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Glossary 

 

 

4 The Motus Wildlife Tracking System: www.motus.org.  

Term Explanation 
Avoidance Behavior in which birds choose to avoid coming into proximity with an offshore wind turbine. Can 

occur at a range of spatial scales; the avoidance metric commonly used in collision risk models 
typically incorporates meso- to micro-avoidance (e.g., avoidance of turbines within a wind farm or 
avoidance of turbine blades when in their immediate proximity), but does not include macro-
avoidance, in which birds may choose to avoid entering a wind farm altogether. 
 

Collision risk 
model 

A model that predicts risk of avian collisions with offshore wind turbines. Most collision risk models 
combine an estimate of the number of birds available to collide with a turbine with the probability of 
a collision occurring; as reviewed in Masden and Cook (2016), this is “generally based on the 
probability of a turbine blade occupying the same space as the bird during the time that the bird 
takes to pass through the rotor.” Collision risk models thus typically include some type of bird 
density value, as well as a variety of parameters describing both bird behavior and turbine 
characteristics. The earliest collision risk model was developed in the 1980’s; more recent iterations 
for offshore use are often based on the Band (2012) model. 
 

Cumulative use Cumulative daily occupancy (per month): the proportion of individuals in a grid cell each day, 
summed across days within each month. 
 

Cumulative 
impacts   

Effects of multiple offshore wind farms on the same species or population, including effects 
throughout the lifespan of the wind farms. In the context of this report, cumulative risk of collisions is 
assumed to be additive across offshore wind farms. 
 

Monthly 
population size 

Estimate for each grid cell of the number of birds present in that grid cell during that month. Derived 
by multiplying the estimated cumulative use (i.e., daily occupancy) for the grid cell by the monthly 
regional population size. 
 

Effects 
determination 

Assessment by federal agencies as to whether an action affects species listed under the U.S. 
Endangered Species Act (ESA; 16 U.S.C. §§1531-1544). Typical findings are “no effect”, “not likely 
to adversely affect”, or “likely to adversely affect”. 
 

Exposed 
population 

Number of individuals estimated to be present in a grid cell and transit a wind turbine (and thus are 
available to collide with the turbine blades). Estimated from the cumulative daily population size 
estimate for a grid cell (by month), as well as factors such as the number and size of turbines. The 
“exposed population” can be larger than the monthly regional population size if enough birds are 
estimated to be exposed to collision risk on multiple days within that month.  

Flight height 
model 

Model for estimating altitude of birds based on flight height data collected from 1) GPS and PTT 
satellite tags (for locations over water and >50 m from the nearest coastline), or 2) Motus position 
estimates from previous work (Loring et al. 2019) for birds located over federal waters (e.g., >3 
miles from shore) that were moving quickly enough to be flying (based on timing of sequential 
locations). 
 

Hatch year   Bird born within the same calendar year as the time period of interest. Birds born in previous 
calendar years are “after hatch year” individuals. 
 

Morphometrics Body measurements of birds, such as wing length. 
 

Motus Wildlife 
Tracking System 

Also “Motus”. An international automated radio telemetry network on coordinated frequencies 
(Taylor et al. 2017)4. Automated radio telemetry systems consist of radio tags (small transmitters 

http://www.motus.org/
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Term Explanation 
attached to birds, bats, or insects) and stations (receivers with antennas that record signals from 
“tagged” organisms). When tagged animals are within detection range of a station, the receiver 
automatically records transmitter ID number, date, time stamp, antenna (defined by monitoring 
station and bearing), and signal strength value of each detection. All Motus data currently used in 
SCRAM were obtained from previous studies (Loring et al. 2018; Loring et al. 2019; Loring et al. 
2021). 
 

Movement model A correlated random walk (CRW) model that uses either Motus or satellite-based tracking data to 
estimate two-dimensional (X,Y) position estimates for tagged animals. These models have two 
major components: a correlated random walk process (movement) model and an observation 
model that describes measurement error. Used to estimate cumulative use (i.e., daily occupancy) 
rates. 
 

Occupancy Presence of a species in a grid cell. Estimated in this report by the proportion of individuals found 
within a grid cell per day or month. Cumulative use (i.e., daily occupancy) rates per month within 
each grid cell are calculated by summing the proportion of individuals in a grid cell each day. This is 
multiplied by the monthly regional population size to predict monthly population use for each grid 
cell. Probability of daily occupancy within all grid cells across the study area sums to one.   
 

Regional 
population size 

Also “monthly regional population size”. The number of individuals of a given species that are 
estimated to be present within the study area during a given month of the annual cycle. 

Sampled 
population 

Also "tagged population". Subpopulation of birds that were tagged with transmitters and that 
contributed data to the development of movement and flight height models. 
 

Station Also “tracking station”. Motus equipment is designed to detect animals tagged with coded radio 
transmitters. Detection range of stations varies with the height of the receiving antennas (meters 
above sea level: m asl), altitude of the tagged animal, and the signal gain properties of the 
transmitter and receiver, among other factors. Most land-based stations included in this study had a 
12.2-m radio antenna mast supporting six 9-element (3.3 m) Yagi antennas, which were mounted in 
a radial configuration at 60° intervals and connected via coaxial cables to a receiving unit (Lotek 
SRX).  
 

Telemetry array Network of Motus stations used to detect tagged animals. 
 

Transit Movement of an animal through the rotor-swept zone of a turbine. In the current version of SCRAM, 
can occur no more than once per day per individual. 
 

Transmitters   Also “tags”. Transmitters used in this study included 0.67 g and 1.1-g Motus models  (brand name 
“nanotag”; Lotek Wireless, Ontario, Canada). All Motus transmitters were programmed to emit 
signals at fixed burst intervals on a shared frequency of 166.380 MHz from activation through the 
end of battery life. Burst intervals were unique to each transmitter and ranged from 4 to 6 s. GPS 
tags used in this study were 4.1 g Lotek PinPoint GPS-Argos 75 tags; Argos PTT tags were 2 g 
Lotek Sunbird Solar Argos Transmitters and 2 g Microwave Telemetry Solar Satellite Transmitters 
(Microwave Telemetry, Columbia, MD, USA). 
 

Wintering 
population 

Number of birds estimated to be present on the non-breeding grounds during the boreal winter. Can 
include specific subpopulations of birds that winter in different locations. For the three species 
discussed in this report, wintering grounds range from the southeastern United States to southern 
South America. 
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1 Introduction 
This document describes the products of Phase 2 of funding under the Bureau of Ocean Energy 
Management (BOEM) Contract No. M19PG00023, “Transparent modeling of collision risk for three 
federally listed bird species in relation to offshore wind energy development” (Adams et al. 2022). This 
report accompanies release of an update to the SCRAM model (Stochastic Collision Risk Assessment for 
Movement), a collision risk decision support tool for the Northeastern Continental Shelf Ecosystem 
(NES). SCRAM includes (1) a stochastic collision risk model, which uses avian movement data from 
telemetry studies to estimate risk of bird collisions with offshore wind turbines planned for construction 
in the U.S. Atlantic, as well as (2) a web application to implement the model. SCRAM currently estimates 
collision risk for three federally protected bird species: the roseate tern (Sterna dougallii), piping plover 
(Charadrius melodus), and red knot (Calidris canutus rufa).  

SCRAM Version 2, released in 2024, includes a range of updates from the version of the model and web 
application that was discussed in Adams et al. (2022; Version 1.0.3). All changes from the initial release 
of Version 1.0.3 to Version 2.1.6 are discussed in this report. Further updates to the SCRAM web 
application from the time of this report publication will be documented on the project GitHub page5.  

2 SCRAM 2 Updates 
The major components of SCRAM are outlined in Figure 1 (below), including: 

• Data inputs, such as movement data, species data, and wind turbine data, 
• Three main models, including movement models, flight height models, and stochastic collision 

risk models, and  
• The open-source web application that implements the models and produces fully documented 

estimates of collision risk based on data inputs.  

SCRAM 2 includes changes to most of these components, summarized in Table 1, along with an 
assessment of the estimated impact of each change on resulting collision risk estimates. Additional details 
for each update are provided in the text below. Additional summarization of key changes is included in 
Appendix A (Frequently Asked Questions for SCRAM 2). 

 

 

5 See https://github.com/Biodiversity-ResearchInstitute/SCRAM2. The updated SCRAM web application, model 
code, and user manual are available at https://briloon.shinyapps.io/SCRAM2/. All study products are also available 
via https://briwildlife.org/SCRAM/.  

https://github.com/Biodiversity-ResearchInstitute/SCRAM2
https://briwildlife.org/SCRAM/
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Figure 1. Stochastic Collision Risk Assessment for Movement (SCRAM) project components 
Data inputs are shown in blue; models in green; and the web application for implementing the collision risk model in 
orange. 

Table 1. Summary of changes implemented in SCRAM 2 along with their expected influence on 
resulting estimates of collision risk. 

Component Change Implemented in SCRAM 2 
Influence on 

Collision Risk 
Estimates 

Data inputs 

Increased the amount of Motus tracking data included for Red Knots and 
additional data filtering applied to Red Knots, Piping Plovers, and Roseate 
Terns. SCRAM 1.0.3 used Motus tracking data for the three focal bird species 
that were collected in 2015-2017, as described in Loring et al. (2018) and Loring 
et al. (2019). SCRAM 2 incorporated additional Motus data, as described in 
Loring et al. (2021). Overall, the sample size of Red Knots increased in Loring et 
al. (2021), due to the inclusion of birds tagged by new projects. However, Loring 
et al. (2021) also excluded individuals with “ambiguous” detections that had not 
been identified in previous quality assurance and quality control procedures. 
SCRAM 2 also applied a more conservative filtering method for Piping Plovers 
and Roseate Terns to retain detections for each individual with greater than 
three consecutive bursts (within one minute of each other) per site (SCRAM 
1.0.3 did not calculate burst length by site). 

↑↓ 

Data inputs 

For Red Knots, SCRAM 2 incorporated GPS and PTT satellite-based data in 
addition to Motus data. Red Knot occupancy models developed using GPS and 
Argos data were not constrained geographically as with Motus data used in 
SCRAM (see changes to Movement Models, below), and thus provided 
occupancy estimates for the entire NES. 

↑↓ 

Data inputs 
Updated avoidance rates used in collision risk models based on values from 
Cook (2021) and Ozsanlav-Harris et al. (2023). Previous avoidance rates were 
based solely on values from the Cook report and were lower than the averaged 
values from the two reports included in SCRAM 2. 

↓ 

Data inputs 

Updated monthly regional population size estimates (e.g., the populations of 
individual birds that are estimated to be present in the study area and thus 
potentially available to collide with turbines) from U.S. Fish and Wildlife Service. 
Generally, these values decreased from SCRAM 1.0.3 due to refined monthly 
estimates of when animals are expected to be present in the NES. 

↓ 

Data inputs 

Changed the required user-provided parameters. This update includes requiring 
average turbine rotational speed in rotations per minute (RPM), rather than 
estimating this value based on previously required wind speed data. This update 
aligned with the original Band (2012) inputs used in the current stochLAB 
stochCRM implementation (see changes to Stochastic Collision Risk Models, 
below). SCRAM 2 determined mean annual turbine rotational speed based only 
on the time that the turbine was expected to be operational, since non-
operational time (due to maintenance downtime and low wind speeds) was 
accounted for elsewhere in the model. 

N/A 
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Component Change Implemented in SCRAM 2 
Influence on 

Collision Risk 
Estimates 

Movement 
Models 

Updated the structure of the Motus movement models: addressed changes to 
the tracking datasets (see changes to Data Inputs, above), improved model fit, 
and simplified the model structure. The previous two-state models were 
converted to one-state models. Therefore, staging movements were no longer 
distinguishable from migratory movements.  The SCRAM 2 model assumed 
equal risk across all movements, which smoothed out predictions, such that 
changes in the highest highs and lowest lows from SCRAM 1.0.3 tended 
towards the median in SCRAM 2. 

↑↓ 

Movement 
Models 

Constrained the geographic region in which SCRAM occupancy estimates were 
used to inform collision risk models for the models that were based on Motus 
data only. Geographic constraints were based on the latitudinal range of actively 
maintained Motus stations during the period of the Motus tracking study (Loring 
et al. 2018; Loring et al. 2019; Loring et al. 2021). In geographic regions 
(offshore areas located approximately from Massachusetts to Virginia) where 
both Motus-based and GPS/Argos-based occupancy estimates were available 
for Red Knots, SCRAM 2 equally weighted the two datasets to produce a single 
ensemble model of cumulative use (i.e., daily occupancy). Movement models for 
Roseate Terns and Piping Plovers remained purely based on Motus data due to 
a lack of sufficient GPS/Argos tracking data for these species. 

N/A 

Flight Height 
Models 

Developed new flight height models for Red Knots using altitude estimates 
derived from birds tagged with GPS transmitters. Flight height models for Piping 
Plovers and Roseate Terns remained based on estimates of altitude from Motus 
data, due to a lack of sufficient GPS tracking data for these species. 

↑↓ 

Stochastic 
Collision Risk 
Model 

Updated the model structure to fully align with stochLAB, the most up to date 
collision risk modeling environment developed as an R package by Caneco et al. 
(2022). This updated the R implementation of Masden (2015) and included 
several relatively minor bug fixes as well as a substantial computational speed 
improvement. The calculations in this package were tested against outputs from 
Band (2012) to confirm computational equivalence (e.g., by comparing the 
deterministic answer produced by the original Band spreadsheet to the 
stochastic estimates produced by stochLAB). 

↓ 

Stochastic 
Collision Risk 
Model 

Added the ability to estimate stochastic collision risk for migratory birds as laid 
out in Band (2012) Annex 6. The underlying code calculated migratory flux by 
dividing the migratory population estimate, for the migratory corridor at the 
latitude of the wind farm, by the width (km) of that corridor. This estimate of flux 
assumed a uniform distribution of birds along the migratory front. Migratory front 
width was estimated throughout the range and varied by latitude. 

N/A 

Web 
Application 

Updated the options available to users. Removed the sensitivity analysis button 
and output, as it was not being utilized, and a formal sensitivity analysis was 
planned for a later date. Since the improvements in computational efficiency 
(see changes to Stochastic Collision Risk Model, above) greatly reduced the 
time for the model to complete, the “cancel model” button was removed and the 
number of model iterations was increased. SCRAM 2 also changed the name of 
Model Option 1 to Model Option 2 to match the nomenclature used in Band 
(2012). 

N/A 

Web 
Application 

Updated the user interface to allow the Band (2012) Annex 6 model to be run via 
the SCRAM web application. This allowed Band and SCRAM 2 collision risk 
modeling estimates to be produced using the same data inputs (e.g., regional 
population size, wind project data, etc.), and for similar PDF reports to be 
developed for each type of collision risk model. Note: Band and SCRAM have 
different spatial extents of their predictions and estimate collisions for different 
months. Care should be used when comparing results. 

N/A 
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2.1 Input Data 
Four sources of data inform SCRAM. Movement modeling relies on (1) animal telemetry data, whereas 
collision risk modeling relies on (2) morphometrics and behavioral (e.g., flight height) data, (3) 
population size data, and (4) wind turbine input data. For the movement modeling, SCRAM 2 used 
updated and new telemetry data for Red Knots (see Table 1 and “Telemetry Data,” below). Most 
morphometrics and behavior data remained the same from SCRAM 1.0.3 to SCRAM 2, with the 
exception of avoidance rates and flight heights (which differed only for Red Knots; see “Morphometrics 
and Behavioral Data,” below). Regional population size was updated for all species (see “Population Size 
Data” below), and wind turbine input data also changed to accommodate turbine rotor speed rather than 
wind speed (see “Wind Turbine Input Data,” below).  

2.1.1 Telemetry Data 

2.1.1.1 Automated Radio Telemetry 

SCRAM 2 movement models were fit to the best available individual tracking data for the three study 
species at the time of model development. All three species were tracked using coordinated automated 
radio telemetry data from the Motus Wildlife Tracking System (‘Motus’, Taylor et al. 2017). SCRAM 
1.0.3 used Motus tracking data for the three focal bird species that were collected in 2015-2017, as 
described in Loring et al. (2018, 2019). SCRAM 2 incorporated additional Motus data, as described in 
Loring et al. (2021). Loring et al. (2021) also excluded individuals with “ambiguous” detections that had 
not been identified in previous QA/QC procedures. That report noted that “Ambiguous detections occur 
when multiple tags with the same properties (ID code, burst interval) are active in the Motus network at 
the same time and cannot be distinguished from each other. Through this process we found that some 
receiving stations were consistently associated with high rates of false positives during certain time 
periods, and we therefore removed all detections at those stations during those periods” (Loring et al. 
2021). Altogether, and including quality assurance and quality control (QA/QC) procedures outlined 
below (in this section), the introduction of new data resulted in an increase of sample size from 125 
(SCRAM 1.0.3) to 240 (SCRAM 2) Red Knots included in the movement models. Piping Plover and 
Roseate Tern sample sizes remained at 107 and 134, respectively (these sample sizes were stated 
incorrectly in Adams et al. 2022). 

SCRAM 2 also refined the spatial and temporal extent of the Motus data to avoid incomplete sampling of 
northbound movements. Red Knots tagged in Delaware Bay, New Jersey, during their spring stopover 
(e.g., mid-migration), had already crossed the Atlantic Outer Continental Shelf. Following Loring et al 
(2021), we included only red knots detected after 21 June, which restricted movements to fall 
(southbound) migration. All detections from these individuals were included in the movement modeling 
to derive occupancy estimates across the NES. However, only occupancy predictions within a smaller 
study area were used to estimate collision risk; this study area was based on Motus station maintenance 
activity throughout the study period (2015–2017; Loring et al. 2018, 2019; see “Calculation of Habitat 
Use,” below). 

For the remaining Motus data, we developed a QA/QC procedure to verify correct processing of the 
detections. During this process, we designed alternative methods of data filtering and computation to 
compare to SCRAM 1.0.3. We found that the false positive filter for piping plovers and roseate terns 
distinguished false positive detections across sites, rather than within sites, as originally intended in 
SCRAM 1.0.3 ('false_pos_filter.R' , 'remove_false_pos.R'). It calculated ‘burst length’ as the number of 
detections for each individual within one minute of each other, across multiple sites. This was 
inconsistent with the conventional definition of ‘run length’: “the number of continuous detections of a 
unique code by a receiver” (Taylor et al. 2017). Therefore, we replaced this function ('false_pos_filter.R') 
with a calculation of burst length using the number of continuous detections for each individual per site, 
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within one minute of each other. We retained only detections with greater than three consecutive bursts, 
as in SCRAM 1.0.3 ('remove_false_pos.R'; Adams et al. 2022). The correction to the false positive filter 
resulted in more data being removed during the SCRAM 2 filtering process, particularly for roseate terns. 
However, because this filter applied only to near-simultaneous detections among multiple receivers 
(within one minute of each other), it minimally impacted the results. 

Our QA/QC process also improved computing time in data processing. For example, following false 
positive data filtering, we removed duplicate bursts by retaining only the first detection within a time step 
(consistent with SCRAM 1.0.3). We implemented a method that generated identical results to the original 
calculations while greatly reducing computing time, which we used to replace the original function 
('remove_dup_bursts.R'). We also corrected the function that calculated the number of hours or days since 
the first record of the data frame (serial_time.R). The hourly calculations erroneously assigned 21 days to 
January rather than 31. This correction had no effect on the daily models (as implemented in SCRAM 
1.0.3). We used alternative methods that accounted for the leap year (2016) to corroborate the hourly 
results of the corrected function (serial_time.R). All adjustments to SCRAM 1.0.3 are accessible in the 
SCRAM 2 GitHub repository6. 

2.1.1.2 Satellite Telemetry 

In addition to updated Motus data, new global positioning system (GPS) and Platform Transmitter 
Terminal (PTT) satellite tag data for red knots were incorporated into SCRAM 2. Between 13 August 
2020 and 26 August 2023, a total of 239 GPS and satellite tracking devices were deployed on red knots 
across six research projects (see Appendix B for full tag deployment information). This included 178 GPS 
tags (4.1 g Lotek PinPoint GPS-Argos 75) and 61 Argos PTT tags (2 g Lotek Sunbirds and 2 g 
Microwave Telemetry solar satellite transmitters; Table 2). These tags were primarily deployed during 
fall staging in coastal regions of Massachusetts, New Jersey, and Delaware, with a small proportion of 
tags deployed during spring staging in these regions or on wintering grounds in South America. A subset 
of these tags (primarily those tagged during spring staging) did not last through fall migration and 
therefore only retained data on interior movements towards breeding grounds in the United States and 
Canada. These were therefore excluded from analysis for the purposes of calculating cumulative 
occupancy in the NES. This included all GPS tags deployed from the Environment and Climate Change 
Canada dataset, as well as a subset from the Massachusetts Migration study (Table 2; Appendix C).  

The satellite-based telemetry data was used in the movement models and flight height models. Because 
spring migration through the area of interest was only available from 6 PTT tags, movement modeling 
focused on fall migration only (with data from July 22 – Dec 16). This was consistent with the Motus 
data, which were only included in movement modeling for fall staging and migratory periods. The refined 
GPS-PTT dataset included all GPS data from fall deployments (earliest fall deployment August 13). In 
the case of Argos PTT tags, data included in modeling was visually determined per individual based on 
location and timing (see Figure B-1). Initial overland movement from Arctic Canada breeding locations to 
coastal staging sites occurred in July-August, with fall staging and migratory movement to central and 
South America from July 22 to December 16.  

To maximize sample size, both spring and fall GPS data (May–December) were used in flight height 
modeling (see “Flight Height Modeling for Red Knots,” below). These data were not used to update the 
flight speed values for Red Knots (see “Morphometrics and Behavioral Data,” above), because the duty 

 

 

6 See the SCRAM 2 GitHub repository: https://github.com/Biodiversity-ResearchInstitute/SCRAM2 

https://github.com/Biodiversity-ResearchInstitute/SCRAM2
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cycles of the satellite tracking data varied (up to 24 hours), and this was judged to be too low a resolution 
to accurately estimate flight speeds based on these data. 

Table 2. Summary of GPS and PTT satellite tags deployed on Red Knots from August 2020-August 
2023 and included in movement modeling for SCRAM. 
Additional project and deployment details are included in Appendix B. 

- GPS Tags GPS Tags PTT Tags PTT Tags 

Project Deployed Included Deployed Included 

Atlantic Shores Offshore Wind 61  37  -  -  

Coastal Virgina Offshore Wind  -  -  15  15  

Environment and Climate Change 
Canada  

30  0  46  10  

Massachusetts Migration  10  6  -  -  

Ocean Wind 1 61  38  -  -  

USFWS Spring Migration  16  0  -  -  

TOTAL  178  81  61  25  

 

GPS and PTT tracking data were processed and cleaned using the following steps:  

• Removed data prior to tag deployment as this represented tag testing data and not animal 
movement information.  

• Removed locations marked as “Failed” in the error-detecting code, the cyclic redundancy check 
(CRC) by Lotek.  

• Removed duplicate locations.  
• Removed locations with a date in the future (> December 2023) as impossible given the timing of 

data retrieval.  
• Removed impossible locations based on latitude and longitude (i.e. latitude must be between –90 

and 90 degrees and longitude between –180 and 180 degrees).  
• Implemented a speed filter using the R function ddfilter from the SDLfilter package (Shimada et 

al. 2012) that removed points if movement speed between subsequent locations was >100 
km/hour.  

• Implemented a distance filter to remove data from tags that were suspected to have fallen off. For 
this we removed tags (n=8) for individuals that did not move >150 m over the full tag deployment 
period, as this was deemed unrealistic for Red Knot movements. 

This filtering resulted in the use of 81 GPS and 25 PTT tags included in movement modeling across six 
projects (Figure 2). 



 

7 

 

 

Atlantic Shores CVOW ECCC

MA Migration Ocean Wind USFWS Spring Migration

Figure 2. All GPS (n=178) and PTT (n=61) tracking data for Red Knot considered for inclusion in 
movement modeling for SCRAM 2 by project. 
Colors represent individuals. 

2.1.2 Morphometrics and Behavioral Data 

Several species-specific morphometric and behavioral parameters informed estimates of collision risk at 
offshore wind turbines in SCRAM 2. These included avoidance rates, body length, wingspan, flight 
speed, and flight type (i.e., flapping or gliding; Adams et al. 2022). SCRAM 1.0.3 included a single set of 
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avoidance rates per species, whereas SCRAM 2 included different basic and extended avoidance rates 
depending on which option was selected for collision risk estimation (after Band 2012). The “extended” 
model (Option 3) option tabulates collision risk for different altitudes within the rotor swept zone, and 
thus better estimates collision risk relative to the patterns of flight altitude for a species of interest. The 
“basic” model (Option 2) is more simplistic and runs more quickly. SCRAM 1.0.3 used the extended 
avoidance rates for both options; SCRAM 2 used the basic avoidance values for Option 2 and the 
extended values for Option 3.  

Additionally, SCRAM 1.0.3 avoidance values were based on the “all gull and tern” avoidance rates from 
Table A2 of Cook (2021). This avoidance rate was recommended by the study author for terns and was 
considered to be the best available and best supported avoidance rate available, even though it was for a 
different taxonomic group than the shorebird focal species for SCRAM. Another report was published in 
2023 (Ozsanlav-Harris et al. 2023) that used a slightly different dataset to estimate avoidance rates. Upon 
review, neither analysis was a clear improvement over the other, and thus we chose to average the basic 
and extended avoidance rates from the two reports (Table 3).  
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Table 3. Avoidance rate estimates from recent reports and summary of how avoidance rates for 
SCRAM 2 were derived. 

Source Avoidance 
rate 

Avoidance 
SD 

Option SCRAM 
Version 

Derivation 

Cook 2021  0.9295 0.0047 extended SCRAM 1 

“All gulls and terns” avoidance 
rate from Table A2 - 
recommended value for terns 
using extended sCRM model 
(also almost the exact same 
value used for Red Knots in 
Gordon and Nations 2016 
collision risk model)  

Cook 2021  0.9861 0.0005 basic  

“All gulls and terns” basic sCRM 
avoidance rate from Table A2 - 
recommended value for terns 
using basic sCRM model  

Ozsanlav-
Harris et al. 
2023 

0.9907 0.0004 basic  
“Gulls and terns" basic 
stochastic CRM avoidance rate 
from Table 4 

Ozsanlav-
Harris et al. 
2023 

0.95 0.0038 extended  
“Gulls and terns" extended 
stochastic CRM avoidance rate 
from Table 5 

Average of 
Cook and 
Ozsanlav-
Harris et al. 
estimates 

0.9884 0.0005 basic SCRAM 2 

Average of "gull and tern" rates 
from Cook 2021 and Ozsanlav et 
al. 2023. Avoidance rate is 
simple average of the two 
avoidance rate values; revised 
standard deviation is calculated 
using the Delta method, e.g., 
sqrt((A.sd2^2 + A.sd1^2)/2) 

Average of 
Cook and 
Ozsanlav-
Harris et al. 
estimates 

0.9398 0.0043 extended SCRAM 2 

Average of "gull and tern" rates 
from Cook 2021 and Ozsanlav et 
al. 2023. Avoidance rate is 
simple average of the two 
avoidance rate values; revised 
standard deviation is calculated 
using the Delta method, e.g., 
sqrt((A.sd2^2 + A.sd1^2)/2) 

Note: SD = standard deviation. 
 

2.1.3 Population Size Data 

For each species in SCRAM, monthly regional population size (defined as the maximum number of 
animals present within the Northeast U.S. Continental Shelf [NES] study area in each month) was 
estimated by USFWS staff using best available information. Monthly variation in regional population 
sizes resulted from migration to or through the study area, as well as annual breeding productivity.  

The regional population size dataset used in SCRAM 2 included substantial updates to align with current 
values being used in the Band (2012) Annex 6 collision risk model. Band (2012) continues to be used by 
USFWS in conjunction with SCRAM to help estimate collision risk for wind projects in the NES. 
SCRAM 2 incorporated updates to overall population size estimates for these species, including the total 
number of northbound individuals during spring migration (NB), the total number of southbound 
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individuals during autumn migration (SB), and the number of young of the year (YOY), or birds hatched 
during a given calendar year that join the southward migration (and thus partially dictate SB; Table 4). 
These updates utilized the best available information (Table 4). For Red Knots, these updated calculations 
were summarized in the recent USFWS analysis, “Estimated Monthly Numbers of Rufa Red Knots 
Crossing ‘Migration Fronts’ in the Mid-Atlantic (Massachusetts to Virginia)” (Appendix C). The only 
monthly regional population size estimate that varies between Band and SCRAM implementations in 
SCRAM 2 is the estimate for Roseate Terns in July, as noted in a footnote below Table 4. 

In addition to updating the overall population size estimates for these species, the proportion of 
individuals present in the NES were also calculated differently from SCRAM 1.0.3. Rather than allowing 
individuals to potentially linger in the study area for multiple months during migration, SCRAM 2 
assumed that all individuals passed through the study area once during a given migration season, and that 
this passage occurred within a single month (as noted in Table 4). This led to lower estimated regional 
population sizes in months where only migrants were in the region, since only a percentage of the total 
population were thought to pass through the region. 

For piping plovers, a further change was implemented to estimate regional population size on a state-by-
state basis. This meant that all birds breeding north of a state were assumed to migrate through that state. 
This change did not affect estimates for roseate terns and red knots, since the entire populations of these 
species bred north of the NES (red knots) or at or above the northernmost state for which SCRAM 2 made 
predictions of collision risk for the species (roseate terns). This adjustment brought the SCRAM regional 
population size estimates for piping plovers in line with those being used by USFWS in the Band (2012) 
Annex 6 calculations of collision risk. As a result, reduced piping plover regional population size 
estimates occurred at wind projects in most locations, with those farthest north within the NES incurring 
the largest reductions. Changes to the regional population size estimates included in SCRAM 2 (Table 4; 
also used by USFWS in current Band (2012) Annex 6 collision risk models) as well as updates to state-
by-state total population size estimates for piping plovers (Table 5) generally decreased collision risk 
estimates in SCRAM 2 as compared to SCRAM 1.0.3. 
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Table 4. Regional population size data inputs used in Band (2012) Annex 6 and SCRAM 2. 

- Piping Plover Rufa Red Knot Roseate Tern 

Total northbound (NB)  4,589 59,782 10,866 

Young of the year (YOY)  2,927 13,736 5,433 

Total southbound (SB)  7,516 73,518 16,299 

# of Jan crossings  0 0 0 

# of Feb crossings  0 0 0 

# of Mar crossings  State-specific (10% of NB) 0 0 

# of Apr crossings  State-specific (60% of NB) 0 3,622 (33% of NB) 

# of May crossings  State-specific (30% of NB) 59,782 (100% of NB) 3,622 (33% of NB) 

# of Jun crossings  State-specific (10% of SB) 1,470 (2% of SB) 3,622 (33% of NB) 

# of Jul crossings  State-specific (60% of SB) 11,028 (15% of SB) 10,746 (all U.S. 
breeders) 

# of Aug crossings  State-specific (30% of SB) 29,407 (40% of SB) 5,433 (33% of SB) 

# of Sep crossings  0 14,704 (20% of SB) 5,433 (33% of SB) 

# of Oct crossings  0 11,028 (15% of SB) 5,433 (33% of SB) 

# of Nov crossings  0 3,676 (5% of SB) 0 

# of Dec crossings  0 2,206 (3% of SB) 0 
Note: NB = the total number of northbound individuals during spring migration; SB = the total number of southbound 
individuals during autumn migration. YOY = young of the year, or birds born during a given calendar year that join the 
southward autumn migration.  
Piping Plover estimates are state-specific, since the species breeds along the coast of the NES (e.g., only birds 
breeding north of a state are assumed to migrate through that state). For more information, see Table 5. 
Piping Plover estimates were based on the following: 

• Population data were based on 2021 estimates (USFWS 2021a) and represented the best available 
estimates from USFWS Ecosystem Services and Migratory Birds. Numbers excluded an unknown (but likely 
small) number of nonbreeding birds. Monthly numbers used in SCRAM and Band (2012) may have varied 
slightly from source documents due to rounding of monthly percentages. 

• Because the piping plover breeding range overlapped with the NES, regional population size was estimated 
on a state-by-state basis, so only birds that were breeding or born north of a given state (or in that state) 
were included in the regional monthly population size estimates for that state. Thus, during southward fall 
migration, the entire population could theoretically be exposed to a wind project in South Carolina, while only 
birds from Maine and Eastern Canada could be exposed to a wind project off the coast of Maine. Estimates 
of monthly crossings (e.g., monthly regional population size estimates) were thus based on birds from [state 
at latitude of wind project] northward, including Atlantic Canada (Table 5). The southbound (SB) total 
included young of the year (YOY), calculated as the unweighted mean 20-year productivity rates (2002-
2021) multiplied by the 2021 breeding pair estimate for each state and Atlantic Canada.  

• The eastern edge of the migration corridor ran southwest parallel to the general orientation of the coast to 
account for major migration staging areas in North Carolina (Weithman et al. 2018). The eastern edge of the 
corridor south of Cape Hatteras, North Carolina was also constrained westward to account for much larger 
numbers of piping plovers wintering in the western Bahamas. Future tagging may reveal some migration 
pathways to the east of the corridor and/or concentrations within this corridor. The corridor delineated here 
was based on the limited available data. 

Rufa red knot estimates were based on the calculations presented in Appendix C. USFWS expects to further update 
these population numbers in future iterations of SCRAM. 
Roseate Tern estimates were based on:  

• Migration numbers were generated based on 2021 breeding population numbers and productivity rates from 
the U.S. and Canada and represented the best available estimates from USFWS Ecosystem Services and 
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Migratory Birds. Monthly numbers used in SCRAM and Band (2012) may have varied slightly from source 
documents due to rounding of monthly percentages. 

• Spring migration totals were calculated as the number of breeding pairs in each region multiplied by 2 adults 
per breeding pair.  

• Fall migration totals included all adults from spring migration plus the approximate number of YOY. 
• YOY totals were calculated by multiplying the number of breeding pairs in the U.S. and Canada by the 

average productivity of these pairs (approximately 1 YOY per pair).  
• Migration months were determined based on peak migration during the spring and fall migration seasons, as 

reported by Gochfeld and Burger (2020).  
• Number of spring and fall migrants were then assumed to be divided evenly across migration months. 
• SCRAM 2 uses movement data collected during the breeding and post-breeding dispersal period (June to 

Sept) and assumes the July population of roseate terns is 10,746, which equals the total number of NB 
adults based on 2021 breeding population numbers, minus birds that breed in Canada and would not be 
expected to be present in the study area during the breeding and post-breeding period. The current 
implementation of Band (2012) Annex 6 is limited to assessing risk during northbound and southbound 
migration and assumes that no roseate terns are migrating during July, and thus uses a regional population 
size estimate of zero for this month. 

Table 5. State-by-state population size estimates for Piping Plovers. 
Young of the Year (YOY) were added to numbers of breeding adults in each state beginning in June to estimate total 
numbers of birds present in the state at the beginning of fall migration. Spring numbers included breeding adults only. 
Only birds that were breeding or born north of a given state (or in that state) were included in the regional monthly 
population size estimates for that state.  

State and/or Location YOY Breeding 
Adults 

Eastern Canada 274 360 

Maine  204 250 

New Hampshire 16 26 

Massachusetts 1200 1934 

Rhode Island 134 198 

Connecticut 98 120 

New York 554 878 

New Jersey 146 274 

Delaware 35 48 

Maryland 25 44 

Virginia 211 366 

North Carolina 22 80 

South Carolina 0 0 

Total 2,919 4,578 

 

2.1.4 Wind Turbine Input Data 

Rather than estimating turbine RPMs (rotations per minute) based on wind speed data, as was done in 
SCRAM 1.0.3, SCRAM 2 now requires users to input RPMs directly. This change aligned SCRAM with 
stochLAB, the collision risk modeling (CRM) package used in the United Kingdom (see “Collision Risk 
Modeling,” below). Thus, developers should submit RPM data rather than wind speed data for their wind 
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facilities as part of the Construction and Operations Plan (COP; Appendix D). Specifically, SCRAM 1.0.3 
asked for the following inputs: 

• WindSpeed_mps (mean wind speed at the proposed project in meters per second) for the periods 
during which wind speeds are between cut-in and cut-out speeds of the turbine (i.e., turbines 
could be spinning); or if not available, the rated wind speed of the turbines 

• WindSpeedSD_mps (the standard deviation in wind speeds or wind speed rating in meters per 
second) 

In SCRAM 2, the following turbine inputs are now required instead of wind speed data: 

• RotorSpeed_rpm (mean number of turbine rotations per minute when active) 
• RotorSpeedSD_rpm (the standard deviation of turbine rotations per minute) 

We recommend setting RotorSpeedSD_rpm to 0 unless data can be obtained on the variation in RPMs 
due to wind speed or other environmental conditions. Mean annual turbine rotational speed (and standard 
deviation when possible) should be determined over the time that the turbine is expected to be operational 
only, since non-operational time (due to maintenance and low wind speeds) is accounted for elsewhere in 
the model.  

This change is not expected to have a consistent influence on collision risk estimates as compared to 
SCRAM 1.0.3 (e.g., it’s not expected to either increase or decrease collision risk estimates as compared 
with earlier versions of SCRAM). 

2.2 Movement Modeling 
SCRAM 2 updated the movement models implemented in SCRAM 1.0.3  (Adams et al. 2022), to include 
newly available telemetry data. We devised new models that described the satellite-based tracking data, 
and revised existing models (i.e., from SCRAM 1.0.3) that accommodated the updated automated radio 
telemetry (Motus) dataset. State-space movement models were implemented on both data sources to 
isolate model uncertainty from two types of error: ecological process and observation error. The models 
separated the process variance from the observation variance, rather than confounding these two sources 
of variation in a single source of error (Auger-Méthé et al. 2021). Variation among the estimated locations 
of individuals comprised process uncertainty. Variation among tags, for example due to measurement 
error from deployment, comprised observation error. Accounting for the observation error allowed users 
to focus on interpreting the movement process, offering greater utility to informing estimates of risk from 
offshore wind energy development. 

In addition to variation between individuals, the state-space models captured within-individual variability 
in their behavioral state(s) across space. The SCRAM 1.0.3 two-state models (Adams et al. 2022) 
differentiated between different movement types (as proxies for behavior) based on characteristics of the 
Motus data. They separated migratory from staging movement rather than treating all movements or 
behaviors the same, as in a single-state model. However, the two-state movement models implemented in 
SCRAM 1.0.3 (Adams et al. 2022) failed on the updated Loring et al. (2021) Motus data. Though 
intended to better capture variance in the two different types of behaviors and improve model fit, the 
increased complexity instead resulted in model failure. Therefore, SCRAM 2 required the use of single 
state models (Table 1), which improved model fit and thereby reduced model uncertainty. For 
consistency, the single state models were also used with satellite-based data (see “Satellite-based Model 
Methods,” below). 
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2.2.1 Motus Model Development and Structure 

Originally modified from Baldwin et al. (2018), SCRAM 1.0.3 Motus movement models (Adams et al. 
2022) were based on models designed for GPS data by Jonsen (2016) in the associated R package bsam 
(v. 1.1.3): hierarchical Discrete-time, Continuous-space, Correlated Random Walk models with a Spatial 
measurement-error observation model (hDCRWS). SCRAM 1.0.3 Motus movement models were 
designed to be “hierarchical”: to estimate parameters across multiple individuals jointly with related 
submodels. Bird movements were estimated between the coordinates of radiotelemetry stations where 
individuals were detected, at regular time intervals through space, following a “Discrete-time, 
Continuous-space, Correlated Random Walk.” The observation model accounted for spatial measurement 
error and incorporated behavioral state estimation. All these aspects of the SCRAM 1.0.3 movement 
models were retained within SCRAM 2. We developed a thorough QA/QC process on the movement 
model that compared SCRAM 1.0.3 line-by-line with the hDCRWS from bsam (Jonsen 2016) and 
Baldwin et al. (2018). SCRAM 2 incorporated simplified model parameters and a streamlined model 
structure, which included the reduced behavioral state specification (described in further detail below in 
“Motus Model Assessment”). 

2.2.1.1 Observation Error Model 

The observation error component of the SCRAM 2 Motus movement model derived from Baldwin et al. 
(2018) to account for measurement error among individual tag deployments. Each observed location 𝑦𝑦𝑖𝑖 
corresponded to the coordinates (latitude and longitude) of the automated radiotelemetry receiver at 
which each tag was detected. Temporally irregular detections 𝑖𝑖  occurred at the true location 𝜇𝜇 𝑖𝑖  
(otherwise referred to as       ; Baldwin et al. 2018).  

𝑦𝑦𝑖𝑖  ~ 𝑁𝑁(𝜇𝜇𝑖𝑖, 𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜) 

The measurement error around the true location was defined by the precision 𝜏𝜏, or the inverse square of 
the standard deviation, which followed a uniform distribution: 

𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜2  

𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∽ 𝑈𝑈 (0, 0.1) 

This prior gave a low chance of detections at a longer range than 50 km, with the vast majority within 22 
km of a Motus receiving station (as converted from decimal degrees using the average size of a grid cell). 

2.2.1.2 Process Model 

The process component of the SCRAM 2 Motus movement model explained variation among the 
estimated locations of tracked individuals. Each true location 𝜇𝜇𝑖𝑖 was derived from the estimated, 
unobserved location state 𝑥𝑥𝑡𝑡 at regular time step 𝑡𝑡 (Baldwin et al. 2018). The set of the estimated 
unobserved location state 𝑿𝑿𝒕𝒕 was calculated from the displacement distance from the previous location 
𝑿𝑿𝒕𝒕−𝟏𝟏, in both the X- and Y-planes (longitude and latitude, respectively). To calculate displacement from 
the previous location, each single time step (𝑿𝑿𝒕𝒕−𝟐𝟐 −  𝑿𝑿𝒕𝒕−𝟏𝟏) was multiplied by the autoregressive 
parameter 𝛾𝛾 and added to the previous location 𝑿𝑿𝒕𝒕−𝟏𝟏. 

𝑿𝑿𝒕𝒕  = 𝑿𝑿𝒕𝒕−𝟏𝟏  +  𝛾𝛾 ×  (𝑿𝑿𝒕𝒕−𝟐𝟐 −  𝑿𝑿𝒕𝒕−𝟏𝟏) 

𝑿𝑿𝑡𝑡+1  ~ 𝑁𝑁(𝑿𝑿𝑡𝑡 , 𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

fisackek
Stamp

fisackek
Stamp

fisackek
Stamp
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𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∽ 𝑈𝑈 (0, 0.1) 

The autoregressive parameter 𝛾𝛾 described the correlation between subsequent movements, where  

𝛾𝛾 ∽ 𝑈𝑈 (0, 1). 

A high value for 𝛾𝛾 represented rapid, persistent migratory movements, whereas a low value represented 
more random turning (such as staging or foraging). Maximal displacement distance in a single timestep 
was constrained to less than the distance traveled if the bird were flying at a constant speed of 
approximately 46.25 km/h (12.8 m/s) without turning (Adams et al. 2022). 

2.2.2 Motus Model Fit 

SCRAM Motus movement models were fit within a Bayesian framework. In SCRAM 2, parameter 
estimates were sampled from three parallel chains and tested for convergence on a single solution. Using 
JAGS (v4.3.1) via package ‘rjags’ (Plummer 2023) in R, we ran 30,000 iterations of the three independent 
chains, following a burn-in of 30,000 iterations. Chains were thinned by increments of 10 to reduce the 
size of output files. We assessed model convergence through visual inspection and the Gelman-Rubin 
statistic (𝑟̂𝑟), which measured consistency among and within model chains, retaining models with 𝑟̂𝑟 < 1.1 
(Gelman and Rubin 1992). Upon further assessment, we found that models did not converge due to either 
irregular data, inappropriate model assumptions and excessive complexity or structural rigidity (see 
“Motus Model Assessment,” next). 

2.2.3 Motus Model Assessment 

Motus model assessment aimed to address updates to the Motus dataset and improve model fit for all 
species. We first assessed whether data characteristics contributed to model failure when applying 
SCRAM 1.0.3 models to the updated dataset (Loring et al. 2021; see “Automated Radio Telemetry,” 
above). We examined patterns across individuals, including tagging year, total number of detections, 
number of stations at which the individual was detected, number of between-station detections, maximum 
distance between detections, necessary flight speed and number of days between station detections, and 
minimum and maximum latitude and longitude of detections. We found no consistent patterns in the data, 
or in data filtering, that resulted in sufficient convergence without further adjustments to the model. 
Testing the models on satellite-based data resulted in better convergence, suggesting that model failure 
was in part due to temporal irregularities inherent to Motus data.  

Next, we adjusted model components systematically, which marginally improved convergence on a 
subset of model parameters, but did not resolve issues for all species. We tested modifications of many 
model parameters on a systematic trial-by-parameter basis, i.e. using a stepwise approach, one parameter 
at a time. For example, we reinserted a component from the Baldwin et al. (2018) and Jonsen (2016) 
hDCRWS, which had been erroneously removed from SCRAM 1.0.3. This “random deviate” was used to 
assign one behavior to rapid, persistent migratory movements and the second behavior to slower, more 
random turning movements (e.g., staging or foraging). Additionally, we modified a parameter from 
SCRAM 1.0.3 Motus movement models referred to as migratory “drift” (Baldwin et al. 2018). Drift 
allowed animals to move beyond their estimated locations in a given direction, for example southwesterly 
during fall migratory movements along the East coast (Baldwin et al. 2018). Whereas SCRAM 1.0.3 
allowed for 360° drift (Adams et al. 2022), we tested westerly drift in SCRAM 2, given that active Motus 
stations during the study period were land-based, and therefore more likely to detect westerly-drifting 
movements over the NES. We also corrected the indexing of behavior and coordinates in the drift 
parameter for the two-state model. While the single state model converged for all three study species both 
with and without drift, the parameter contributed inconsistently and insignificantly to the model. 
Therefore, in the absence of strong justification to the contrary, we selected the simpler models without 
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drift. While these parameter adjustments in the Motus Movement models improved convergence, they did 
not resolve it.  

Last, we proceeded to improve structural flexibility of the Motus movement models for increased 
transferability to broader data sources. To test whether the original hCDRWS model showed similar 
convergence issues on the SCRAM 2 data, we ran the Loring et al. (2021) data through the R (R Core 
Team 2023) package bsam (Jonsen 2016). For comparison, we also ran the data through the R package 
crawl (Johnson and London 2018) to fit continuous-time correlated random walk models. Similarly poor 
convergence revealed that the underlying error structure of the model required adjustment. We tested 
multiple covariance structures, including greater degrees of freedom in the Wishart prior (e.g., k=100 
rather than k=2; Plummer 2017), to allow for independence among elements of the multivariate normal 
distribution. These also continued to fail, revealing a flawed assumption of covariance between 
uncertainty around the detected and estimated coordinates. The assumption of dependence among 
elements of this distribution (Jonsen 2016; Baldwin et al. 2018), originally applied to GPS tracking data, 
was apparently too rigid for the Motus data used in this study. We concluded that detection ranges of 
Motus stations should be allowed to vary differently in the X- and Y-dimensions, given inconsistencies in 
antenna orientation, station height above sea level, flight heights, and other factors (Loring et al. 2019). 
Therefore, we relaxed the assumption of covariance in error around position uncertainty, and allowed for 
independent normal variance around the observed and estimated locations. In other words, SCRAM 2 
errors in latitude were allowed to vary independently from longitude rather than being required to covary 
(e.g., see sections 11.6.2-11.6.3 in Kéry and Royle 2016).  

2.2.4 Motus Model Refinement 

Once we obtained a converged single-state daily model, we tested finer temporal resolutions on the Motus 
detection data for SCRAM 2. We updated the model code to accommodate sub-daily movements and 
tested one, six, 12, and 24-hourly (i.e. daily) models. As with the daily models in SCRAM 1.0.3, we 
retained only the first detection within the time step (e.g., six-, 12-hourly). Consistent with the daily 
models, we fit the models to this sub-daily time step and predicted to the same time step (at regular 
intervals). Rather than fitting models to the observed detections, fitting to the time step avoided 
limitations in computing capacity (both processing and memory). 

The single state model without drift was the best performing model in SCRAM 2 across all three study 
species (Table 6). The two-state model did not converge for any species, though it came closest for Red 
Knots. The one-hourly models failed due to computing capacity limitations, and the six-hourly one-state 
model converged only for Piping Plovers. The 12-hourly one-state model converged for Piping Plovers 
and Roseate Terns, whereas the 24-hour (daily) single-state model converged across all three species. 

Table 6. Summary of Motus model convergence by species, behavioral state, and time step (6, 12, 
or 24 hrs). 
“No” indicates that tested models failed to converge. 

- 1-State 1-State 1-State 2-State 2-State 

Species 6 hr 12 hr 24 hr 12 hr 24 hr 

Red Knot No No Yes No No 
Piping Plover Yes Yes Yes No No 
Roseate Tern No Yes Yes No No 
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2.2.5 Satellite-based Model Methods 

The satellite-based datasets for red knots were used in continuous-time correlated random walk 
(CRCRW) models that allowed for the incorporation of uncertainty in the position estimation process and 
prediction to a consistent time step (duty cycles of individual tags varied from hourly to 24-hourly with 
variations in between). These models differed from the Motus movement models to account for 
fundamental differences in the underlying tag data, whereby the location information received from GPS 
and PTT transmitters was independent of receiving station infrastructure. These models were 
implemented using the ‘crawl’ R package version 2.3.0 (Johnson et al. 2008) to predict movements of 
individual red knots at a consistent 15-min time interval for calculation of cumulative occupancy (Figure 
3). These models used a state-space version of the continuous-time stochastic movement process and 
included an observation model that accounted for error in the location estimate process for tags. Given 
that the amount of error in location estimate for GPS and PTT tags varied significantly, we fit separate 
movement models for the two data types. In the case of the GPS data, we fit individual movement models 
with location error as fixed parameters with log(50) for 2D fixes and log(23.5) for 3D fixes to represent 
the differences in these two fix types. For PTT movement models, position uncertainty was modeled by 
including a prior distribution for each error class, represented by a normal distribution of the 
log(estimated error) for each location class (3, 2, 1, 0, A, B) based on Argos estimates (Douglas et al. 
2012). Initial parameters were provided as the first location (latitude, longitude) for each individual along 
with a variance-covariance matrix. To aid in model fit, the retryFits option was set to 3000 (number of 
times to attempt to achieve convergence and valid variance estimates after the initial model fit), and 
attempts (the number of times likelihood optimization will be attempted in cases where the fit does not 
converge or is otherwise non-valid) was set to 2000. In order to propagate location error throughout the 
cumulative occupancy calculation process, 1000 simulations of each model for each individual were run. 
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Figure 3. Raw red knot tracking data (fall migration only) used in continuous-time correlated 
random walk (CRCRW) models, and their predictions. 
Raw data (left) and predictions at 15-min time intervals (right) are colored by Project (see Appendix B for more 
information). Model predictions are shown as an example of one of the 1000 simulated model outputs. 

2.2.6 Calculation of Habitat Use 

Occupancy was derived from the movement models and defined as the estimated proportion of tagged 
individuals present in each grid cell. “Cumulative use” (i.e., cumulative daily occupancy) was calculated 
from the number of days during which individuals crossed through a grid cell of the study area in any 
given month (Adams et al. 2022). A random sample of 1000 posterior estimates was drawn from the 
Motus model outputs (consistent with SCRAM 1.0.3), and the posterior number of individuals per grid 
cell was divided by the total number of tagged individuals in any given month, representing daily use 
(i.e., daily occupancy). Consistent with SCRAM 1.0.3, this rate was summed across days within each 
month (i.e., “cumulative use”). SCRAM 1.0.3 did not include the undetected middle months between first 
and last detection for a small number of individuals; we fixed this error in SCRAM 2, so that the number 
of tagged individuals remained consistent during the undetected middle months (Table 7). In the case of 
GPS/PTT models, a similar 1000 simulated tracks from model outputs were used. Given that these were 
15-min predictions rather than estimates of daily locations, an initial step was added to first calculate the 
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proportion of time an individual spent in each cell daily. Then we followed the same process as for Motus 
data to calculate cumulative use.  

The months containing cumulative use estimates differed slightly between SCRAM 2 and SCRAM 1.0.3. 
Only months with greater than five tracked individuals were used in the collision risk estimation, as was 
intended but not implemented for SCRAM 1.0.3. Therefore, the month of September no longer included a 
“cumulative use” Motus estimate for piping plovers.  There were also no Motus-tagged red knots in 
December for either SCRAM 1.0.3 or SCRAM 2 (though in one location in the Adams et al. 2022 report, 
it was erroneously indicated otherwise). Likewise, we had only four red knots individuals with GPS/PTT 
data in December. However, more red knot tracking data from the updated Motus dataset (Loring et al. 
2021) did allow for the addition of Motus models in July for that species (Table 7). 

Table 7. Total number of tagged individuals per month in the data used to develop movement 
models for SCRAM 2. 
Bolded values represent months where occupancy estimates were not used to inform collision risk model estimates, 
due to fewer than five tracked individuals within that month (consistent with the threshold designated for SCRAM 
1.0.3). Models were fit to red knot Motus data, though occupancy predictions are presented only within the spatial 
extent of the study area and the temporal extent of the study period. For example, one red knot individual (tag 23596) 
was detected on 28 June 2017, but predictions for this month occurred outside (north of) the study area and thus 
were not included in the occupancy estimates used in SCRAM. Additionally, occupancy estimates are only presented 
for months with greater than five tracked individuals.  

- Piping Plover Red Knot Red Knot Roseate 
Tern 

Month Motus Motus GPS/PTT Motus 

May 7 - - - 

June 49 1 - 115 

July 98 18 4 109 

August 23 136 75 42 

September 4 108 73 9 

October - 122 23 - 

November - 87 13 - 

December - - 4 - 

 

SCRAM 2 developed an ensemble of the Motus and satellite-based occupancy predictions by averaging 
model results from the two different data sources. Predictions of movement models from the satellite-
based data extended across the full NES. However, estimates of Motus movements and collision risk were 
constrained to a study area of BOEM-funded Motus stations that were actively maintained during the 
study period. These Motus stations were deployed from Back Bay, Virginia, to Provincetown (Race 
Point) on Cape Cod, Massachusetts (Loring et al. 2018; Loring et al. 2019; Loring et al. 2021). Given the 
mean expected station detection range of 20 km, we included only grid cells from 20 km north of the 
Race Point Motus station at (42.2453°N, -70.2424°W) to 20 km south of the Back Bay Motus station 
(36.4914°N, -75.9171°W). Outside of these latitudes, other Motus stations were deployed by Motus 
network collaborators but operation during the study period was variable. Therefore, movement models 
were developed using all Motus detections – including detections from stations outside of the BOEM-
funded study area – but occupancy values used for estimating collision risk were only transferred to the 
collision risk model for grid cells fully and partially located within this smaller area. Ensemble model 
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results represented the average of the Motus and satellite-based model outputs within this reduced Motus 
study area, and otherwise represented only satellite-based model outputs (e.g., on the northerly and 
southerly ends of the NES). 

2.2.7 Movement Modeling Results 

Altogether, the improved movement model performance in SCRAM 2 reduced the variability and 
uncertainty of model results described in SCRAM 1.0.3. Changes to the movement models implemented 
in SCRAM 2 had a smoothing effect on occupancy estimates as compared to SCRAM 1.0.3 (see example 
for Red Knots in Figure 4; mean and monthly cumulative daily occupancy estimates are presented by 
species in Figure 5 throughFigure7 and Appendix E through Appendix F). The general locations of high 
occupancy and low occupancy areas remained the same, but the highest highs and lowest lows from 
SCRAM 1.0.3 tended to be adjusted towards the median in SCRAM 2, and low-range occupancy values 
(closer to 0.01) were more frequent in SCRAM 2 across a greater breadth of grid cells (see example for 
red knots in Figure F-1). Across all months, SCRAM 2 movement model updates generally resulted in red 
knot and piping plover movements that more tightly adhered to the Atlantic Outer Continental Shelf than 
SCRAM 1.0.3 (Figure F-1). The resulting collision risk estimates derived from these cumulative use 
estimates are described below (“Collision Risk Modeling,”).  

In summary, improving the flexibility of the movement models to accommodate additional sources of 
movement data was fundamental to reducing estimated uncertainty. With the SCRAM 2 datasets, the 
more simplified (i.e. single-state) models fit better to Motus data than more complex (i.e. two-state) 
models. The challenge of achieving model convergence on Motus data was consistent with prior studies 
(Baldwin et al. 2018). Combined with erratic behaviors (e.g., brief northerly diversions amidst southerly 
movements), multi-day gaps between detections that were inherent to the Motus data may have 
contributed to the two-state model’s difficulty separating migratory from staging movements. Future 
updates should continue to test further model adjustments in the sub-daily movements, as new tracking 
data become available. 

  

Figure 4. Comparison of cumulative use estimates for Red Knots between SCRAM versions. 
For SCRAM 1.0.3 (left panel) and SCRAM 2 (right panel), the x-axis represents cumulative use (truncated to values < 
0.10), and the y-axis (“Density”) represents the number of estimates for each value, out of the total number of 
posterior estimates (i.e., 1000 samples for 12 months across 512 grid cells). Cumulative use estimates were more 
evenly dispersed across the study area in SCRAM 2 due to reduced variability and uncertainty in the results. Low-
range values (closer to 0.01) were more frequent in SCRAM 2 across a greater breadth of grid cells. 
 



 

21 

 

 

Figure 5. Cumulative use estimates averaged across months for the three study species. 
Estimates were based on single-state movement models using Motus (piping plover, red knots, roseate tern) and 
satellite-based data (red knots), and the number of tagged individuals in the study. The results of movement models 
from Motus and satellite-based data for red knots were combined in an ensemble model within the red study area; 
estimates outside the red study area were modeled from satellite-based data only. “Cumulative use” summed daily 
occupancy probabilities estimated via SCRAM for each month then averaged these values across all months with 
greater than five tracked individuals for a given species. Scale bars align with species-specific monthly estimates 
(Figure 6– Figure8).  
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Figure 6. Cumulative use estimates by month from the Motus movement models for piping 
plovers. 
Estimates were based on single-state movement models using Motus data, and the number of tagged individuals in 
the study. “Cumulative use” summed daily occupancy probabilities estimated via SCRAM for each month with greater 
than five tracked individuals for a given species. Estimates covered May (top panel) and June-August (bottom panel) 
(see Table 7 for monthly sample sizes). 
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Figure 7. Cumulative use estimates by month from the Motus movement models for Roseate 
Terns. 
Estimates were based on single-state movement models using Motus data, and the number of tagged individuals in 
the study. “Cumulative use” summed daily occupancy probabilities estimated via SCRAM for each month with greater 
than five tracked individuals for a given species. Estimates covered  June–August (top panel) and  September 
(bottom panel)for roseate terns (see Table 7 for monthly sample sizes). 
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Figure 8. Cumulative use estimates by month from the ensemble model for Motus- and satellite-
tracked red knots. 
Estimates were based on single-state movement models using Motus- (within the red study area) and satellite-based 
data (within the red study area and elsewhere on the US Atlantic Outer Continental Shelf), and the number of tagged 
individuals in the study. “Cumulative use” summed daily occupancy probabilities estimated via SCRAM for each 
month with greater than five tracked individuals. Estimates covered July–August (top panel) and September–
November (bottom panel)for Red Knots (see Table 7 for monthly sample sizes). 
 

2.2.8 Analytical Assumptions of the Movement Models 

Key assumptions of the updated movement models are listed as follows. The movement models assumed 
that: 

1. Estimated behaviors represented an unbiased sample of fall migratory patterns for red knots and 
piping plovers, and an unbiased sample of breeding and post-breeding dispersal movement 
patterns for roseate terns.  

2. Estimated behaviors represented an unbiased sample of offshore behaviors for the study species. 
3. Environmental conditions during the tracking periods were representative of the study area. 
4. Estimated pre-construction behaviors were representative of post-construction behaviors for the 

study species.  
5. Habitat use estimates were proportional to the true population size of the study species. 

Violation of these assumptions could lead to over- and/or under-estimates of exposure, depending on how 
sampling bias or measurement error impacted the estimates (see “Collision Risk Modeling,” below). For a 
more complete list of assumptions and limitations relating to SCRAM, see Adams et al. (2022). 

2.3 Flight Height Modeling for Red Knots 
SCRAM 1.0.3 used flight height estimates from Motus tracking data for all three study species (Loring et 
al. 2021). The source of flight height estimates for piping plovers and roseate terns (as discussed in 
Adams et al. 2022) remained the same in SCRAM 2. However, the accuracy of this approach was 
challenging to validate, and flight height estimation uncertainty could not be propagated into the resulting 
flight height distribution. The inclusion of GPS tags in the SCRAM database for red knots presented an 
opportunity to use altitude estimates from these devices for new flight height distribution estimates in 
Phase 2. The consistent duty cycles of the GPS tags served to improve the accuracy of the SCRAM flight 
height estimates, as modeled from altitude fixes (i.e., measured heights at given coordinates). They also 
allowed for inclusion of different types of uncertainty into the final estimated flight height distributions. 
For these reasons, the ensemble approach used in the movement models was not extended to the flight 
heights from the new GPS data and old Motus data. Rather, the updated SCRAM 2 GPS flight height 
modeling replaced the SCRAM 1.0.3 Motus approach for red knots, due to the uncertainty propagation 
from the flight height measurement process and direct observation of flight heights from an accurate 
sensor. 

2.3.1 Flight Height Data Management 

Satellite telemetry data from 132 individuals with 6900 flight height observations (6658 with successful 
altitude measurements) were used to estimate the red knot offshore flight height distribution. Preparation 
for the development of flight height estimates from Lotek PinPoint GPS-Argos 75 transmitters (hereafter 
“GPS transmitters’ or “GPS tags”) included two key components: the correction of flight height values 
recorded on tags, and the determination of behavioral states for each record and individual, using the 2D 
position data. Raw altitude data were measured in meters and were referenced to the ellipsoid. To obtain 
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altitude measurements that referenced the surface of the earth, all altitudes were converted to altitude 
above the geoid (EGM 2008; Pavlis et al. 2012) by subtracting the difference between the ellipsoid-based 
altitude and the geoid at the location of the tag transmission. In most cases, this altitude above the geoid is 
considered synonymous with height above mean sea level, barring small scale fluctuations such as tidal 
height and sea surface height anomalies (Johnston et al. 2023).  All altitudes used were measured over 
water, referenced to the height above the geoid. We assume the geoid is the reference used by offshore 
wind developers when estimating turbine height, but we are unclear if this is what all developers do. More 
detail on turbine height references would be useful for SCRAM in the future so we can incorporate this 
into the modeling process. Further corrections were required for GPS altitude measurements that were 
transmitted over land or in intertidal regions to obtain altitude measurements above ground level. 
Transmissions over land were considered to include any points within 50m of the shoreline (based on a 
1:10m resolution land polygon obtained from Natural Earth7. To correct altitudes transmitted over land, a 
global relief grid-registered model (Amante and Eakins 2009) was subtracted from geoid-referenced 
altitudes to obtain flight altitude above ground level. As a result, the flight heights used in subsequent 
state space models were based on height above sea level or ground level, based on the geographic location 
of points over terrestrial or ocean environments. 

Previous flight height estimation models have incorporated behavioral states to inform the measurement 
and uncertainty of flight height for different behaviors (Ross-Smith et al. 2016; Peschko et al. 2021; 
Johnston et al. 2023). Here, behavioral states were classified using Expectation-Maximization Binary 
Clustering with R Package “EMbC” (Version 2.0.4; Garriga et al. 2016), a Gaussian mixture model that 
uses speed and turning angle between GPS latitude/longitude fixes to classify the following four 
behavioral states: 1) high turning angle, high speed; 2) high turning angle, low speed; 3) low turning 
angle, high speed; and 4) low turning angle, low speed. There was also a delineation for points where no 
behavioral state was determined. The EMbC model was run for all points for all individuals, resulting in 
one behavioral state attribution for each transmission. Dawn/dusk times were used to determine if each 
observation occurred during day or night. 

The raw altitudes estimated from GPS data included 6658 recorded altitudes, and 51% of the altitude 
values were below zero (range: -101m to 6894m; mean: 29.4m; standard deviation: 283.2m). Once 
corrections were made to obtain flight heights relative to the geoid (resulting in altitudes above mean sea 
level for flight heights over water) and relative to a digital elevation model (for flight heights over land), 
6.2% of the altitudes were comprised of values below zero (range: -87.4m to 6926.6m; mean: 60.9m; 
standard deviation +/- 273.2m). 

2.3.2 Flight Height Modeling Methods 

We analyzed the corrected flight height data with a state-space modeling framework, which was 
developed for all flight heights that include both overland and overwater positions. This class of statistical 
model was useful for time series with multiple processes influencing the response variable (i.e., flight 
height). In this case, we followed a similar approach to Ross-Smith et al. (2016), who used GPS tracking 
data from lesser black-backed gulls (Larus fuscus) and great skuas (Stercorarius skua) to estimate flight 
height distributions for collision risk modeling. While these species have different flight behaviors from 
red knots, they share a key similarity in that these birds do not dive below the ocean surface. This 
similarity upholds many of the assumptions made by Ross-Smith et al. (2016). As such, the SCRAM 

 

 

7 Natural Earth: https://www.naturalearthdata.com/  
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flight height model has a similar structure to Ross-Smith et al. (2016), though the tags we used for this 
study had different flight height estimation processes and we incorporated different covariates. 

The general form of the model differentiated the factors that influenced flight height into two 
components: the observation model and the process model. The models were linked: the observation 
model describes how flight height observations (𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜) were related to true flight height (𝑍𝑍𝑖𝑖𝑜𝑜) as they 
varied across individual i and time step t. The observation model used information from satellite tags to 
quantify changes in uncertainty around the altitude measurements, and the process model explained 
variation in true flight height as a function of individual and environmental effects. Mathematically, the 
structure of this model is: 

 ~ ,  

log (𝑍𝑍𝑖𝑖𝑜𝑜) ~ 𝑁𝑁(𝜇𝜇𝑖𝑖𝑜𝑜 , 𝜎𝜎𝑍𝑍) 

Where, 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖𝑜𝑜 is the standard deviation of the Gaussian uncertainty in the observation model, varied by 
individual and time. 𝜎𝜎𝑍𝑍 is the standard deviation of the log-Gaussian process model and is constant across 
indices. The mean expectation of the process model, 𝜇𝜇𝑖𝑖𝑜𝑜, is the component of that model that varies with i 
and t. The observation model is Gaussian with an expectation of 𝑍𝑍𝑖𝑖𝑜𝑜, but the process model is log-
Gaussian. This linkage allows uncertainty to be Gaussian in the measurement space but prevents true 
flight heights from including values below zero. Importantly this allows the error structure of the 
observation model to be consistent with the expected uncertainty in the GPS devices, as position 
uncertainty is often Gaussian (Péron et al. 2020), but vertical positions below the mean ocean height were 
almost certainly erroneous for this species. Thus, differentiating these effects into two models 
accommodated the multifaceted sources of variance in the flight height distributions of species measured 
through telemetry. 

The observation model allowed variation in uncertainty through the variance parameter. Using a linear 
modeling framework, covariates to flight height estimation uncertainty were included: 

log (𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖𝑜𝑜) = 𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜  + 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜1𝑋𝑋𝑜𝑜𝑜𝑜 𝑜𝑜1 ,𝑖𝑖𝑜𝑜 + 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜2𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜2,𝑖𝑖𝑜𝑜 

Where, 𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 is the variance intercept and 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜1and 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜2 are slope parameters that estimate the effect of 
covariates 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜1,𝑖𝑖𝑜𝑜and 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜2,𝑖𝑖𝑜𝑜. Using two covariates provided by Lotek (fix quality and cyclic redundancy 
check, CRC, respectively), we incorporated variation in the uncertainty of flight height estimates from 
this process into the observation model. Fix quality determined whether the measured point was an 
accurate three-dimensional (‘3D’) estimate or only a two-dimensional (‘2D’) estimate. 2D estimates did 
have estimated flight heights, but the position quality was expected to be lower. CRC identified if the 3D 
position had to be corrected. These covariates could influence the uncertainty in the altitude estimate. 

The process model contained a log-linear model describing the relationship between the model’s true 
flight height expectation and relevant covariates: 

𝜇𝜇𝑖𝑖𝑜𝑜 = 𝛼𝛼𝑍𝑍 + 𝛽𝛽𝑖𝑖𝑜𝑜 𝑖𝑖, 𝑖𝑖 + 𝛽𝛽𝑍𝑍1𝑋𝑋𝑍𝑍1,𝑖𝑖 𝑜𝑜 + 𝛽𝛽𝑍𝑍2𝑋𝑋𝑍𝑍2,𝑖𝑖𝑜𝑜 + 𝛽𝛽𝑍𝑍3𝑋𝑋𝑍𝑍3,𝑖𝑖𝑜𝑜 + 𝛽𝛽𝑍𝑍4𝑋𝑋𝑍𝑍4,𝑖𝑖 𝑜𝑜 + 𝛽𝛽𝑍𝑍5𝑋𝑋𝑍𝑍5,𝑖𝑖𝑜𝑜 + 𝛽𝛽𝑍𝑍6𝑋𝑋𝑍𝑍6,𝑖𝑖𝑜𝑜 

𝛽𝛽𝑖𝑖𝑜𝑜𝑖𝑖,𝑖𝑖 ~ 𝑁𝑁(0, 𝜎𝜎𝑖𝑖𝑜𝑜𝑖𝑖) 

Where 𝛼𝛼𝑍𝑍 is the variance intercept, and the 𝛽𝛽𝑍𝑍 parameters are linear slope estimates that relate to the 𝑋𝑋𝑍𝑍 
covariates. An individual random effect is included via 𝛽𝛽𝑖𝑖𝑜𝑜𝑖𝑖,𝑖𝑖, which is distributed as a zero-centered 
Gaussian with standard deviation 𝜎𝜎𝑖𝑖𝑜𝑜𝑖𝑖. These covariates are related to animal behavior, time of day, and 
distance to shore. 𝛽𝛽𝑍𝑍1 through 𝛽𝛽𝑍𝑍4 are categorical covariates representing movement states of animals 
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(states 2-5 [low speed/high turning angle, high/low, high/high, unknown] that are compared to the 
indexed state 1 [low/low]). Time of day and distance from shore are incorporated via 𝛽𝛽𝑍𝑍5 and 𝛽𝛽𝑍𝑍6.  

Uninformed Gaussian priors were used for all parameters except for 𝜎𝜎𝑍𝑍, which used an uninformed 
Gamma prior. The model was fit using NIMBLE, a Bayesian modeling framework in R (Michaud et al. 
2021) and the model code is found in the SCRAM2 GitHub repository8. Hamiltonian Monte Carlo 
(HMC) was used for model likelihood estimation with a burn-in of 1000 and posterior draw of 1000 
across three chains. Parameter convergence was assessed visually and using the Gelman-Rubin statistic 
(𝑟̂𝑟). All parameters and the model predicted true flights (𝑍𝑍𝑖𝑖𝑖𝑖) were below the 𝑟̂𝑟 threshold of 1.1. Posterior 
data simulation was used to assess model fit, and the simulated data sets had similar moments. The 
model-generated data did have lower mean and standard deviation than the observations, but showed 
strong overall agreement with the original data and good evidence that model fit was appropriate. 

2.3.3 Estimating Flight Height Distributions 

The posterior estimates of all true flight heights that occurred over water were used to estimate the flight 
height distribution for red knots for SCRAM. The true flight heights had a different distribution than the 
corrected raw values with all values being greater than zero and lower mean and standard deviation 
(range: 2.3- 6926.5m; mean: 46m; median: 33.8; standard deviation: 176.5). We prioritized over-water 
flights to coincide with the SCRAM study area. We defined over-water as >50m from the coastline and 
selected flight heights from that subset of locations. For the 272 observations without flight height 
estimates, the model-predicted flight height estimates were used in this analysis. From these observations, 
1000 posterior draws from a HMC chain were selected. For each draw, the true flight height estimates 
were compiled and the density of that distribution in 1m bins was calculated. The mean flight height 
distribution incorporated into SCRAM showed two modes: a peak below 10m and a peak at 40m (Figure 
9, top). The uncertainty from these results was then propagated through to the CRM framework. 

The flight height distribution estimated from this approach is considerably different than the distribution 
estimated in SCRAM 1.0.3 (Figure 9). Notably, the lack of uncertainty propagation in SCRAM 1.0.3 
shows patchier and more accurate estimates of flight height density. Moreover, there are fewer low 
altitude detections and more high-altitude detections. However, the sums of probability density for the 
altitude range of a standard rotor swept zone (25–225m) were similar between the two methods (e.g., 
though the flight height distribution changed substantially between SCRAM versions, the resulting 
influence on collision risk estimates was minor). SCRAM 2 showed 53% and SCRAM 1.0.3 showed 55% 
of detections within the 25–225m range. While these overall values are similar note that Option 3 in the 
SCRAM collision risk model accounts for the specific flight heights relative to turbine blades. So 
collision probability likely will change for Option 3 specifically because SCRAM 2’s flight heights have 
a lower mean and collision probability decreases as birds move away from the turbine nacelle. 

2.3.4 Analytical Assumptions of the Flight Height Model for Red Knots 

A more complete review of SCRAM’s limitations and assumptions with flight height was included in 
Adams et al. (2022). The new flight height model for Red Knots assumes: 

1. That tracked red knots are representative and unbiased sample of the rufa red knot population. 
2. GPS altitude estimates are an unbiased estimator of rufa red knot flight height. 
3. Individuals are similar in flight height behaviors in the sampled population. 

 

 

8 SCRAM2 GitHub repository: https://github.com/Biodiversity-Research-Institute/SCRAM2  

https://github.com/Biodiversity-Research-Institute/SCRAM2
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4. GPS duty cycle is fine enough to capture overwater migratory flight heights. 
5. GPS-measured altitude relative to the geoid is suitable for comparison to turbine height 

measurements, rather than measuring altitude relative to fine-scale oceanographic variability 
(e.g., sea surface height anomaly, tidal fluctuations).  

In the above order, the consequences of violating these assumptions are: 

1. Unclear; it depends on how sampling bias impacts the estimates. 
2. Likely underestimating flight heights; Lato et al. (2022) suggest bias in altitude estimates that 

vary across transmitters and also tend to be lower than the true estimate. Future work on 
incorporating known biases into these models will be useful for assessing this effect. 

3. Likely underestimating uncertainty; if significant variation exists across individuals then it should 
be accounted for directly in flight height distribution estimation. 

4. Likely underestimating maximum flight heights; high altitude flights are likely relatively rare at 
the scale of the annual cycle, so we likely underestimate overwater flight heights with an 
infrequent duty cycle. A higher sampling frequency would allow us to better estimate the 
overwater flight heights. 

5. Unclear; if tidal variation is significant then we could be overestimating flight heights because 
below 0 flight heights (geoid reference) are more likely. But this is unlikely to influence the 
estimate of animals within the rotor swept zone. If different developers are standardizing turbine 
heights on different reference points from the geoid, then our estimates would be biased until 
those references were identified and corrected. 

2.3.5 Conclusions 

The revised models for the red knot flight height distribution presented significant updates in SCRAM 2, 
though with caveats consistent with SCRAM 1.0.3. Spatial sampling bias was a significant limitation in 
both the Motus and satellite-based datasets, particularly from the lack of over-water movements during 
northbound migration south of the U.S. Mid-Atlantic. SCRAM 2 did not model spring migratory 
movements, due to lack of data, yet it assumed that observed flight heights were representative of the 
broader population. Therefore, any differences in flight heights that occurred early in the boreal spring 
remained underrepresented, presenting potential bias in the estimated flight height distribution. However, 
since SCRAM does not currently estimate collision risk for red knots during the spring, the effects of this 
potential bias are expected to be minimal. Individuals with more data points also contributed more to the 
population flight height distribution. This problem is common to most telemetry studies (Lindberg and 
Walker 2007, Girard et al. 2002; and other applications of these datasets in SCRAM). To ameliorate this 
issue, more satellite-based telemetry deployments are needed that place particular attention on distributing 
telemetry devices evenly across breeding and wintering populations. 

The flight height estimation methods used for red knots in SCRAM 2 held several distinct advantages 
over SCRAM 1.0.3. Measurement uncertainty was estimated directly with the state-space framework, and 
propagated into the CRM, unlike the Motus flight height approach. Further, the SCRAM 2 method 
allowed for variance in uncertainty and filled in gaps in the flight height distribution profile by using 
environmental covariates to better estimate true altitude. Future work on flight height distributions for 
SCRAM should focus on incorporating measurement validation data into the models, quantifying 
uncertainty in the flight height estimates, accounting for variable differences in time between flight height 
observations and developing ecological models that better account for temporal autocorrelation in 
observations. If GPS-based altitude estimates become available for other focal species in SCRAM, we 
recommend similar flight height model updates to those implemented here for red knots.  
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Figure 9. Comparison of flight height estimates for Red Knots between SCRAM versions. 
SCRAM 2 (top panel) uses a state space modeling framework to estimate flight heights from GPS transmitters 
deployed from 2020-2023. SCRAM 1.0.3 (bottom panel) used estimates from a movement model that used data from 
Motus tags to estimate the position of the animal. The mean estimate for the posterior draws (top) and bootstrapped 
estimates (bottom) is shown by 1m altitude bins. 

2.4 Collision Risk Modeling 
SCRAM 1.0.3’s collision risk model (CRM) was based on McGregor et al. (2018) with some additional 
modifications (Adams et al. 2022), and could only be run via the RShiny web application. SCRAM 2’s 
CRM codebase was converted using stochLAB (Caneco et al. 2022) to align with the most updated CRM 
used in the United Kingdom and utilize its error detection tools (Caneco et al. 2022), as well as to allow 
SCRAM to run in R separately from the web application (which better allowed for sensitivity analyses 
and other plans for further improvements). This code was repeatedly reviewed and several bug fixes were 
implemented since the McGregor et al. (2018) version of the stochCRM was published. Additionally, 
stochLAB code included several major improvements to accelerate runtime. As a result, the CRM in 
SCRAM 2, while functionally the same model structure as in SCRAM 1.0.3, ran substantially faster. 
Through this transition, bugs were fixed in the original SCRAM code as well as the stochLAB code. 
These bugs included a slight error in the calculation of turbine rotor heights (as noted in McGregor et al. 
2018) and an incorrect default metric for chord pitch (which was in degrees rather than radians; G. 
Humphries pers. comm.) An additional bug encountered in the stochLAB R package (which did not affect 
the accuracy of results from the stochLAB RShiny interface) impacted Option 3 collision risk estimation. 
There was misalignment between altitude-specific collision risk and the flight height data, caused by 
insufficient sampling of the vertical component of the rotor swept zone. Essentially, avian flux was less 
likely to be counted at the fringes of the flight height range than it should be. The solution was to increase 
the vertical sampling rate for the collision model to ensure that flight height data were included from 
infrequently flown altitudes. In fixing this bug for SCRAM, we were able to increase the precision of 



 

32 

 

Option 3 estimations of the collision integral and flight height distribution. We allowed SCRAM to 
sample the rotor swept zone with a higher density of horizontal slices, which improved the altitude-
specific collision estimates by combining the flux and collision integrals. 

Finally, we adjusted the avoidance rate estimates for the basic model (Option 1 in SCRAM 1.0.3, 
renamed to Option 2 in SCRAM 2; see “Addition of a Band Annex 6 Module,” below). In SCRAM 1.0.3, 
a single set of avoidance values per species was used for both collision risk estimation options. SCRAM 2 
used slightly different values for the basic vs. extended model, as discussed in the “Morphometrics and 
Behavioral Data,” above. Altogether, these changes to SCRAM 2 tended to result in lower collision risk 
estimates than those of SCRAM 1.0.3, all else being equal. The full code base for each version of 
SCRAM is available for comparison in GitHub9.  

2.4.1 Analytical Assumptions of the Collision Risk Models 

The collision risk models assumed that: 

1. Morphometric data were well-described by a Gaussian distribution and were representative of the 
populations at risk of collisions with offshore wind farms in the study area. 

2. Birds were exposed to a turbine only once in a day, but they could be exposed to a turbine 
multiple times in a month. 

3. The proportion of headwinds and tailwinds were equal at the wind farm, wind speeds were 
constant during operational periods, and other weather conditions (e.g., rain, fog, wind wake) did 
not influence collision risk. 

4. Probability of collision was equal among turbines. 
5. Birds did not adjust their behaviors to avoid wind farms altogether (i.e., macro-avoidance) 

Violation of these assumptions could potentially result in: 

6. Underestimates of collision risk for birds that flew slower than their species’ assumed mean flight 
speed, or overestimates of collision risk for birds that flew faster than their assumed mean flight 
speed. 

7. Underestimates of collision risk for species that transited a wind farm multiple times per day. 
8. More variability in collision risk than estimated, due to real-world weather conditions at turbines.  
9. Underestimates of collision risk for birds attracted to structures (e.g., for perching). 
10. Overestimates of collision risk for birds that exhibited macro-avoidance. 

2.5 Web Application 
2.5.1 Addition of a Band Annex 6 Module 

USFWS runs both SCRAM and the Band (2012) Annex 6 collision risk model for migrants as part of the 
process of assessing risk from offshore wind projects in the NES (P. Loring, pers. comm.). Both models 
require a pre-specified regional population size estimate. However, SCRAM uses movement model 
results to estimate the number of individuals from the regional population that may be exposed to a wind 
project (and thus may be at risk of collisions) at a given location. In contrast, the Band (2012) Annex 6 

 

 

9 The full code base for each version of SCRAM is available for comparison in GitHub 
(https://github.com/Biodiversity-Research-Institute/SCRAM and https://github.com/Biodiversity-
ResearchInstitute/SCRAM2, respectively). 

https://github.com/Biodiversity-Research-Institute/SCRAM
https://github.com/Biodiversity-ResearchInstitute/SCRAM2
https://github.com/Biodiversity-ResearchInstitute/SCRAM2
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model for migrants assumes a uniform distribution of the migrant population across a pre-specified 
migratory corridor width. While corridor width can change with latitude, the assumption of a uniform 
distribution over that region is a key feature of the Band Annex 6 model, and is likely inaccurate for most 
species.  

An implementation of the Band (2012) Annex 6 collision risk model for migrants has been added as a 
new module within the SCRAM RShiny tool to help improve USFWS risk assessment process, which 
previously utilized the Band (2012) collision risk spreadsheet (P. Loring, pers comm). This stochastic 
version of the Band CRM can be run alongside SCRAM, to help estimate uncertainty in results. Band 
results are now reported similarly to SCRAM (as a PDF report that includes all relevant inputs and 
outputs), making it easier to track inputs/outputs for each model run using both types of CRMs. The 
addition of this module allows for substantially improved ease of use, easier comparisons between results 
of models, and the implementation of a stochastic version of the Band (2012) model.  

The Band (2012) Annex 6 migrant model was designed to be used with migrant species where 
information was lacking on their offshore movements. However, to create these estimates, assumptions 
must be made about the distribution of migrating animals. First, each individual in the migrating 
population has two opportunities for collision per year (one on the northbound migration and the other on 
the southbound migration). Second, migrants are evenly distributed across the expert-defined migratory 
corridor. Third, migrants could be avoiding the OCS entirely during certain times of year. The effects of 
these assumptions will vary by location, but more than one opportunity for collision is likely for migrants 
per migratory season due to non-linear migratory movements like reverse migration. Further, there does 
appear to be evidence that some species could be moving around, rather than through, the study area. 
More data from GPS transmitters will be useful for describing these patterns and determining appropriate 
adjustments to Band model assumptions. 

The Band (2012) Annex 6 module in the SCRAM web application makes collision risk predictions for all 
months in which the focal species are assumed to be migrating through the study area (Table 4), and thus 
includes a slightly larger range of months than the SCRAM module, which is limited by the months in 
which there were sufficient tracking data to inform model predictions (Table 7). Additionally, the Band 
module is not limited to the spatial area in which Motus stations were being actively maintained during 
the tracking study (Loring et al. 2018; Loring et al. 2019). Thus, SCRAM and Band collision risk 
estimates encompass different spatial and temporal extents and are not directly comparable. However, the 
Annex 6 model provides a useful contrast with the SCRAM movement model results, and provides a 
check on assumptions in the collision risk estimates generated using movement models (see Adams et al. 
2022 for further detail on these assumptions).  

2.5.2 Other Updates 

We removed the sensitivity analysis button and output from the web application for SCRAM 2. This 
functionality was not being utilized and a formal sensitivity analysis is planned for a later date. Since the 
improved computational efficiencies in the collision risk models (as described in “Collision Risk 
Modeling,” above) greatly reduced the time for the model to complete, the “cancel model” button was 
also removed and the range of allowable model iterations was increased from 100–10,000 (SCRAM 
1.0.03) to 2,500–25,000 (SCRAM 2). As with SCRAM 1.0.3, at least 10,000 model iterations are 
recommended. 

Lastly, SCRAM allows for two different collision risk estimation methods. The options in SCRAM 2 are 
calculated almost identically to SCRAM 1.0.3 (see “Morphometric and Behavioral Data,” above), but 
Option 1 has been renamed as Option 2 to align SCRAM nomenclature with that of Band (2012) and 
stochLAB (Caneco et al. 2022). Option 2 (formerly Option 1) uses general flight height data to run a 
Band Annex 6 model (not location-specific data), so we renamed it to bring this into alignment with 
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stochLAB options. SCRAM does not use location-specific flight-height data. Option 2 estimates the 
collision rate for the entire RSZ, whereas Option 3 estimates it in discrete increments of approximately 5 
m or less. As stated in Adams et al. (2022), we generally recommend the use of Option 3 whenever 
possible, since it directly pairs flight height with altitude-specific turbine collision rates. Thus, if birds are 
more common at heights where collision probability is lower in the turbine RSZ, Option 3 accounts for 
the decreased collision risk while Option 2 would not.  

2.6 User Manual and Code 
The code for SCRAM 2 was substantially updated as described in the above sections of this report (and as 
summarized in Table 1). The user manual was also updated to match the revised web application10.  

3 Comparison of SCRAM 1.0.3 to SCRAM 2 Estimates of Collision 
Risk 

Collision risk estimates varied between SCRAM 1.0.3 and SCRAM 2, for a variety of reasons that were 
not uniform by species nor location within the NES (Table 1). To illustrate some differences, we 
compared outputs of the movement models for Red Knots between SCRAM v. 1.0.3 and SCRAM v. 
2.1.6. We used three locations that were arbitrarily selected within the Motus study area but outside of 
existing lease areas (Figure 10). We used the “Example wind farm input” available in each of the 
respective online tools and updated the centroid coordinates (i.e., Latitude and Longitude). These two 
files contained equivalent rotor and wind speed parameters for “Run 2”, a 15 GW example turbine model, 
using the following conversion (Adams et al. 2022):  

𝑤𝑤 = 60 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇 ∗ 𝑆𝑆/(2 𝜋𝜋𝜋𝜋) 

Where w is the rotations per minute, tip speed ratio (TSR) = 5.5, S is wind speed (m/s), and r is the rotor 
radius (m). We selected Option 3 (“slower but more precise”) and otherwise relied on tool 
recommendations and defaults (e.g., a collision threshold of 1, using the recommended minimum 
iterations of 1,000 for SCRAM v. 1.0.3 and 10,000 for SCRAM v. 2.1.6). We reported the annual mean 
collisions for Run 2 (a 15 GW example turbine model). 

The new collision risk estimates more often declined than increased for red knots from SCRAM 1.0.3 to 
SCRAM 2 (Table 8). These changes related to a combination of factors, including increased sample size, 
incorporation of GPS and Argos tracking data, improved model fit, the switch from two-state to one-state 
models, updates to the red knot monthly regional population size estimates, flight height estimates, and 
bug fixes (Table 1). 

 

 

10 As with SCRAM 1.0.3, the updated SCRAM 2 web application, model code, and user manual are available at and 
https://github.com/Biodiversity-Research-Institute/SCRAM2. All study products are also available via 
https://briwildlife.org/SCRAM/. 

https://github.com/Biodiversity-Research-Institute/SCRAM2
https://briwildlife.org/SCRAM/
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Figure 10. Locations selected for comparisons of collision risk estimates between SCRAM 
versions. 
Location coordinates are presented in Table 8. 

 

Table 8. Example collision estimates for Red Knots compared between SCRAM 1.0.3 and SCRAM 
v. 2.1.6. 
Annual mean collisions were estimated at three locations in the study area, using a 15 GW example turbine model. 
Latitude and longitude are in decimal degrees. 

Species Location Latitude Longitude SCRAM 1.0.3 SCRAM 2.1.6 

Red Knot 1 37.45 -75.15 0.062 0.039 

- 2 39.90 -73.65 0.035 0.063 

- 3 40.70 -71.59 17.500 0.028 

 

4 Future Work 
SCRAM is a decision support tool that may be used to assess the relative risk of collisions (e.g., as 
compared among various project design envelopes; Adams et al. 2022), and may also inform future 



 

36 

 

research efforts. The limitations and analytical assumptions of the models provide insight into how data 
inputs may be improved to advance model development. For example, the most conspicuous information 
gap in SCRAM is the lack of spring migration data. Future tracking efforts (both Motus and satellite-
based) should target full spring migration to inform northbound movements in SCRAM (i.e., through 
tagging efforts south of U.S. federal waters prior to spring movements). Additionally, the inclusion of 
satellite-based data in SCRAM 2 highlights the importance of tracking sub-daily movements to inform 
collision risk. Though sub-daily duty cycles in GPS data are recommended for future data collection, to 
inform both movement and flight height models, new Motus data sources may also help inform SCRAM 
development if they meet certain criteria. Such data would ideally include (1) high quality data filtering 
(e.g., to minimize false positives) and (2) adequate station coverage in the study area during the study 
period (i.e., including continued station maintenance to minimize downtime). Further development of the 
collision risk model to accommodate sub-daily movements would also benefit from data inputs on daily 
or sub-daily environmental and/or turbine operational conditions (e.g., average winds and/or turbine rotor 
speeds). Variations in these parameters over time are not currently built into any Band-type collision risk 
models. However, it may be a fruitful area of future model development. 

Additionally, a recent meeting of the newly established international collision risk modeling workgroup 
in July 2024 suggested two potential priorities for future work: 

• Development of guidance for the deployment of tracking devices on focal species (e.g., when, 
where, and how many tags should be deployed on each species to adequately sample the 
population of interest). In the United States, this guidance should be developed in collaboration 
with the Regional Wildlife Science Collaborative. 

• Development of a database of wind turbine models and input parameters (e.g., tidal offsets as 
detailed in Band 2012, as well as turbine characteristics) to inform collision risk modeling. 

Phase 3 of SCRAM (September 2024 to September 2026) is expected to include the following activities: 

• Further updates to the regional population size estimates provided by the USFWS, based on the 
best available data.  

• Continued updates to the structure of movement models and improved precision of movement 
modeling estimates. 

• Incorporation of additional data into movement models (e.g., new species, new tracking 
technologies, and new datasets for species and tracking technologies already included in 
SCRAM, as available; e.g., Perkins 2024). 

• Further development of the flight height modeling process as new data become available and 
methods are refined. 

• Further consideration of approaches for estimating flight speed, as new data and methods become 
available. 

• Re-examination of how uncertainty flows through the models and further sensitivity testing to 1) 
more clearly specify the assumptions in the SCRAM framework, and 2) identify key parameters 
driving model results to refine parameter estimation or inform further data collection. 

• Update of the web application to apply a proportional adjustment to collision risk estimates for 
wind projects that are located in multiple grid cells within the NES study area (based on the 
percentage of the wind project located in each grid cell). 

• Work with international collaborators to develop a common approach for obtaining biologically 
defensible cumulative effects estimates to meet regulatory needs. 

• Continue to host and update the web application. 
• Work with CRM experts in the UK to provide external review and feedback on the new version 

of SCRAM. 
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• Conduct additional outreach activities to help offshore wind stakeholders in the U.S. to better 
understand SCRAM and collision risk models generally. 
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Appendix A: Frequently Asked Questions (FAQ) for SCRAM 2 
 

Q: Wow, SCRAM is working a lot faster now, what happened? 

A: We integrated SCRAM with another offshore wind collision risk decision support tool (stochLAB; 
Caneco et al. 2022) that also uses the Band (2012) model as a basis for its estimates. The developers of 
stochLAB significantly improved the speed of the model runs and added QA/QC protocols as compared 
to the older model code on which SCRAM 1.0.3 was based. This change reduces the possibility of future 
errors and allows users to test multiple scenarios much faster. 

Q: I’m seeing Option 2 and Option 3 listed for estimated collision risk, when before there was 
Option 1 and Option 3. Why the change? 

A: The options are calculated almost exactly the same as before, but we have renamed Option 1 as Option 
2 to make sure that SCRAM nomenclature is aligned with Band (2012) and stochLAB (Caneco et al. 
2022). In Band and stochLAB, what is called Option 1 requires location-specific flight height data, while 
Option 2 uses general flight height data for the species. Since the latter case is what was originally called 
“Option 1” in SCRAM, we renamed this option to align with CRM nomenclature. 

Additionally, we use very slightly different avoidance rate estimates for Option 2 (formerly Option 1) 
than were used in SCRAM 1.0.3; before, a single set of avoidance values per species were used for both 
collision risk estimation options. Values used in both Option 2 and Option 3 are taken from Table A2 in 
Cook (2021). However, as stated in Adams et al. (2022), we generally recommend the use of Option 3 
whenever possible, which explicitly pairs the altitudes of bird activity with collision risk in the rotor 
swept zone. If birds tend to fly in the lower portion rotor swept zone where the chances of collision are 
lower, then their chances of collision should be estimated as such. We account for this distribution profile 
in Option 3, but not Option 2. In Option 2, we only look at overall use of the rotor swept zone and the 
average collision risk of the whole area. 

Q: Why is the number of predicted collisions different between SCRAM 1.0.3 and 2? 

A: Many changes were made to improve SCRAM between versions 1.0.3 and 2. First, the transition to the 
stochLAB code for the collision risk model helped us squash a few lingering bugs. Some of these changes 
seem to have generally decreased SCRAM 2 collision risk estimates relative to SCRAM 1.0.3. Second, 
we updated the movement models for all species; this included adding newer Motus data, implementing 
more stringent QA/QC procedures to filter out potentially erroneous detections in the tracking datasets for 
all three study species, after Loring et al. (2021), and eliminating the use of multiple movement states. We 
also incorporated data from multiple new transmitter types (GPS and PTT) for red knots. After these 
improvements, there were noticeable differences in the estimates of space use in the animals, though the 
general patterns were similar. In general, the highest and lowest occupancy values were smoothed out 
across the study area in SCRAM 2 as compared to SCRAM 1.0.3. Lastly, the regional population size 
estimates were updated on both an overall and monthly basis, which tended to decrease estimated 
collision risk. The net change in collision risk varied by species and location. 

Q: What movement data are now included in SCRAM? 

SCRAM 2 movement models are based on data from Motus tags (Piping plover n=107, roseate tern 
n=134, red knot n=240), GPS transmitters (red knot n=81), and PTT transmitters (red knot n=25). The 
Motus data are all from BOEM-funded tracking studies conducted in 2015-2017 (Loring et al. 2018; 
Loring et al. 2019; Loring et al. 2021). GPS and PTT data are from six different studies conducted in 
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2020-2023, as discussed in the main text and in Appendix C. SCRAM 1.0.3 included only Motus data, 
including a much smaller Motus dataset for red knots than is included in SCRAM 2.  

Due to the coastal locations of Motus stations in 2015-2017, Motus detections in the dataset tend to be 
somewhat clustered towards the coastline, and there is substantial uncertainty in occupancy estimates for 
grid cells located well offshore (despite substantial improvements in movement models in SCRAM 2, 
which reduced this uncertainty from SCRAM 1.0.3). For red knots, GPS and PTT transmitters 
incorporated into SCRAM 2 provide location data for both coastal and offshore regions with substantially 
higher precision than Motus technology, improving resulting occupancy models.  

Flight height models in SCRAM 1.0.3 were based solely on Motus data (Loring et al. 2018; Loring et al. 
2019). For SCRAM 2, red knot flight height models are now based on GPS tracking data (n=132 
individuals). Future updates to SCRAM are expected to continue to incorporate additional tracking 
datasets (as they become available) into both movement models and flight height models.   

Q: It sounds like there were a lot of changes to the Motus movement models, what happened there? 

A: It started with an update to the red knot tracking dataset, to incorporate newer Motus data into 
SCRAM 2. The movement model didn’t fit the data properly, so we simplified the model to improve 
convergence. For consistency, we applied a similar approach and improvements to the piping plover and 
roseate tern datasets. The greatest change simplified the models from two-state behavioral models to one-
state models. Previously we adjusted the collision estimates to only include occupancy from birds in a 
migratory movement state. However, following changes to the underlying red knot dataset that added data 
and improved QA/QC (e.g., data filtering procedures), the model could no longer reliably differentiate 
two movement states. This means that collision risk estimates for SCRAM 2 may be higher in some 
nearshore grid cells and lower in offshore grid cells as compared to SCRAM 1.0.3. Future model 
development is expected to revisit a two-state model, as new tracking data become available. 

Q: Why did you add the Band Annex 6 models to the SCRAM web application? 

A: We added functionality to run a stochastic version of the Band (2012) model (specifically Band Annex 
6, the collision risk model for migrants) in the SCRAM web application. Band (2012) Annex 6 uses 
nearly the same underlying collision risk model as SCRAM, but estimates “flux,” or the number of 
animals that are present to potentially collide with a turbine, based on range-wide estimates of migratory 
corridor width. Essentially, the Band migratory model (i.e., Annex 6) assumes animals are evenly 
distributed across the width of the user-designated migratory corridor. In contrast, SCRAM’s movement 
modeling approach estimates the occupancy to be higher in places that more animals moved through, and 
lower where fewer animals occurred (based on individual tracking data). A random distribution of 
animals, as in the Band migrant model, isn’t often a reasonable assumption, but it can be helpful for 
making approximate collision risk estimates where other data are lacking. By allowing users to contrast 
the two models, it can more easily be seen how certain assumptions play out in the collision risk 
estimates, and will better allow those differences to inform conservation decision making. Including the 
Band (2012) Annex 6 collision risk model in the tool will also simplify the process of running both 
models for the same wind energy facilities, ensure consistent reporting of data inputs and outputs between 
the two types of models, and facilitate the use of a stochastic, rather than deterministic, version of the 
Band model. 

Q: Anything else we should know about? 

A: Yep, there are a few other noteworthy changes in SCRAM 2, including: 

• We are now limiting SCRAM’s Motus model output to a smaller geographic area where there 
was consistent Motus station coverage during the tracking studies that make up our movement 
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dataset. This area ranges approximately from northern Cape Cod to the Virginia-North Carolina 
border. If you ask SCRAM for a movement model-based collision risk estimate in the NES 
outside of that geographic area, you will only get one for red knots, and it will be 100% based on 
satellite tracking data (not Motus tags). The Band Annex 6 model will also provide collision risk 
predictions throughout the NES study area. We hope to expand the geographic area to which we 
can make confident predictions using Motus data in future iterations of SCRAM, but that will 
require new data and better coverage.  

• SCRAM produces monthly collision risk estimates for a slightly different subset of month/species 
combinations than before. This is because we 1) added new Motus data and GPS/PTT data to our 
red knot models, 2) incorporated new Motus data for red knots and implemented additional 
quality control filtering to remove potentially erroneous data points for all three species, and 3) 
removed occupancy and collision estimates for piping plovers in September, when only 4 
individuals were detected (below the sample size threshold of 5).  

• We updated the monthly regional population size estimates of birds thought to be present in the 
NES study area that could be available to collide with turbines. These updates were based on the 
best available science from the USFWS and aligned the numbers in SCRAM 2 with those being 
used in the most recent Band (2012) model runs. In general, these updates tended to decrease 
monthly regional population size estimates, as USFWS refined their estimates of when animals 
were moving through the NES during fall migration.  

• We updated the avoidance rates for all three species to average the values recommended by Cook 
(2021) and Ozsanlav-Harris et al. (2023). These two reports used similar (but not identical) 
datasets from Europe to estimate avoidance rates of offshore wind turbines by gulls and terns, and 
developed differing estimates of avoidance rates. Upon review, neither analysis seems like it was 
a clear improvement over the other, and thus we chose to average the avoidance rates from the 
two reports (SCRAM 1 avoidance rates were based solely on values from the Cook report, and 
were lower than the averaged values from the two reports included in SCRAM 2). 

  



 

43 

 

Appendix B: Red Knot GPS and PTT Tag Deployments 
Table B-1. Red knot GPS and PTT tag deployments between August 2020-August 2023 considered 
for potential inclusion in SCRAM. 
Information on each tag includes project, deployment site, location (state/province, country) and date deployed. Table 
indicates the number of locations (locs, n) and days (n) of movement data available for each individual following data 
cleaning. Bolded individuals are those used in final movement models for fall migration. Individuals were excluded 
from modeling for a variety of reasons, including tag duration and tag deployment date (e.g., whether the tag was 
operational during potential overwater migration periods and whether there were enough tags operational to conduct 
modeling for a given migration season). For more information, see the “Data Inputs - Satellite Telemetry” section of 
the report. Tags were funded by five projects: Atlantic Shores Offshore Wind, U.S. Fish and Wildlife Service, Ocean 
Wind Offshore Wind, Environment and Climate Chance Canada (ECCC), and Coastal Virginia Offshore Wind 
(CVOW). Tags were primarily deployed at migratory staging sites in New Jersey including North Brigantine Natural 
Area (NBRIG), Thompson’s Beach (THOMPS), Norbury’s Beach (NORBURYC), Avalon Beach (AVALON), Stone 
Harbor (STOHARB), Fortescue Fish and Wildlife Management Area (FORTESCU), Moores Beach (MOORES), 
Kimble’s Beach (KIMBLESO), and Two Mile Beach (TWOMILE), as well as on Monomoy, Massachusetts 
(MONOMOY), and at two wintering sites in Brazil including Lagao do Peixe National Park (PEIXE) and Pesca 
(PESCA).  
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Tag ID Tag Type Project Deploy Site State/Province Country Deploy Date Locs (n) Days (n) 
204351 GPS Atlantic Shores NBRIG   New Jersey USA 8/22/2020 67 15 
204352 GPS Atlantic Shores NBRIG   New Jersey USA 8/13/2020 72 17 
204353 GPS Atlantic Shores NBRIG   New Jersey USA 8/24/2020 0 0 
204354 GPS Atlantic Shores NBRIG   New Jersey USA 8/24/2020 0 0 
204355 GPS Atlantic Shores NBRIG   New Jersey USA 8/24/2020 0 0 
204356 GPS Atlantic Shores NBRIG   New Jersey USA 8/24/2020 0 0 
204357 GPS Atlantic Shores NBRIG   New Jersey USA 8/13/2020 71 17 
204358 GPS Atlantic Shores NBRIG   New Jersey USA 8/24/2020 0 0 
204359 GPS Atlantic Shores NBRIG   New Jersey USA 8/22/2020 68 16 
204360 GPS Atlantic Shores NBRIG   New Jersey USA 8/24/2020 0 0 
204361 GPS Atlantic Shores NBRIG   New Jersey USA 8/13/2020 79 17 
204362 GPS Atlantic Shores NBRIG   New Jersey USA 8/13/2020 4 1 
204363 GPS Atlantic Shores NBRIG   New Jersey USA 8/24/2020 0 0 
204364 GPS Atlantic Shores NBRIG   New Jersey USA 8/22/2020 61 13 
204365 GPS Atlantic Shores NBRIG   New Jersey USA 8/24/2020 0 0 
204366 GPS Atlantic Shores NBRIG   New Jersey USA 8/24/2020 0 0 
204367 GPS Atlantic Shores NBRIG   New Jersey USA 8/24/2020 0 0 
204368 GPS Atlantic Shores NBRIG   New Jersey USA 8/24/2020 0 0 
204369 GPS Atlantic Shores NBRIG   New Jersey USA 8/22/2020 68 15 
204370 GPS Atlantic Shores NBRIG   New Jersey USA 8/13/2020 50 15 
204371 GPS Atlantic Shores NBRIG   New Jersey USA 8/22/2020 75 16 
204372 GPS Atlantic Shores NBRIG   New Jersey USA 8/24/2020 0 0 
204373 GPS Atlantic Shores NBRIG   New Jersey USA 8/24/2020 0 0 
204374 GPS Atlantic Shores NBRIG   New Jersey USA 8/24/2020 0 0 
204375 GPS Atlantic Shores NBRIG   New Jersey USA 8/22/2020 69 15 
204376 GPS Atlantic Shores NBRIG   New Jersey USA 8/24/2020 0 0 
204377 GPS Atlantic Shores NBRIG   New Jersey USA 8/24/2020 0 0 
204378 GPS Atlantic Shores NBRIG   New Jersey USA 8/24/2020 0 0 
204379 GPS Atlantic Shores NBRIG   New Jersey USA 8/24/2020 0 0 
213827 GPS USFWS Spring Mig. THOMPS New Jersey USA 5/26/2021 0 0 
213828 GPS USFWS Spring Mig. NORBURYC New Jersey USA 5/25/2021 56 80 
213829 GPS USFWS Spring Mig. THOMPS New Jersey USA 5/19/2021 8 8 
213830 GPS USFWS Spring Mig. THOMPS New Jersey USA 5/19/2021 0 0 
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Tag ID Tag Type Project Deploy Site State/Province Country Deploy Date Locs (n) Days (n) 
213831 GPS USFWS Spring Mig. NORBURYC New Jersey USA 5/25/2021 19 21 
213832 GPS USFWS Spring Mig. THOMPS New Jersey USA 5/19/2021 19 20 
213833 GPS USFWS Spring Mig. THOMPS New Jersey USA 5/19/2021 7 8 
213834 GPS USFWS Spring Mig. NORBURYC New Jersey USA 5/25/2021 0 0 
213835 GPS USFWS Spring Mig. NORBURYC New Jersey USA 5/25/2021 0 0 
213836 GPS USFWS Spring Mig. THOMPS New Jersey USA 5/26/2021 0 0 
213837 GPS USFWS Spring Mig. THOMPS New Jersey USA 5/19/2021 0 0 
213838 GPS USFWS Spring Mig. THOMPS New Jersey USA 5/19/2021 0 0 
213839 GPS USFWS Spring Mig. THOMPS New Jersey USA 5/19/2021 4 4 
213840 GPS USFWS Spring Mig. THOMPS New Jersey USA 5/19/2021 0 0 
213841 GPS USFWS Spring Mig. THOMPS New Jersey USA 5/26/2021 14 13 
213842 GPS USFWS Spring Mig. THOMPS New Jersey USA 5/19/2021 0 0 
221837 GPS Ocean Wind  AVALON New Jersey USA 10/20/2021 0 0 
221838 GPS Ocean Wind  NBRIG New Jersey USA 9/8/2021 10 9 
221839 GPS Ocean Wind  AVALON New Jersey USA 10/20/2021 0 0 
221840 GPS Ocean Wind  AVALON New Jersey USA 10/27/2021 0 0 
221841 GPS Ocean Wind  AVALON New Jersey USA 10/27/2021 82 18 
221842 GPS Ocean Wind  NBRIG New Jersey USA 9/8/2021 98 21 
221843 GPS Ocean Wind  AVALON New Jersey USA 10/27/2021 52 12 
221844 GPS Ocean Wind  STOHARB New Jersey USA 11/10/2021 27 7 
221845 GPS Ocean Wind STOHARB New Jersey USA 11/10/2021 17 3 
221846 GPS Ocean Wind AVALON New Jersey USA 10/27/2021 40 9 
221847 GPS Ocean Wind STOHARB New Jersey USA 11/10/2021 0 0 
221848 GPS Ocean Wind NBRIG New Jersey USA 9/8/2021 26 27 
221849 GPS Ocean Wind NBRIG New Jersey USA 9/8/2021 50 11 
221850 GPS Ocean Wind STOHARB New Jersey USA 11/10/2021 74 18 
221851 GPS Ocean Wind NBRIG New Jersey USA 9/8/2021 32 32 
221852 GPS Ocean Wind AVALON New Jersey USA 10/27/2021 46 10 
221853 GPS Ocean Wind AVALON New Jersey USA 10/20/2021 0 0 
221854 GPS Ocean Wind STOHARB New Jersey USA 11/10/2021 0 0 
221855 GPS Ocean Wind AVALON New Jersey USA 10/20/2021 0 0 
221856 GPS Ocean Wind STOHARB New Jersey USA 11/10/2021 2 0 
221857 GPS Ocean Wind AVALON New Jersey USA 10/20/2021 0 0 
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Tag ID Tag Type Project Deploy Site State/Province Country Deploy Date Locs (n) Days (n) 
221858 GPS Ocean Wind STOHARB New Jersey USA 11/10/2021 0 0 
221859 GPS Ocean Wind AVALON New Jersey USA 10/20/2021 0 0 
221860 GPS Ocean Wind STOHARB New Jersey USA 11/10/2021 99 23 
221861 GPS Ocean Wind AVALON New Jersey USA 10/20/2021 0 0 
221862 GPS Ocean Wind AVALON New Jersey USA 10/20/2021 0 0 
221863 GPS Ocean Wind STOHARB New Jersey USA 11/10/2021 42 10 
221864 GPS Ocean Wind AVALON New Jersey USA 10/20/2021 0 0 
221865 GPS Ocean Wind AVALON New Jersey USA 10/20/2021 0 0 
221866 GPS Ocean Wind STOHARB New Jersey USA 11/10/2021 127 28 
221867 GPS Ocean Wind AVALON New Jersey USA 10/27/2021 60 14 
221868 GPS Ocean Wind AVALON New Jersey USA 10/27/2021 0 0 
224072 GPS Atlantic Shores NBRIG New Jersey USA 8/20/2021 12 5 
224073 GPS Atlantic Shores NBRIG New Jersey USA 8/25/2021 84 21 
224074 GPS Atlantic Shores NBRIG New Jersey USA 8/23/2021 0 0 
224075 GPS Atlantic Shores NBRIG New Jersey USA 8/25/2021 118 31 
224076 GPS Atlantic Shores NBRIG New Jersey USA 8/25/2021 52 13 
224077 GPS Atlantic Shores NBRIG New Jersey USA 8/20/2021 46 12 
224078 GPS Atlantic Shores NBRIG New Jersey USA 8/20/2021 56 14 
224079 GPS Atlantic Shores NBRIG New Jersey USA 8/20/2021 43 11 
224080 GPS Atlantic Shores NBRIG New Jersey USA 8/20/2021 121 30 
224081 GPS Atlantic Shores NBRIG New Jersey USA 8/23/2021 32 8 
224082 GPS Atlantic Shores NBRIG New Jersey USA 8/20/2021 132 33 
224083 GPS Atlantic Shores NBRIG New Jersey USA 8/20/2021 44 12 
224085 GPS Atlantic Shores NBRIG New Jersey USA 8/20/2021 106 27 
224086 GPS Atlantic Shores NBRIG New Jersey USA 8/25/2021 72 20 
224087 GPS Atlantic Shores NBRIG New Jersey USA 8/23/2021 84 21 
224088 GPS Atlantic Shores NBRIG New Jersey USA 8/25/2021 124 31 
224089 GPS Atlantic Shores NBRIG New Jersey USA 8/25/2021 83 21 
224090 GPS Atlantic Shores NBRIG New Jersey USA 8/23/2021 0 0 
224091 GPS Atlantic Shores NBRIG New Jersey USA 8/25/2021 16 4 
224092 GPS Atlantic Shores NBRIG New Jersey USA 8/23/2021 20 5 
224093 GPS Atlantic Shores NBRIG New Jersey USA 8/20/2021 22 6 
224094 GPS Atlantic Shores NBRIG New Jersey USA 8/20/2021 36 10 
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Tag ID Tag Type Project Deploy Site State/Province Country Deploy Date Locs (n) Days (n) 
224095 GPS Atlantic Shores NBRIG New Jersey USA 8/20/2021 46 12 
224096 GPS Atlantic Shores NBRIG New Jersey USA 8/20/2021 24 6 
224097 GPS Atlantic Shores NBRIG New Jersey USA 8/20/2021 65 17 
224098 GPS Atlantic Shores NBRIG New Jersey USA 8/25/2021 120 31 
224099 GPS Atlantic Shores NBRIG New Jersey USA 8/23/2021 87 22 
224100 GPS Atlantic Shores NBRIG New Jersey USA 8/23/2021 8 2 
224101 GPS Atlantic Shores NBRIG New Jersey USA 8/20/2021 50 12 
224102 GPS Atlantic Shores NBRIG New Jersey USA 8/25/2021 68 17 
224103 GPS Atlantic Shores NBRIG New Jersey USA 8/20/2021 31 8 
230299 GPS ECCC FORTESCU New Jersey USA 5/25/2022 60 73 
230300 GPS ECCC KIMBLESO New Jersey USA 5/16/2022 12 13 
230301 GPS ECCC MOORES New Jersey USA 5/21/2022 13 14 
230302 GPS ECCC MOORES New Jersey USA 5/21/2022 15 15 
230303 GPS ECCC MOORES New Jersey USA 5/21/2022 12 11 
230304 GPS ECCC MOORES New Jersey USA 5/21/2022 16 15 
230305 GPS ECCC KIMBLESO New Jersey USA 5/16/2022 14 28 
230306 GPS ECCC FORTESCU New Jersey USA 5/25/2022 46 45 
230307 GPS ECCC FORTESCU New Jersey USA 5/25/2022 11 10 
230308 GPS ECCC FORTESCU New Jersey USA 5/25/2022 82 82 
230309 GPS ECCC MOORES New Jersey USA 5/21/2022 24 23 
230310 GPS ECCC FORTESCU New Jersey USA 5/25/2022 18 71 
230311 GPS ECCC FORTESCU New Jersey USA 5/25/2022 9 9 
230312 GPS ECCC FORTESCU New Jersey USA 5/25/2022 68 74 
230313 GPS ECCC KIMBLESO New Jersey USA 5/16/2022 0 0 
230314 GPS ECCC FORTESCU New Jersey USA 5/25/2022 8 7 
230315 GPS ECCC MOORES New Jersey USA 5/21/2022 16 16 
230316 GPS ECCC KIMBLESO New Jersey USA 5/16/2022 14 16 
230317 GPS ECCC FORTESCU New Jersey USA 5/25/2022 49 82 
230318 GPS ECCC KIMBLESO New Jersey USA 5/16/2022 14 16 
230319 GPS ECCC MOORES New Jersey USA 5/21/2022 12 13 
230320 GPS ECCC MOORES New Jersey USA 5/21/2022 9 9 
232980 PTT ECCC MOORES New Jersey USA 5/21/2022 80 7 
232981 PTT ECCC MOORES New Jersey USA 5/21/2022 1583 115 
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Tag ID Tag Type Project Deploy Site State/Province Country Deploy Date Locs (n) Days (n) 
232982 PTT ECCC MOORES New Jersey USA 5/16/2023 723 138 
232984 PTT ECCC KIMBLESO New Jersey USA 5/16/2022 0 0 
232985 PTT ECCC KIMBLESO New Jersey USA 5/16/2022 1962 89 
232986 PTT ECCC KIMBLESO New Jersey USA 5/16/2022 1035 58 
233781 GPS Atlantic Shores NBRIG New Jersey USA 8/18/2022 124 27 
233918 GPS Ocean Wind STOHARB New Jersey USA 9/28/2022 122 26 
233919 GPS Ocean Wind NBRIG New Jersey USA 8/18/2022 110 24 
233920 GPS Ocean Wind STOHARB New Jersey USA 9/28/2022 9 2 
233921 GPS Ocean Wind TWOMILE New Jersey USA 9/1/2022 124 26 
233922 GPS Ocean Wind STOHARB New Jersey USA 9/28/2022 54 12 
233923 GPS Ocean Wind NBRIG New Jersey USA 8/18/2022 90 20 
233924 GPS Ocean Wind STOHARB New Jersey USA 9/28/2022 6 1 
233925 GPS Ocean Wind STOHARB New Jersey USA 9/28/2022 22 4 
233926 GPS Ocean Wind NBRIG New Jersey USA 8/18/2022 108 24 
233927 GPS Ocean Wind TWOMILE New Jersey USA 9/1/2022 90 20 
233928 GPS Ocean Wind NBRIG New Jersey USA 8/18/2022 126 27 
233929 GPS Ocean Wind STOHARB New Jersey USA 9/28/2022 18 3 
233930 GPS Ocean Wind TWOMILE New Jersey USA 9/1/2022 62 13 
233931 GPS Ocean Wind STOHARB New Jersey USA 9/28/2022 118 26 
233932 GPS Ocean Wind TWOMILE New Jersey USA 9/1/2022 22 4 
234177 GPS Ocean Wind STOHARB New Jersey USA 9/28/2022 107 23 
234178 GPS Ocean Wind STOHARB New Jersey USA 9/28/2022 124 26 
234179 GPS Ocean Wind STOHARB New Jersey USA 9/28/2022 57 20 
234180 GPS Ocean Wind STOHARB New Jersey USA 9/28/2022 120 25 
234181 GPS Ocean Wind NBRIG New Jersey USA 8/18/2022 126 26 
234182 GPS Ocean Wind NBRIG New Jersey USA 8/18/2022 110 25 
234183 GPS Ocean Wind STOHARB New Jersey USA 9/28/2022 117 25 
234184 GPS Ocean Wind STOHARB New Jersey USA 9/28/2022 16 3 
234185 GPS Ocean Wind TWOMILE New Jersey USA 9/1/2022 21 4 
234186 GPS Ocean Wind STOHARB New Jersey USA 9/28/2022 0 0 
234187 GPS Ocean Wind STOHARB New Jersey USA 9/28/2022 92 22 
234189 GPS Ocean Wind NBRIG New Jersey USA 8/18/2022 64 13 
234190 GPS Ocean Wind STOHARB New Jersey USA 9/28/2022 6 1 
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Tag ID Tag Type Project Deploy Site State/Province Country Deploy Date Locs (n) Days (n) 
234191 GPS Ocean Wind NBRIG New Jersey USA 8/18/2022 60 12 
234233 GPS ECCC MOORES New Jersey USA 5/28/2022 21 59 
234234 GPS ECCC MOORES New Jersey USA 5/28/2022 10 9 
234235 GPS ECCC MOORES New Jersey USA 5/28/2022 24 24 
234236 GPS ECCC MOORES New Jersey USA 5/28/2022 80 80 
234237 GPS ECCC FORTESCU New Jersey USA 5/30/2022 12 11 
234238 GPS ECCC FORTESCU New Jersey USA 5/30/2022 16 15 
234239 GPS ECCC FORTESCU New Jersey USA 5/30/2022 7 6 
234240 GPS ECCC FORTESCU New Jersey USA 5/30/2022 5 223 
234370 PTT CVOW MONOMOY Massachusetts USA 8/26/2022 801 110 
234371 PTT CVOW NBRIG New Jersey USA 8/15/2023 835 70 
234372 PTT CVOW MONOMOY Massachusetts USA 8/26/2022 195 64 
234373 PTT CVOW MONOMOY Massachusetts USA 8/26/2022 70 111 
234374 PTT CVOW NBRIG New Jersey USA 8/15/2023 312 24 
234375 PTT CVOW NBRIG New Jersey USA 8/15/2023 676 52 
234376 PTT CVOW NBRIG New Jersey USA 8/15/2023 292 65 
234377 PTT CVOW MONOMOY Massachusetts USA 8/26/2022 246 65 
234378 PTT CVOW NBRIG New Jersey USA 8/15/2023 214 22 
234379 PTT CVOW MONOMOY Massachusetts USA 8/26/2022 75 89 
234380 PTT CVOW NBRIG New Jersey USA 8/15/2023 208 17 
234381 PTT CVOW NBRIG New Jersey USA 8/15/2023 825 77 
234382 PTT CVOW NBRIG New Jersey USA 8/15/2023 408 32 
234383 PTT CVOW MONOMOY Massachusetts USA 8/26/2022 18 9 
234384 PTT CVOW MONOMOY Massachusetts USA 8/26/2022 104 21 
236444 GPS Fall MA Migration MONOMOY Massachusetts USA 8/26/2022 131 30 
236445 GPS Fall MA Migration MONOMOY Massachusetts USA 8/26/2022 84 19 
236446 GPS Fall MA Migration MONOMOY Massachusetts USA 8/26/2022 28 6 
236447 GPS Fall MA Migration MONOMOY Massachusetts USA 8/26/2022 73 16 
236448 GPS Fall MA Migration NBRIG New Jersey USA 5/15/2023 27 13 
236449 GPS Fall MA Migration NBRIG New Jersey USA 5/14/2023 90 44 
236450 GPS Fall MA Migration MONOMOY Massachusetts USA 8/26/2022 132 30 
236451 GPS Fall MA Migration MONOMOY Massachusetts USA 8/26/2022 128 28 
236452 GPS Fall MA Migration NBRIG New Jersey USA 5/17/2023 28 14 
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Tag ID Tag Type Project Deploy Site State/Province Country Deploy Date Locs (n) Days (n) 
236453 GPS Fall MA Migration NBRIG New Jersey USA 5/16/2023 34 17 
238539 PTT ECCC PESCA Rio Grande do Sul Brazil 4/21/2023 0 0 
238541 PTT ECCC MOORES New Jersey USA 4/16/2023 0 0 
238542 PTT ECCC NBRIG New Jersey USA 8/15/2023 36 4 
238543 PTT ECCC MOORES New Jersey USA 5/16/2023 35 4 
238544 PTT ECCC MOORES New Jersey USA 5/14/2023 1273 126 
238545 PTT ECCC PESCA Rio Grande do Sul Brazil 4/21/2023 0 0 
238546 PTT ECCC MOORES New Jersey USA 5/16/2023 1262 90 
238547 PTT ECCC PESCA Rio Grande do Sul Brazil 4/21/2023 0 0 
238548 PTT ECCC PESCA Rio Grande do Sul Brazil 4/21/2023 0 0 
238550 PTT ECCC PESCA Rio Grande do Sul Brazil 4/21/2023 0 0 
238551 PTT ECCC PESCA Rio Grande do Sul Brazil 4/21/2023 0 0 
238553 PTT ECCC PESCA Rio Grande do Sul Brazil 4/21/2023 0 0 
240155 PTT ECCC PEIXE Rio Grande do Sul Brazil 4/10/2023 187 174 
240156 PTT ECCC MOORES New Jersey USA 5/16/2023 292 95 
240157 PTT ECCC PEIXE Rio Grande do Sul Brazil 4/10/2023 17 8 
240158 PTT ECCC PEIXE Rio Grande do Sul Brazil 4/10/2023 468 67 
240159 PTT ECCC PEIXE Rio Grande do Sul Brazil 4/10/2023 643 92 
240160 PTT ECCC PEIXE Rio Grande do Sul Brazil 4/10/2023 12 111 
240161 PTT ECCC MOORES New Jersey USA 5/16/2023 933 91 
240162 PTT ECCC PEIXE Rio Grande do Sul Brazil 4/10/2023 130 146 
240163 PTT ECCC PEIXE Rio Grande do Sul Brazil 4/11/2023 15 4 
240164 PTT ECCC PEIXE Rio Grande do Sul Brazil 4/10/2023 1188 166 
240165 PTT ECCC PEIXE Rio Grande do Sul Brazil 4/10/2023 63 67 
240166 PTT ECCC PEIXE Rio Grande do Sul Brazil 4/10/2023 17 35 
240167 PTT ECCC PEIXE Rio Grande do Sul Brazil 4/10/2023 2020 177 
240168 PTT ECCC MOORES New Jersey USA 5/16/2023 1361 122 
240169 PTT ECCC MOORES New Jersey USA 5/16/2023 0 0 
241166 PTT ECCC PEIXE Rio Grande do Sul Brazil 4/8/2023 261 86 
241167 PTT ECCC PEIXE Rio Grande do Sul Brazil 4/8/2023 784 131 
242570 PTT ECCC EASTPIT New Jersey USA 5/19/2023 1029 137 
242571 PTT ECCC EASTPIT New Jersey USA 5/19/2023 47 9 
242573 PTT ECCC MOORES New Jersey USA 4/8/2023 40 58 
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Tag ID Tag Type Project Deploy Site State/Province Country Deploy Date Locs (n) Days (n) 
242574 PTT ECCC MOORES New Jersey USA 4/8/2023 1296 143 
242575 PTT ECCC NBRIG New Jersey USA 8/15/2023 0 0 
242576 PTT ECCC NBRIG New Jersey USA 8/15/2023 0 0 
242577 PTT ECCC EASTPIT New Jersey USA 5/19/2023 164 42 
242578 PTT ECCC NBRIG New Jersey USA 8/15/2023 0 0 
242580 PTT ECCC EASTPIT New Jersey USA 5/19/2023 1556 137 
242582 PTT ECCC NBRIG New Jersey USA 5/19/2023 0 0 
242583 PTT ECCC MOORES New Jersey USA 5/16/2023 0 0 

. 

  



 

 

 

Figure B-1. Breakdown of red knot PTT tracking data by season. 
Fall Staging and Fall Over Water Migration were included in fall movement modeling for SCRAM purposes.  
  



 

 

Appendix C: Estimated Monthly Numbers of Rufa Red Knots Crossing 
“Migration Fronts” in the Mid-Atlantic (Massachusetts to Virginia) 

 

U.S. Fish and Wildlife Service, 2023 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

  



 

 

Appendix D. Templates for Wind Farm Data and Operations Data 

Wind farm data and operations data should be provided by developers in the Constructions and 
Operations Plan for each proposed wind energy project (Tables D1-D2). Additional details may be found 
in the case studies sections of Adams et al. (2022) and in the “Wind Turbine Input Data” section of this 
report.  

Table D-1. Wind farm data needed to run SCRAM. 
In the case of a project design envelope, parameters for each turbine model under consideration should be provided 
in each Run column (e.g., Run 1, Run 2, add columns as needed).  

Parameter Parameter definitions Run 1 Run 2 
Num_Turbines The number of installed turbines    -  - 

TurbineModel_MW 
The turbine model option or MW rating of the turbine. In SCRAM, this is 
purely for labeling purposes only and does not affect the results.    -  - 

Num_Blades The number of installed blades on each turbine    -  - 

RotorRadius_m 
The radius (meters) of the rotor from blade tip to middle of the rotor 
nacelle (axis of rotation)    -  - 

RotorRadiusSD_m 
The standard deviation of the rotor radius (meters). We recommend 
setting this value to 0.    -  - 

HubHeightAdd_m 

The distance between mean sea level at the wind farm centroid and the 
lower blade tip (meters), also referred to as the air gap. From this value 
the hub height is calculated and presented in the output.  Note: the air 
gap at highest astronomical tide (HAT) can be provided as an alternative 
to mean sea level, but depending on the degree of tidal variation at the 
wind farm location, this may lead to overestimates of collision risk. 

 -  - 

HubHeightAddSD_m 
The standard deviation of the air gap (meters). We recommend setting 
this value to 0.      -  - 

BladeWidth_m The max. turbine blade width (meters).    -  - 

BladeWidthSD_m 
The standard deviation of the turbine blade width (meters). We 
recommend setting this value to 0.    -  - 

RotorSpeed_rpm 
The average annual number of turbine rotations per minute when turbine 
is active. Non-operational time (due to maintenance downtime and low 
wind speeds) is accounted for elsewhere in the model  

 -  - 

RotorSpeedSD_rpm 
The standard deviation of turbine rotations per minute. We recommend 
setting this value to 0 unless data can be obtained on the variation in 
RPMs due to wind speed or other environmental conditions. 

 -  - 

Pitch 
The average angle of the blade (degrees) relative to the rotational plane 
of the blades while the turbine is spinning.  -  - 

PitchSD The standard deviation in pitch (degrees).  -  - 

WFWidth_km 
Wind farm width (km). If the wind farm is not square, use (length + 
width)/2 of the wind farm or total perimeter length/4 if an irregular shape.  -  - 

Latitude Latitude (decimal degrees) of wind farm centroid  -  - 
Longitude Longitude (decimal degrees) of wind farm centroid  -  - 
  



 

 

 Table D-2. Wind farm operations data needed to run SCRAM. 
Op = Wind availability, the maximum amount of time turbines can be operational/month depending on wind speeds 
and cut-in and cut-out speeds of the turbine. OpMean = Mean time that turbines will not be operational (“down time”), 
assumed to be independent of “MonthOp” – i.e., total operation = MonthOp*(1 – MonthOpMean). OpSD = standard 
deviation of mean operational time. 

Month Op OpMean OpSD 
Jan   -   -   -   
Feb   -   -   -   
Mar   -   -   -   
Apr   -   -   -   
May   -   -   -   
Jun   -   -   -   
Jul   -   -   -   
Aug   -   -   -   
Sep   -   -   -   
Oct   -   -   -   
Nov   -   -   -   
Dec   -   -   -   



 

 

Appendix E. Motus-Only and Satellite-Only Maps of Red Knot Use 
We used the ensemble of Motus and satellite based movement models for red knots to estimate 
cumulative use (i.e., cumulative daily occupancy probability) in the SCRAM 2 collision risk models (see 
main text). Estimates of cumulative use from the Motus and satellite based movement models (i.e., prior 
to combining them in the ensemble) are presented here (Figures E-1 and E-2). Ensemble maps are 
presented in the main text, though the ensemble map of mean cumulative use (Figure 5) is reproduced 
here for comparison to Motus- and satellite-based estimates (Figure E-1). 

 

Figure E-1. Cumulative use estimates from movement models for Motus- and satellite-tracked red 
knots, averaged across months. 
Estimates were based on single-state movement models using Motus (left panel) and satellite-based data (right 
panel), and the number of tagged individuals in the study. The results of movement models from Motus and satellite-
based data for red knots were combined in an ensemble model within the red study area (center panel); estimates 
outside the red study area were modeled from satellite-based data only. “Cumulative use” summed daily occupancy 
probabilities estimated via SCRAM for each month then averaged these values across all months with greater than 
five tracked individuals for a given species. Scale bars align with monthly estimates for red knots (Figure E-2 and 
Figure E-3). 



 

 

 



 

 

 

Figure E-2. Cumulative use estimates by month from the Motus movement models for red knots. 
Estimates were based on single-state movement models using Motus data, and the number of tagged individuals in 
the study. “Cumulative use” summed daily occupancy probabilities estimated via SCRAM for each month with greater 
than five tracked individuals for a given species. Estimates covered July–August (top panel) and September–
November (bottom panel) (see Table 7 for monthly sample sizes). 



 

 

 



 

 

 

Figure E-3. Cumulative use estimates from the movement models for satellite-tracked Red Knots. 
Estimates were based on single-state movement models using satellite-based data, and the number of tagged 
individuals in the study. “Cumulative use” summed daily occupancy probabilities estimated via SCRAM for each 
month with greater than five tracked individuals for the given species. Estimates covered August (top panel) and 
September–November (bottom panel) (see Table 7 for monthly sample sizes). 



 

 

Appendix F. Octile Maps of Cumulative Daily Occupancy 
Figures in the main text used a standardized scale for each species, to enable comparison of relative use 
among grid cells and months. Maps included in the Adams et al. (2022) report, as well as in the SCRAM 
web application, used octiles to visualize the data instead; in this case, each color represented 12.5% of 
the range in values for that species. This display choice enabled the visual identification of subtle changes 
in patterns of relative use among grid cells within a given time period, but did not allow for comparison of 
relative use among months. We included octile maps here (Figure F-1) as another way of visualizing the 
same cumulative daily occupancy data, and for comparison with Adams et al. (2022). 

 



 

 

 



 

 

 

Figure F-1. Mean cumulative use estimates averaged across months using Motus and satellite-
tracked data. 
Movement model results are presented for Motus movement data (top panel; piping plovers at left, red knots middle, 
roseate terns at right); satellite-tracking data (middle panel; red knots); and the ensemble model that includes both 
motus and satellite-tracking data (bottom panel; red knots). 
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