\stackrel{2}{5}$	0	0	100
		BDNF	15	202-442	366	15	0	0	100
		LSCS	19	$207-404$ $223-315$	314	19 4	${ }_{2}^{0}$	55	95 25
		FHSC	82	223-315	263		25	50	25

*See Table 1.

Figure 2. The Colville River drainage showing the locations of fish survey collections.
Those locations where arctic cisco have been collected are circled.

Figure 3. The Colville River drainage showing the locations of fish survey collections. Those locations where least cisco have been collected are circled.

It is possible that anadromous ciscoes use lakes for spawning and oveiwintering since this has been observed for least cisco in other Beauf ort Sea drai nages (Wohlschlag 1954; Mann 1974). Arctic cisco apparently spawn in rivers (Scott and Crossman 1973) but they too are known to occur in lakes near our study area (e.g., Teshekpuk Lake) (Bendock 1979). However, none of the I akes sampl ed contai ned arctic cisco in a spawning condition (nature-green). The only arctic cisco collected ($\mathrm{n}=8$) were i n bracki sh lakes adj acent to and connected with Harrison Bay, and it is likel y that these non-spawning fish were part of the same anadromous popul ation found in nearby coastal habitats. The possibility that arctic cisco had not yet entered the lakes is ruled out, since the water level s in nost outlets were low, naking themimpassable to fish. Consequently, it does not appear that lakes are used for spawning by arctic cisco.

In contrast, least cisco abound in coastal lakes. They represent the nost abundant species captured. Virtually all least cisco populations had some nature-green fish, although their percentages were low (average 8.1\% mature-green fish). Because of the scope of the study, no dttempt was made to di stinguish anadromous and non-migrating popul ations of least cisco. Sone, or perhaps nost, of the fish were probably nonmigratory. This was particularly apparent in 'Blackfish' Lake (Site No. 4) where least cisco were stout and contai ned vi sceral fat, a condi tion unusual in anadromous popul ations (Wohlschlag 1954).

Colville River Mai nstream

The middle and lower reaches of the Colville Ri ver have long been regarded as the spauni ng locations for ciscoessince almost no ciscoes have been caught as far upstream as Umiat. Evi dence supporting this stens fromfish inventory work by the \mathbf{A} aska Departnent of Fi sh and Gane. A gill net station was operated in the Umiat area fromearly June (following breakup) to early Septenber, but no arctic or least cisco were reported during the 1730 hours of gill net operation (Kogl 1972). Bendock (1970) conducted gill net and angling sampling from several

I ocations in the Colville Ri ver primarily upstream from Umiat during the summers of 1977 and 1978 and under-ice gillnetting during fall 1977 and Iate wi nter 1978. Agai n, no arctic cisco were taken fromany locations above Umiat, although three male arctic cisco, judged to be maturegreen, were taken in mid-J une 1977 at Seabee Creek near Umiat. Hablett (1980) al so lists arctic cisco captured from the nai nstem bet ween the nouths of Anaktuvuk and Chandl er Rivers. In view of the Iow number caught in the middle reaches of the Colville, it is unlikel y that their di stribution extends upriver beyond Umiat.

However, there is also little substantive evidence that arctic cisco spawn in the Colville River downstream from Umiat. While this speci es has been recorded throughout the delta regi on and upstream as far as the nouth of Itkillik River (Fig. 2), none was judged to be in spawning condition (Kogl 1972). Roguski and Winsl ow (1970) noted that three of the eight arctic cisco in their sample were potential spawners but they do not separate Colville Delta fish fromthose taken at Thetis Isl and in Harrison Bay. Farther upstream, bet ween the Itkillik River and Uniat, no arctic cisco have been taken (this study); however, nore collections should be nade in this area, since sampling has been limited.

In contrast, mature-green least cisco were collected throughout the Iower Colville. Kogl (1972) reports that $\mathbf{7 5 \%}$ of $\mathbf{1 0 0}$ least cisco taken in Colville Delta in July were judged to be potential spanners. Sone ripe and spawned- out least ciscc are al so evident in the fall commercial fishery at the Iower del ta (J.W. Helmericks, pers. comm.). Above the delta, anadromous least cisco occur as far as Ocean Point (Site No. 23) but have not been recorded farther upstream Mich like the delta sample, $\mathbf{8 6 \%}$ of the $\mathbf{7}$ least cisco taken at Ocean Poi nt were mature- green (Table 4). Least cisco were al so collected in several headuater I akes (Fig. 3), but these are probably non-migratory popul ations.

Tri butari es

Downstream from Umiat, three major tributaries (Itkillik, Anaktuvuk and Chandler rivers) are apparently suitable habitats for-fall spawning fish, and perhaps for ciscoes.

During our survey of the Itkillik, spawned- out pi nk and chum sal non were observed on the gravel banks at the upper station at Siotukoyuk Bluff (Site No. 26) and at the river mouth (Site No. 28). Bendock (1979) reported pre-spawning broad and humpback whitefish entering this river in Iate August.

A similar situation was al so noted in the Anaktuvuk River; during an aerial survey in early Oct ober 1978, a Iarge concentration of fish was observed in the middle reaches of the river adj acent to Roof Top Ri dge (Bendock 1979). Unf ort unatel y, the absence of suitablelanding space for ai rcraft prevented identification of these fish. The Anaktuvuk and Chandler Rivers are further di stingui shed as potential spawning habitats by the availability of unfrozen water in spring-fed tributaries in the middle and upper reaches. Bendock (1979) notes that fields of aufeis occur al ong these rivers through the summer, a number of other icings have been tentativel \mathbf{y} identified ($\mathbf{~ W i l}$ son et al. 1977). Kogl and Schell (1974) observed an open- water stretch of river several hundred neters in length in the Chandler River during early May 1972 about 80 km above its nouth. No evi dence of spawni ng was obtai ned, although grayling were observed and algae and insects were abundant..

While use of these tributaries for spanning by arctic cisco remains undocunented, the possibility deserves further consideration. From examination of collection records, it is concei vable that an upstream spawning migration could have taken place but was missed by various field crevs. Of those collections nade bel ow Umiat where collection dates are given, nost are clustered in two periods, June-early July and I ate August through Septenber (Fig. 4). Si nce the mid-summer gap in survey efforts coi nci des with the di sappearance of mature-green arctic cisco fromthe coastal regi ons (Craig and Haldorson 1980), the possibility of an upstreammigration during this 5 or 6 week period exists. This is not unreasonable when compared to the timing of the upstreammigration of arctic cisco in Siberian Rivers. In the Yenesie and Kolyma rivers, fish cover a di stance of $\mathbf{6 0 0} \mathbf{- 1 0 0 0} \mathrm{km}$ in about a month (Berg 1957). At this rate, the fish could ascend the Colville Delta to the Chandl er River, a di stance of $\mathbf{1 7 0} \mathbf{~ k m}$ in about one or two weeks. A di scussi on of novenent rates (Craig and Haldorson 1980, see 'Net Rate of

F gure 4. Dates of fish surveys conducted by various researchers along the Colv lle River downstream from Umiat. Dots ind cate short duration samples while bars indicate longer-term
ling orograms.

Mbvenent') al so indicates the potential for rapid upriver migrations. Another feat ure of the river collections was that, with the exception of the Itkillik River, late summer collections were taken from the l ower reaches of the rivers onl y. Thus, any fish noving above the nouth of the Anaktuvuk and Chandler rivers by this time uould pass unnoticed.

A final point is that arctic cisco populations in other rivers apparently spawn in tributaries. In the Mackenzie River, specific spawning grounds are not known. Pre-spawning fish enter the Arctic Red and Peel rivers in Iate August, and it is suspected that they al so enter the Great Bear River (Stein et al. 1973; Jessop and Lilley 1975). In Si beria, pre-spawning arctic cisco are al so found in tributaries off the nai nstream (Berg 1957).

CONCLUSI ONS

Surveys were conducted in 1978 and 1979 to locate the spawning grounds of anadromous arctic and least cisco which inhabit the Colville Ri ver. Data fromthese and previ ous surveys indicate that least cisco spawn in the lower reaches of the drai nage; fish in or nearing a spawning condition were collected in the Colville downstreamfrom Ocean Point, in the delta and in several coastal lakes. Locations of arctic cisco spawning sites remai n unknown. Based on the available inf ornation, it appears unl i kel y that this species spanns in coastal lakes, the Colville Delta or areas above Umiat. If arctic cisco do indeed spann in this drai nage, spawni ng may occur in large tributaries or the mainstem bet ween the del ta and Umiat.

LI TERATURE CI TED

Bendock, T. 1976. De-watering effects of industrial devel opment on arctic fish stocks. Al aska Dept. Fi sh and Gane, Report to Al aska Board of Fi sheries. 13 p.

Bendock, T. 1979. I nventory and catal oging of arctic area waters, Al aska Dept. Fi sh and Gane. Annual Report 20:1-64.

Berg, L.S. 1957. Omul--Coregonus autumalis (Pallas). In: Commercial Fi shes of the USSR. Mbscow 1949. 789 p. Fi sh. Res. Board Can., Translation Series, No. 110, 4 p.

Crai g, P.C. 1977. Ecol ogi cal studi es of anadromous and resi dent popuI ations of arctic char in the Canning Ri ver drai nage and adj acent coastal waters of the Beaufort Sea, Alaska. Arctic Gas Biol. Rep. Ser. 41(1):176 p.

Craig, P.C. and L.J. Haldorson. 1980. Beauf ort Sea barrier islandI agoon ecol ogi cal process studi es: Fi nal report, Si mpson Lagoon. Part 4. Fish. Res. Unit 467. In: Envi ron. Assess. Al askan Cont. Shel f, Fi nal Rep. Prin. Invest. (Thi s Vol.). BLM NOAA, OCSEAP. Boul der, Colo.

Craig, P.C. and P. McCart. 1974. Fall spawning and overwintering area of fi sh popul ations al ong routes of proposed pipeline bet neen Prudhoe Bay and the Mackenzie Delta, 1972-1973. Biol. Rep. Ser. 15(3):37 p.

Furniss, R.A. 1975. I nventory and catal oging of arctic area waters. Al aska Dept. Fi sh and Gane. Annual Report 16:1-47.

Hablett, T. 1980. Fi sh inventories conducted within the National Petrol eum Reserve on the North SI ope of Al aska, 1977-78. Report by U.S. Fish \& Wildife for Bureau Land Managenent. 89 p.

Jessop, C. S. . and J.W. Lilley. 1975. An eval uation of the fish resources of the Mackenzie Ri ver valley based on 1974 data. Envi ronnent Canada, Fi sheri es and Mari ne Servi ce, Vinni peg, Mani toba. Tech. Rep. Nb. CEN -T-75-6. 97 p.
$\operatorname{Kog} 1$, D. 1972. Monitoring and eval uation of arctic waters with emphasis on the North Sl ope drai nages: Colville River study. Al aska Dept. Fi sh and Gane. Annu. Rep. 12:23-61.

Kogl, D. and D. Schell. 1974. Colville Ri ver delta fisheri es research. P. 483-504 In: Environmental studies of an arctic esturai ne sys tern. U. S. Envi ron. Protect. Agency, Ecol. Res. Seri es EPA 660/3-75-026.

Mann, G.J. 1974. Life hi story types of the least cisco (Coregonus sardinella Valenciennes) in the Yukon Territory, North Sl ope, and eastern Mackenzie River delta drai nages. Arctic Gas Biol. Rep. Ser. 18(3). 160 p.

McPhail, J.D. 1966. The Coregonus autumnatis complex in Al aska and northwestern Canada. J. Fi sh. Res. Board Can. 23:141-148.

Roguski, E. and P. Winsl ow 1970. Mbnitoring and eval uation of arctic waters with emphasi s on North Sl ope drai nages. Al aska Dept. Fi sh and Gane. Ann. Rep. 11:179-301.

Scott, W.B. and E.J. Corssman. 1973. Freshuater fishes of Canada. Fi sh. Res. Board Can. Bull. 184. 966 p.

Stein, J.N., C.S.J essop, T.R. Porter and K.T.J. Chang-kue. 1973. An eval uation of the fish resources of the Mackenzie River valley as rel at ed to pi peline devel opment. Vol. 1. Dept. of the Envi ronnent, Fi sheri es Service, Wínni peg, Manitoba. 121 p.

Khrd, D. and L. Peterson. 1976. A summary of water use probl ens reI ated to North Sl ope petrol eum devel opnent. P. 53-57 In: Proc. 27th Al aska Sci. Conf.

WI son, WJ., E.H. Buck, G.F. Pl ayer and W.D. Dreyer. 1977. Winter water availability and use conflicts as rel ated to fish and wildlife in arctic Alaska-a synthesis of information. U.S. Fish Wildl. Serv. Rep. No. FWS/OBS-77/06. 220 p.

Wohlschlag, D.E. 1954. Grouth peculiarities of the cisco, Coregonus sardinella in the vicinity of Pt. Barrow, Al aska. Stanford Ichthyol. Bul I. 4:189-209.

[^0]: * Vol une 8: Bi ol ogi cal Studies is the continuation of this Final Report and contains the following sections:

[^1]: *Estimated order of nagnitude of numbers of birds entering the Beauf ort Sea annual ly (Thompson and Person 1963; Johnson 1971; Bellrose 1976; Timson 1976).

[^2]: *Visibility <3 km during this watch.

[^3]: *Al such val ues in this report are neans \pm standard devi ations.

[^4]: a Includes migrants seen at all di stances from shore during systenatic watches. Watches when the visibility was less than $\mathbf{3} \mathbf{~ k m}$ were excl uded in 1975-78. .
 ${ }^{\text {b Yukon data }}$ for 1975 were observations from Komakuk and Cl arence Lagoon (Johnson et al. 1975; Richardson et al. 1975); some birds were probably counted twice, once at each site. Yukon data for 1972 were observations fromthe base of Nunaluk Spit, 14 km east of Komakuk (Gollop and Davis 1974).
 ${ }^{C}$ Data for indi vi dual species of eiders and scoters not available for 1972.
 'In addition to these totals, during 113.1 h of observations in the $\mathbf{1 6 - 2 5}$ June 1975 peri od a total of 571 scoters (4 white-winged, 112 surf, 455 uni dentified) were seen flying west and 73 scoters (67 surf, 4 black, 2 uni dentified) were seen flying east. No scoters were seen bef ore 26 June in 1978.

[^5]: When ei ders were identified to species, the aens: y of identified eiders is gi ven in parentheses beiow the total density
 bNo scoters see ${ }_{n}$ during the other 3 surveys $\boldsymbol{i}_{\text {isted }}$ ader eiders. All scoters seen during aerial surveys in July 1978 were surf scoters. Those seen on 5 July 1977 were uni dentified scoters.

[^6]: *Thi s unpubl i shed report incl udes maps of si ghtings for some speci es not napped in the publ ished version.

[^7]: *Depressions in the gravel or sand which desi gnate an early stage of nest est abl i shment.
 ${ }^{\dagger}$ Nests with down present and/ or with missing eggs, broken eggs or egg shells present.

[^8]: *O1dsquaws molt al nost continuously fromearly spring to late fall (Salomonsen 19، 1; Pal ner 1976). Our use of the term'Mbting' or 'Molt Period' refers to the period when the birds have lost their wing feathers and are flight" ess.

[^9]: *A I ol dsquaus recorded as ' \mathbf{O} - Transect' ($<200 \mathrm{~m}$ of each side of the aircraft), regardless of the habitat with which they were associ ated, have been incl uded in these density cal cul ations.
 ${ }^{\text {t }}$ Densities for transects 2 and 4 in 1977 may be l ower than those that may be cal culated from numbers presented in Table20. In Table 21 the proportion of the total area surveyed, which has been used in density calculations, incl udes only lagoon habitats, and birds used in density cal cul ations incl ude onl y those that were associ ated with lagoon rather than terrestrial habitats.

[^10]: - This imature nale was collected from a brood of five accompani ed by a flightless female.
 **All five of these female oldsquaws were flightless and werecollected from a flock of 75-80filightless oldsquaws (nostly femal es) on a large tundralake approximately 24 km inl and from Stmpson Lagoon.

[^11]: *Thi s table incl udes bi rds recorded both on- and off-transect. Concentrations in the Simoson Lagoon study area are described in the text.

[^12]: *Beach transects were 1 km long $\mathbf{x} 20 \mathrm{~m}$ wide (10 m either side of the shoreline) $=0.02 \mathrm{~km}^{2}$. Onl y those birds seen on transect have been included in this table.
 ${ }^{\dagger}$ Parentheses encl ose the mean densities of all phalaropes (red, northern and uni dentified phalaropes) recorded during each survey.

[^13]: *The devi ce used to sample the epi benthos during 1977 was a snal I ($0.25 \mathrm{~m}^{\text {i }}$) circular pl ankton net. Thi s net sampled while bei ng lowered to and retri eved fromthe epi bent hos, and theref ore nay have collected sone copepods fromthe surface and mid-uater I ayers of the I agoon.

[^14]: *From Craig and Haldorson, this vol une, and Griffiths and Dillinger, this vol ume.

[^15]: *Incorrectly identified as Sarsiaprinceps in Johnson (1978).

[^16]: *Unavailable food was not included in this cal culation.

[^17]: *Sensi ti ve/ vul nerable.
 **Very sensitivelvery vul nerable.
 0**Critically sensiti ve/critically vul nerable.
 ${ }^{\dagger}$ Yy have appl i ed the term'sensi tive' to barri er i sland-I agoon habi tats that may pe easily aff ected by deyel opment-rel ated activiti es (primarily oil and gas devel opnent activities) and we have applied the term 'vul nerable' to speci es of birds (in sone cases whol e populations) that may be especially susceptible to devel opment-related activities.
 ${ }^{H}$ He have incl uded snow geese in thi s matrix because of thei ir vul nerable position at the nesting colony at howe island
 He have incl uded snow geese in thi satrix because of their vul nerable position at the nesting colony at howe isl

[^18]: *No broad or humpback whitefish were caught at Pingok Island in 1977.

[^19]: *Number in parentheses indi cate fish tagged by ADF\&G and recaptured in Si mpson Lagoon.

[^20]: * From Griffiths and Dillinger (1980) for bi val ves excl udi ng shells.
 ** Recal cul at ed from Crane (1974) for ash-free dry wei ght of worns, tunicates 'and bi val ves excl udi ng shells; deep I agoon stations, Aug. 1971.
 ***From Griffiths and Dillinger (1980); deep Iagoon stations, August 1977 and August 1978.

[^21]: *Comon (base 10) Iogarithns used here and el sewhere in this report.

[^22]: *rel ativel y uncommon except off nouths of Iarge rivers.

[^23]: *I ndi cates those not found in this study but reported by Bendock (1979).

